]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - include/linux/sched.h
sched: Cure nr_iowait_cpu() users
[net-next-2.6.git] / include / linux / sched.h
... / ...
CommitLineData
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4/*
5 * cloning flags:
6 */
7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8#define CLONE_VM 0x00000100 /* set if VM shared between processes */
9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15#define CLONE_THREAD 0x00010000 /* Same thread group? */
16#define CLONE_NEWNS 0x00020000 /* New namespace group? */
17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26#define CLONE_NEWIPC 0x08000000 /* New ipcs */
27#define CLONE_NEWUSER 0x10000000 /* New user namespace */
28#define CLONE_NEWPID 0x20000000 /* New pid namespace */
29#define CLONE_NEWNET 0x40000000 /* New network namespace */
30#define CLONE_IO 0x80000000 /* Clone io context */
31
32/*
33 * Scheduling policies
34 */
35#define SCHED_NORMAL 0
36#define SCHED_FIFO 1
37#define SCHED_RR 2
38#define SCHED_BATCH 3
39/* SCHED_ISO: reserved but not implemented yet */
40#define SCHED_IDLE 5
41/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42#define SCHED_RESET_ON_FORK 0x40000000
43
44#ifdef __KERNEL__
45
46struct sched_param {
47 int sched_priority;
48};
49
50#include <asm/param.h> /* for HZ */
51
52#include <linux/capability.h>
53#include <linux/threads.h>
54#include <linux/kernel.h>
55#include <linux/types.h>
56#include <linux/timex.h>
57#include <linux/jiffies.h>
58#include <linux/rbtree.h>
59#include <linux/thread_info.h>
60#include <linux/cpumask.h>
61#include <linux/errno.h>
62#include <linux/nodemask.h>
63#include <linux/mm_types.h>
64
65#include <asm/system.h>
66#include <asm/page.h>
67#include <asm/ptrace.h>
68#include <asm/cputime.h>
69
70#include <linux/smp.h>
71#include <linux/sem.h>
72#include <linux/signal.h>
73#include <linux/path.h>
74#include <linux/compiler.h>
75#include <linux/completion.h>
76#include <linux/pid.h>
77#include <linux/percpu.h>
78#include <linux/topology.h>
79#include <linux/proportions.h>
80#include <linux/seccomp.h>
81#include <linux/rcupdate.h>
82#include <linux/rculist.h>
83#include <linux/rtmutex.h>
84
85#include <linux/time.h>
86#include <linux/param.h>
87#include <linux/resource.h>
88#include <linux/timer.h>
89#include <linux/hrtimer.h>
90#include <linux/task_io_accounting.h>
91#include <linux/kobject.h>
92#include <linux/latencytop.h>
93#include <linux/cred.h>
94
95#include <asm/processor.h>
96
97struct exec_domain;
98struct futex_pi_state;
99struct robust_list_head;
100struct bio_list;
101struct fs_struct;
102struct perf_event_context;
103
104/*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110/*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120extern unsigned long avenrun[]; /* Load averages */
121extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123#define FSHIFT 11 /* nr of bits of precision */
124#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127#define EXP_5 2014 /* 1/exp(5sec/5min) */
128#define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130#define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135extern unsigned long total_forks;
136extern int nr_threads;
137DECLARE_PER_CPU(unsigned long, process_counts);
138extern int nr_processes(void);
139extern unsigned long nr_running(void);
140extern unsigned long nr_uninterruptible(void);
141extern unsigned long nr_iowait(void);
142extern unsigned long nr_iowait_cpu(int cpu);
143extern unsigned long this_cpu_load(void);
144
145
146extern void calc_global_load(void);
147
148extern unsigned long get_parent_ip(unsigned long addr);
149
150struct seq_file;
151struct cfs_rq;
152struct task_group;
153#ifdef CONFIG_SCHED_DEBUG
154extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155extern void proc_sched_set_task(struct task_struct *p);
156extern void
157print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158#else
159static inline void
160proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161{
162}
163static inline void proc_sched_set_task(struct task_struct *p)
164{
165}
166static inline void
167print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168{
169}
170#endif
171
172/*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182#define TASK_RUNNING 0
183#define TASK_INTERRUPTIBLE 1
184#define TASK_UNINTERRUPTIBLE 2
185#define __TASK_STOPPED 4
186#define __TASK_TRACED 8
187/* in tsk->exit_state */
188#define EXIT_ZOMBIE 16
189#define EXIT_DEAD 32
190/* in tsk->state again */
191#define TASK_DEAD 64
192#define TASK_WAKEKILL 128
193#define TASK_WAKING 256
194#define TASK_STATE_MAX 512
195
196#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201/* Convenience macros for the sake of set_task_state */
202#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206/* Convenience macros for the sake of wake_up */
207#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210/* get_task_state() */
211#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217#define task_is_stopped_or_traced(task) \
218 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
219#define task_contributes_to_load(task) \
220 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
221 (task->flags & PF_FREEZING) == 0)
222
223#define __set_task_state(tsk, state_value) \
224 do { (tsk)->state = (state_value); } while (0)
225#define set_task_state(tsk, state_value) \
226 set_mb((tsk)->state, (state_value))
227
228/*
229 * set_current_state() includes a barrier so that the write of current->state
230 * is correctly serialised wrt the caller's subsequent test of whether to
231 * actually sleep:
232 *
233 * set_current_state(TASK_UNINTERRUPTIBLE);
234 * if (do_i_need_to_sleep())
235 * schedule();
236 *
237 * If the caller does not need such serialisation then use __set_current_state()
238 */
239#define __set_current_state(state_value) \
240 do { current->state = (state_value); } while (0)
241#define set_current_state(state_value) \
242 set_mb(current->state, (state_value))
243
244/* Task command name length */
245#define TASK_COMM_LEN 16
246
247#include <linux/spinlock.h>
248
249/*
250 * This serializes "schedule()" and also protects
251 * the run-queue from deletions/modifications (but
252 * _adding_ to the beginning of the run-queue has
253 * a separate lock).
254 */
255extern rwlock_t tasklist_lock;
256extern spinlock_t mmlist_lock;
257
258struct task_struct;
259
260#ifdef CONFIG_PROVE_RCU
261extern int lockdep_tasklist_lock_is_held(void);
262#endif /* #ifdef CONFIG_PROVE_RCU */
263
264extern void sched_init(void);
265extern void sched_init_smp(void);
266extern asmlinkage void schedule_tail(struct task_struct *prev);
267extern void init_idle(struct task_struct *idle, int cpu);
268extern void init_idle_bootup_task(struct task_struct *idle);
269
270extern int runqueue_is_locked(int cpu);
271
272extern cpumask_var_t nohz_cpu_mask;
273#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
274extern int select_nohz_load_balancer(int cpu);
275extern int get_nohz_load_balancer(void);
276extern int nohz_ratelimit(int cpu);
277#else
278static inline int select_nohz_load_balancer(int cpu)
279{
280 return 0;
281}
282
283static inline int nohz_ratelimit(int cpu)
284{
285 return 0;
286}
287#endif
288
289/*
290 * Only dump TASK_* tasks. (0 for all tasks)
291 */
292extern void show_state_filter(unsigned long state_filter);
293
294static inline void show_state(void)
295{
296 show_state_filter(0);
297}
298
299extern void show_regs(struct pt_regs *);
300
301/*
302 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
303 * task), SP is the stack pointer of the first frame that should be shown in the back
304 * trace (or NULL if the entire call-chain of the task should be shown).
305 */
306extern void show_stack(struct task_struct *task, unsigned long *sp);
307
308void io_schedule(void);
309long io_schedule_timeout(long timeout);
310
311extern void cpu_init (void);
312extern void trap_init(void);
313extern void update_process_times(int user);
314extern void scheduler_tick(void);
315
316extern void sched_show_task(struct task_struct *p);
317
318#ifdef CONFIG_DETECT_SOFTLOCKUP
319extern void softlockup_tick(void);
320extern void touch_softlockup_watchdog(void);
321extern void touch_softlockup_watchdog_sync(void);
322extern void touch_all_softlockup_watchdogs(void);
323extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
324 void __user *buffer,
325 size_t *lenp, loff_t *ppos);
326extern unsigned int softlockup_panic;
327extern int softlockup_thresh;
328#else
329static inline void softlockup_tick(void)
330{
331}
332static inline void touch_softlockup_watchdog(void)
333{
334}
335static inline void touch_softlockup_watchdog_sync(void)
336{
337}
338static inline void touch_all_softlockup_watchdogs(void)
339{
340}
341#endif
342
343#ifdef CONFIG_DETECT_HUNG_TASK
344extern unsigned int sysctl_hung_task_panic;
345extern unsigned long sysctl_hung_task_check_count;
346extern unsigned long sysctl_hung_task_timeout_secs;
347extern unsigned long sysctl_hung_task_warnings;
348extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
349 void __user *buffer,
350 size_t *lenp, loff_t *ppos);
351#endif
352
353/* Attach to any functions which should be ignored in wchan output. */
354#define __sched __attribute__((__section__(".sched.text")))
355
356/* Linker adds these: start and end of __sched functions */
357extern char __sched_text_start[], __sched_text_end[];
358
359/* Is this address in the __sched functions? */
360extern int in_sched_functions(unsigned long addr);
361
362#define MAX_SCHEDULE_TIMEOUT LONG_MAX
363extern signed long schedule_timeout(signed long timeout);
364extern signed long schedule_timeout_interruptible(signed long timeout);
365extern signed long schedule_timeout_killable(signed long timeout);
366extern signed long schedule_timeout_uninterruptible(signed long timeout);
367asmlinkage void schedule(void);
368extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
369
370struct nsproxy;
371struct user_namespace;
372
373/*
374 * Default maximum number of active map areas, this limits the number of vmas
375 * per mm struct. Users can overwrite this number by sysctl but there is a
376 * problem.
