]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - fs/fs-writeback.c
make fanotify_read() restartable across signals
[net-next-2.6.git] / fs / fs-writeback.c
... / ...
CommitLineData
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/spinlock.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
23#include <linux/kthread.h>
24#include <linux/freezer.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/buffer_head.h>
29#include <linux/tracepoint.h>
30#include "internal.h"
31
32/*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
42
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
45};
46
47/*
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
51 */
52#define CREATE_TRACE_POINTS
53#include <trace/events/writeback.h>
54
55/*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58int nr_pdflush_threads;
59
60/**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
67int writeback_in_progress(struct backing_dev_info *bdi)
68{
69 return test_bit(BDI_writeback_running, &bdi->state);
70}
71
72static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73{
74 struct super_block *sb = inode->i_sb;
75
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
78
79 return sb->s_bdi;
80}
81
82static inline struct inode *wb_inode(struct list_head *head)
83{
84 return list_entry(head, struct inode, i_wb_list);
85}
86
87static void bdi_queue_work(struct backing_dev_info *bdi,
88 struct wb_writeback_work *work)
89{
90 trace_writeback_queue(bdi, work);
91
92 spin_lock_bh(&bdi->wb_lock);
93 list_add_tail(&work->list, &bdi->work_list);
94 if (bdi->wb.task) {
95 wake_up_process(bdi->wb.task);
96 } else {
97 /*
98 * The bdi thread isn't there, wake up the forker thread which
99 * will create and run it.
100 */
101 trace_writeback_nothread(bdi, work);
102 wake_up_process(default_backing_dev_info.wb.task);
103 }
104 spin_unlock_bh(&bdi->wb_lock);
105}
106
107static void
108__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
109 bool range_cyclic, bool for_background)
110{
111 struct wb_writeback_work *work;
112
113 /*
114 * This is WB_SYNC_NONE writeback, so if allocation fails just
115 * wakeup the thread for old dirty data writeback
116 */
117 work = kzalloc(sizeof(*work), GFP_ATOMIC);
118 if (!work) {
119 if (bdi->wb.task) {
120 trace_writeback_nowork(bdi);
121 wake_up_process(bdi->wb.task);
122 }
123 return;
124 }
125
126 work->sync_mode = WB_SYNC_NONE;
127 work->nr_pages = nr_pages;
128 work->range_cyclic = range_cyclic;
129 work->for_background = for_background;
130
131 bdi_queue_work(bdi, work);
132}
133
134/**
135 * bdi_start_writeback - start writeback
136 * @bdi: the backing device to write from
137 * @nr_pages: the number of pages to write
138 *
139 * Description:
140 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
141 * started when this function returns, we make no guarentees on
142 * completion. Caller need not hold sb s_umount semaphore.
143 *
144 */
145void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
146{
147 __bdi_start_writeback(bdi, nr_pages, true, false);
148}
149
150/**
151 * bdi_start_background_writeback - start background writeback
152 * @bdi: the backing device to write from
153 *
154 * Description:
155 * This does WB_SYNC_NONE background writeback. The IO is only
156 * started when this function returns, we make no guarentees on
157 * completion. Caller need not hold sb s_umount semaphore.
158 */
159void bdi_start_background_writeback(struct backing_dev_info *bdi)
160{
161 __bdi_start_writeback(bdi, LONG_MAX, true, true);
162}
163
164/*
165 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
166 * furthest end of its superblock's dirty-inode list.
167 *
168 * Before stamping the inode's ->dirtied_when, we check to see whether it is
169 * already the most-recently-dirtied inode on the b_dirty list. If that is
170 * the case then the inode must have been redirtied while it was being written
171 * out and we don't reset its dirtied_when.
172 */
173static void redirty_tail(struct inode *inode)
174{
175 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
176
177 if (!list_empty(&wb->b_dirty)) {
178 struct inode *tail;
179
180 tail = wb_inode(wb->b_dirty.next);
181 if (time_before(inode->dirtied_when, tail->dirtied_when))
182 inode->dirtied_when = jiffies;
183 }
184 list_move(&inode->i_wb_list, &wb->b_dirty);
185}
186
187/*
188 * requeue inode for re-scanning after bdi->b_io list is exhausted.
