]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - drivers/net/via-velocity.c
drivers/net: Move && and || to end of previous line
[net-next-2.6.git] / drivers / net / via-velocity.c
... / ...
CommitLineData
1/*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
13 *
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
16 *
17 * This source has not been verified for use in safety critical systems.
18 *
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
21 *
22 * Original code:
23 *
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
26 *
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
31 *
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
36 *
37 * Author: Chuang Liang-Shing, AJ Jiang
38 *
39 * Date: Jan 24, 2003
40 *
41 * MODULE_LICENSE("GPL");
42 *
43 */
44
45
46#include <linux/module.h>
47#include <linux/types.h>
48#include <linux/init.h>
49#include <linux/mm.h>
50#include <linux/errno.h>
51#include <linux/ioport.h>
52#include <linux/pci.h>
53#include <linux/kernel.h>
54#include <linux/netdevice.h>
55#include <linux/etherdevice.h>
56#include <linux/skbuff.h>
57#include <linux/delay.h>
58#include <linux/timer.h>
59#include <linux/slab.h>
60#include <linux/interrupt.h>
61#include <linux/string.h>
62#include <linux/wait.h>
63#include <linux/io.h>
64#include <linux/if.h>
65#include <linux/uaccess.h>
66#include <linux/proc_fs.h>
67#include <linux/inetdevice.h>
68#include <linux/reboot.h>
69#include <linux/ethtool.h>
70#include <linux/mii.h>
71#include <linux/in.h>
72#include <linux/if_arp.h>
73#include <linux/if_vlan.h>
74#include <linux/ip.h>
75#include <linux/tcp.h>
76#include <linux/udp.h>
77#include <linux/crc-ccitt.h>
78#include <linux/crc32.h>
79
80#include "via-velocity.h"
81
82
83static int velocity_nics;
84static int msglevel = MSG_LEVEL_INFO;
85
86/**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
90 *
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
93 */
94static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
95{
96 int i;
97
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
100
101 writeb(0, &regs->CAMADDR);
102
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
106
107 /* disable CAMEN */
108 writeb(0, &regs->CAMADDR);
109
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
112}
113
114
115/**
116 * mac_set_cam_mask - Set a CAM mask
117 * @regs: register block for this velocity
118 * @mask: CAM mask to load
119 *
120 * Store a new mask into a CAM
121 */
122static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
123{
124 int i;
125 /* Select CAM mask */
126 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
127
128 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
129
130 for (i = 0; i < 8; i++)
131 writeb(*mask++, &(regs->MARCAM[i]));
132
133 /* disable CAMEN */
134 writeb(0, &regs->CAMADDR);
135
136 /* Select mar */
137 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
138}
139
140static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141{
142 int i;
143 /* Select CAM mask */
144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145
146 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
147
148 for (i = 0; i < 8; i++)
149 writeb(*mask++, &(regs->MARCAM[i]));
150
151 /* disable CAMEN */
152 writeb(0, &regs->CAMADDR);
153
154 /* Select mar */
155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156}
157
158/**
159 * mac_set_cam - set CAM data
160 * @regs: register block of this velocity
161 * @idx: Cam index
162 * @addr: 2 or 6 bytes of CAM data
163 *
164 * Load an address or vlan tag into a CAM
165 */
166static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
167{
168 int i;
169
170 /* Select CAM mask */
171 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
172
173 idx &= (64 - 1);
174
175 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
176
177 for (i = 0; i < 6; i++)
178 writeb(*addr++, &(regs->MARCAM[i]));
179
180 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
181
182 udelay(10);
183
184 writeb(0, &regs->CAMADDR);
185
186 /* Select mar */
187 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
188}
189
190static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
191 const u8 *addr)
192{
193
194 /* Select CAM mask */
195 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
196
197 idx &= (64 - 1);
198
199 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
200 writew(*((u16 *) addr), &regs->MARCAM[0]);
201
202 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
203
204 udelay(10);
205
206 writeb(0, &regs->CAMADDR);
207
208 /* Select mar */
209 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
210}
211
212
213/**
214 * mac_wol_reset - reset WOL after exiting low power
215 * @regs: register block of this velocity
216 *
217 * Called after we drop out of wake on lan mode in order to
218 * reset the Wake on lan features. This function doesn't restore
219 * the rest of the logic from the result of sleep/wakeup
220 */
221static void mac_wol_reset(struct mac_regs __iomem *regs)
222{
223
224 /* Turn off SWPTAG right after leaving power mode */
225 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
226 /* clear sticky bits */
227 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
228
229 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
230 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
231 /* disable force PME-enable */
232 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
233 /* disable power-event config bit */
234 writew(0xFFFF, &regs->WOLCRClr);
235 /* clear power status */
236 writew(0xFFFF, &regs->WOLSRClr);
237}
238
239static const struct ethtool_ops velocity_ethtool_ops;
240
241/*
242 Define module options
243*/
244
245MODULE_AUTHOR("VIA Networking Technologies, Inc.");
246MODULE_LICENSE("GPL");
247MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
248
249#define VELOCITY_PARAM(N, D) \
250 static int N[MAX_UNITS] = OPTION_DEFAULT;\
251 module_param_array(N, int, NULL, 0); \
252 MODULE_PARM_DESC(N, D);
253
254#define RX_DESC_MIN 64
255#define RX_DESC_MAX 255
256#define RX_DESC_DEF 64
257VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
258
259#define TX_DESC_MIN 16
260#define TX_DESC_MAX 256
261#define TX_DESC_DEF 64
262VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
263
264#define RX_THRESH_MIN 0
265#define RX_THRESH_MAX 3
266#define RX_THRESH_DEF 0
267/* rx_thresh[] is used for controlling the receive fifo threshold.