377 *
378 * When a program's coredump is generated as ELF format, a section is created
379 * per a vma. In ELF, the number of sections is represented in unsigned short.
380 * This means the number of sections should be smaller than 65535 at coredump.
381 * Because the kernel adds some informative sections to a image of program at
382 * generating coredump, we need some margin. The number of extra sections is
383 * 1-3 now and depends on arch. We use "5" as safe margin, here.
384 */
385#define MAPCOUNT_ELF_CORE_MARGIN (5)
386#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
387
388extern int sysctl_max_map_count;
389
390#include <linux/aio.h>
391
392#ifdef CONFIG_MMU
393extern void arch_pick_mmap_layout(struct mm_struct *mm);
394extern unsigned long
395arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
396 unsigned long, unsigned long);
397extern unsigned long
398arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
399 unsigned long len, unsigned long pgoff,
400 unsigned long flags);
401extern void arch_unmap_area(struct mm_struct *, unsigned long);
402extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
403#else
404static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
405#endif
406
407
408extern void set_dumpable(struct mm_struct *mm, int value);
409extern int get_dumpable(struct mm_struct *mm);
410
411/* mm flags */
412/* dumpable bits */
413#define MMF_DUMPABLE 0 /* core dump is permitted */
414#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
415
416#define MMF_DUMPABLE_BITS 2
417#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
418
419/* coredump filter bits */
420#define MMF_DUMP_ANON_PRIVATE 2
421#define MMF_DUMP_ANON_SHARED 3
422#define MMF_DUMP_MAPPED_PRIVATE 4
423#define MMF_DUMP_MAPPED_SHARED 5
424#define MMF_DUMP_ELF_HEADERS 6
425#define MMF_DUMP_HUGETLB_PRIVATE 7
426#define MMF_DUMP_HUGETLB_SHARED 8
427
428#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
429#define MMF_DUMP_FILTER_BITS 7
430#define MMF_DUMP_FILTER_MASK \
431 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
432#define MMF_DUMP_FILTER_DEFAULT \
433 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
434 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
435
436#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
437# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
438#else
439# define MMF_DUMP_MASK_DEFAULT_ELF 0
440#endif
441 /* leave room for more dump flags */
442#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
443
444#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
445
446struct sighand_struct {
447 atomic_t count;
448 struct k_sigaction action[_NSIG];
449 spinlock_t siglock;
450 wait_queue_head_t signalfd_wqh;
451};
452
453struct pacct_struct {
454 int ac_flag;
455 long ac_exitcode;
456 unsigned long ac_mem;
457 cputime_t ac_utime, ac_stime;
458 unsigned long ac_minflt, ac_majflt;
459};
460
461struct cpu_itimer {
462 cputime_t expires;
463 cputime_t incr;
464 u32 error;
465 u32 incr_error;
466};
467
468/**
469 * struct task_cputime - collected CPU time counts
470 * @utime: time spent in user mode, in &cputime_t units
471 * @stime: time spent in kernel mode, in &cputime_t units
472 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
473 *
474 * This structure groups together three kinds of CPU time that are
475 * tracked for threads and thread groups. Most things considering
476 * CPU time want to group these counts together and treat all three
477 * of them in parallel.
478 */
479struct task_cputime {
480 cputime_t utime;
481 cputime_t stime;
482 unsigned long long sum_exec_runtime;
483};
484/* Alternate field names when used to cache expirations. */
485#define prof_exp stime
486#define virt_exp utime
487#define sched_exp sum_exec_runtime
488
489#define INIT_CPUTIME \
490 (struct task_cputime) { \
491 .utime = cputime_zero, \
492 .stime = cputime_zero, \
493 .sum_exec_runtime = 0, \
494 }
495
496/*
497 * Disable preemption until the scheduler is running.
498 * Reset by start_kernel()->sched_init()->init_idle().
499 *
500 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
501 * before the scheduler is active -- see should_resched().
502 */
503#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
504
505/**
506 * struct thread_group_cputimer - thread group interval timer counts
507 * @cputime: thread group interval timers.
508 * @running: non-zero when there are timers running and
509 * @cputime receives updates.
510 * @lock: lock for fields in this struct.
511 *
512 * This structure contains the version of task_cputime, above, that is
513 * used for thread group CPU timer calculations.
514 */
515struct thread_group_cputimer {
516 struct task_cputime cputime;
517 int running;
518 spinlock_t lock;
519};
520
521/*
522 * NOTE! "signal_struct" does not have it's own
523 * locking, because a shared signal_struct always
524 * implies a shared sighand_struct, so locking
525 * sighand_struct is always a proper superset of
526 * the locking of signal_struct.
527 */
528struct signal_struct {
529 atomic_t sigcnt;
530 atomic_t live;
531 int nr_threads;
532
533 wait_queue_head_t wait_chldexit; /* for wait4() */
534
535 /* current thread group signal load-balancing target: */
536 struct task_struct *curr_target;
537
538 /* shared signal handling: */
539 struct sigpending shared_pending;
540
541 /* thread group exit support */
542 int group_exit_code;
543 /* overloaded:
544 * - notify group_exit_task when ->count is equal to notify_count
545 * - everyone except group_exit_task is stopped during signal delivery
546 * of fatal signals, group_exit_task processes the signal.
547 */
548 int notify_count;
549 struct task_struct *group_exit_task;
550
551 /* thread group stop support, overloads group_exit_code too */
552 int group_stop_count;
553 unsigned int flags; /* see SIGNAL_* flags below */
554
555 /* POSIX.1b Interval Timers */
556 struct list_head posix_timers;
557
558 /* ITIMER_REAL timer for the process */
559 struct hrtimer real_timer;
560 struct pid *leader_pid;
561 ktime_t it_real_incr;
562
563 /*
564 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
565 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
566 * values are defined to 0 and 1 respectively
567 */
568 struct cpu_itimer it[2];
569
570 /*
571 * Thread group totals for process CPU timers.
572 * See thread_group_cputimer(), et al, for details.
573 */
574 struct thread_group_cputimer cputimer;
575
576 /* Earliest-expiration cache. */
577 struct task_cputime cputime_expires;
578
579 struct list_head cpu_timers[3];
580
581 struct pid *tty_old_pgrp;
582
583 /* boolean value for session group leader */
584 int leader;
585
586 struct tty_struct *tty; /* NULL if no tty */
587
588 /*
589 * Cumulative resource counters for dead threads in the group,
590 * and for reaped dead child processes forked by this group.
591 * Live threads maintain their own counters and add to these
592 * in __exit_signal, except for the group leader.
593 */
594 cputime_t utime, stime, cutime, cstime;
595 cputime_t gtime;
596 cputime_t cgtime;
597#ifndef CONFIG_VIRT_CPU_ACCOUNTING
598 cputime_t prev_utime, prev_stime;
599#endif
600 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602 unsigned long inblock, oublock, cinblock, coublock;
603 unsigned long maxrss, cmaxrss;
604 struct task_io_accounting ioac;
605
606 /*
607 * Cumulative ns of schedule CPU time fo dead threads in the
608 * group, not including a zombie group leader, (This only differs
609 * from jiffies_to_ns(utime + stime) if sched_clock uses something
610 * other than jiffies.)
611 */
612 unsigned long long sum_sched_runtime;
613
614 /*
615 * We don't bother to synchronize most readers of this at all,
616 * because there is no reader checking a limit that actually needs
617 * to get both rlim_cur and rlim_max atomically, and either one
618 * alone is a single word that can safely be read normally.
619 * getrlimit/setrlimit use task_lock(current->group_leader) to
620 * protect this instead of the siglock, because they really
621 * have no need to disable irqs.
622 */
623 struct rlimit rlim[RLIM_NLIMITS];
624
625#ifdef CONFIG_BSD_PROCESS_ACCT
626 struct pacct_struct pacct; /* per-process accounting information */
627#endif
628#ifdef CONFIG_TASKSTATS
629 struct taskstats *stats;
630#endif
631#ifdef CONFIG_AUDIT
632 unsigned audit_tty;
633 struct tty_audit_buf *tty_audit_buf;
634#endif
635
636 int oom_adj; /* OOM kill score adjustment (bit shift) */
637};
638
639/* Context switch must be unlocked if interrupts are to be enabled */
640#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641# define __ARCH_WANT_UNLOCKED_CTXSW
642#endif
643
644/*
645 * Bits in flags field of signal_struct.
646 */
647#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
648#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
649#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
650#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
651/*
652 * Pending notifications to parent.
653 */
654#define SIGNAL_CLD_STOPPED 0x00000010
655#define SIGNAL_CLD_CONTINUED 0x00000020
656#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
657
658#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
659
660/* If true, all threads except ->group_exit_task have pending SIGKILL */
661static inline int signal_group_exit(const struct signal_struct *sig)
662{
663 return (sig->flags & SIGNAL_GROUP_EXIT) ||
664 (sig->group_exit_task != NULL);
665}
666
667/*
668 * Some day this will be a full-fledged user tracking system..
