]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - include/linux/skbuff.h
[AF_UNIX]: Make code static.
[net-next-2.6.git] / include / linux / skbuff.h
... / ...
CommitLineData
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/cache.h>
21
22#include <asm/atomic.h>
23#include <asm/types.h>
24#include <linux/spinlock.h>
25#include <linux/net.h>
26#include <linux/textsearch.h>
27#include <net/checksum.h>
28#include <linux/rcupdate.h>
29#include <linux/dmaengine.h>
30#include <linux/hrtimer.h>
31
32#define HAVE_ALLOC_SKB /* For the drivers to know */
33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35/* Don't change this without changing skb_csum_unnecessary! */
36#define CHECKSUM_NONE 0
37#define CHECKSUM_UNNECESSARY 1
38#define CHECKSUM_COMPLETE 2
39#define CHECKSUM_PARTIAL 3
40
41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43#define SKB_WITH_OVERHEAD(X) \
44 (((X) - sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46#define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51/* A. Checksumming of received packets by device.
52 *
53 * NONE: device failed to checksum this packet.
54 * skb->csum is undefined.
55 *
56 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
57 * skb->csum is undefined.
58 * It is bad option, but, unfortunately, many of vendors do this.
59 * Apparently with secret goal to sell you new device, when you
60 * will add new protocol to your host. F.e. IPv6. 8)
61 *
62 * COMPLETE: the most generic way. Device supplied checksum of _all_
63 * the packet as seen by netif_rx in skb->csum.
64 * NOTE: Even if device supports only some protocols, but
65 * is able to produce some skb->csum, it MUST use COMPLETE,
66 * not UNNECESSARY.
67 *
68 * PARTIAL: identical to the case for output below. This may occur
69 * on a packet received directly from another Linux OS, e.g.,
70 * a virtualised Linux kernel on the same host. The packet can
71 * be treated in the same way as UNNECESSARY except that on
72 * output (i.e., forwarding) the checksum must be filled in
73 * by the OS or the hardware.
74 *
75 * B. Checksumming on output.
76 *
77 * NONE: skb is checksummed by protocol or csum is not required.
78 *
79 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
80 * from skb->csum_start to the end and to record the checksum
81 * at skb->csum_start + skb->csum_offset.
82 *
83 * Device must show its capabilities in dev->features, set
84 * at device setup time.
85 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
86 * everything.
87 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
88 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
89 * TCP/UDP over IPv4. Sigh. Vendors like this
90 * way by an unknown reason. Though, see comment above
91 * about CHECKSUM_UNNECESSARY. 8)
92 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 *
94 * Any questions? No questions, good. --ANK
95 */
96
97struct net_device;
98struct scatterlist;
99
100#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101struct nf_conntrack {
102 atomic_t use;
103};
104#endif
105
106#ifdef CONFIG_BRIDGE_NETFILTER
107struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
112 struct net_device *netoutdev;
113#endif
114 unsigned int mask;
115 unsigned long data[32 / sizeof(unsigned long)];
116};
117#endif
118
119struct sk_buff_head {
120 /* These two members must be first. */
121 struct sk_buff *next;
122 struct sk_buff *prev;
123
124 __u32 qlen;
125 spinlock_t lock;
126};
127
128struct sk_buff;
129
130/* To allow 64K frame to be packed as single skb without frag_list */
131#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132
133typedef struct skb_frag_struct skb_frag_t;
134
135struct skb_frag_struct {
136 struct page *page;
137 __u16 page_offset;
138 __u16 size;
139};
140
141/* This data is invariant across clones and lives at
142 * the end of the header data, ie. at skb->end.
143 */
144struct skb_shared_info {
145 atomic_t dataref;
146 unsigned short nr_frags;
147 unsigned short gso_size;
148 /* Warning: this field is not always filled in (UFO)! */
149 unsigned short gso_segs;
150 unsigned short gso_type;
151 __be32 ip6_frag_id;
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154};
155
156/* We divide dataref into two halves. The higher 16 bits hold references
157 * to the payload part of skb->data. The lower 16 bits hold references to
158 * the entire skb->data. A clone of a headerless skb holds the length of
159 * the header in skb->hdr_len.
160 *
161 * All users must obey the rule that the skb->data reference count must be
162 * greater than or equal to the payload reference count.
163 *
164 * Holding a reference to the payload part means that the user does not
165 * care about modifications to the header part of skb->data.