268 0: indicate the rxfifo threshold is 128 bytes.
269 1: indicate the rxfifo threshold is 512 bytes.
270 2: indicate the rxfifo threshold is 1024 bytes.
271 3: indicate the rxfifo threshold is store & forward.
272*/
273VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
274
275#define DMA_LENGTH_MIN 0
276#define DMA_LENGTH_MAX 7
277#define DMA_LENGTH_DEF 6
278
279/* DMA_length[] is used for controlling the DMA length
280 0: 8 DWORDs
281 1: 16 DWORDs
282 2: 32 DWORDs
283 3: 64 DWORDs
284 4: 128 DWORDs
285 5: 256 DWORDs
286 6: SF(flush till emply)
287 7: SF(flush till emply)
288*/
289VELOCITY_PARAM(DMA_length, "DMA length");
290
291#define IP_ALIG_DEF 0
292/* IP_byte_align[] is used for IP header DWORD byte aligned
293 0: indicate the IP header won't be DWORD byte aligned.(Default) .
294 1: indicate the IP header will be DWORD byte aligned.
295 In some enviroment, the IP header should be DWORD byte aligned,
296 or the packet will be droped when we receive it. (eg: IPVS)
297*/
298VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
299
300#define FLOW_CNTL_DEF 1
301#define FLOW_CNTL_MIN 1
302#define FLOW_CNTL_MAX 5
303
304/* flow_control[] is used for setting the flow control ability of NIC.
305 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
306 2: enable TX flow control.
307 3: enable RX flow control.
308 4: enable RX/TX flow control.
309 5: disable
310*/
311VELOCITY_PARAM(flow_control, "Enable flow control ability");
312
313#define MED_LNK_DEF 0
314#define MED_LNK_MIN 0
315#define MED_LNK_MAX 4
316/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
317 0: indicate autonegotiation for both speed and duplex mode
318 1: indicate 100Mbps half duplex mode
319 2: indicate 100Mbps full duplex mode
320 3: indicate 10Mbps half duplex mode
321 4: indicate 10Mbps full duplex mode
322
323 Note:
324 if EEPROM have been set to the force mode, this option is ignored
325 by driver.
326*/
327VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
328
329#define VAL_PKT_LEN_DEF 0
330/* ValPktLen[] is used for setting the checksum offload ability of NIC.
331 0: Receive frame with invalid layer 2 length (Default)
332 1: Drop frame with invalid layer 2 length
333*/
334VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
335
336#define WOL_OPT_DEF 0
337#define WOL_OPT_MIN 0
338#define WOL_OPT_MAX 7
339/* wol_opts[] is used for controlling wake on lan behavior.
340 0: Wake up if recevied a magic packet. (Default)
341 1: Wake up if link status is on/off.
342 2: Wake up if recevied an arp packet.
343 4: Wake up if recevied any unicast packet.
344 Those value can be sumed up to support more than one option.
345*/
346VELOCITY_PARAM(wol_opts, "Wake On Lan options");
347
348static int rx_copybreak = 200;
349module_param(rx_copybreak, int, 0644);
350MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
351
352/*
353 * Internal board variants. At the moment we have only one
354 */
355static struct velocity_info_tbl chip_info_table[] = {
356 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
357 { }
358};
359
360/*
361 * Describe the PCI device identifiers that we support in this
362 * device driver. Used for hotplug autoloading.
363 */
364static const struct pci_device_id velocity_id_table[] __devinitdata = {
365 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
366 { }
367};
368
369MODULE_DEVICE_TABLE(pci, velocity_id_table);
370
371/**
372 * get_chip_name - identifier to name
373 * @id: chip identifier
374 *
375 * Given a chip identifier return a suitable description. Returns
376 * a pointer a static string valid while the driver is loaded.
377 */
378static const char __devinit *get_chip_name(enum chip_type chip_id)
379{
380 int i;
381 for (i = 0; chip_info_table[i].name != NULL; i++)
382 if (chip_info_table[i].chip_id == chip_id)
383 break;
384 return chip_info_table[i].name;
385}
386
387/**
388 * velocity_remove1 - device unplug
389 * @pdev: PCI device being removed
390 *
391 * Device unload callback. Called on an unplug or on module
392 * unload for each active device that is present. Disconnects
393 * the device from the network layer and frees all the resources
394 */
395static void __devexit velocity_remove1(struct pci_dev *pdev)
396{
397 struct net_device *dev = pci_get_drvdata(pdev);
398 struct velocity_info *vptr = netdev_priv(dev);
399
400 unregister_netdev(dev);
401 iounmap(vptr->mac_regs);
402 pci_release_regions(pdev);
403 pci_disable_device(pdev);
404 pci_set_drvdata(pdev, NULL);
405 free_netdev(dev);
406
407 velocity_nics--;
408}
409
410/**
411 * velocity_set_int_opt - parser for integer options
412 * @opt: pointer to option value
413 * @val: value the user requested (or -1 for default)
414 * @min: lowest value allowed
415 * @max: highest value allowed
416 * @def: default value
417 * @name: property name
418 * @dev: device name
419 *
420 * Set an integer property in the module options. This function does
421 * all the verification and checking as well as reporting so that
422 * we don't duplicate code for each option.