669 */
670struct user_struct {
671 atomic_t __count; /* reference count */
672 atomic_t processes; /* How many processes does this user have? */
673 atomic_t files; /* How many open files does this user have? */
674 atomic_t sigpending; /* How many pending signals does this user have? */
675#ifdef CONFIG_INOTIFY_USER
676 atomic_t inotify_watches; /* How many inotify watches does this user have? */
677 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
678#endif
679#ifdef CONFIG_EPOLL
680 atomic_t epoll_watches; /* The number of file descriptors currently watched */
681#endif
682#ifdef CONFIG_POSIX_MQUEUE
683 /* protected by mq_lock */
684 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
685#endif
686 unsigned long locked_shm; /* How many pages of mlocked shm ? */
687
688#ifdef CONFIG_KEYS
689 struct key *uid_keyring; /* UID specific keyring */
690 struct key *session_keyring; /* UID's default session keyring */
691#endif
692
693 /* Hash table maintenance information */
694 struct hlist_node uidhash_node;
695 uid_t uid;
696 struct user_namespace *user_ns;
697
698#ifdef CONFIG_PERF_EVENTS
699 atomic_long_t locked_vm;
700#endif
701};
702
703extern int uids_sysfs_init(void);
704
705extern struct user_struct *find_user(uid_t);
706
707extern struct user_struct root_user;
708#define INIT_USER (&root_user)
709
710
711struct backing_dev_info;
712struct reclaim_state;
713
714#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
715struct sched_info {
716 /* cumulative counters */
717 unsigned long pcount; /* # of times run on this cpu */
718 unsigned long long run_delay; /* time spent waiting on a runqueue */
719
720 /* timestamps */
721 unsigned long long last_arrival,/* when we last ran on a cpu */
722 last_queued; /* when we were last queued to run */
723#ifdef CONFIG_SCHEDSTATS
724 /* BKL stats */
725 unsigned int bkl_count;
726#endif
727};
728#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
729
730#ifdef CONFIG_TASK_DELAY_ACCT
731struct task_delay_info {
732 spinlock_t lock;
733 unsigned int flags; /* Private per-task flags */
734
735 /* For each stat XXX, add following, aligned appropriately
736 *
737 * struct timespec XXX_start, XXX_end;
738 * u64 XXX_delay;
739 * u32 XXX_count;
740 *
741 * Atomicity of updates to XXX_delay, XXX_count protected by
742 * single lock above (split into XXX_lock if contention is an issue).
743 */
744
745 /*
746 * XXX_count is incremented on every XXX operation, the delay
747 * associated with the operation is added to XXX_delay.
748 * XXX_delay contains the accumulated delay time in nanoseconds.
749 */
750 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
751 u64 blkio_delay; /* wait for sync block io completion */
752 u64 swapin_delay; /* wait for swapin block io completion */
753 u32 blkio_count; /* total count of the number of sync block */
754 /* io operations performed */
755 u32 swapin_count; /* total count of the number of swapin block */
756 /* io operations performed */
757
758 struct timespec freepages_start, freepages_end;
759 u64 freepages_delay; /* wait for memory reclaim */
760 u32 freepages_count; /* total count of memory reclaim */
761};
762#endif /* CONFIG_TASK_DELAY_ACCT */
763
764static inline int sched_info_on(void)
765{
766#ifdef CONFIG_SCHEDSTATS
767 return 1;
768#elif defined(CONFIG_TASK_DELAY_ACCT)
769 extern int delayacct_on;
770 return delayacct_on;
771#else
772 return 0;
773#endif
774}
775
776enum cpu_idle_type {
777 CPU_IDLE,
778 CPU_NOT_IDLE,
779 CPU_NEWLY_IDLE,
780 CPU_MAX_IDLE_TYPES
781};
782
783/*
784 * sched-domains (multiprocessor balancing) declarations:
785 */
786
787/*
788 * Increase resolution of nice-level calculations:
789 */
790#define SCHED_LOAD_SHIFT 10
791#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
792
793#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
794
795#ifdef CONFIG_SMP
796#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
797#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
798#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
799#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
800#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
801#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
802#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
803#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
804#define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
805#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
806#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
807
808#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
809
810enum powersavings_balance_level {
811 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
812 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
813 * first for long running threads
814 */
815 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
816 * cpu package for power savings
817 */
818 MAX_POWERSAVINGS_BALANCE_LEVELS
819};
820
821extern int sched_mc_power_savings, sched_smt_power_savings;
822
823static inline int sd_balance_for_mc_power(void)
824{
825 if (sched_smt_power_savings)
826 return SD_POWERSAVINGS_BALANCE;
827
828 if (!sched_mc_power_savings)
829 return SD_PREFER_SIBLING;
830
831 return 0;
832}
833
834static inline int sd_balance_for_package_power(void)
835{
836 if (sched_mc_power_savings | sched_smt_power_savings)
837 return SD_POWERSAVINGS_BALANCE;
838
839 return SD_PREFER_SIBLING;
840}
841
842/*
843 * Optimise SD flags for power savings:
844 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
845 * Keep default SD flags if sched_{smt,mc}_power_saving=0
846 */
847
848static inline int sd_power_saving_flags(void)
849{
850 if (sched_mc_power_savings | sched_smt_power_savings)
851 return SD_BALANCE_NEWIDLE;
852
853 return 0;
854}
855
856struct sched_group {
857 struct sched_group *next; /* Must be a circular list */
858
859 /*
860 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
861 * single CPU.
862 */
863 unsigned int cpu_power;
864
865 /*
866 * The CPUs this group covers.
867 *
868 * NOTE: this field is variable length. (Allocated dynamically
869 * by attaching extra space to the end of the structure,
870 * depending on how many CPUs the kernel has booted up with)
871 *
872 * It is also be embedded into static data structures at build
873 * time. (See 'struct static_sched_group' in kernel/sched.c)
874 */
875 unsigned long cpumask[0];
876};
877
878static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
879{
880 return to_cpumask(sg->cpumask);
881}
882
883enum sched_domain_level {
884 SD_LV_NONE = 0,
885 SD_LV_SIBLING,
886 SD_LV_MC,
887 SD_LV_CPU,
888 SD_LV_NODE,
889 SD_LV_ALLNODES,
890 SD_LV_MAX
891};
892
893struct sched_domain_attr {
894 int relax_domain_level;
895};
896
897#define SD_ATTR_INIT (struct sched_domain_attr) { \
898 .relax_domain_level = -1, \
899}
900
901struct sched_domain {
902 /* These fields must be setup */
903 struct sched_domain *parent; /* top domain must be null terminated */
904 struct sched_domain *child; /* bottom domain must be null terminated */
905 struct sched_group *groups; /* the balancing groups of the domain */
906 unsigned long min_interval; /* Minimum balance interval ms */
907 unsigned long max_interval; /* Maximum balance interval ms */
908 unsigned int busy_factor; /* less balancing by factor if busy */
909 unsigned int imbalance_pct; /* No balance until over watermark */
910 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
911 unsigned int busy_idx;
912 unsigned int idle_idx;
913 unsigned int newidle_idx;
914 unsigned int wake_idx;
915 unsigned int forkexec_idx;
916 unsigned int smt_gain;
917 int flags; /* See SD_* */
918 enum sched_domain_level level;
919
920 /* Runtime fields. */
921 unsigned long last_balance; /* init to jiffies. units in jiffies */
922 unsigned int balance_interval; /* initialise to 1. units in ms. */
923 unsigned int nr_balance_failed; /* initialise to 0 */
924
925 u64 last_update;
926
927#ifdef CONFIG_SCHEDSTATS
928 /* load_balance() stats */
929 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
932 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
937
938 /* Active load balancing */
939 unsigned int alb_count;
940 unsigned int alb_failed;
941 unsigned int alb_pushed;
942
943 /* SD_BALANCE_EXEC stats */
944 unsigned int sbe_count;
945 unsigned int sbe_balanced;
946 unsigned int sbe_pushed;
947
948 /* SD_BALANCE_FORK stats */
949 unsigned int sbf_count;
950 unsigned int sbf_balanced;
951 unsigned int sbf_pushed;
952
953 /* try_to_wake_up() stats */
954 unsigned int ttwu_wake_remote;
955 unsigned int ttwu_move_affine;
956 unsigned int ttwu_move_balance;
957#endif
958#ifdef CONFIG_SCHED_DEBUG
959 char *name;
960#endif
961
962 unsigned int span_weight;
963 /*
964 * Span of all CPUs in this domain.