189 */
190static void requeue_io(struct inode *inode)
191{
192 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
193
194 list_move(&inode->i_wb_list, &wb->b_more_io);
195}
196
197static void inode_sync_complete(struct inode *inode)
198{
199 /*
200 * Prevent speculative execution through spin_unlock(&inode_lock);
201 */
202 smp_mb();
203 wake_up_bit(&inode->i_state, __I_SYNC);
204}
205
206static bool inode_dirtied_after(struct inode *inode, unsigned long t)
207{
208 bool ret = time_after(inode->dirtied_when, t);
209#ifndef CONFIG_64BIT
210 /*
211 * For inodes being constantly redirtied, dirtied_when can get stuck.
212 * It _appears_ to be in the future, but is actually in distant past.
213 * This test is necessary to prevent such wrapped-around relative times
214 * from permanently stopping the whole bdi writeback.
215 */
216 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
217#endif
218 return ret;
219}
220
221/*
222 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
223 */
224static void move_expired_inodes(struct list_head *delaying_queue,
225 struct list_head *dispatch_queue,
226 unsigned long *older_than_this)
227{
228 LIST_HEAD(tmp);
229 struct list_head *pos, *node;
230 struct super_block *sb = NULL;
231 struct inode *inode;
232 int do_sb_sort = 0;
233
234 while (!list_empty(delaying_queue)) {
235 inode = wb_inode(delaying_queue->prev);
236 if (older_than_this &&
237 inode_dirtied_after(inode, *older_than_this))
238 break;
239 if (sb && sb != inode->i_sb)
240 do_sb_sort = 1;
241 sb = inode->i_sb;
242 list_move(&inode->i_wb_list, &tmp);
243 }
244
245 /* just one sb in list, splice to dispatch_queue and we're done */
246 if (!do_sb_sort) {
247 list_splice(&tmp, dispatch_queue);
248 return;
249 }
250
251 /* Move inodes from one superblock together */
252 while (!list_empty(&tmp)) {
253 sb = wb_inode(tmp.prev)->i_sb;
254 list_for_each_prev_safe(pos, node, &tmp) {
255 inode = wb_inode(pos);
256 if (inode->i_sb == sb)
257 list_move(&inode->i_wb_list, dispatch_queue);
258 }
259 }
260}
261
262/*
263 * Queue all expired dirty inodes for io, eldest first.
264 * Before
265 * newly dirtied b_dirty b_io b_more_io
266 * =============> gf edc BA
267 * After
268 * newly dirtied b_dirty b_io b_more_io
269 * =============> g fBAedc
270 * |
271 * +--> dequeue for IO
272 */
273static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
274{
275 list_splice_init(&wb->b_more_io, &wb->b_io);
276 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
277}
278
279static int write_inode(struct inode *inode, struct writeback_control *wbc)
280{
281 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
282 return inode->i_sb->s_op->write_inode(inode, wbc);
283 return 0;
284}
285
286/*
287 * Wait for writeback on an inode to complete.
288 */
289static void inode_wait_for_writeback(struct inode *inode)
290{
291 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
292 wait_queue_head_t *wqh;
293
294 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
295 while (inode->i_state & I_SYNC) {
296 spin_unlock(&inode_lock);
297 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
298 spin_lock(&inode_lock);
299 }
300}
301
302/*
303 * Write out an inode's dirty pages. Called under inode_lock. Either the
304 * caller has ref on the inode (either via __iget or via syscall against an fd)
305 * or the inode has I_WILL_FREE set (via generic_forget_inode)
306 *
307 * If `wait' is set, wait on the writeout.
308 *
309 * The whole writeout design is quite complex and fragile. We want to avoid
310 * starvation of particular inodes when others are being redirtied, prevent
311 * livelocks, etc.
312 *
313 * Called under inode_lock.
314 */
315static int
316writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
317{
318 struct address_space *mapping = inode->i_mapping;
319 unsigned dirty;
320 int ret;
321
322 if (!atomic_read(&inode->i_count))
323 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
324 else
325 WARN_ON(inode->i_state & I_WILL_FREE);
326
327 if (inode->i_state & I_SYNC) {
328 /*
329 * If this inode is locked for writeback and we are not doing
330 * writeback-for-data-integrity, move it to b_more_io so that
331 * writeback can proceed with the other inodes on s_io.
332 *
333 * We'll have another go at writing back this inode when we
334 * completed a full scan of b_io.
335 */
336 if (wbc->sync_mode != WB_SYNC_ALL) {
337 requeue_io(inode);
338 return 0;
339 }
340
341 /*
342 * It's a data-integrity sync. We must wait.