423 */
424static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
425{
426 if (val == -1)
427 *opt = def;
428 else if (val < min || val > max) {
429 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
430 devname, name, min, max);
431 *opt = def;
432 } else {
433 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
434 devname, name, val);
435 *opt = val;
436 }
437}
438
439/**
440 * velocity_set_bool_opt - parser for boolean options
441 * @opt: pointer to option value
442 * @val: value the user requested (or -1 for default)
443 * @def: default value (yes/no)
444 * @flag: numeric value to set for true.
445 * @name: property name
446 * @dev: device name
447 *
448 * Set a boolean property in the module options. This function does
449 * all the verification and checking as well as reporting so that
450 * we don't duplicate code for each option.
451 */
452static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
453{
454 (*opt) &= (~flag);
455 if (val == -1)
456 *opt |= (def ? flag : 0);
457 else if (val < 0 || val > 1) {
458 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
459 devname, name);
460 *opt |= (def ? flag : 0);
461 } else {
462 printk(KERN_INFO "%s: set parameter %s to %s\n",
463 devname, name, val ? "TRUE" : "FALSE");
464 *opt |= (val ? flag : 0);
465 }
466}
467
468/**
469 * velocity_get_options - set options on device
470 * @opts: option structure for the device
471 * @index: index of option to use in module options array
472 * @devname: device name
473 *
474 * Turn the module and command options into a single structure
475 * for the current device
476 */
477static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
478{
479
480 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
481 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
482 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
483 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
484
485 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
486 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
487 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
488 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
489 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
490 opts->numrx = (opts->numrx & ~3);
491}
492
493/**
494 * velocity_init_cam_filter - initialise CAM
495 * @vptr: velocity to program
496 *
497 * Initialize the content addressable memory used for filters. Load
498 * appropriately according to the presence of VLAN
499 */
500static void velocity_init_cam_filter(struct velocity_info *vptr)
501{
502 struct mac_regs __iomem *regs = vptr->mac_regs;
503
504 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
505 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
506 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
507
508 /* Disable all CAMs */
509 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
510 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
511 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
512 mac_set_cam_mask(regs, vptr->mCAMmask);
513
514 /* Enable VCAMs */
515 if (vptr->vlgrp) {
516 unsigned int vid, i = 0;
517
518 if (!vlan_group_get_device(vptr->vlgrp, 0))
519 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
520
521 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
522 if (vlan_group_get_device(vptr->vlgrp, vid)) {
523 mac_set_vlan_cam(regs, i, (u8 *) &vid);
524 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
525 if (++i >= VCAM_SIZE)
526 break;
527 }
528 }
529 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
530 }
531}
532
533static void velocity_vlan_rx_register(struct net_device *dev,
534 struct vlan_group *grp)
535{
536 struct velocity_info *vptr = netdev_priv(dev);
537
538 vptr->vlgrp = grp;
539}
540
541static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
542{
543 struct velocity_info *vptr = netdev_priv(dev);
544
545 spin_lock_irq(&vptr->lock);
546 velocity_init_cam_filter(vptr);
547 spin_unlock_irq(&vptr->lock);
548}
549
550static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
551{
552 struct velocity_info *vptr = netdev_priv(dev);
553
554 spin_lock_irq(&vptr->lock);
555 vlan_group_set_device(vptr->vlgrp, vid, NULL);
556 velocity_init_cam_filter(vptr);
557 spin_unlock_irq(&vptr->lock);
558}
559
560static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
561{
562 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
563}
564
565/**
566 * velocity_rx_reset - handle a receive reset
567 * @vptr: velocity we are resetting
568 *
569 * Reset the ownership and status for the receive ring side.
570 * Hand all the receive queue to the NIC.
571 */
572static void velocity_rx_reset(struct velocity_info *vptr)
573{
574
575 struct mac_regs __iomem *regs = vptr->mac_regs;
576 int i;
577
578 velocity_init_rx_ring_indexes(vptr);
579
580 /*
581 * Init state, all RD entries belong to the NIC
582 */
583 for (i = 0; i < vptr->options.numrx; ++i)
584 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
585
586 writew(vptr->options.numrx, &regs->RBRDU);
587 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
588 writew(0, &regs->RDIdx);
589 writew(vptr->options.numrx - 1, &regs->RDCSize);
590}
591
592/**
593 * velocity_get_opt_media_mode - get media selection
594 * @vptr: velocity adapter
595 *
596 * Get the media mode stored in EEPROM or module options and load
597 * mii_status accordingly. The requested link state information
598 * is also returned.