965 *
966 * NOTE: this field is variable length. (Allocated dynamically
967 * by attaching extra space to the end of the structure,
968 * depending on how many CPUs the kernel has booted up with)
969 *
970 * It is also be embedded into static data structures at build
971 * time. (See 'struct static_sched_domain' in kernel/sched.c)
972 */
973 unsigned long span[0];
974};
975
976static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
977{
978 return to_cpumask(sd->span);
979}
980
981extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
982 struct sched_domain_attr *dattr_new);
983
984/* Allocate an array of sched domains, for partition_sched_domains(). */
985cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
986void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
987
988/* Test a flag in parent sched domain */
989static inline int test_sd_parent(struct sched_domain *sd, int flag)
990{
991 if (sd->parent && (sd->parent->flags & flag))
992 return 1;
993
994 return 0;
995}
996
997unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
998unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
999
1000#else /* CONFIG_SMP */
1001
1002struct sched_domain_attr;
1003
1004static inline void
1005partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1006 struct sched_domain_attr *dattr_new)
1007{
1008}
1009#endif /* !CONFIG_SMP */
1010
1011
1012struct io_context; /* See blkdev.h */
1013
1014
1015#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1016extern void prefetch_stack(struct task_struct *t);
1017#else
1018static inline void prefetch_stack(struct task_struct *t) { }
1019#endif
1020
1021struct audit_context; /* See audit.c */
1022struct mempolicy;
1023struct pipe_inode_info;
1024struct uts_namespace;
1025
1026struct rq;
1027struct sched_domain;
1028
1029/*
1030 * wake flags
1031 */
1032#define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1033#define WF_FORK 0x02 /* child wakeup after fork */
1034
1035#define ENQUEUE_WAKEUP 1
1036#define ENQUEUE_WAKING 2
1037#define ENQUEUE_HEAD 4
1038
1039#define DEQUEUE_SLEEP 1
1040
1041struct sched_class {
1042 const struct sched_class *next;
1043
1044 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1045 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1046 void (*yield_task) (struct rq *rq);
1047
1048 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1049
1050 struct task_struct * (*pick_next_task) (struct rq *rq);
1051 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1052
1053#ifdef CONFIG_SMP
1054 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1055 int sd_flag, int flags);
1056
1057 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1058 void (*post_schedule) (struct rq *this_rq);
1059 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1060 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1061
1062 void (*set_cpus_allowed)(struct task_struct *p,
1063 const struct cpumask *newmask);
1064
1065 void (*rq_online)(struct rq *rq);
1066 void (*rq_offline)(struct rq *rq);
1067#endif
1068
1069 void (*set_curr_task) (struct rq *rq);
1070 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1071 void (*task_fork) (struct task_struct *p);
1072
1073 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1074 int running);
1075 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1076 int running);
1077 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1078 int oldprio, int running);
1079
1080 unsigned int (*get_rr_interval) (struct rq *rq,
1081 struct task_struct *task);
1082
1083#ifdef CONFIG_FAIR_GROUP_SCHED
1084 void (*moved_group) (struct task_struct *p, int on_rq);
1085#endif
1086};
1087
1088struct load_weight {
1089 unsigned long weight, inv_weight;
1090};
1091
1092#ifdef CONFIG_SCHEDSTATS
1093struct sched_statistics {
1094 u64 wait_start;
1095 u64 wait_max;
1096 u64 wait_count;
1097 u64 wait_sum;
1098 u64 iowait_count;
1099 u64 iowait_sum;
1100
1101 u64 sleep_start;
1102 u64 sleep_max;
1103 s64 sum_sleep_runtime;
1104
1105 u64 block_start;
1106 u64 block_max;
1107 u64 exec_max;
1108 u64 slice_max;
1109
1110 u64 nr_migrations_cold;
1111 u64 nr_failed_migrations_affine;
1112 u64 nr_failed_migrations_running;
1113 u64 nr_failed_migrations_hot;
1114 u64 nr_forced_migrations;
1115
1116 u64 nr_wakeups;
1117 u64 nr_wakeups_sync;
1118 u64 nr_wakeups_migrate;
1119 u64 nr_wakeups_local;
1120 u64 nr_wakeups_remote;
1121 u64 nr_wakeups_affine;
1122 u64 nr_wakeups_affine_attempts;
1123 u64 nr_wakeups_passive;
1124 u64 nr_wakeups_idle;
1125};
1126#endif
1127
1128struct sched_entity {
1129 struct load_weight load; /* for load-balancing */
1130 struct rb_node run_node;
1131 struct list_head group_node;
1132 unsigned int on_rq;
1133
1134 u64 exec_start;
1135 u64 sum_exec_runtime;
1136 u64 vruntime;
1137 u64 prev_sum_exec_runtime;
1138
1139 u64 nr_migrations;
1140
1141#ifdef CONFIG_SCHEDSTATS
1142 struct sched_statistics statistics;
1143#endif
1144
1145#ifdef CONFIG_FAIR_GROUP_SCHED
1146 struct sched_entity *parent;
1147 /* rq on which this entity is (to be) queued: */
1148 struct cfs_rq *cfs_rq;
1149 /* rq "owned" by this entity/group: */
1150 struct cfs_rq *my_q;
1151#endif
1152};
1153
1154struct sched_rt_entity {
1155 struct list_head run_list;
1156 unsigned long timeout;
1157 unsigned int time_slice;
1158 int nr_cpus_allowed;
1159
1160 struct sched_rt_entity *back;
1161#ifdef CONFIG_RT_GROUP_SCHED
1162 struct sched_rt_entity *parent;
1163 /* rq on which this entity is (to be) queued: */
1164 struct rt_rq *rt_rq;
1165 /* rq "owned" by this entity/group: */
1166 struct rt_rq *my_q;
1167#endif
1168};
1169
1170struct rcu_node;
1171
1172struct task_struct {
1173 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1174 void *stack;
1175 atomic_t usage;
1176 unsigned int flags; /* per process flags, defined below */
1177 unsigned int ptrace;
1178
1179 int lock_depth; /* BKL lock depth */
1180
1181#ifdef CONFIG_SMP
1182#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1183 int oncpu;
1184#endif
1185#endif
1186
1187 int prio, static_prio, normal_prio;
1188 unsigned int rt_priority;
1189 const struct sched_class *sched_class;
1190 struct sched_entity se;
1191 struct sched_rt_entity rt;
1192
1193#ifdef CONFIG_PREEMPT_NOTIFIERS
1194 /* list of struct preempt_notifier: */
1195 struct hlist_head preempt_notifiers;
1196#endif
1197
1198 /*
1199 * fpu_counter contains the number of consecutive context switches
1200 * that the FPU is used. If this is over a threshold, the lazy fpu
1201 * saving becomes unlazy to save the trap. This is an unsigned char
1202 * so that after 256 times the counter wraps and the behavior turns
1203 * lazy again; this to deal with bursty apps that only use FPU for
1204 * a short time
1205 */
1206 unsigned char fpu_counter;
1207#ifdef CONFIG_BLK_DEV_IO_TRACE
1208 unsigned int btrace_seq;
1209#endif
1210
1211 unsigned int policy;
1212 cpumask_t cpus_allowed;
1213
1214#ifdef CONFIG_TREE_PREEMPT_RCU
1215 int rcu_read_lock_nesting;
1216 char rcu_read_unlock_special;
1217 struct rcu_node *rcu_blocked_node;
1218 struct list_head rcu_node_entry;
1219#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1220
1221#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1222 struct sched_info sched_info;
1223#endif
1224
1225 struct list_head tasks;
1226 struct plist_node pushable_tasks;
1227
1228 struct mm_struct *mm, *active_mm;
1229#if defined(SPLIT_RSS_COUNTING)
1230 struct task_rss_stat rss_stat;
1231#endif
1232/* task state */
1233 int exit_state;
1234 int exit_code, exit_signal;
1235 int pdeath_signal; /* The signal sent when the parent dies */
1236 /* ??? */
1237 unsigned int personality;
1238 unsigned did_exec:1;
1239 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1240 * execve */
1241 unsigned in_iowait:1;
1242
1243
1244 /* Revert to default priority/policy when forking */
1245 unsigned sched_reset_on_fork:1;
1246
1247 pid_t pid;
1248 pid_t tgid;
1249
1250#ifdef CONFIG_CC_STACKPROTECTOR
1251 /* Canary value for the -fstack-protector gcc feature */
1252 unsigned long stack_canary;
1253#endif
1254
1255 /*
1256 * pointers to (original) parent process, youngest child, younger sibling,
1257 * older sibling, respectively. (p->father can be replaced with
1258 * p->real_parent->pid)
1259 */
1260 struct task_struct *real_parent; /* real parent process */
1261 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1262 /*
1263 * children/sibling forms the list of my natural children
1264 */
1265 struct list_head children; /* list of my children */
1266 struct list_head sibling; /* linkage in my parent's children list */
1267 struct task_struct *group_leader; /* threadgroup leader */
1268
1269 /*
1270 * ptraced is the list of tasks this task is using ptrace on.
1271 * This includes both natural children and PTRACE_ATTACH targets.