343 */
344 inode_wait_for_writeback(inode);
345 }
346
347 BUG_ON(inode->i_state & I_SYNC);
348
349 /* Set I_SYNC, reset I_DIRTY_PAGES */
350 inode->i_state |= I_SYNC;
351 inode->i_state &= ~I_DIRTY_PAGES;
352 spin_unlock(&inode_lock);
353
354 ret = do_writepages(mapping, wbc);
355
356 /*
357 * Make sure to wait on the data before writing out the metadata.
358 * This is important for filesystems that modify metadata on data
359 * I/O completion.
360 */
361 if (wbc->sync_mode == WB_SYNC_ALL) {
362 int err = filemap_fdatawait(mapping);
363 if (ret == 0)
364 ret = err;
365 }
366
367 /*
368 * Some filesystems may redirty the inode during the writeback
369 * due to delalloc, clear dirty metadata flags right before
370 * write_inode()
371 */
372 spin_lock(&inode_lock);
373 dirty = inode->i_state & I_DIRTY;
374 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
375 spin_unlock(&inode_lock);
376 /* Don't write the inode if only I_DIRTY_PAGES was set */
377 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
378 int err = write_inode(inode, wbc);
379 if (ret == 0)
380 ret = err;
381 }
382
383 spin_lock(&inode_lock);
384 inode->i_state &= ~I_SYNC;
385 if (!(inode->i_state & I_FREEING)) {
386 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
387 /*
388 * We didn't write back all the pages. nfs_writepages()
389 * sometimes bales out without doing anything.
390 */
391 inode->i_state |= I_DIRTY_PAGES;
392 if (wbc->nr_to_write <= 0) {
393 /*
394 * slice used up: queue for next turn
395 */
396 requeue_io(inode);
397 } else {
398 /*
399 * Writeback blocked by something other than
400 * congestion. Delay the inode for some time to
401 * avoid spinning on the CPU (100% iowait)
402 * retrying writeback of the dirty page/inode
403 * that cannot be performed immediately.
404 */
405 redirty_tail(inode);
406 }
407 } else if (inode->i_state & I_DIRTY) {
408 /*
409 * Filesystems can dirty the inode during writeback
410 * operations, such as delayed allocation during
411 * submission or metadata updates after data IO
412 * completion.
413 */
414 redirty_tail(inode);
415 } else {
416 /*
417 * The inode is clean. At this point we either have
418 * a reference to the inode or it's on it's way out.
419 * No need to add it back to the LRU.
420 */
421 list_del_init(&inode->i_wb_list);
422 }
423 }
424 inode_sync_complete(inode);
425 return ret;
426}
427
428/*
429 * For background writeback the caller does not have the sb pinned
430 * before calling writeback. So make sure that we do pin it, so it doesn't
431 * go away while we are writing inodes from it.
432 */
433static bool pin_sb_for_writeback(struct super_block *sb)
434{
435 spin_lock(&sb_lock);
436 if (list_empty(&sb->s_instances)) {
437 spin_unlock(&sb_lock);
438 return false;
439 }
440
441 sb->s_count++;
442 spin_unlock(&sb_lock);
443
444 if (down_read_trylock(&sb->s_umount)) {
445 if (sb->s_root)
446 return true;
447 up_read(&sb->s_umount);
448 }
449
450 put_super(sb);
451 return false;
452}
453
454/*
455 * Write a portion of b_io inodes which belong to @sb.
456 *
457 * If @only_this_sb is true, then find and write all such
458 * inodes. Otherwise write only ones which go sequentially
459 * in reverse order.
460 *
461 * Return 1, if the caller writeback routine should be
462 * interrupted. Otherwise return 0.
463 */
464static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
465 struct writeback_control *wbc, bool only_this_sb)
466{
467 while (!list_empty(&wb->b_io)) {
468 long pages_skipped;
469 struct inode *inode = wb_inode(wb->b_io.prev);
470
471 if (inode->i_sb != sb) {
472 if (only_this_sb) {
473 /*
474 * We only want to write back data for this
475 * superblock, move all inodes not belonging
476 * to it back onto the dirty list.
477 */
478 redirty_tail(inode);
479 continue;
480 }
481
482 /*
483 * The inode belongs to a different superblock.
484 * Bounce back to the caller to unpin this and
485 * pin the next superblock.
486 */
487 return 0;
488 }
489
490 /*
491 * Don't bother with new inodes or inodes beeing freed, first
492 * kind does not need peridic writeout yet, and for the latter
493 * kind writeout is handled by the freer.
494 */
495 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
496 requeue_io(inode);
497 continue;
498 }
499
500 /*
501 * Was this inode dirtied after sync_sb_inodes was called?
502 * This keeps sync from extra jobs and livelock.