599 */
600static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
601{
602 u32 status = 0;
603
604 switch (vptr->options.spd_dpx) {
605 case SPD_DPX_AUTO:
606 status = VELOCITY_AUTONEG_ENABLE;
607 break;
608 case SPD_DPX_100_FULL:
609 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
610 break;
611 case SPD_DPX_10_FULL:
612 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
613 break;
614 case SPD_DPX_100_HALF:
615 status = VELOCITY_SPEED_100;
616 break;
617 case SPD_DPX_10_HALF:
618 status = VELOCITY_SPEED_10;
619 break;
620 }
621 vptr->mii_status = status;
622 return status;
623}
624
625/**
626 * safe_disable_mii_autopoll - autopoll off
627 * @regs: velocity registers
628 *
629 * Turn off the autopoll and wait for it to disable on the chip
630 */
631static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
632{
633 u16 ww;
634
635 /* turn off MAUTO */
636 writeb(0, &regs->MIICR);
637 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
638 udelay(1);
639 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
640 break;
641 }
642}
643
644/**
645 * enable_mii_autopoll - turn on autopolling
646 * @regs: velocity registers
647 *
648 * Enable the MII link status autopoll feature on the Velocity
649 * hardware. Wait for it to enable.
650 */
651static void enable_mii_autopoll(struct mac_regs __iomem *regs)
652{
653 int ii;
654
655 writeb(0, &(regs->MIICR));
656 writeb(MIIADR_SWMPL, &regs->MIIADR);
657
658 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
659 udelay(1);
660 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
661 break;
662 }
663
664 writeb(MIICR_MAUTO, &regs->MIICR);
665
666 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
667 udelay(1);
668 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
669 break;
670 }
671
672}
673
674/**
675 * velocity_mii_read - read MII data
676 * @regs: velocity registers
677 * @index: MII register index
678 * @data: buffer for received data
679 *
680 * Perform a single read of an MII 16bit register. Returns zero
681 * on success or -ETIMEDOUT if the PHY did not respond.
682 */
683static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
684{
685 u16 ww;
686
687 /*
688 * Disable MIICR_MAUTO, so that mii addr can be set normally
689 */
690 safe_disable_mii_autopoll(regs);
691
692 writeb(index, &regs->MIIADR);
693
694 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
695
696 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
697 if (!(readb(&regs->MIICR) & MIICR_RCMD))
698 break;
699 }
700
701 *data = readw(&regs->MIIDATA);
702
703 enable_mii_autopoll(regs);
704 if (ww == W_MAX_TIMEOUT)
705 return -ETIMEDOUT;
706 return 0;
707}
708
709
710/**
711 * mii_check_media_mode - check media state
712 * @regs: velocity registers
713 *
714 * Check the current MII status and determine the link status
715 * accordingly
716 */
717static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
718{
719 u32 status = 0;
720 u16 ANAR;
721
722 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
723 status |= VELOCITY_LINK_FAIL;
724
725 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
726 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
727 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
728 status |= (VELOCITY_SPEED_1000);
729 else {
730 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
731 if (ANAR & ANAR_TXFD)
732 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
733 else if (ANAR & ANAR_TX)
734 status |= VELOCITY_SPEED_100;
735 else if (ANAR & ANAR_10FD)
736 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
737 else
738 status |= (VELOCITY_SPEED_10);
739 }
740
741 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
742 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
743 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
744 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
745 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
746 status |= VELOCITY_AUTONEG_ENABLE;
747 }
748 }
749
750 return status;
751}
752
753/**
754 * velocity_mii_write - write MII data
755 * @regs: velocity registers
756 * @index: MII register index
757 * @data: 16bit data for the MII register
758 *
759 * Perform a single write to an MII 16bit register. Returns zero
760 * on success or -ETIMEDOUT if the PHY did not respond.
761 */
762static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
763{
764 u16 ww;
765
766 /*
767 * Disable MIICR_MAUTO, so that mii addr can be set normally
768 */
769 safe_disable_mii_autopoll(regs);
770
771 /* MII reg offset */
772 writeb(mii_addr, &regs->MIIADR);
773 /* set MII data */
774 writew(data, &regs->MIIDATA);
775
776 /* turn on MIICR_WCMD */
777 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
778
779 /* W_MAX_TIMEOUT is the timeout period */
780 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
781 udelay(5);
782 if (!(readb(&regs->MIICR) & MIICR_WCMD))
783 break;
784 }
785 enable_mii_autopoll(regs);
786
787 if (ww == W_MAX_TIMEOUT)
788 return -ETIMEDOUT;
789 return 0;
790}
791
792/**
793 * set_mii_flow_control - flow control setup
794 * @vptr: velocity interface
795 *
796 * Set up the flow control on this interface according to
797 * the supplied user/eeprom options.