166 */
167#define SKB_DATAREF_SHIFT 16
168#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
169
170
171enum {
172 SKB_FCLONE_UNAVAILABLE,
173 SKB_FCLONE_ORIG,
174 SKB_FCLONE_CLONE,
175};
176
177enum {
178 SKB_GSO_TCPV4 = 1 << 0,
179 SKB_GSO_UDP = 1 << 1,
180
181 /* This indicates the skb is from an untrusted source. */
182 SKB_GSO_DODGY = 1 << 2,
183
184 /* This indicates the tcp segment has CWR set. */
185 SKB_GSO_TCP_ECN = 1 << 3,
186
187 SKB_GSO_TCPV6 = 1 << 4,
188};
189
190#if BITS_PER_LONG > 32
191#define NET_SKBUFF_DATA_USES_OFFSET 1
192#endif
193
194#ifdef NET_SKBUFF_DATA_USES_OFFSET
195typedef unsigned int sk_buff_data_t;
196#else
197typedef unsigned char *sk_buff_data_t;
198#endif
199
200/**
201 * struct sk_buff - socket buffer
202 * @next: Next buffer in list
203 * @prev: Previous buffer in list
204 * @sk: Socket we are owned by
205 * @tstamp: Time we arrived
206 * @dev: Device we arrived on/are leaving by
207 * @transport_header: Transport layer header
208 * @network_header: Network layer header
209 * @mac_header: Link layer header
210 * @dst: destination entry
211 * @sp: the security path, used for xfrm
212 * @cb: Control buffer. Free for use by every layer. Put private vars here
213 * @len: Length of actual data
214 * @data_len: Data length
215 * @mac_len: Length of link layer header
216 * @hdr_len: writable header length of cloned skb
217 * @csum: Checksum (must include start/offset pair)
218 * @csum_start: Offset from skb->head where checksumming should start
219 * @csum_offset: Offset from csum_start where checksum should be stored
220 * @local_df: allow local fragmentation
221 * @cloned: Head may be cloned (check refcnt to be sure)
222 * @nohdr: Payload reference only, must not modify header
223 * @pkt_type: Packet class
224 * @fclone: skbuff clone status
225 * @ip_summed: Driver fed us an IP checksum
226 * @priority: Packet queueing priority
227 * @users: User count - see {datagram,tcp}.c
228 * @protocol: Packet protocol from driver
229 * @truesize: Buffer size
230 * @head: Head of buffer
231 * @data: Data head pointer
232 * @tail: Tail pointer
233 * @end: End pointer
234 * @destructor: Destruct function
235 * @mark: Generic packet mark
236 * @nfct: Associated connection, if any
237 * @ipvs_property: skbuff is owned by ipvs
238 * @nf_trace: netfilter packet trace flag
239 * @nfctinfo: Relationship of this skb to the connection
240 * @nfct_reasm: netfilter conntrack re-assembly pointer
241 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
242 * @iif: ifindex of device we arrived on
243 * @queue_mapping: Queue mapping for multiqueue devices
244 * @tc_index: Traffic control index
245 * @tc_verd: traffic control verdict
246 * @dma_cookie: a cookie to one of several possible DMA operations
247 * done by skb DMA functions
248 * @secmark: security marking
249 */
250
251struct sk_buff {
252 /* These two members must be first. */
253 struct sk_buff *next;
254 struct sk_buff *prev;
255
256 struct sock *sk;
257 ktime_t tstamp;
258 struct net_device *dev;
259
260 struct dst_entry *dst;
261 struct sec_path *sp;
262
263 /*
264 * This is the control buffer. It is free to use for every
265 * layer. Please put your private variables there. If you
266 * want to keep them across layers you have to do a skb_clone()
267 * first. This is owned by whoever has the skb queued ATM.
268 */
269 char cb[48];
270
271 unsigned int len,
272 data_len;
273 __u16 mac_len,
274 hdr_len;
275 union {
276 __wsum csum;
277 struct {
278 __u16 csum_start;
279 __u16 csum_offset;
280 };
281 };
282 __u32 priority;
283 __u8 local_df:1,
284 cloned:1,
285 ip_summed:2,
286 nohdr:1,
287 nfctinfo:3;
288 __u8 pkt_type:3,
289 fclone:2,
290 ipvs_property:1,
291 nf_trace:1;
292 __be16 protocol;
293
294 void (*destructor)(struct sk_buff *skb);
295#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 struct nf_conntrack *nfct;
297 struct sk_buff *nfct_reasm;
298#endif
299#ifdef CONFIG_BRIDGE_NETFILTER
300 struct nf_bridge_info *nf_bridge;
301#endif
302
303 int iif;
304 __u16 queue_mapping;
305
306#ifdef CONFIG_NET_SCHED
307 __u16 tc_index; /* traffic control index */
308#ifdef CONFIG_NET_CLS_ACT
309 __u16 tc_verd; /* traffic control verdict */
310#endif
311#endif
312 /* 2 byte hole */
313
314#ifdef CONFIG_NET_DMA
315 dma_cookie_t dma_cookie;
316#endif
317#ifdef CONFIG_NETWORK_SECMARK
318 __u32 secmark;
319#endif
320
321 __u32 mark;
322
323 sk_buff_data_t transport_header;
324 sk_buff_data_t network_header;
325 sk_buff_data_t mac_header;
326 /* These elements must be at the end, see alloc_skb() for details. */
327 sk_buff_data_t tail;
328 sk_buff_data_t end;
329 unsigned char *head,
330 *data;
331 unsigned int truesize;
332 atomic_t users;
333};
334
335#ifdef __KERNEL__
336/*
337 * Handling routines are only of interest to the kernel
338 */
339#include <linux/slab.h>
340
341#include <asm/system.h>
342
343extern void kfree_skb(struct sk_buff *skb);
344extern void __kfree_skb(struct sk_buff *skb);
345extern struct sk_buff *__alloc_skb(unsigned int size,
346 gfp_t priority, int fclone, int node);
347static inline struct sk_buff *alloc_skb(unsigned int size,
348 gfp_t priority)
349{
350 return __alloc_skb(size, priority, 0, -1);
351}
352
353static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
354 gfp_t priority)
355{
356 return __alloc_skb(size, priority, 1, -1);
357}
358
359extern void kfree_skbmem(struct sk_buff *skb);
360extern struct sk_buff *skb_clone(struct sk_buff *skb,
361 gfp_t priority);
362extern struct sk_buff *skb_copy(const struct sk_buff *skb,
363 gfp_t priority);
364extern struct sk_buff *pskb_copy(struct sk_buff *skb,
365 gfp_t gfp_mask);
366extern int pskb_expand_head(struct sk_buff *skb,
367 int nhead, int ntail,
368 gfp_t gfp_mask);
369extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
370 unsigned int headroom);
371extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
372 int newheadroom, int newtailroom,
373 gfp_t priority);
374extern int skb_to_sgvec(struct sk_buff *skb,
375 struct scatterlist *sg, int offset,
376 int len);
377extern int skb_cow_data(struct sk_buff *skb, int tailbits,
378 struct sk_buff **trailer);
379extern int skb_pad(struct sk_buff *skb, int pad);
380#define dev_kfree_skb(a) kfree_skb(a)
381extern void skb_over_panic(struct sk_buff *skb, int len,
382 void *here);
383extern void skb_under_panic(struct sk_buff *skb, int len,
384 void *here);
385extern void skb_truesize_bug(struct sk_buff *skb);
386
387static inline void skb_truesize_check(struct sk_buff *skb)
388{
389 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
390 skb_truesize_bug(skb);
391}
392
393extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
394 int getfrag(void *from, char *to, int offset,
395 int len,int odd, struct sk_buff *skb),
396 void *from, int length);
397
398struct skb_seq_state
399{
400 __u32 lower_offset;
401 __u32 upper_offset;
402 __u32 frag_idx;
403 __u32 stepped_offset;
404 struct sk_buff *root_skb;
405 struct sk_buff *cur_skb;
406 __u8 *frag_data;
407};
408
409extern void skb_prepare_seq_read(struct sk_buff *skb,
410 unsigned int from, unsigned int to,
411 struct skb_seq_state *st);
412extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
413 struct skb_seq_state *st);
414extern void skb_abort_seq_read(struct skb_seq_state *st);
415
416extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
417 unsigned int to, struct ts_config *config,
418 struct ts_state *state);
419
420#ifdef NET_SKBUFF_DATA_USES_OFFSET
421static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
422{
423 return skb->head + skb->end;
424}
425#else
426static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
427{
428 return skb->end;
429}
430#endif
431
432/* Internal */
433#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
434
435/**
436 * skb_queue_empty - check if a queue is empty
437 * @list: queue head
438 *
439 * Returns true if the queue is empty, false otherwise.