1272 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1273 */
1274 struct list_head ptraced;
1275 struct list_head ptrace_entry;
1276
1277 /* PID/PID hash table linkage. */
1278 struct pid_link pids[PIDTYPE_MAX];
1279 struct list_head thread_group;
1280
1281 struct completion *vfork_done; /* for vfork() */
1282 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1283 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1284
1285 cputime_t utime, stime, utimescaled, stimescaled;
1286 cputime_t gtime;
1287#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1288 cputime_t prev_utime, prev_stime;
1289#endif
1290 unsigned long nvcsw, nivcsw; /* context switch counts */
1291 struct timespec start_time; /* monotonic time */
1292 struct timespec real_start_time; /* boot based time */
1293/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1294 unsigned long min_flt, maj_flt;
1295
1296 struct task_cputime cputime_expires;
1297 struct list_head cpu_timers[3];
1298
1299/* process credentials */
1300 const struct cred *real_cred; /* objective and real subjective task
1301 * credentials (COW) */
1302 const struct cred *cred; /* effective (overridable) subjective task
1303 * credentials (COW) */
1304 struct mutex cred_guard_mutex; /* guard against foreign influences on
1305 * credential calculations
1306 * (notably. ptrace) */
1307 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1308
1309 char comm[TASK_COMM_LEN]; /* executable name excluding path
1310 - access with [gs]et_task_comm (which lock
1311 it with task_lock())
1312 - initialized normally by setup_new_exec */
1313/* file system info */
1314 int link_count, total_link_count;
1315#ifdef CONFIG_SYSVIPC
1316/* ipc stuff */
1317 struct sysv_sem sysvsem;
1318#endif
1319#ifdef CONFIG_DETECT_HUNG_TASK
1320/* hung task detection */
1321 unsigned long last_switch_count;
1322#endif
1323/* CPU-specific state of this task */
1324 struct thread_struct thread;
1325/* filesystem information */
1326 struct fs_struct *fs;
1327/* open file information */
1328 struct files_struct *files;
1329/* namespaces */
1330 struct nsproxy *nsproxy;
1331/* signal handlers */
1332 struct signal_struct *signal;
1333 struct sighand_struct *sighand;
1334
1335 sigset_t blocked, real_blocked;
1336 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1337 struct sigpending pending;
1338
1339 unsigned long sas_ss_sp;
1340 size_t sas_ss_size;
1341 int (*notifier)(void *priv);
1342 void *notifier_data;
1343 sigset_t *notifier_mask;
1344 struct audit_context *audit_context;
1345#ifdef CONFIG_AUDITSYSCALL
1346 uid_t loginuid;
1347 unsigned int sessionid;
1348#endif
1349 seccomp_t seccomp;
1350
1351/* Thread group tracking */
1352 u32 parent_exec_id;
1353 u32 self_exec_id;
1354/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1355 * mempolicy */
1356 spinlock_t alloc_lock;
1357
1358#ifdef CONFIG_GENERIC_HARDIRQS
1359 /* IRQ handler threads */
1360 struct irqaction *irqaction;
1361#endif
1362
1363 /* Protection of the PI data structures: */
1364 raw_spinlock_t pi_lock;
1365
1366#ifdef CONFIG_RT_MUTEXES
1367 /* PI waiters blocked on a rt_mutex held by this task */
1368 struct plist_head pi_waiters;
1369 /* Deadlock detection and priority inheritance handling */
1370 struct rt_mutex_waiter *pi_blocked_on;
1371#endif
1372
1373#ifdef CONFIG_DEBUG_MUTEXES
1374 /* mutex deadlock detection */
1375 struct mutex_waiter *blocked_on;
1376#endif
1377#ifdef CONFIG_TRACE_IRQFLAGS
1378 unsigned int irq_events;
1379 unsigned long hardirq_enable_ip;
1380 unsigned long hardirq_disable_ip;
1381 unsigned int hardirq_enable_event;
1382 unsigned int hardirq_disable_event;
1383 int hardirqs_enabled;
1384 int hardirq_context;
1385 unsigned long softirq_disable_ip;
1386 unsigned long softirq_enable_ip;
1387 unsigned int softirq_disable_event;
1388 unsigned int softirq_enable_event;
1389 int softirqs_enabled;
1390 int softirq_context;
1391#endif
1392#ifdef CONFIG_LOCKDEP
1393# define MAX_LOCK_DEPTH 48UL
1394 u64 curr_chain_key;
1395 int lockdep_depth;
1396 unsigned int lockdep_recursion;
1397 struct held_lock held_locks[MAX_LOCK_DEPTH];
1398 gfp_t lockdep_reclaim_gfp;
1399#endif
1400
1401/* journalling filesystem info */
1402 void *journal_info;
1403
1404/* stacked block device info */
1405 struct bio_list *bio_list;
1406
1407/* VM state */
1408 struct reclaim_state *reclaim_state;
1409
1410 struct backing_dev_info *backing_dev_info;
1411
1412 struct io_context *io_context;
1413
1414 unsigned long ptrace_message;
1415 siginfo_t *last_siginfo; /* For ptrace use. */
1416 struct task_io_accounting ioac;
1417#if defined(CONFIG_TASK_XACCT)
1418 u64 acct_rss_mem1; /* accumulated rss usage */
1419 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1420 cputime_t acct_timexpd; /* stime + utime since last update */
1421#endif
1422#ifdef CONFIG_CPUSETS
1423 nodemask_t mems_allowed; /* Protected by alloc_lock */
1424 int mems_allowed_change_disable;
1425 int cpuset_mem_spread_rotor;
1426 int cpuset_slab_spread_rotor;
1427#endif
1428#ifdef CONFIG_CGROUPS
1429 /* Control Group info protected by css_set_lock */
1430 struct css_set *cgroups;
1431 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1432 struct list_head cg_list;
1433#endif
1434#ifdef CONFIG_FUTEX
1435 struct robust_list_head __user *robust_list;
1436#ifdef CONFIG_COMPAT
1437 struct compat_robust_list_head __user *compat_robust_list;
1438#endif
1439 struct list_head pi_state_list;
1440 struct futex_pi_state *pi_state_cache;
1441#endif
1442#ifdef CONFIG_PERF_EVENTS
1443 struct perf_event_context *perf_event_ctxp;
1444 struct mutex perf_event_mutex;
1445 struct list_head perf_event_list;
1446#endif
1447#ifdef CONFIG_NUMA
1448 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1449 short il_next;
1450#endif
1451 atomic_t fs_excl; /* holding fs exclusive resources */
1452 struct rcu_head rcu;
1453
1454 /*
1455 * cache last used pipe for splice
1456 */
1457 struct pipe_inode_info *splice_pipe;
1458#ifdef CONFIG_TASK_DELAY_ACCT
1459 struct task_delay_info *delays;
1460#endif
1461#ifdef CONFIG_FAULT_INJECTION
1462 int make_it_fail;
1463#endif
1464 struct prop_local_single dirties;
1465#ifdef CONFIG_LATENCYTOP
1466 int latency_record_count;
1467 struct latency_record latency_record[LT_SAVECOUNT];
1468#endif
1469 /*
1470 * time slack values; these are used to round up poll() and
1471 * select() etc timeout values. These are in nanoseconds.
1472 */
1473 unsigned long timer_slack_ns;
1474 unsigned long default_timer_slack_ns;
1475
1476 struct list_head *scm_work_list;
1477#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1478 /* Index of current stored address in ret_stack */
1479 int curr_ret_stack;
1480 /* Stack of return addresses for return function tracing */
1481 struct ftrace_ret_stack *ret_stack;
1482 /* time stamp for last schedule */
1483 unsigned long long ftrace_timestamp;
1484 /*
1485 * Number of functions that haven't been traced
1486 * because of depth overrun.
1487 */
1488 atomic_t trace_overrun;
1489 /* Pause for the tracing */
1490 atomic_t tracing_graph_pause;
1491#endif
1492#ifdef CONFIG_TRACING
1493 /* state flags for use by tracers */
1494 unsigned long trace;
1495 /* bitmask of trace recursion */
1496 unsigned long trace_recursion;
1497#endif /* CONFIG_TRACING */
1498#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1499 struct memcg_batch_info {
1500 int do_batch; /* incremented when batch uncharge started */
1501 struct mem_cgroup *memcg; /* target memcg of uncharge */
1502 unsigned long bytes; /* uncharged usage */
1503 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1504 } memcg_batch;
1505#endif
1506};
1507
1508/* Future-safe accessor for struct task_struct's cpus_allowed. */
1509#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1510
1511/*
1512 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1513 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1514 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1515 * values are inverted: lower p->prio value means higher priority.
1516 *
1517 * The MAX_USER_RT_PRIO value allows the actual maximum
1518 * RT priority to be separate from the value exported to
1519 * user-space. This allows kernel threads to set their
1520 * priority to a value higher than any user task. Note:
1521 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1522 */
1523
1524#define MAX_USER_RT_PRIO 100
1525#define MAX_RT_PRIO MAX_USER_RT_PRIO
1526
1527#define MAX_PRIO (MAX_RT_PRIO + 40)
1528#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1529
1530static inline int rt_prio(int prio)
1531{
1532 if (unlikely(prio < MAX_RT_PRIO))
1533 return 1;
1534 return 0;
1535}
1536
1537static inline int rt_task(struct task_struct *p)
1538{
1539 return rt_prio(p->prio);
1540}
1541
1542static inline struct pid *task_pid(struct task_struct *task)
1543{
1544 return task->pids[PIDTYPE_PID].pid;
1545}
1546
1547static inline struct pid *task_tgid(struct task_struct *task)
1548{
1549 return task->group_leader->pids[PIDTYPE_PID].pid;
1550}
1551
1552/*
1553 * Without tasklist or rcu lock it is not safe to dereference
1554 * the result of task_pgrp/task_session even if task == current,
1555 * we can race with another thread doing sys_setsid/sys_setpgid.
1556 */
1557static inline struct pid *task_pgrp(struct task_struct *task)
1558{
1559 return task->group_leader->pids[PIDTYPE_PGID].pid;
1560}
1561
1562static inline struct pid *task_session(struct task_struct *task)
1563{
1564 return task->group_leader->pids[PIDTYPE_SID].pid;
1565}
1566
1567struct pid_namespace;
1568
1569/*
1570 * the helpers to get the task's different pids as they are seen
1571 * from various namespaces
1572 *
1573 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1574 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1575 * current.