503 */
504 if (inode_dirtied_after(inode, wbc->wb_start))
505 return 1;
506
507 __iget(inode);
508 pages_skipped = wbc->pages_skipped;
509 writeback_single_inode(inode, wbc);
510 if (wbc->pages_skipped != pages_skipped) {
511 /*
512 * writeback is not making progress due to locked
513 * buffers. Skip this inode for now.
514 */
515 redirty_tail(inode);
516 }
517 spin_unlock(&inode_lock);
518 iput(inode);
519 cond_resched();
520 spin_lock(&inode_lock);
521 if (wbc->nr_to_write <= 0) {
522 wbc->more_io = 1;
523 return 1;
524 }
525 if (!list_empty(&wb->b_more_io))
526 wbc->more_io = 1;
527 }
528 /* b_io is empty */
529 return 1;
530}
531
532void writeback_inodes_wb(struct bdi_writeback *wb,
533 struct writeback_control *wbc)
534{
535 int ret = 0;
536
537 if (!wbc->wb_start)
538 wbc->wb_start = jiffies; /* livelock avoidance */
539 spin_lock(&inode_lock);
540 if (!wbc->for_kupdate || list_empty(&wb->b_io))
541 queue_io(wb, wbc->older_than_this);
542
543 while (!list_empty(&wb->b_io)) {
544 struct inode *inode = wb_inode(wb->b_io.prev);
545 struct super_block *sb = inode->i_sb;
546
547 if (!pin_sb_for_writeback(sb)) {
548 requeue_io(inode);
549 continue;
550 }
551 ret = writeback_sb_inodes(sb, wb, wbc, false);
552 drop_super(sb);
553
554 if (ret)
555 break;
556 }
557 spin_unlock(&inode_lock);
558 /* Leave any unwritten inodes on b_io */
559}
560
561static void __writeback_inodes_sb(struct super_block *sb,
562 struct bdi_writeback *wb, struct writeback_control *wbc)
563{
564 WARN_ON(!rwsem_is_locked(&sb->s_umount));
565
566 spin_lock(&inode_lock);
567 if (!wbc->for_kupdate || list_empty(&wb->b_io))
568 queue_io(wb, wbc->older_than_this);
569 writeback_sb_inodes(sb, wb, wbc, true);
570 spin_unlock(&inode_lock);
571}
572
573/*
574 * The maximum number of pages to writeout in a single bdi flush/kupdate
575 * operation. We do this so we don't hold I_SYNC against an inode for
576 * enormous amounts of time, which would block a userspace task which has
577 * been forced to throttle against that inode. Also, the code reevaluates
578 * the dirty each time it has written this many pages.
579 */
580#define MAX_WRITEBACK_PAGES 1024
581
582static inline bool over_bground_thresh(void)
583{
584 unsigned long background_thresh, dirty_thresh;
585
586 global_dirty_limits(&background_thresh, &dirty_thresh);
587
588 return (global_page_state(NR_FILE_DIRTY) +
589 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
590}
591
592/*
593 * Explicit flushing or periodic writeback of "old" data.
594 *
595 * Define "old": the first time one of an inode's pages is dirtied, we mark the
596 * dirtying-time in the inode's address_space. So this periodic writeback code
597 * just walks the superblock inode list, writing back any inodes which are
598 * older than a specific point in time.
599 *
600 * Try to run once per dirty_writeback_interval. But if a writeback event
601 * takes longer than a dirty_writeback_interval interval, then leave a
602 * one-second gap.
603 *
604 * older_than_this takes precedence over nr_to_write. So we'll only write back
605 * all dirty pages if they are all attached to "old" mappings.