440 */
441static inline int skb_queue_empty(const struct sk_buff_head *list)
442{
443 return list->next == (struct sk_buff *)list;
444}
445
446/**
447 * skb_get - reference buffer
448 * @skb: buffer to reference
449 *
450 * Makes another reference to a socket buffer and returns a pointer
451 * to the buffer.
452 */
453static inline struct sk_buff *skb_get(struct sk_buff *skb)
454{
455 atomic_inc(&skb->users);
456 return skb;
457}
458
459/*
460 * If users == 1, we are the only owner and are can avoid redundant
461 * atomic change.
462 */
463
464/**
465 * skb_cloned - is the buffer a clone
466 * @skb: buffer to check
467 *
468 * Returns true if the buffer was generated with skb_clone() and is
469 * one of multiple shared copies of the buffer. Cloned buffers are
470 * shared data so must not be written to under normal circumstances.
471 */
472static inline int skb_cloned(const struct sk_buff *skb)
473{
474 return skb->cloned &&
475 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
476}
477
478/**
479 * skb_header_cloned - is the header a clone
480 * @skb: buffer to check
481 *
482 * Returns true if modifying the header part of the buffer requires
483 * the data to be copied.
484 */
485static inline int skb_header_cloned(const struct sk_buff *skb)
486{
487 int dataref;
488
489 if (!skb->cloned)
490 return 0;
491
492 dataref = atomic_read(&skb_shinfo(skb)->dataref);
493 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
494 return dataref != 1;
495}
496
497/**
498 * skb_header_release - release reference to header
499 * @skb: buffer to operate on
500 *
501 * Drop a reference to the header part of the buffer. This is done
502 * by acquiring a payload reference. You must not read from the header
503 * part of skb->data after this.
504 */
505static inline void skb_header_release(struct sk_buff *skb)
506{
507 BUG_ON(skb->nohdr);
508 skb->nohdr = 1;
509 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
510}
511
512/**
513 * skb_shared - is the buffer shared
514 * @skb: buffer to check
515 *
516 * Returns true if more than one person has a reference to this
517 * buffer.
518 */
519static inline int skb_shared(const struct sk_buff *skb)
520{
521 return atomic_read(&skb->users) != 1;
522}
523
524/**
525 * skb_share_check - check if buffer is shared and if so clone it
526 * @skb: buffer to check
527 * @pri: priority for memory allocation
528 *
529 * If the buffer is shared the buffer is cloned and the old copy
530 * drops a reference. A new clone with a single reference is returned.
531 * If the buffer is not shared the original buffer is returned. When
532 * being called from interrupt status or with spinlocks held pri must
533 * be GFP_ATOMIC.
534 *
535 * NULL is returned on a memory allocation failure.
536 */
537static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
538 gfp_t pri)
539{
540 might_sleep_if(pri & __GFP_WAIT);
541 if (skb_shared(skb)) {
542 struct sk_buff *nskb = skb_clone(skb, pri);
543 kfree_skb(skb);
544 skb = nskb;
545 }
546 return skb;
547}
548
549/*
550 * Copy shared buffers into a new sk_buff. We effectively do COW on
551 * packets to handle cases where we have a local reader and forward
552 * and a couple of other messy ones. The normal one is tcpdumping
553 * a packet thats being forwarded.
554 */
555
556/**
557 * skb_unshare - make a copy of a shared buffer
558 * @skb: buffer to check
559 * @pri: priority for memory allocation
560 *
561 * If the socket buffer is a clone then this function creates a new
562 * copy of the data, drops a reference count on the old copy and returns
563 * the new copy with the reference count at 1. If the buffer is not a clone
564 * the original buffer is returned. When called with a spinlock held or
565 * from interrupt state @pri must be %GFP_ATOMIC
566 *
567 * %NULL is returned on a memory allocation failure.
568 */
569static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
570 gfp_t pri)
571{
572 might_sleep_if(pri & __GFP_WAIT);
573 if (skb_cloned(skb)) {
574 struct sk_buff *nskb = skb_copy(skb, pri);
575 kfree_skb(skb); /* Free our shared copy */
576 skb = nskb;
577 }
578 return skb;
579}
580
581/**
582 * skb_peek
583 * @list_: list to peek at
584 *
585 * Peek an &sk_buff. Unlike most other operations you _MUST_
586 * be careful with this one. A peek leaves the buffer on the
587 * list and someone else may run off with it. You must hold
588 * the appropriate locks or have a private queue to do this.
589 *
590 * Returns %NULL for an empty list or a pointer to the head element.
591 * The reference count is not incremented and the reference is therefore
592 * volatile. Use with caution.
593 */
594static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
595{
596 struct sk_buff *list = ((struct sk_buff *)list_)->next;
597 if (list == (struct sk_buff *)list_)
598 list = NULL;
599 return list;
600}
601
602/**
603 * skb_peek_tail
604 * @list_: list to peek at
605 *
606 * Peek an &sk_buff. Unlike most other operations you _MUST_
607 * be careful with this one. A peek leaves the buffer on the
608 * list and someone else may run off with it. You must hold
609 * the appropriate locks or have a private queue to do this.
610 *
611 * Returns %NULL for an empty list or a pointer to the tail element.
612 * The reference count is not incremented and the reference is therefore
613 * volatile. Use with caution.