1576 * task_xid_nr_ns() : id seen from the ns specified;
1577 *
1578 * set_task_vxid() : assigns a virtual id to a task;
1579 *
1580 * see also pid_nr() etc in include/linux/pid.h
1581 */
1582pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1583 struct pid_namespace *ns);
1584
1585static inline pid_t task_pid_nr(struct task_struct *tsk)
1586{
1587 return tsk->pid;
1588}
1589
1590static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1591 struct pid_namespace *ns)
1592{
1593 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1594}
1595
1596static inline pid_t task_pid_vnr(struct task_struct *tsk)
1597{
1598 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1599}
1600
1601
1602static inline pid_t task_tgid_nr(struct task_struct *tsk)
1603{
1604 return tsk->tgid;
1605}
1606
1607pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1608
1609static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1610{
1611 return pid_vnr(task_tgid(tsk));
1612}
1613
1614
1615static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1616 struct pid_namespace *ns)
1617{
1618 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1619}
1620
1621static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1622{
1623 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1624}
1625
1626
1627static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1628 struct pid_namespace *ns)
1629{
1630 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1631}
1632
1633static inline pid_t task_session_vnr(struct task_struct *tsk)
1634{
1635 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1636}
1637
1638/* obsolete, do not use */
1639static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1640{
1641 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1642}
1643
1644/**
1645 * pid_alive - check that a task structure is not stale
1646 * @p: Task structure to be checked.
1647 *
1648 * Test if a process is not yet dead (at most zombie state)
1649 * If pid_alive fails, then pointers within the task structure
1650 * can be stale and must not be dereferenced.
1651 */
1652static inline int pid_alive(struct task_struct *p)
1653{
1654 return p->pids[PIDTYPE_PID].pid != NULL;
1655}
1656
1657/**
1658 * is_global_init - check if a task structure is init
1659 * @tsk: Task structure to be checked.
1660 *
1661 * Check if a task structure is the first user space task the kernel created.
1662 */
1663static inline int is_global_init(struct task_struct *tsk)
1664{
1665 return tsk->pid == 1;
1666}
1667
1668/*
1669 * is_container_init:
1670 * check whether in the task is init in its own pid namespace.
1671 */
1672extern int is_container_init(struct task_struct *tsk);
1673
1674extern struct pid *cad_pid;
1675
1676extern void free_task(struct task_struct *tsk);
1677#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1678
1679extern void __put_task_struct(struct task_struct *t);
1680
1681static inline void put_task_struct(struct task_struct *t)
1682{
1683 if (atomic_dec_and_test(&t->usage))
1684 __put_task_struct(t);
1685}
1686
1687extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1688extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1689
1690/*
1691 * Per process flags
1692 */
1693#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1694 /* Not implemented yet, only for 486*/
1695#define PF_STARTING 0x00000002 /* being created */
1696#define PF_EXITING 0x00000004 /* getting shut down */
1697#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1698#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1699#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1700#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1701#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1702#define PF_DUMPCORE 0x00000200 /* dumped core */
1703#define PF_SIGNALED 0x00000400 /* killed by a signal */
1704#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1705#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1706#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1707#define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1708#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1709#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1710#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1711#define PF_KSWAPD 0x00040000 /* I am kswapd */
1712#define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1713#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1714#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1715#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1716#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1717#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1718#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1719#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1720#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1721#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1722#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1723#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1724#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1725
1726/*
1727 * Only the _current_ task can read/write to tsk->flags, but other
1728 * tasks can access tsk->flags in readonly mode for example
1729 * with tsk_used_math (like during threaded core dumping).
1730 * There is however an exception to this rule during ptrace
1731 * or during fork: the ptracer task is allowed to write to the
1732 * child->flags of its traced child (same goes for fork, the parent
1733 * can write to the child->flags), because we're guaranteed the
1734 * child is not running and in turn not changing child->flags
1735 * at the same time the parent does it.
1736 */
1737#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1738#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1739#define clear_used_math() clear_stopped_child_used_math(current)
1740#define set_used_math() set_stopped_child_used_math(current)
1741#define conditional_stopped_child_used_math(condition, child) \
1742 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1743#define conditional_used_math(condition) \
1744 conditional_stopped_child_used_math(condition, current)
1745#define copy_to_stopped_child_used_math(child) \
1746 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1747/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1748#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1749#define used_math() tsk_used_math(current)
1750
1751#ifdef CONFIG_TREE_PREEMPT_RCU
1752
1753#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1754#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1755
1756static inline void rcu_copy_process(struct task_struct *p)
1757{
1758 p->rcu_read_lock_nesting = 0;
1759 p->rcu_read_unlock_special = 0;
1760 p->rcu_blocked_node = NULL;
1761 INIT_LIST_HEAD(&p->rcu_node_entry);
1762}
1763
1764#else
1765
1766static inline void rcu_copy_process(struct task_struct *p)
1767{
1768}
1769
1770#endif
1771
1772#ifdef CONFIG_SMP
1773extern int set_cpus_allowed_ptr(struct task_struct *p,
1774 const struct cpumask *new_mask);
1775#else
1776static inline int set_cpus_allowed_ptr(struct task_struct *p,
1777 const struct cpumask *new_mask)
1778{
1779 if (!cpumask_test_cpu(0, new_mask))
1780 return -EINVAL;
1781 return 0;
1782}
1783#endif
1784
1785#ifndef CONFIG_CPUMASK_OFFSTACK
1786static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1787{
1788 return set_cpus_allowed_ptr(p, &new_mask);
1789}
1790#endif
1791
1792/*
1793 * Architectures can set this to 1 if they have specified
1794 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1795 * but then during bootup it turns out that sched_clock()
1796 * is reliable after all:
1797 */
1798#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1799extern int sched_clock_stable;
1800#endif
1801
1802/* ftrace calls sched_clock() directly */
1803extern unsigned long long notrace sched_clock(void);
1804
1805extern void sched_clock_init(void);
1806extern u64 sched_clock_cpu(int cpu);
1807
1808#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1809static inline void sched_clock_tick(void)
1810{
1811}
1812
1813static inline void sched_clock_idle_sleep_event(void)
1814{
1815}
1816
1817static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1818{
1819}
1820#else
1821extern void sched_clock_tick(void);
1822extern void sched_clock_idle_sleep_event(void);
1823extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1824#endif
1825
1826/*
1827 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1828 * clock constructed from sched_clock():
1829 */
1830extern unsigned long long cpu_clock(int cpu);
1831
1832extern unsigned long long
1833task_sched_runtime(struct task_struct *task);
1834extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1835
1836/* sched_exec is called by processes performing an exec */
1837#ifdef CONFIG_SMP
1838extern void sched_exec(void);
1839#else
1840#define sched_exec() {}
1841#endif
1842
1843extern void sched_clock_idle_sleep_event(void);
1844extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1845
1846#ifdef CONFIG_HOTPLUG_CPU
1847extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1848extern void idle_task_exit(void);
1849#else
1850static inline void idle_task_exit(void) {}
1851#endif
1852
1853extern void sched_idle_next(void);
1854
1855#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1856extern void wake_up_idle_cpu(int cpu);
1857#else
1858static inline void wake_up_idle_cpu(int cpu) { }
1859#endif
1860
1861extern unsigned int sysctl_sched_latency;
1862extern unsigned int sysctl_sched_min_granularity;
1863extern unsigned int sysctl_sched_wakeup_granularity;
1864extern unsigned int sysctl_sched_shares_ratelimit;
1865extern unsigned int sysctl_sched_shares_thresh;
1866extern unsigned int sysctl_sched_child_runs_first;
1867
1868enum sched_tunable_scaling {
1869 SCHED_TUNABLESCALING_NONE,
1870 SCHED_TUNABLESCALING_LOG,
1871 SCHED_TUNABLESCALING_LINEAR,
1872 SCHED_TUNABLESCALING_END,
1873};
1874extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1875
1876#ifdef CONFIG_SCHED_DEBUG
1877extern unsigned int sysctl_sched_migration_cost;
1878extern unsigned int sysctl_sched_nr_migrate;
1879extern unsigned int sysctl_sched_time_avg;
1880extern unsigned int sysctl_timer_migration;
1881
1882int sched_proc_update_handler(struct ctl_table *table, int write,
1883 void __user *buffer, size_t *length,
1884 loff_t *ppos);
1885#endif
1886#ifdef CONFIG_SCHED_DEBUG
1887static inline unsigned int get_sysctl_timer_migration(void)
1888{
1889 return sysctl_timer_migration;
1890}
1891#else
1892static inline unsigned int get_sysctl_timer_migration(void)
1893{
1894 return 1;
1895}
1896#endif
1897extern unsigned int sysctl_sched_rt_period;
1898extern int sysctl_sched_rt_runtime;
1899
1900int sched_rt_handler(struct ctl_table *table, int write,
1901 void __user *buffer, size_t *lenp,
1902 loff_t *ppos);
1903
1904extern unsigned int sysctl_sched_compat_yield;
1905
1906#ifdef CONFIG_RT_MUTEXES
1907extern int rt_mutex_getprio(struct task_struct *p);
1908extern void rt_mutex_setprio(struct task_struct *p, int prio);
1909extern void rt_mutex_adjust_pi(struct task_struct *p);
1910#else
1911static inline int rt_mutex_getprio(struct task_struct *p)
1912{
1913 return p->normal_prio;
1914}
1915# define rt_mutex_adjust_pi(p) do { } while (0)
1916#endif
1917
1918extern void set_user_nice(struct task_struct *p, long nice);
1919extern int task_prio(const struct task_struct *p);
1920extern int task_nice(const struct task_struct *p);
1921extern int can_nice(const struct task_struct *p, const int nice);
1922extern int task_curr(const struct task_struct *p);
1923extern int idle_cpu(int cpu);
1924extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1925extern int sched_setscheduler_nocheck(struct task_struct *, int,
1926 struct sched_param *);
1927extern struct task_struct *idle_task(int cpu);
1928extern struct task_struct *curr_task(int cpu);
1929extern void set_curr_task(int cpu, struct task_struct *p);
1930
1931void yield(void);
1932
1933/*
1934 * The default (Linux) execution domain.