798 */
799static void set_mii_flow_control(struct velocity_info *vptr)
800{
801 /*Enable or Disable PAUSE in ANAR */
802 switch (vptr->options.flow_cntl) {
803 case FLOW_CNTL_TX:
804 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
805 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
806 break;
807
808 case FLOW_CNTL_RX:
809 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
810 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
811 break;
812
813 case FLOW_CNTL_TX_RX:
814 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
815 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
816 break;
817
818 case FLOW_CNTL_DISABLE:
819 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
820 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
821 break;
822 default:
823 break;
824 }
825}
826
827/**
828 * mii_set_auto_on - autonegotiate on
829 * @vptr: velocity
830 *
831 * Enable autonegotation on this interface
832 */
833static void mii_set_auto_on(struct velocity_info *vptr)
834{
835 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
836 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
837 else
838 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
839}
840
841static u32 check_connection_type(struct mac_regs __iomem *regs)
842{
843 u32 status = 0;
844 u8 PHYSR0;
845 u16 ANAR;
846 PHYSR0 = readb(&regs->PHYSR0);
847
848 /*
849 if (!(PHYSR0 & PHYSR0_LINKGD))
850 status|=VELOCITY_LINK_FAIL;
851 */
852
853 if (PHYSR0 & PHYSR0_FDPX)
854 status |= VELOCITY_DUPLEX_FULL;
855
856 if (PHYSR0 & PHYSR0_SPDG)
857 status |= VELOCITY_SPEED_1000;
858 else if (PHYSR0 & PHYSR0_SPD10)
859 status |= VELOCITY_SPEED_10;
860 else
861 status |= VELOCITY_SPEED_100;
862
863 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
864 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
865 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
866 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
867 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
868 status |= VELOCITY_AUTONEG_ENABLE;
869 }
870 }
871
872 return status;
873}
874
875
876
877/**
878 * velocity_set_media_mode - set media mode
879 * @mii_status: old MII link state
880 *
881 * Check the media link state and configure the flow control
882 * PHY and also velocity hardware setup accordingly. In particular
883 * we need to set up CD polling and frame bursting.
884 */
885static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
886{
887 u32 curr_status;
888 struct mac_regs __iomem *regs = vptr->mac_regs;
889
890 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
891 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
892
893 /* Set mii link status */
894 set_mii_flow_control(vptr);
895
896 /*
897 Check if new status is consisent with current status
898 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
899 (mii_status==curr_status)) {
900 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
901 vptr->mii_status=check_connection_type(vptr->mac_regs);
902 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
903 return 0;
904 }
905 */
906
907 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
908 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
909
910 /*
911 * If connection type is AUTO
912 */
913 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
914 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
915 /* clear force MAC mode bit */
916 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
917 /* set duplex mode of MAC according to duplex mode of MII */
918 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
919 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
920 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
921
922 /* enable AUTO-NEGO mode */
923 mii_set_auto_on(vptr);
924 } else {
925 u16 ANAR;
926 u8 CHIPGCR;
927
928 /*
929 * 1. if it's 3119, disable frame bursting in halfduplex mode
930 * and enable it in fullduplex mode
931 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
932 * 3. only enable CD heart beat counter in 10HD mode
933 */
934
935 /* set force MAC mode bit */
936 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
937
938 CHIPGCR = readb(&regs->CHIPGCR);
939 CHIPGCR &= ~CHIPGCR_FCGMII;
940
941 if (mii_status & VELOCITY_DUPLEX_FULL) {
942 CHIPGCR |= CHIPGCR_FCFDX;
943 writeb(CHIPGCR, &regs->CHIPGCR);
944 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
945 if (vptr->rev_id < REV_ID_VT3216_A0)
946 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
947 } else {
948 CHIPGCR &= ~CHIPGCR_FCFDX;
949 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
950 writeb(CHIPGCR, &regs->CHIPGCR);
951 if (vptr->rev_id < REV_ID_VT3216_A0)
952 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
953 }
954
955 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
956
957 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
958 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
959 else
960 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
961
962 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
963 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
964 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
965 if (mii_status & VELOCITY_SPEED_100) {
966 if (mii_status & VELOCITY_DUPLEX_FULL)
967 ANAR |= ANAR_TXFD;
968 else
969 ANAR |= ANAR_TX;
970 } else {
971 if (mii_status & VELOCITY_DUPLEX_FULL)
972 ANAR |= ANAR_10FD;
973 else
974 ANAR |= ANAR_10;
975 }
976 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
977 /* enable AUTO-NEGO mode */
978 mii_set_auto_on(vptr);
979 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
980 }
981 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
982 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
983 return VELOCITY_LINK_CHANGE;
984}
985
986/**
987 * velocity_print_link_status - link status reporting
988 * @vptr: velocity to report on
989 *
990 * Turn the link status of the velocity card into a kernel log
991 * description of the new link state, detailing speed and duplex
992 * status
993 */
994static void velocity_print_link_status(struct velocity_info *vptr)
995{
996
997 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
998 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
999 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1000 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1001
1002 if (vptr->mii_status & VELOCITY_SPEED_1000)
1003 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1004 else if (vptr->mii_status & VELOCITY_SPEED_100)
1005 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1006 else
1007 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1008
1009 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1010 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1011 else
1012 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1013 } else {
1014 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1015 switch (vptr->options.spd_dpx) {
1016 case SPD_DPX_100_HALF:
1017 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1018 break;
1019 case SPD_DPX_100_FULL:
1020 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1021 break;
1022 case SPD_DPX_10_HALF:
1023 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1024 break;
1025 case SPD_DPX_10_FULL:
1026 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1027 break;
1028 default:
1029 break;
1030 }
1031 }
1032}
1033
1034/**
1035 * enable_flow_control_ability - flow control
1036 * @vptr: veloity to configure
1037 *
1038 * Set up flow control according to the flow control options
1039 * determined by the eeprom/configuration.