606 */
607static long wb_writeback(struct bdi_writeback *wb,
608 struct wb_writeback_work *work)
609{
610 struct writeback_control wbc = {
611 .sync_mode = work->sync_mode,
612 .older_than_this = NULL,
613 .for_kupdate = work->for_kupdate,
614 .for_background = work->for_background,
615 .range_cyclic = work->range_cyclic,
616 };
617 unsigned long oldest_jif;
618 long wrote = 0;
619 struct inode *inode;
620
621 if (wbc.for_kupdate) {
622 wbc.older_than_this = &oldest_jif;
623 oldest_jif = jiffies -
624 msecs_to_jiffies(dirty_expire_interval * 10);
625 }
626 if (!wbc.range_cyclic) {
627 wbc.range_start = 0;
628 wbc.range_end = LLONG_MAX;
629 }
630
631 wbc.wb_start = jiffies; /* livelock avoidance */
632 for (;;) {
633 /*
634 * Stop writeback when nr_pages has been consumed
635 */
636 if (work->nr_pages <= 0)
637 break;
638
639 /*
640 * For background writeout, stop when we are below the
641 * background dirty threshold
642 */
643 if (work->for_background && !over_bground_thresh())
644 break;
645
646 wbc.more_io = 0;
647 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
648 wbc.pages_skipped = 0;
649
650 trace_wbc_writeback_start(&wbc, wb->bdi);
651 if (work->sb)
652 __writeback_inodes_sb(work->sb, wb, &wbc);
653 else
654 writeback_inodes_wb(wb, &wbc);
655 trace_wbc_writeback_written(&wbc, wb->bdi);
656
657 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
658 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
659
660 /*
661 * If we consumed everything, see if we have more
662 */
663 if (wbc.nr_to_write <= 0)
664 continue;
665 /*
666 * Didn't write everything and we don't have more IO, bail
667 */
668 if (!wbc.more_io)
669 break;
670 /*
671 * Did we write something? Try for more
672 */
673 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
674 continue;
675 /*
676 * Nothing written. Wait for some inode to
677 * become available for writeback. Otherwise
678 * we'll just busyloop.
679 */
680 spin_lock(&inode_lock);
681 if (!list_empty(&wb->b_more_io)) {
682 inode = wb_inode(wb->b_more_io.prev);
683 trace_wbc_writeback_wait(&wbc, wb->bdi);
684 inode_wait_for_writeback(inode);
685 }
686 spin_unlock(&inode_lock);
687 }
688
689 return wrote;
690}
691
692/*
693 * Return the next wb_writeback_work struct that hasn't been processed yet.
694 */
695static struct wb_writeback_work *
696get_next_work_item(struct backing_dev_info *bdi)
697{
698 struct wb_writeback_work *work = NULL;
699
700 spin_lock_bh(&bdi->wb_lock);
701 if (!list_empty(&bdi->work_list)) {
702 work = list_entry(bdi->work_list.next,
703 struct wb_writeback_work, list);
704 list_del_init(&work->list);
705 }
706 spin_unlock_bh(&bdi->wb_lock);
707 return work;
708}
709
710static long wb_check_old_data_flush(struct bdi_writeback *wb)
711{
712 unsigned long expired;
713 long nr_pages;
714
715 /*
716 * When set to zero, disable periodic writeback
717 */
718 if (!dirty_writeback_interval)
719 return 0;
720
721 expired = wb->last_old_flush +
722 msecs_to_jiffies(dirty_writeback_interval * 10);
723 if (time_before(jiffies, expired))
724 return 0;
725
726 wb->last_old_flush = jiffies;
727 /*
728 * Add in the number of potentially dirty inodes, because each inode
729 * write can dirty pagecache in the underlying blockdev.
730 */
731 nr_pages = global_page_state(NR_FILE_DIRTY) +
732 global_page_state(NR_UNSTABLE_NFS) +
733 get_nr_dirty_inodes();
734
735 if (nr_pages) {
736 struct wb_writeback_work work = {
737 .nr_pages = nr_pages,
738 .sync_mode = WB_SYNC_NONE,
739 .for_kupdate = 1,
740 .range_cyclic = 1,
741 };
742
743 return wb_writeback(wb, &work);
744 }
745
746 return 0;
747}
748
749/*
750 * Retrieve work items and do the writeback they describe
751 */
752long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
753{
754 struct backing_dev_info *bdi = wb->bdi;
755 struct wb_writeback_work *work;
756 long wrote = 0;
757
758 set_bit(BDI_writeback_running, &wb->bdi->state);
759 while ((work = get_next_work_item(bdi)) != NULL) {
760 /*
761 * Override sync mode, in case we must wait for completion
762 * because this thread is exiting now.
763 */
764 if (force_wait)
765 work->sync_mode = WB_SYNC_ALL;
766
767 trace_writeback_exec(bdi, work);
768
769 wrote += wb_writeback(wb, work);
770
771 /*
772 * Notify the caller of completion if this is a synchronous
773 * work item, otherwise just free it.
774 */
775 if (work->done)
776 complete(work->done);
777 else
778 kfree(work);
779 }
780
781 /*
782 * Check for periodic writeback, kupdated() style
783 */
784 wrote += wb_check_old_data_flush(wb);
785 clear_bit(BDI_writeback_running, &wb->bdi->state);
786
787 return wrote;
788}
789
790/*
791 * Handle writeback of dirty data for the device backed by this bdi. Also
792 * wakes up periodically and does kupdated style flushing.