1935 */
1936extern struct exec_domain default_exec_domain;
1937
1938union thread_union {
1939 struct thread_info thread_info;
1940 unsigned long stack[THREAD_SIZE/sizeof(long)];
1941};
1942
1943#ifndef __HAVE_ARCH_KSTACK_END
1944static inline int kstack_end(void *addr)
1945{
1946 /* Reliable end of stack detection:
1947 * Some APM bios versions misalign the stack
1948 */
1949 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1950}
1951#endif
1952
1953extern union thread_union init_thread_union;
1954extern struct task_struct init_task;
1955
1956extern struct mm_struct init_mm;
1957
1958extern struct pid_namespace init_pid_ns;
1959
1960/*
1961 * find a task by one of its numerical ids
1962 *
1963 * find_task_by_pid_ns():
1964 * finds a task by its pid in the specified namespace
1965 * find_task_by_vpid():
1966 * finds a task by its virtual pid
1967 *
1968 * see also find_vpid() etc in include/linux/pid.h
1969 */
1970
1971extern struct task_struct *find_task_by_vpid(pid_t nr);
1972extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1973 struct pid_namespace *ns);
1974
1975extern void __set_special_pids(struct pid *pid);
1976
1977/* per-UID process charging. */
1978extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1979static inline struct user_struct *get_uid(struct user_struct *u)
1980{
1981 atomic_inc(&u->__count);
1982 return u;
1983}
1984extern void free_uid(struct user_struct *);
1985extern void release_uids(struct user_namespace *ns);
1986
1987#include <asm/current.h>
1988
1989extern void do_timer(unsigned long ticks);
1990
1991extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1992extern int wake_up_process(struct task_struct *tsk);
1993extern void wake_up_new_task(struct task_struct *tsk,
1994 unsigned long clone_flags);
1995#ifdef CONFIG_SMP
1996 extern void kick_process(struct task_struct *tsk);
1997#else
1998 static inline void kick_process(struct task_struct *tsk) { }
1999#endif
2000extern void sched_fork(struct task_struct *p, int clone_flags);
2001extern void sched_dead(struct task_struct *p);
2002
2003extern void proc_caches_init(void);
2004extern void flush_signals(struct task_struct *);
2005extern void __flush_signals(struct task_struct *);
2006extern void ignore_signals(struct task_struct *);
2007extern void flush_signal_handlers(struct task_struct *, int force_default);
2008extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2009
2010static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2011{
2012 unsigned long flags;
2013 int ret;
2014
2015 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2016 ret = dequeue_signal(tsk, mask, info);
2017 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2018
2019 return ret;
2020}
2021
2022extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2023 sigset_t *mask);
2024extern void unblock_all_signals(void);
2025extern void release_task(struct task_struct * p);
2026extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2027extern int force_sigsegv(int, struct task_struct *);
2028extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2029extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2030extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2031extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2032extern int kill_pgrp(struct pid *pid, int sig, int priv);
2033extern int kill_pid(struct pid *pid, int sig, int priv);
2034extern int kill_proc_info(int, struct siginfo *, pid_t);
2035extern int do_notify_parent(struct task_struct *, int);
2036extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2037extern void force_sig(int, struct task_struct *);
2038extern int send_sig(int, struct task_struct *, int);
2039extern int zap_other_threads(struct task_struct *p);
2040extern struct sigqueue *sigqueue_alloc(void);
2041extern void sigqueue_free(struct sigqueue *);
2042extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2043extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2044extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2045
2046static inline int kill_cad_pid(int sig, int priv)
2047{
2048 return kill_pid(cad_pid, sig, priv);
2049}
2050
2051/* These can be the second arg to send_sig_info/send_group_sig_info. */
2052#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2053#define SEND_SIG_PRIV ((struct siginfo *) 1)
2054#define SEND_SIG_FORCED ((struct siginfo *) 2)
2055
2056/*
2057 * True if we are on the alternate signal stack.
2058 */
2059static inline int on_sig_stack(unsigned long sp)
2060{
2061#ifdef CONFIG_STACK_GROWSUP
2062 return sp >= current->sas_ss_sp &&
2063 sp - current->sas_ss_sp < current->sas_ss_size;
2064#else
2065 return sp > current->sas_ss_sp &&
2066 sp - current->sas_ss_sp <= current->sas_ss_size;
2067#endif
2068}
2069
2070static inline int sas_ss_flags(unsigned long sp)
2071{
2072 return (current->sas_ss_size == 0 ? SS_DISABLE
2073 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2074}
2075
2076/*
2077 * Routines for handling mm_structs
2078 */
2079extern struct mm_struct * mm_alloc(void);
2080
2081/* mmdrop drops the mm and the page tables */
2082extern void __mmdrop(struct mm_struct *);
2083static inline void mmdrop(struct mm_struct * mm)
2084{
2085 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2086 __mmdrop(mm);
2087}
2088
2089/* mmput gets rid of the mappings and all user-space */
2090extern void mmput(struct mm_struct *);
2091/* Grab a reference to a task's mm, if it is not already going away */
2092extern struct mm_struct *get_task_mm(struct task_struct *task);
2093/* Remove the current tasks stale references to the old mm_struct */
2094extern void mm_release(struct task_struct *, struct mm_struct *);
2095/* Allocate a new mm structure and copy contents from tsk->mm */
2096extern struct mm_struct *dup_mm(struct task_struct *tsk);
2097
2098extern int copy_thread(unsigned long, unsigned long, unsigned long,
2099 struct task_struct *, struct pt_regs *);
2100extern void flush_thread(void);
2101extern void exit_thread(void);
2102
2103extern void exit_files(struct task_struct *);
2104extern void __cleanup_sighand(struct sighand_struct *);
2105
2106extern void exit_itimers(struct signal_struct *);
2107extern void flush_itimer_signals(void);
2108
2109extern NORET_TYPE void do_group_exit(int);
2110
2111extern void daemonize(const char *, ...);
2112extern int allow_signal(int);
2113extern int disallow_signal(int);
2114
2115extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2116extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2117struct task_struct *fork_idle(int);
2118
2119extern void set_task_comm(struct task_struct *tsk, char *from);
2120extern char *get_task_comm(char *to, struct task_struct *tsk);
2121
2122#ifdef CONFIG_SMP
2123extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2124#else
2125static inline unsigned long wait_task_inactive(struct task_struct *p,
2126 long match_state)
2127{
2128 return 1;
2129}
2130#endif
2131
2132#define next_task(p) \
2133 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2134
2135#define for_each_process(p) \
2136 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2137
2138extern bool current_is_single_threaded(void);
2139
2140/*
2141 * Careful: do_each_thread/while_each_thread is a double loop so
2142 * 'break' will not work as expected - use goto instead.
2143 */
2144#define do_each_thread(g, t) \
2145 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2146
2147#define while_each_thread(g, t) \
2148 while ((t = next_thread(t)) != g)
2149
2150static inline int get_nr_threads(struct task_struct *tsk)
2151{
2152 return tsk->signal->nr_threads;
2153}
2154
2155/* de_thread depends on thread_group_leader not being a pid based check */
2156#define thread_group_leader(p) (p == p->group_leader)
2157
2158/* Do to the insanities of de_thread it is possible for a process
2159 * to have the pid of the thread group leader without actually being
2160 * the thread group leader. For iteration through the pids in proc
2161 * all we care about is that we have a task with the appropriate
2162 * pid, we don't actually care if we have the right task.
2163 */
2164static inline int has_group_leader_pid(struct task_struct *p)
2165{
2166 return p->pid == p->tgid;
2167}
2168
2169static inline
2170int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2171{
2172 return p1->tgid == p2->tgid;
2173}
2174
2175static inline struct task_struct *next_thread(const struct task_struct *p)
2176{
2177 return list_entry_rcu(p->thread_group.next,
2178 struct task_struct, thread_group);
2179}
2180
2181static inline int thread_group_empty(struct task_struct *p)
2182{
2183 return list_empty(&p->thread_group);
2184}
2185
2186#define delay_group_leader(p) \
2187 (thread_group_leader(p) && !thread_group_empty(p))
2188
2189static inline int task_detached(struct task_struct *p)
2190{
2191 return p->exit_signal == -1;
2192}
2193
2194/*
2195 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2196 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2197 * pins the final release of task.io_context. Also protects ->cpuset and
2198 * ->cgroup.subsys[].