1040 */
1041static void enable_flow_control_ability(struct velocity_info *vptr)
1042{
1043
1044 struct mac_regs __iomem *regs = vptr->mac_regs;
1045
1046 switch (vptr->options.flow_cntl) {
1047
1048 case FLOW_CNTL_DEFAULT:
1049 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1050 writel(CR0_FDXRFCEN, &regs->CR0Set);
1051 else
1052 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1053
1054 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1055 writel(CR0_FDXTFCEN, &regs->CR0Set);
1056 else
1057 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1058 break;
1059
1060 case FLOW_CNTL_TX:
1061 writel(CR0_FDXTFCEN, &regs->CR0Set);
1062 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1063 break;
1064
1065 case FLOW_CNTL_RX:
1066 writel(CR0_FDXRFCEN, &regs->CR0Set);
1067 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1068 break;
1069
1070 case FLOW_CNTL_TX_RX:
1071 writel(CR0_FDXTFCEN, &regs->CR0Set);
1072 writel(CR0_FDXRFCEN, &regs->CR0Set);
1073 break;
1074
1075 case FLOW_CNTL_DISABLE:
1076 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1077 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1078 break;
1079
1080 default:
1081 break;
1082 }
1083
1084}
1085
1086/**
1087 * velocity_soft_reset - soft reset
1088 * @vptr: velocity to reset
1089 *
1090 * Kick off a soft reset of the velocity adapter and then poll
1091 * until the reset sequence has completed before returning.
1092 */
1093static int velocity_soft_reset(struct velocity_info *vptr)
1094{
1095 struct mac_regs __iomem *regs = vptr->mac_regs;
1096 int i = 0;
1097
1098 writel(CR0_SFRST, &regs->CR0Set);
1099
1100 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1101 udelay(5);
1102 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1103 break;
1104 }
1105
1106 if (i == W_MAX_TIMEOUT) {
1107 writel(CR0_FORSRST, &regs->CR0Set);
1108 /* FIXME: PCI POSTING */
1109 /* delay 2ms */
1110 mdelay(2);
1111 }
1112 return 0;
1113}
1114
1115/**
1116 * velocity_set_multi - filter list change callback
1117 * @dev: network device
1118 *
1119 * Called by the network layer when the filter lists need to change
1120 * for a velocity adapter. Reload the CAMs with the new address
1121 * filter ruleset.
1122 */
1123static void velocity_set_multi(struct net_device *dev)
1124{
1125 struct velocity_info *vptr = netdev_priv(dev);
1126 struct mac_regs __iomem *regs = vptr->mac_regs;
1127 u8 rx_mode;
1128 int i;
1129 struct dev_mc_list *mclist;
1130
1131 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1132 writel(0xffffffff, &regs->MARCAM[0]);
1133 writel(0xffffffff, &regs->MARCAM[4]);
1134 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1135 } else if ((dev->mc_count > vptr->multicast_limit) ||
1136 (dev->flags & IFF_ALLMULTI)) {
1137 writel(0xffffffff, &regs->MARCAM[0]);
1138 writel(0xffffffff, &regs->MARCAM[4]);
1139 rx_mode = (RCR_AM | RCR_AB);
1140 } else {
1141 int offset = MCAM_SIZE - vptr->multicast_limit;
1142 mac_get_cam_mask(regs, vptr->mCAMmask);
1143
1144 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
1145 mac_set_cam(regs, i + offset, mclist->dmi_addr);
1146 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1147 }
1148
1149 mac_set_cam_mask(regs, vptr->mCAMmask);
1150 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1151 }
1152 if (dev->mtu > 1500)
1153 rx_mode |= RCR_AL;
1154
1155 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1156
1157}
1158
1159/*
1160 * MII access , media link mode setting functions
1161 */
1162
1163/**
1164 * mii_init - set up MII
1165 * @vptr: velocity adapter
1166 * @mii_status: links tatus
1167 *
1168 * Set up the PHY for the current link state.
1169 */
1170static void mii_init(struct velocity_info *vptr, u32 mii_status)
1171{
1172 u16 BMCR;
1173
1174 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1175 case PHYID_CICADA_CS8201:
1176 /*
1177 * Reset to hardware default
1178 */
1179 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1180 /*
1181 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1182 * off it in NWay-forced half mode for NWay-forced v.s.
1183 * legacy-forced issue.
1184 */
1185 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1186 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1187 else
1188 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1189 /*
1190 * Turn on Link/Activity LED enable bit for CIS8201
1191 */
1192 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
1193 break;
1194 case PHYID_VT3216_32BIT:
1195 case PHYID_VT3216_64BIT:
1196 /*
1197 * Reset to hardware default
1198 */
1199 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1200 /*
1201 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1202 * off it in NWay-forced half mode for NWay-forced v.s.
1203 * legacy-forced issue
1204 */
1205 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1206 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1207 else
1208 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1209 break;
1210
1211 case PHYID_MARVELL_1000:
1212 case PHYID_MARVELL_1000S:
1213 /*
1214 * Assert CRS on Transmit
1215 */
1216 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1217 /*
1218 * Reset to hardware default
1219 */
1220 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1221 break;
1222 default:
1223 ;
1224 }
1225 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
1226 if (BMCR & BMCR_ISO) {
1227 BMCR &= ~BMCR_ISO;
1228 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
1229 }
1230}
1231
1232/**
1233 * setup_queue_timers - Setup interrupt timers
1234 *
1235 * Setup interrupt frequency during suppression (timeout if the frame
1236 * count isn't filled).