614 */
615static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
616{
617 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
618 if (list == (struct sk_buff *)list_)
619 list = NULL;
620 return list;
621}
622
623/**
624 * skb_queue_len - get queue length
625 * @list_: list to measure
626 *
627 * Return the length of an &sk_buff queue.
628 */
629static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
630{
631 return list_->qlen;
632}
633
634/*
635 * This function creates a split out lock class for each invocation;
636 * this is needed for now since a whole lot of users of the skb-queue
637 * infrastructure in drivers have different locking usage (in hardirq)
638 * than the networking core (in softirq only). In the long run either the
639 * network layer or drivers should need annotation to consolidate the
640 * main types of usage into 3 classes.
641 */
642static inline void skb_queue_head_init(struct sk_buff_head *list)
643{
644 spin_lock_init(&list->lock);
645 list->prev = list->next = (struct sk_buff *)list;
646 list->qlen = 0;
647}
648
649static inline void skb_queue_head_init_class(struct sk_buff_head *list,
650 struct lock_class_key *class)
651{
652 skb_queue_head_init(list);
653 lockdep_set_class(&list->lock, class);
654}
655
656/*
657 * Insert an sk_buff at the start of a list.
658 *
659 * The "__skb_xxxx()" functions are the non-atomic ones that
660 * can only be called with interrupts disabled.
661 */
662
663/**
664 * __skb_queue_after - queue a buffer at the list head
665 * @list: list to use
666 * @prev: place after this buffer
667 * @newsk: buffer to queue
668 *
669 * Queue a buffer int the middle of a list. This function takes no locks
670 * and you must therefore hold required locks before calling it.
671 *
672 * A buffer cannot be placed on two lists at the same time.
673 */
674static inline void __skb_queue_after(struct sk_buff_head *list,
675 struct sk_buff *prev,
676 struct sk_buff *newsk)
677{
678 struct sk_buff *next;
679 list->qlen++;
680
681 next = prev->next;
682 newsk->next = next;
683 newsk->prev = prev;
684 next->prev = prev->next = newsk;
685}
686
687/**
688 * __skb_queue_head - queue a buffer at the list head
689 * @list: list to use
690 * @newsk: buffer to queue
691 *
692 * Queue a buffer at the start of a list. This function takes no locks
693 * and you must therefore hold required locks before calling it.
694 *
695 * A buffer cannot be placed on two lists at the same time.
696 */
697extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
698static inline void __skb_queue_head(struct sk_buff_head *list,
699 struct sk_buff *newsk)
700{
701 __skb_queue_after(list, (struct sk_buff *)list, newsk);
702}
703
704/**
705 * __skb_queue_tail - queue a buffer at the list tail
706 * @list: list to use
707 * @newsk: buffer to queue
708 *
709 * Queue a buffer at the end of a list. This function takes no locks
710 * and you must therefore hold required locks before calling it.
711 *
712 * A buffer cannot be placed on two lists at the same time.
713 */
714extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
715static inline void __skb_queue_tail(struct sk_buff_head *list,
716 struct sk_buff *newsk)
717{
718 struct sk_buff *prev, *next;
719
720 list->qlen++;
721 next = (struct sk_buff *)list;
722 prev = next->prev;
723 newsk->next = next;
724 newsk->prev = prev;
725 next->prev = prev->next = newsk;
726}
727
728
729/**
730 * __skb_dequeue - remove from the head of the queue
731 * @list: list to dequeue from
732 *
733 * Remove the head of the list. This function does not take any locks
734 * so must be used with appropriate locks held only. The head item is
735 * returned or %NULL if the list is empty.
736 */
737extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
738static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
739{
740 struct sk_buff *next, *prev, *result;
741
742 prev = (struct sk_buff *) list;
743 next = prev->next;
744 result = NULL;
745 if (next != prev) {
746 result = next;
747 next = next->next;
748 list->qlen--;
749 next->prev = prev;
750 prev->next = next;
751 result->next = result->prev = NULL;
752 }
753 return result;
754}
755
756
757/*
758 * Insert a packet on a list.
759 */
760extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
761static inline void __skb_insert(struct sk_buff *newsk,
762 struct sk_buff *prev, struct sk_buff *next,
763 struct sk_buff_head *list)
764{
765 newsk->next = next;
766 newsk->prev = prev;
767 next->prev = prev->next = newsk;
768 list->qlen++;
769}
770
771/*
772 * Place a packet after a given packet in a list.
773 */
774extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
775static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
776{
777 __skb_insert(newsk, old, old->next, list);
778}
779
780/*
781 * remove sk_buff from list. _Must_ be called atomically, and with
782 * the list known..
783 */
784extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
785static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
786{
787 struct sk_buff *next, *prev;
788
789 list->qlen--;
790 next = skb->next;
791 prev = skb->prev;
792 skb->next = skb->prev = NULL;
793 next->prev = prev;
794 prev->next = next;
795}
796
797
798/* XXX: more streamlined implementation */
799
800/**
801 * __skb_dequeue_tail - remove from the tail of the queue
802 * @list: list to dequeue from
803 *
804 * Remove the tail of the list. This function does not take any locks
805 * so must be used with appropriate locks held only. The tail item is
806 * returned or %NULL if the list is empty.