2199 *
2200 * Nests both inside and outside of read_lock(&tasklist_lock).
2201 * It must not be nested with write_lock_irq(&tasklist_lock),
2202 * neither inside nor outside.
2203 */
2204static inline void task_lock(struct task_struct *p)
2205{
2206 spin_lock(&p->alloc_lock);
2207}
2208
2209static inline void task_unlock(struct task_struct *p)
2210{
2211 spin_unlock(&p->alloc_lock);
2212}
2213
2214extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2215 unsigned long *flags);
2216
2217static inline void unlock_task_sighand(struct task_struct *tsk,
2218 unsigned long *flags)
2219{
2220 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2221}
2222
2223#ifndef __HAVE_THREAD_FUNCTIONS
2224
2225#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2226#define task_stack_page(task) ((task)->stack)
2227
2228static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2229{
2230 *task_thread_info(p) = *task_thread_info(org);
2231 task_thread_info(p)->task = p;
2232}
2233
2234static inline unsigned long *end_of_stack(struct task_struct *p)
2235{
2236 return (unsigned long *)(task_thread_info(p) + 1);
2237}
2238
2239#endif
2240
2241static inline int object_is_on_stack(void *obj)
2242{
2243 void *stack = task_stack_page(current);
2244
2245 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2246}
2247
2248extern void thread_info_cache_init(void);
2249
2250#ifdef CONFIG_DEBUG_STACK_USAGE
2251static inline unsigned long stack_not_used(struct task_struct *p)
2252{
2253 unsigned long *n = end_of_stack(p);
2254
2255 do { /* Skip over canary */
2256 n++;
2257 } while (!*n);
2258
2259 return (unsigned long)n - (unsigned long)end_of_stack(p);
2260}
2261#endif
2262
2263/* set thread flags in other task's structures
2264 * - see asm/thread_info.h for TIF_xxxx flags available
2265 */
2266static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2267{
2268 set_ti_thread_flag(task_thread_info(tsk), flag);
2269}
2270
2271static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2272{
2273 clear_ti_thread_flag(task_thread_info(tsk), flag);
2274}
2275
2276static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2277{
2278 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2279}
2280
2281static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2282{
2283 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2284}
2285
2286static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2287{
2288 return test_ti_thread_flag(task_thread_info(tsk), flag);
2289}
2290
2291static inline void set_tsk_need_resched(struct task_struct *tsk)
2292{
2293 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2294}
2295
2296static inline void clear_tsk_need_resched(struct task_struct *tsk)
2297{
2298 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2299}
2300
2301static inline int test_tsk_need_resched(struct task_struct *tsk)
2302{
2303 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2304}
2305
2306static inline int restart_syscall(void)
2307{
2308 set_tsk_thread_flag(current, TIF_SIGPENDING);
2309 return -ERESTARTNOINTR;
2310}
2311
2312static inline int signal_pending(struct task_struct *p)
2313{
2314 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2315}
2316
2317static inline int __fatal_signal_pending(struct task_struct *p)
2318{
2319 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2320}
2321
2322static inline int fatal_signal_pending(struct task_struct *p)
2323{
2324 return signal_pending(p) && __fatal_signal_pending(p);
2325}
2326
2327static inline int signal_pending_state(long state, struct task_struct *p)
2328{
2329 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2330 return 0;
2331 if (!signal_pending(p))
2332 return 0;
2333
2334 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2335}
2336
2337static inline int need_resched(void)
2338{
2339 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2340}
2341
2342/*
2343 * cond_resched() and cond_resched_lock(): latency reduction via
2344 * explicit rescheduling in places that are safe. The return
2345 * value indicates whether a reschedule was done in fact.
2346 * cond_resched_lock() will drop the spinlock before scheduling,
2347 * cond_resched_softirq() will enable bhs before scheduling.
2348 */
2349extern int _cond_resched(void);
2350
2351#define cond_resched() ({ \
2352 __might_sleep(__FILE__, __LINE__, 0); \
2353 _cond_resched(); \
2354})
2355
2356extern int __cond_resched_lock(spinlock_t *lock);
2357
2358#ifdef CONFIG_PREEMPT
2359#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2360#else
2361#define PREEMPT_LOCK_OFFSET 0
2362#endif
2363
2364#define cond_resched_lock(lock) ({ \
2365 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2366 __cond_resched_lock(lock); \
2367})
2368
2369extern int __cond_resched_softirq(void);
2370
2371#define cond_resched_softirq() ({ \
2372 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2373 __cond_resched_softirq(); \
2374})
2375
2376/*
2377 * Does a critical section need to be broken due to another
2378 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2379 * but a general need for low latency)
2380 */
2381static inline int spin_needbreak(spinlock_t *lock)
2382{
2383#ifdef CONFIG_PREEMPT
2384 return spin_is_contended(lock);
2385#else
2386 return 0;
2387#endif
2388}
2389
2390/*
2391 * Thread group CPU time accounting.
2392 */
2393void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2394void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2395
2396static inline void thread_group_cputime_init(struct signal_struct *sig)
2397{
2398 spin_lock_init(&sig->cputimer.lock);
2399}
2400
2401/*
2402 * Reevaluate whether the task has signals pending delivery.
2403 * Wake the task if so.
2404 * This is required every time the blocked sigset_t changes.
2405 * callers must hold sighand->siglock.
2406 */
2407extern void recalc_sigpending_and_wake(struct task_struct *t);
2408extern void recalc_sigpending(void);
2409
2410extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2411
2412/*
2413 * Wrappers for p->thread_info->cpu access. No-op on UP.
2414 */
2415#ifdef CONFIG_SMP
2416
2417static inline unsigned int task_cpu(const struct task_struct *p)
2418{
2419 return task_thread_info(p)->cpu;
2420}
2421
2422extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2423
2424#else
2425
2426static inline unsigned int task_cpu(const struct task_struct *p)
2427{
2428 return 0;
2429}
2430
2431static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2432{
2433}
2434
2435#endif /* CONFIG_SMP */
2436
2437#ifdef CONFIG_TRACING
2438extern void
2439__trace_special(void *__tr, void *__data,
2440 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2441#else
2442static inline void
2443__trace_special(void *__tr, void *__data,
2444 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2445{
2446}
2447#endif
2448
2449extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2450extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2451
2452extern void normalize_rt_tasks(void);
2453
2454#ifdef CONFIG_CGROUP_SCHED
2455
2456extern struct task_group init_task_group;
2457
2458extern struct task_group *sched_create_group(struct task_group *parent);
2459extern void sched_destroy_group(struct task_group *tg);
2460extern void sched_move_task(struct task_struct *tsk);
2461#ifdef CONFIG_FAIR_GROUP_SCHED
2462extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2463extern unsigned long sched_group_shares(struct task_group *tg);
2464#endif
2465#ifdef CONFIG_RT_GROUP_SCHED
2466extern int sched_group_set_rt_runtime(struct task_group *tg,
2467 long rt_runtime_us);
2468extern long sched_group_rt_runtime(struct task_group *tg);
2469extern int sched_group_set_rt_period(struct task_group *tg,
2470 long rt_period_us);
2471extern long sched_group_rt_period(struct task_group *tg);
2472extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2473#endif
2474#endif
2475
2476extern int task_can_switch_user(struct user_struct *up,
2477 struct task_struct *tsk);
2478
2479#ifdef CONFIG_TASK_XACCT
2480static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2481{
2482 tsk->ioac.rchar += amt;
2483}
2484
2485static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2486{
2487 tsk->ioac.wchar += amt;
2488}
2489
2490static inline void inc_syscr(struct task_struct *tsk)
2491{
2492 tsk->ioac.syscr++;
2493}
2494
2495static inline void inc_syscw(struct task_struct *tsk)
2496{
2497 tsk->ioac.syscw++;
2498}
2499#else
2500static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2501{
2502}
2503
2504static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2505{
2506}
2507
2508static inline void inc_syscr(struct task_struct *tsk)
2509{
2510}
2511
2512static inline void inc_syscw(struct task_struct *tsk)
2513{
2514}
2515#endif
2516
2517#ifndef TASK_SIZE_OF
2518#define TASK_SIZE_OF(tsk) TASK_SIZE
2519#endif
2520
2521/*
2522 * Call the function if the target task is executing on a CPU right now:
2523 */
2524extern void task_oncpu_function_call(struct task_struct *p,
2525 void (*func) (void *info), void *info);
2526
2527
2528#ifdef CONFIG_MM_OWNER
2529extern void mm_update_next_owner(struct mm_struct *mm);
2530extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2531#else
2532static inline void mm_update_next_owner(struct mm_struct *mm)
2533{
2534}
2535
2536static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2537{
2538}
2539#endif /* CONFIG_MM_OWNER */
2540
2541static inline unsigned long task_rlimit(const struct task_struct *tsk,
2542 unsigned int limit)
2543{
2544 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2545}
2546
2547static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2548 unsigned int limit)
2549{
2550 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2551}
2552
2553static inline unsigned long rlimit(unsigned int limit)
2554{
2555 return task_rlimit(current, limit);
2556}
2557
2558static inline unsigned long rlimit_max(unsigned int limit)
2559{
2560 return task_rlimit_max(current, limit);
2561}
2562
2563#endif /* __KERNEL__ */
2564
2565#endif