1237 */
1238static void setup_queue_timers(struct velocity_info *vptr)
1239{
1240 /* Only for newer revisions */
1241 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1242 u8 txqueue_timer = 0;
1243 u8 rxqueue_timer = 0;
1244
1245 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1246 VELOCITY_SPEED_100)) {
1247 txqueue_timer = vptr->options.txqueue_timer;
1248 rxqueue_timer = vptr->options.rxqueue_timer;
1249 }
1250
1251 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1252 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1253 }
1254}
1255/**
1256 * setup_adaptive_interrupts - Setup interrupt suppression
1257 *
1258 * @vptr velocity adapter
1259 *
1260 * The velocity is able to suppress interrupt during high interrupt load.
1261 * This function turns on that feature.
1262 */
1263static void setup_adaptive_interrupts(struct velocity_info *vptr)
1264{
1265 struct mac_regs __iomem *regs = vptr->mac_regs;
1266 u16 tx_intsup = vptr->options.tx_intsup;
1267 u16 rx_intsup = vptr->options.rx_intsup;
1268
1269 /* Setup default interrupt mask (will be changed below) */
1270 vptr->int_mask = INT_MASK_DEF;
1271
1272 /* Set Tx Interrupt Suppression Threshold */
1273 writeb(CAMCR_PS0, &regs->CAMCR);
1274 if (tx_intsup != 0) {
1275 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1276 ISR_PTX2I | ISR_PTX3I);
1277 writew(tx_intsup, &regs->ISRCTL);
1278 } else
1279 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1280
1281 /* Set Rx Interrupt Suppression Threshold */
1282 writeb(CAMCR_PS1, &regs->CAMCR);
1283 if (rx_intsup != 0) {
1284 vptr->int_mask &= ~ISR_PRXI;
1285 writew(rx_intsup, &regs->ISRCTL);
1286 } else
1287 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1288
1289 /* Select page to interrupt hold timer */
1290 writeb(0, &regs->CAMCR);
1291}
1292
1293/**
1294 * velocity_init_registers - initialise MAC registers
1295 * @vptr: velocity to init
1296 * @type: type of initialisation (hot or cold)
1297 *
1298 * Initialise the MAC on a reset or on first set up on the
1299 * hardware.
1300 */
1301static void velocity_init_registers(struct velocity_info *vptr,
1302 enum velocity_init_type type)
1303{
1304 struct mac_regs __iomem *regs = vptr->mac_regs;
1305 int i, mii_status;
1306
1307 mac_wol_reset(regs);
1308
1309 switch (type) {
1310 case VELOCITY_INIT_RESET:
1311 case VELOCITY_INIT_WOL:
1312
1313 netif_stop_queue(vptr->dev);
1314
1315 /*
1316 * Reset RX to prevent RX pointer not on the 4X location
1317 */
1318 velocity_rx_reset(vptr);
1319 mac_rx_queue_run(regs);
1320 mac_rx_queue_wake(regs);
1321
1322 mii_status = velocity_get_opt_media_mode(vptr);
1323 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1324 velocity_print_link_status(vptr);
1325 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1326 netif_wake_queue(vptr->dev);
1327 }
1328
1329 enable_flow_control_ability(vptr);
1330
1331 mac_clear_isr(regs);
1332 writel(CR0_STOP, &regs->CR0Clr);
1333 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1334 &regs->CR0Set);
1335
1336 break;
1337
1338 case VELOCITY_INIT_COLD:
1339 default:
1340 /*
1341 * Do reset
1342 */
1343 velocity_soft_reset(vptr);
1344 mdelay(5);
1345
1346 mac_eeprom_reload(regs);
1347 for (i = 0; i < 6; i++)
1348 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1349
1350 /*
1351 * clear Pre_ACPI bit.
1352 */
1353 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1354 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1355 mac_set_dma_length(regs, vptr->options.DMA_length);
1356
1357 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1358 /*
1359 * Back off algorithm use original IEEE standard
1360 */
1361 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1362
1363 /*
1364 * Init CAM filter
1365 */
1366 velocity_init_cam_filter(vptr);
1367
1368 /*
1369 * Set packet filter: Receive directed and broadcast address
1370 */
1371 velocity_set_multi(vptr->dev);
1372
1373 /*
1374 * Enable MII auto-polling
1375 */
1376 enable_mii_autopoll(regs);
1377
1378 setup_adaptive_interrupts(vptr);
1379
1380 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1381 writew(vptr->options.numrx - 1, &regs->RDCSize);
1382 mac_rx_queue_run(regs);
1383 mac_rx_queue_wake(regs);
1384
1385 writew(vptr->options.numtx - 1, &regs->TDCSize);
1386
1387 for (i = 0; i < vptr->tx.numq; i++) {
1388 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1389 mac_tx_queue_run(regs, i);
1390 }
1391
1392 init_flow_control_register(vptr);
1393
1394 writel(CR0_STOP, &regs->CR0Clr);
1395 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1396
1397 mii_status = velocity_get_opt_media_mode(vptr);
1398 netif_stop_queue(vptr->dev);
1399
1400 mii_init(vptr, mii_status);
1401
1402 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1403 velocity_print_link_status(vptr);
1404 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1405 netif_wake_queue(vptr->dev);
1406 }
1407
1408 enable_flow_control_ability(vptr);
1409 mac_hw_mibs_init(regs);
1410 mac_write_int_mask(vptr->int_mask, regs);
1411 mac_clear_isr(regs);
1412
1413 }
1414}
1415
1416static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1417{
1418 struct mac_regs __iomem *regs = vptr->mac_regs;
1419 int avail, dirty, unusable;
1420
1421 /*
1422 * RD number must be equal to 4X per hardware spec
1423 * (programming guide rev 1.20, p.13)
1424 */
1425 if (vptr->rx.filled < 4)
1426 return;
1427
1428 wmb();
1429
1430 unusable = vptr->rx.filled & 0x0003;
1431 dirty = vptr->rx.dirty - unusable;
1432 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1433 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1434 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1435 }
1436
1437 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1438 vptr->rx.filled = unusable;
1439}
1440
1441/**
1442 * velocity_init_dma_rings - set up DMA rings
1443 * @vptr: Velocity to set up
1444 *
1445 * Allocate PCI mapped DMA rings for the receive and transmit layer
1446 * to use.