807 */
808extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
809static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
810{
811 struct sk_buff *skb = skb_peek_tail(list);
812 if (skb)
813 __skb_unlink(skb, list);
814 return skb;
815}
816
817
818static inline int skb_is_nonlinear(const struct sk_buff *skb)
819{
820 return skb->data_len;
821}
822
823static inline unsigned int skb_headlen(const struct sk_buff *skb)
824{
825 return skb->len - skb->data_len;
826}
827
828static inline int skb_pagelen(const struct sk_buff *skb)
829{
830 int i, len = 0;
831
832 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
833 len += skb_shinfo(skb)->frags[i].size;
834 return len + skb_headlen(skb);
835}
836
837static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
838 struct page *page, int off, int size)
839{
840 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
841
842 frag->page = page;
843 frag->page_offset = off;
844 frag->size = size;
845 skb_shinfo(skb)->nr_frags = i + 1;
846}
847
848#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
849#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
850#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
851
852#ifdef NET_SKBUFF_DATA_USES_OFFSET
853static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
854{
855 return skb->head + skb->tail;
856}
857
858static inline void skb_reset_tail_pointer(struct sk_buff *skb)
859{
860 skb->tail = skb->data - skb->head;
861}
862
863static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
864{
865 skb_reset_tail_pointer(skb);
866 skb->tail += offset;
867}
868#else /* NET_SKBUFF_DATA_USES_OFFSET */
869static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
870{
871 return skb->tail;
872}
873
874static inline void skb_reset_tail_pointer(struct sk_buff *skb)
875{
876 skb->tail = skb->data;
877}
878
879static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
880{
881 skb->tail = skb->data + offset;
882}
883
884#endif /* NET_SKBUFF_DATA_USES_OFFSET */
885
886/*
887 * Add data to an sk_buff
888 */
889static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
890{
891 unsigned char *tmp = skb_tail_pointer(skb);
892 SKB_LINEAR_ASSERT(skb);
893 skb->tail += len;
894 skb->len += len;
895 return tmp;
896}
897
898/**
899 * skb_put - add data to a buffer
900 * @skb: buffer to use
901 * @len: amount of data to add
902 *
903 * This function extends the used data area of the buffer. If this would
904 * exceed the total buffer size the kernel will panic. A pointer to the
905 * first byte of the extra data is returned.
906 */
907static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
908{
909 unsigned char *tmp = skb_tail_pointer(skb);
910 SKB_LINEAR_ASSERT(skb);
911 skb->tail += len;
912 skb->len += len;
913 if (unlikely(skb->tail > skb->end))
914 skb_over_panic(skb, len, current_text_addr());
915 return tmp;
916}
917
918static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
919{
920 skb->data -= len;
921 skb->len += len;
922 return skb->data;
923}
924
925/**
926 * skb_push - add data to the start of a buffer
927 * @skb: buffer to use
928 * @len: amount of data to add
929 *
930 * This function extends the used data area of the buffer at the buffer
931 * start. If this would exceed the total buffer headroom the kernel will
932 * panic. A pointer to the first byte of the extra data is returned.
933 */
934static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
935{
936 skb->data -= len;
937 skb->len += len;
938 if (unlikely(skb->data<skb->head))
939 skb_under_panic(skb, len, current_text_addr());
940 return skb->data;
941}
942
943static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
944{
945 skb->len -= len;
946 BUG_ON(skb->len < skb->data_len);
947 return skb->data += len;
948}
949
950/**
951 * skb_pull - remove data from the start of a buffer
952 * @skb: buffer to use
953 * @len: amount of data to remove
954 *
955 * This function removes data from the start of a buffer, returning
956 * the memory to the headroom. A pointer to the next data in the buffer
957 * is returned. Once the data has been pulled future pushes will overwrite
958 * the old data.
959 */
960static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
961{
962 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
963}
964
965extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
966
967static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
968{
969 if (len > skb_headlen(skb) &&
970 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
971 return NULL;
972 skb->len -= len;
973 return skb->data += len;
974}
975
976static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
977{
978 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
979}
980
981static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
982{
983 if (likely(len <= skb_headlen(skb)))
984 return 1;
985 if (unlikely(len > skb->len))
986 return 0;
987 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
988}
989
990/**
991 * skb_headroom - bytes at buffer head
992 * @skb: buffer to check
993 *
994 * Return the number of bytes of free space at the head of an &sk_buff.
995 */
996static inline int skb_headroom(const struct sk_buff *skb)
997{
998 return skb->data - skb->head;
999}
1000
1001/**
1002 * skb_tailroom - bytes at buffer end
1003 * @skb: buffer to check
1004 *
1005 * Return the number of bytes of free space at the tail of an sk_buff
1006 */
1007static inline int skb_tailroom(const struct sk_buff *skb)
1008{
1009 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1010}
1011
1012/**
1013 * skb_reserve - adjust headroom
1014 * @skb: buffer to alter
1015 * @len: bytes to move
1016 *
1017 * Increase the headroom of an empty &sk_buff by reducing the tail
1018 * room. This is only allowed for an empty buffer.
1019 */
1020static inline void skb_reserve(struct sk_buff *skb, int len)
1021{
1022 skb->data += len;
1023 skb->tail += len;
1024}
1025
1026#ifdef NET_SKBUFF_DATA_USES_OFFSET
1027static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1028{
1029 return skb->head + skb->transport_header;
1030}
1031
1032static inline void skb_reset_transport_header(struct sk_buff *skb)
1033{
1034 skb->transport_header = skb->data - skb->head;
1035}
1036
1037static inline void skb_set_transport_header(struct sk_buff *skb,
1038 const int offset)
1039{
1040 skb_reset_transport_header(skb);
1041 skb->transport_header += offset;
1042}
1043
1044static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1045{
1046 return skb->head + skb->network_header;
1047}
1048
1049static inline void skb_reset_network_header(struct sk_buff *skb)
1050{
1051 skb->network_header = skb->data - skb->head;
1052}
1053
1054static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1055{
1056 skb_reset_network_header(skb);
1057 skb->network_header += offset;
1058}
1059
1060static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1061{
1062 return skb->head + skb->mac_header;
1063}
1064
1065static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1066{
1067 return skb->mac_header != ~0U;
1068}
1069
1070static inline void skb_reset_mac_header(struct sk_buff *skb)
1071{
1072 skb->mac_header = skb->data - skb->head;
1073}
1074
1075static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1076{
1077 skb_reset_mac_header(skb);
1078 skb->mac_header += offset;
1079}
1080
1081#else /* NET_SKBUFF_DATA_USES_OFFSET */
1082
1083static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1084{
1085 return skb->transport_header;
1086}
1087
1088static inline void skb_reset_transport_header(struct sk_buff *skb)
1089{
1090 skb->transport_header = skb->data;
1091}
1092
1093static inline void skb_set_transport_header(struct sk_buff *skb,
1094 const int offset)
1095{
1096 skb->transport_header = skb->data + offset;
1097}
1098
1099static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1100{
1101 return skb->network_header;
1102}
1103
1104static inline void skb_reset_network_header(struct sk_buff *skb)
1105{
1106 skb->network_header = skb->data;
1107}
1108
1109static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1110{
1111 skb->network_header = skb->data + offset;
1112}
1113
1114static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1115{
1116 return skb->mac_header;
1117}
1118
1119static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1120{
1121 return skb->mac_header != NULL;
1122}
1123
1124static inline void skb_reset_mac_header(struct sk_buff *skb)
1125{
1126 skb->mac_header = skb->data;
1127}
1128
1129static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1130{
1131 skb->mac_header = skb->data + offset;
1132}
1133#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1134
1135static inline int skb_transport_offset(const struct sk_buff *skb)
1136{
1137 return skb_transport_header(skb) - skb->data;
1138}
1139
1140static inline u32 skb_network_header_len(const struct sk_buff *skb)
1141{
1142 return skb->transport_header - skb->network_header;
1143}
1144
1145static inline int skb_network_offset(const struct sk_buff *skb)
1146{
1147 return skb_network_header(skb) - skb->data;
1148}
1149
1150/*
1151 * CPUs often take a performance hit when accessing unaligned memory
1152 * locations. The actual performance hit varies, it can be small if the
1153 * hardware handles it or large if we have to take an exception and fix it
1154 * in software.