793 */
794int bdi_writeback_thread(void *data)
795{
796 struct bdi_writeback *wb = data;
797 struct backing_dev_info *bdi = wb->bdi;
798 long pages_written;
799
800 current->flags |= PF_SWAPWRITE;
801 set_freezable();
802 wb->last_active = jiffies;
803
804 /*
805 * Our parent may run at a different priority, just set us to normal
806 */
807 set_user_nice(current, 0);
808
809 trace_writeback_thread_start(bdi);
810
811 while (!kthread_should_stop()) {
812 /*
813 * Remove own delayed wake-up timer, since we are already awake
814 * and we'll take care of the preriodic write-back.
815 */
816 del_timer(&wb->wakeup_timer);
817
818 pages_written = wb_do_writeback(wb, 0);
819
820 trace_writeback_pages_written(pages_written);
821
822 if (pages_written)
823 wb->last_active = jiffies;
824
825 set_current_state(TASK_INTERRUPTIBLE);
826 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
827 __set_current_state(TASK_RUNNING);
828 continue;
829 }
830
831 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
832 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
833 else {
834 /*
835 * We have nothing to do, so can go sleep without any
836 * timeout and save power. When a work is queued or
837 * something is made dirty - we will be woken up.
838 */
839 schedule();
840 }
841
842 try_to_freeze();
843 }
844
845 /* Flush any work that raced with us exiting */
846 if (!list_empty(&bdi->work_list))
847 wb_do_writeback(wb, 1);
848
849 trace_writeback_thread_stop(bdi);
850 return 0;
851}
852
853
854/*
855 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
856 * the whole world.
857 */
858void wakeup_flusher_threads(long nr_pages)
859{
860 struct backing_dev_info *bdi;
861
862 if (!nr_pages) {
863 nr_pages = global_page_state(NR_FILE_DIRTY) +
864 global_page_state(NR_UNSTABLE_NFS);
865 }
866
867 rcu_read_lock();
868 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
869 if (!bdi_has_dirty_io(bdi))
870 continue;
871 __bdi_start_writeback(bdi, nr_pages, false, false);
872 }
873 rcu_read_unlock();
874}
875
876static noinline void block_dump___mark_inode_dirty(struct inode *inode)
877{
878 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
879 struct dentry *dentry;
880 const char *name = "?";
881
882 dentry = d_find_alias(inode);
883 if (dentry) {
884 spin_lock(&dentry->d_lock);
885 name = (const char *) dentry->d_name.name;
886 }
887 printk(KERN_DEBUG
888 "%s(%d): dirtied inode %lu (%s) on %s\n",
889 current->comm, task_pid_nr(current), inode->i_ino,
890 name, inode->i_sb->s_id);
891 if (dentry) {
892 spin_unlock(&dentry->d_lock);
893 dput(dentry);
894 }
895 }
896}
897
898/**
899 * __mark_inode_dirty - internal function
900 * @inode: inode to mark
901 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
902 * Mark an inode as dirty. Callers should use mark_inode_dirty or
903 * mark_inode_dirty_sync.
904 *
905 * Put the inode on the super block's dirty list.
906 *
907 * CAREFUL! We mark it dirty unconditionally, but move it onto the
908 * dirty list only if it is hashed or if it refers to a blockdev.
909 * If it was not hashed, it will never be added to the dirty list
910 * even if it is later hashed, as it will have been marked dirty already.
911 *
912 * In short, make sure you hash any inodes _before_ you start marking
913 * them dirty.
914 *
915 * This function *must* be atomic for the I_DIRTY_PAGES case -
916 * set_page_dirty() is called under spinlock in several places.
917 *
918 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
919 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
920 * the kernel-internal blockdev inode represents the dirtying time of the
921 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
922 * page->mapping->host, so the page-dirtying time is recorded in the internal
923 * blockdev inode.
924 */
925void __mark_inode_dirty(struct inode *inode, int flags)
926{
927 struct super_block *sb = inode->i_sb;
928 struct backing_dev_info *bdi = NULL;
929 bool wakeup_bdi = false;
930
931 /*
932 * Don't do this for I_DIRTY_PAGES - that doesn't actually
933 * dirty the inode itself
934 */
935 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
936 if (sb->s_op->dirty_inode)
937 sb->s_op->dirty_inode(inode);
938 }
939
940 /*
941 * make sure that changes are seen by all cpus before we test i_state
942 * -- mikulas
943 */
944 smp_mb();
945
946 /* avoid the locking if we can */
947 if ((inode->i_state & flags) == flags)
948 return;
949
950 if (unlikely(block_dump))
951 block_dump___mark_inode_dirty(inode);
952
953 spin_lock(&inode_lock);
954 if ((inode->i_state & flags) != flags) {
955 const int was_dirty = inode->i_state & I_DIRTY;
956
957 inode->i_state |= flags;
958
959 /*
960 * If the inode is being synced, just update its dirty state.