1155 *
1156 * Since an ethernet header is 14 bytes network drivers often end up with
1157 * the IP header at an unaligned offset. The IP header can be aligned by
1158 * shifting the start of the packet by 2 bytes. Drivers should do this
1159 * with:
1160 *
1161 * skb_reserve(NET_IP_ALIGN);
1162 *
1163 * The downside to this alignment of the IP header is that the DMA is now
1164 * unaligned. On some architectures the cost of an unaligned DMA is high
1165 * and this cost outweighs the gains made by aligning the IP header.
1166 *
1167 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1168 * to be overridden.
1169 */
1170#ifndef NET_IP_ALIGN
1171#define NET_IP_ALIGN 2
1172#endif
1173
1174/*
1175 * The networking layer reserves some headroom in skb data (via
1176 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1177 * the header has to grow. In the default case, if the header has to grow
1178 * 16 bytes or less we avoid the reallocation.
1179 *
1180 * Unfortunately this headroom changes the DMA alignment of the resulting
1181 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1182 * on some architectures. An architecture can override this value,
1183 * perhaps setting it to a cacheline in size (since that will maintain
1184 * cacheline alignment of the DMA). It must be a power of 2.
1185 *
1186 * Various parts of the networking layer expect at least 16 bytes of
1187 * headroom, you should not reduce this.
1188 */
1189#ifndef NET_SKB_PAD
1190#define NET_SKB_PAD 16
1191#endif
1192
1193extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1194
1195static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1196{
1197 if (unlikely(skb->data_len)) {
1198 WARN_ON(1);
1199 return;
1200 }
1201 skb->len = len;
1202 skb_set_tail_pointer(skb, len);
1203}
1204
1205/**
1206 * skb_trim - remove end from a buffer
1207 * @skb: buffer to alter
1208 * @len: new length
1209 *
1210 * Cut the length of a buffer down by removing data from the tail. If
1211 * the buffer is already under the length specified it is not modified.
1212 * The skb must be linear.
1213 */
1214static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1215{
1216 if (skb->len > len)
1217 __skb_trim(skb, len);
1218}
1219
1220
1221static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1222{
1223 if (skb->data_len)
1224 return ___pskb_trim(skb, len);
1225 __skb_trim(skb, len);
1226 return 0;
1227}
1228
1229static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1230{
1231 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1232}
1233
1234/**
1235 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1236 * @skb: buffer to alter
1237 * @len: new length
1238 *
1239 * This is identical to pskb_trim except that the caller knows that
1240 * the skb is not cloned so we should never get an error due to out-
1241 * of-memory.
1242 */
1243static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1244{
1245 int err = pskb_trim(skb, len);
1246 BUG_ON(err);
1247}
1248
1249/**
1250 * skb_orphan - orphan a buffer
1251 * @skb: buffer to orphan
1252 *
1253 * If a buffer currently has an owner then we call the owner's
1254 * destructor function and make the @skb unowned. The buffer continues
1255 * to exist but is no longer charged to its former owner.
1256 */
1257static inline void skb_orphan(struct sk_buff *skb)
1258{
1259 if (skb->destructor)
1260 skb->destructor(skb);
1261 skb->destructor = NULL;
1262 skb->sk = NULL;
1263}
1264
1265/**
1266 * __skb_queue_purge - empty a list
1267 * @list: list to empty
1268 *
1269 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1270 * the list and one reference dropped. This function does not take the
1271 * list lock and the caller must hold the relevant locks to use it.
1272 */
1273extern void skb_queue_purge(struct sk_buff_head *list);
1274static inline void __skb_queue_purge(struct sk_buff_head *list)
1275{
1276 struct sk_buff *skb;
1277 while ((skb = __skb_dequeue(list)) != NULL)
1278 kfree_skb(skb);
1279}
1280
1281/**
1282 * __dev_alloc_skb - allocate an skbuff for receiving
1283 * @length: length to allocate
1284 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1285 *
1286 * Allocate a new &sk_buff and assign it a usage count of one. The
1287 * buffer has unspecified headroom built in. Users should allocate
1288 * the headroom they think they need without accounting for the
1289 * built in space. The built in space is used for optimisations.
1290 *
1291 * %NULL is returned if there is no free memory.
1292 */
1293static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1294 gfp_t gfp_mask)
1295{
1296 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1297 if (likely(skb))
1298 skb_reserve(skb, NET_SKB_PAD);
1299 return skb;
1300}
1301
1302/**
1303 * dev_alloc_skb - allocate an skbuff for receiving
1304 * @length: length to allocate
1305 *
1306 * Allocate a new &sk_buff and assign it a usage count of one. The
1307 * buffer has unspecified headroom built in. Users should allocate
1308 * the headroom they think they need without accounting for the
1309 * built in space. The built in space is used for optimisations.
1310 *
1311 * %NULL is returned if there is no free memory. Although this function
1312 * allocates memory it can be called from an interrupt.
1313 */
1314static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1315{
1316 return __dev_alloc_skb(length, GFP_ATOMIC);
1317}
1318
1319extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1320 unsigned int length, gfp_t gfp_mask);
1321
1322/**
1323 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1324 * @dev: network device to receive on
1325 * @length: length to allocate
1326 *
1327 * Allocate a new &sk_buff and assign it a usage count of one. The
1328 * buffer has unspecified headroom built in. Users should allocate
1329 * the headroom they think they need without accounting for the
1330 * built in space. The built in space is used for optimisations.
1331 *
1332 * %NULL is returned if there is no free memory. Although this function
1333 * allocates memory it can be called from an interrupt.
1334 */
1335static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1336 unsigned int length)
1337{
1338 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1339}
1340
1341/**
1342 * skb_clone_writable - is the header of a clone writable
1343 * @skb: buffer to check
1344 * @len: length up to which to write
1345 *
1346 * Returns true if modifying the header part of the cloned buffer
1347 * does not requires the data to be copied.
1348 */
1349static inline int skb_clone_writable(struct sk_buff *skb, int len)
1350{
1351 return !skb_header_cloned(skb) &&
1352 skb_headroom(skb) + len <= skb->hdr_len;
1353}
1354
1355/**
1356 * skb_cow - copy header of skb when it is required
1357 * @skb: buffer to cow
1358 * @headroom: needed headroom
1359 *
1360 * If the skb passed lacks sufficient headroom or its data part
1361 * is shared, data is reallocated. If reallocation fails, an error
1362 * is returned and original skb is not changed.
1363 *
1364 * The result is skb with writable area skb->head...skb->tail
1365 * and at least @headroom of space at head.
1366 */
1367static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1368{
1369 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1370 skb_headroom(skb);
1371
1372 if (delta < 0)
1373 delta = 0;
1374
1375 if (delta || skb_cloned(skb))
1376 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1377 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1378 return 0;
1379}
1380
1381/**
1382 * skb_padto - pad an skbuff up to a minimal size
1383 * @skb: buffer to pad
1384 * @len: minimal length
1385 *
1386 * Pads up a buffer to ensure the trailing bytes exist and are
1387 * blanked. If the buffer already contains sufficient data it
1388 * is untouched. Otherwise it is extended. Returns zero on
1389 * success. The skb is freed on error.
1390 */
1391
1392static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1393{
1394 unsigned int size = skb->len;
1395 if (likely(size >= len))
1396 return 0;
1397 return skb_pad(skb, len-size);
1398}
1399
1400static inline int skb_add_data(struct sk_buff *skb,
1401 char __user *from, int copy)
1402{
1403 const int off = skb->len;
1404
1405 if (skb->ip_summed == CHECKSUM_NONE) {
1406 int err = 0;
1407 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1408 copy, 0, &err);
1409 if (!err) {
1410 skb->csum = csum_block_add(skb->csum, csum, off);
1411 return 0;
1412 }
1413 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1414 return 0;
1415
1416 __skb_trim(skb, off);
1417 return -EFAULT;
1418}
1419
1420static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1421 struct page *page, int off)
1422{
1423 if (i) {
1424 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1425
1426 return page == frag->page &&
1427 off == frag->page_offset + frag->size;
1428 }
1429 return 0;
1430}
1431
1432static inline int __skb_linearize(struct sk_buff *skb)
1433{
1434 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1435}
1436
1437/**
1438 * skb_linearize - convert paged skb to linear one
1439 * @skb: buffer to linarize
1440 *
1441 * If there is no free memory -ENOMEM is returned, otherwise zero
1442 * is returned and the old skb data released.
1443 */
1444static inline int skb_linearize(struct sk_buff *skb)
1445{
1446 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1447}
1448
1449/**
1450 * skb_linearize_cow - make sure skb is linear and writable
1451 * @skb: buffer to process
1452 *
1453 * If there is no free memory -ENOMEM is returned, otherwise zero
1454 * is returned and the old skb data released.
1455 */
1456static inline int skb_linearize_cow(struct sk_buff *skb)
1457{
1458 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1459 __skb_linearize(skb) : 0;
1460}
1461
1462/**
1463 * skb_postpull_rcsum - update checksum for received skb after pull
1464 * @skb: buffer to update
1465 * @start: start of data before pull
1466 * @len: length of data pulled
1467 *
1468 * After doing a pull on a received packet, you need to call this to
1469 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1470 * CHECKSUM_NONE so that it can be recomputed from scratch.
1471 */
1472
1473static inline void skb_postpull_rcsum(struct sk_buff *skb,
1474 const void *start, unsigned int len)
1475{
1476 if (skb->ip_summed == CHECKSUM_COMPLETE)
1477 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1478}
1479
1480unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1481
1482/**
1483 * pskb_trim_rcsum - trim received skb and update checksum
1484 * @skb: buffer to trim
1485 * @len: new length
1486 *
1487 * This is exactly the same as pskb_trim except that it ensures the
1488 * checksum of received packets are still valid after the operation.
1489 */
1490
1491static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1492{
1493 if (likely(len >= skb->len))
1494 return 0;
1495 if (skb->ip_summed == CHECKSUM_COMPLETE)
1496 skb->ip_summed = CHECKSUM_NONE;
1497 return __pskb_trim(skb, len);
1498}
1499
1500#define skb_queue_walk(queue, skb) \
1501 for (skb = (queue)->next; \
1502 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1503 skb = skb->next)
1504
1505#define skb_queue_walk_safe(queue, skb, tmp) \
1506 for (skb = (queue)->next, tmp = skb->next; \
1507 skb != (struct sk_buff *)(queue); \
1508 skb = tmp, tmp = skb->next)
1509
1510#define skb_queue_reverse_walk(queue, skb) \
1511 for (skb = (queue)->prev; \
1512 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1513 skb = skb->prev)
1514
1515
1516extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1517 int noblock, int *err);
1518extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1519 struct poll_table_struct *wait);
1520extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1521 int offset, struct iovec *to,
1522 int size);
1523extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1524 int hlen,
1525 struct iovec *iov);
1526extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1527extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1528 unsigned int flags);
1529extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1530 int len, __wsum csum);
1531extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1532 void *to, int len);
1533extern int skb_store_bits(struct sk_buff *skb, int offset,
1534 const void *from, int len);
1535extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1536 int offset, u8 *to, int len,
1537 __wsum csum);
1538extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1539extern void skb_split(struct sk_buff *skb,
1540 struct sk_buff *skb1, const u32 len);
1541
1542extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1543
1544static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1545 int len, void *buffer)
1546{
1547 int hlen = skb_headlen(skb);
1548
1549 if (hlen - offset >= len)
1550 return skb->data + offset;
1551
1552 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1553 return NULL;
1554
1555 return buffer;
1556}
1557
1558static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1559 void *to,
1560 const unsigned int len)
1561{
1562 memcpy(to, skb->data, len);
1563}
1564
1565static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1566 const int offset, void *to,
1567 const unsigned int len)
1568{
1569 memcpy(to, skb->data + offset, len);
1570}
1571
1572static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1573 const void *from,
1574 const unsigned int len)
1575{
1576 memcpy(skb->data, from, len);
1577}
1578
1579static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1580 const int offset,
1581 const void *from,
1582 const unsigned int len)
1583{
1584 memcpy(skb->data + offset, from, len);
1585}
1586
1587extern void skb_init(void);
1588
1589/**
1590 * skb_get_timestamp - get timestamp from a skb
1591 * @skb: skb to get stamp from
1592 * @stamp: pointer to struct timeval to store stamp in
1593 *
1594 * Timestamps are stored in the skb as offsets to a base timestamp.