961 * The unlocker will place the inode on the appropriate
962 * superblock list, based upon its state.
963 */
964 if (inode->i_state & I_SYNC)
965 goto out;
966
967 /*
968 * Only add valid (hashed) inodes to the superblock's
969 * dirty list. Add blockdev inodes as well.
970 */
971 if (!S_ISBLK(inode->i_mode)) {
972 if (inode_unhashed(inode))
973 goto out;
974 }
975 if (inode->i_state & I_FREEING)
976 goto out;
977
978 /*
979 * If the inode was already on b_dirty/b_io/b_more_io, don't
980 * reposition it (that would break b_dirty time-ordering).
981 */
982 if (!was_dirty) {
983 bdi = inode_to_bdi(inode);
984
985 if (bdi_cap_writeback_dirty(bdi)) {
986 WARN(!test_bit(BDI_registered, &bdi->state),
987 "bdi-%s not registered\n", bdi->name);
988
989 /*
990 * If this is the first dirty inode for this
991 * bdi, we have to wake-up the corresponding
992 * bdi thread to make sure background
993 * write-back happens later.
994 */
995 if (!wb_has_dirty_io(&bdi->wb))
996 wakeup_bdi = true;
997 }
998
999 inode->dirtied_when = jiffies;
1000 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1001 }
1002 }
1003out:
1004 spin_unlock(&inode_lock);
1005
1006 if (wakeup_bdi)
1007 bdi_wakeup_thread_delayed(bdi);
1008}
1009EXPORT_SYMBOL(__mark_inode_dirty);
1010
1011/*
1012 * Write out a superblock's list of dirty inodes. A wait will be performed
1013 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1014 *
1015 * If older_than_this is non-NULL, then only write out inodes which
1016 * had their first dirtying at a time earlier than *older_than_this.
1017 *
1018 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1019 * This function assumes that the blockdev superblock's inodes are backed by
1020 * a variety of queues, so all inodes are searched. For other superblocks,
1021 * assume that all inodes are backed by the same queue.
1022 *
1023 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1024 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1025 * on the writer throttling path, and we get decent balancing between many
1026 * throttled threads: we don't want them all piling up on inode_sync_wait.
1027 */
1028static void wait_sb_inodes(struct super_block *sb)
1029{
1030 struct inode *inode, *old_inode = NULL;
1031
1032 /*
1033 * We need to be protected against the filesystem going from
1034 * r/o to r/w or vice versa.
1035 */
1036 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1037
1038 spin_lock(&inode_lock);
1039
1040 /*
1041 * Data integrity sync. Must wait for all pages under writeback,
1042 * because there may have been pages dirtied before our sync
1043 * call, but which had writeout started before we write it out.
1044 * In which case, the inode may not be on the dirty list, but
1045 * we still have to wait for that writeout.
1046 */
1047 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1048 struct address_space *mapping;
1049
1050 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1051 continue;
1052 mapping = inode->i_mapping;
1053 if (mapping->nrpages == 0)
1054 continue;
1055 __iget(inode);
1056 spin_unlock(&inode_lock);
1057 /*
1058 * We hold a reference to 'inode' so it couldn't have
1059 * been removed from s_inodes list while we dropped the
1060 * inode_lock. We cannot iput the inode now as we can
1061 * be holding the last reference and we cannot iput it
1062 * under inode_lock. So we keep the reference and iput
1063 * it later.
1064 */
1065 iput(old_inode);
1066 old_inode = inode;
1067
1068 filemap_fdatawait(mapping);
1069
1070 cond_resched();
1071
1072 spin_lock(&inode_lock);
1073 }
1074 spin_unlock(&inode_lock);
1075 iput(old_inode);
1076}
1077
1078/**
1079 * writeback_inodes_sb - writeback dirty inodes from given super_block
1080 * @sb: the superblock
1081 *
1082 * Start writeback on some inodes on this super_block. No guarantees are made
1083 * on how many (if any) will be written, and this function does not wait
1084 * for IO completion of submitted IO. The number of pages submitted is
1085 * returned.
1086 */
1087void writeback_inodes_sb(struct super_block *sb)
1088{
1089 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1090 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1091 DECLARE_COMPLETION_ONSTACK(done);
1092 struct wb_writeback_work work = {
1093 .sb = sb,
1094 .sync_mode = WB_SYNC_NONE,
1095 .done = &done,
1096 };
1097
1098 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1099
1100 work.nr_pages = nr_dirty + nr_unstable + get_nr_dirty_inodes();
1101
1102 bdi_queue_work(sb->s_bdi, &work);
1103 wait_for_completion(&done);
1104}
1105EXPORT_SYMBOL(writeback_inodes_sb);
1106
1107/**
1108 * writeback_inodes_sb_if_idle - start writeback if none underway
1109 * @sb: the superblock
1110 *
1111 * Invoke writeback_inodes_sb if no writeback is currently underway.
1112 * Returns 1 if writeback was started, 0 if not.
1113 */
1114int writeback_inodes_sb_if_idle(struct super_block *sb)
1115{
1116 if (!writeback_in_progress(sb->s_bdi)) {
1117 down_read(&sb->s_umount);
1118 writeback_inodes_sb(sb);
1119 up_read(&sb->s_umount);
1120 return 1;
1121 } else
1122 return 0;
1123}
1124EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1125
1126/**
1127 * sync_inodes_sb - sync sb inode pages
1128 * @sb: the superblock
1129 *
1130 * This function writes and waits on any dirty inode belonging to this
1131 * super_block. The number of pages synced is returned.
1132 */
1133void sync_inodes_sb(struct super_block *sb)
1134{
1135 DECLARE_COMPLETION_ONSTACK(done);
1136 struct wb_writeback_work work = {
1137 .sb = sb,
1138 .sync_mode = WB_SYNC_ALL,
1139 .nr_pages = LONG_MAX,
1140 .range_cyclic = 0,
1141 .done = &done,
1142 };
1143
1144 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1145
1146 bdi_queue_work(sb->s_bdi, &work);
1147 wait_for_completion(&done);
1148
1149 wait_sb_inodes(sb);
1150}
1151EXPORT_SYMBOL(sync_inodes_sb);
1152
1153/**
1154 * write_inode_now - write an inode to disk
1155 * @inode: inode to write to disk
1156 * @sync: whether the write should be synchronous or not
1157 *
1158 * This function commits an inode to disk immediately if it is dirty. This is
1159 * primarily needed by knfsd.
1160 *
1161 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1162 */
1163int write_inode_now(struct inode *inode, int sync)
1164{
1165 int ret;
1166 struct writeback_control wbc = {
1167 .nr_to_write = LONG_MAX,
1168 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1169 .range_start = 0,
1170 .range_end = LLONG_MAX,
1171 };
1172
1173 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1174 wbc.nr_to_write = 0;
1175
1176 might_sleep();
1177 spin_lock(&inode_lock);
1178 ret = writeback_single_inode(inode, &wbc);
1179 spin_unlock(&inode_lock);
1180 if (sync)
1181 inode_sync_wait(inode);
1182 return ret;
1183}
1184EXPORT_SYMBOL(write_inode_now);
1185
1186/**
1187 * sync_inode - write an inode and its pages to disk.
1188 * @inode: the inode to sync
1189 * @wbc: controls the writeback mode
1190 *
1191 * sync_inode() will write an inode and its pages to disk. It will also
1192 * correctly update the inode on its superblock's dirty inode lists and will
1193 * update inode->i_state.
1194 *
1195 * The caller must have a ref on the inode.
1196 */
1197int sync_inode(struct inode *inode, struct writeback_control *wbc)
1198{
1199 int ret;
1200
1201 spin_lock(&inode_lock);
1202 ret = writeback_single_inode(inode, wbc);
1203 spin_unlock(&inode_lock);
1204 return ret;
1205}
1206EXPORT_SYMBOL(sync_inode);
1207
1208/**
1209 * sync_inode - write an inode to disk
1210 * @inode: the inode to sync
1211 * @wait: wait for I/O to complete.
1212 *
1213 * Write an inode to disk and adjust it's dirty state after completion.
1214 *
1215 * Note: only writes the actual inode, no associated data or other metadata.
1216 */
1217int sync_inode_metadata(struct inode *inode, int wait)
1218{
1219 struct writeback_control wbc = {
1220 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1221 .nr_to_write = 0, /* metadata-only */
1222 };
1223
1224 return sync_inode(inode, &wbc);
1225}
1226EXPORT_SYMBOL(sync_inode_metadata);