1595 * This function converts the offset back to a struct timeval and stores
1596 * it in stamp.
1597 */
1598static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1599{
1600 *stamp = ktime_to_timeval(skb->tstamp);
1601}
1602
1603static inline void __net_timestamp(struct sk_buff *skb)
1604{
1605 skb->tstamp = ktime_get_real();
1606}
1607
1608static inline ktime_t net_timedelta(ktime_t t)
1609{
1610 return ktime_sub(ktime_get_real(), t);
1611}
1612
1613static inline ktime_t net_invalid_timestamp(void)
1614{
1615 return ktime_set(0, 0);
1616}
1617
1618extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1619extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1620
1621static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1622{
1623 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1624}
1625
1626/**
1627 * skb_checksum_complete - Calculate checksum of an entire packet
1628 * @skb: packet to process
1629 *
1630 * This function calculates the checksum over the entire packet plus
1631 * the value of skb->csum. The latter can be used to supply the
1632 * checksum of a pseudo header as used by TCP/UDP. It returns the
1633 * checksum.
1634 *
1635 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1636 * this function can be used to verify that checksum on received
1637 * packets. In that case the function should return zero if the
1638 * checksum is correct. In particular, this function will return zero
1639 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1640 * hardware has already verified the correctness of the checksum.
1641 */
1642static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1643{
1644 return skb_csum_unnecessary(skb) ?
1645 0 : __skb_checksum_complete(skb);
1646}
1647
1648#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1649extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1650static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1651{
1652 if (nfct && atomic_dec_and_test(&nfct->use))
1653 nf_conntrack_destroy(nfct);
1654}
1655static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1656{
1657 if (nfct)
1658 atomic_inc(&nfct->use);
1659}
1660static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1661{
1662 if (skb)
1663 atomic_inc(&skb->users);
1664}
1665static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1666{
1667 if (skb)
1668 kfree_skb(skb);
1669}
1670#endif
1671#ifdef CONFIG_BRIDGE_NETFILTER
1672static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1673{
1674 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1675 kfree(nf_bridge);
1676}
1677static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1678{
1679 if (nf_bridge)
1680 atomic_inc(&nf_bridge->use);
1681}
1682#endif /* CONFIG_BRIDGE_NETFILTER */
1683static inline void nf_reset(struct sk_buff *skb)
1684{
1685#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1686 nf_conntrack_put(skb->nfct);
1687 skb->nfct = NULL;
1688 nf_conntrack_put_reasm(skb->nfct_reasm);
1689 skb->nfct_reasm = NULL;
1690#endif
1691#ifdef CONFIG_BRIDGE_NETFILTER
1692 nf_bridge_put(skb->nf_bridge);
1693 skb->nf_bridge = NULL;
1694#endif
1695}
1696
1697/* Note: This doesn't put any conntrack and bridge info in dst. */
1698static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1699{
1700#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1701 dst->nfct = src->nfct;
1702 nf_conntrack_get(src->nfct);
1703 dst->nfctinfo = src->nfctinfo;
1704 dst->nfct_reasm = src->nfct_reasm;
1705 nf_conntrack_get_reasm(src->nfct_reasm);
1706#endif
1707#ifdef CONFIG_BRIDGE_NETFILTER
1708 dst->nf_bridge = src->nf_bridge;
1709 nf_bridge_get(src->nf_bridge);
1710#endif
1711}
1712
1713static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1714{
1715#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1716 nf_conntrack_put(dst->nfct);
1717 nf_conntrack_put_reasm(dst->nfct_reasm);
1718#endif
1719#ifdef CONFIG_BRIDGE_NETFILTER
1720 nf_bridge_put(dst->nf_bridge);
1721#endif
1722 __nf_copy(dst, src);
1723}
1724
1725#ifdef CONFIG_NETWORK_SECMARK
1726static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1727{
1728 to->secmark = from->secmark;
1729}
1730
1731static inline void skb_init_secmark(struct sk_buff *skb)
1732{
1733 skb->secmark = 0;
1734}
1735#else
1736static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1737{ }
1738
1739static inline void skb_init_secmark(struct sk_buff *skb)
1740{ }
1741#endif
1742
1743static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1744{
1745#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1746 skb->queue_mapping = queue_mapping;
1747#endif
1748}
1749
1750static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1751{
1752#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1753 to->queue_mapping = from->queue_mapping;
1754#endif
1755}
1756
1757static inline int skb_is_gso(const struct sk_buff *skb)
1758{
1759 return skb_shinfo(skb)->gso_size;
1760}
1761
1762static inline void skb_forward_csum(struct sk_buff *skb)
1763{
1764 /* Unfortunately we don't support this one. Any brave souls? */
1765 if (skb->ip_summed == CHECKSUM_COMPLETE)
1766 skb->ip_summed = CHECKSUM_NONE;
1767}
1768
1769#endif /* __KERNEL__ */
1770#endif /* _LINUX_SKBUFF_H */