1447 */
1448static int velocity_init_dma_rings(struct velocity_info *vptr)
1449{
1450 struct velocity_opt *opt = &vptr->options;
1451 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1452 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1453 struct pci_dev *pdev = vptr->pdev;
1454 dma_addr_t pool_dma;
1455 void *pool;
1456 unsigned int i;
1457
1458 /*
1459 * Allocate all RD/TD rings a single pool.
1460 *
1461 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1462 * alignment
1463 */
1464 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1465 rx_ring_size, &pool_dma);
1466 if (!pool) {
1467 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1468 vptr->dev->name);
1469 return -ENOMEM;
1470 }
1471
1472 vptr->rx.ring = pool;
1473 vptr->rx.pool_dma = pool_dma;
1474
1475 pool += rx_ring_size;
1476 pool_dma += rx_ring_size;
1477
1478 for (i = 0; i < vptr->tx.numq; i++) {
1479 vptr->tx.rings[i] = pool;
1480 vptr->tx.pool_dma[i] = pool_dma;
1481 pool += tx_ring_size;
1482 pool_dma += tx_ring_size;
1483 }
1484
1485 return 0;
1486}
1487
1488static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1489{
1490 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1491}
1492
1493/**
1494 * velocity_alloc_rx_buf - allocate aligned receive buffer
1495 * @vptr: velocity
1496 * @idx: ring index
1497 *
1498 * Allocate a new full sized buffer for the reception of a frame and
1499 * map it into PCI space for the hardware to use. The hardware
1500 * requires *64* byte alignment of the buffer which makes life
1501 * less fun than would be ideal.
1502 */
1503static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1504{
1505 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1506 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1507
1508 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1509 if (rd_info->skb == NULL)
1510 return -ENOMEM;
1511
1512 /*
1513 * Do the gymnastics to get the buffer head for data at
1514 * 64byte alignment.
1515 */
1516 skb_reserve(rd_info->skb,
1517 64 - ((unsigned long) rd_info->skb->data & 63));
1518 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1519 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1520
1521 /*
1522 * Fill in the descriptor to match
1523 */
1524
1525 *((u32 *) & (rd->rdesc0)) = 0;
1526 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1527 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1528 rd->pa_high = 0;
1529 return 0;
1530}
1531
1532
1533static int velocity_rx_refill(struct velocity_info *vptr)
1534{
1535 int dirty = vptr->rx.dirty, done = 0;
1536
1537 do {
1538 struct rx_desc *rd = vptr->rx.ring + dirty;
1539
1540 /* Fine for an all zero Rx desc at init time as well */
1541 if (rd->rdesc0.len & OWNED_BY_NIC)
1542 break;
1543
1544 if (!vptr->rx.info[dirty].skb) {
1545 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1546 break;
1547 }
1548 done++;
1549 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1550 } while (dirty != vptr->rx.curr);
1551
1552 if (done) {
1553 vptr->rx.dirty = dirty;
1554 vptr->rx.filled += done;
1555 }
1556
1557 return done;
1558}
1559
1560/**
1561 * velocity_free_rd_ring - free receive ring
1562 * @vptr: velocity to clean up
1563 *
1564 * Free the receive buffers for each ring slot and any
1565 * attached socket buffers that need to go away.
1566 */
1567static void velocity_free_rd_ring(struct velocity_info *vptr)
1568{
1569 int i;
1570
1571 if (vptr->rx.info == NULL)
1572 return;
1573
1574 for (i = 0; i < vptr->options.numrx; i++) {
1575 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1576 struct rx_desc *rd = vptr->rx.ring + i;
1577
1578 memset(rd, 0, sizeof(*rd));
1579
1580 if (!rd_info->skb)
1581 continue;
1582 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1583 PCI_DMA_FROMDEVICE);
1584 rd_info->skb_dma = 0;
1585
1586 dev_kfree_skb(rd_info->skb);
1587 rd_info->skb = NULL;
1588 }
1589
1590 kfree(vptr->rx.info);
1591 vptr->rx.info = NULL;
1592}
1593
1594
1595
1596/**
1597 * velocity_init_rd_ring - set up receive ring
1598 * @vptr: velocity to configure
1599 *
1600 * Allocate and set up the receive buffers for each ring slot and
1601 * assign them to the network adapter.
1602 */
1603static int velocity_init_rd_ring(struct velocity_info *vptr)
1604{
1605 int ret = -ENOMEM;
1606
1607 vptr->rx.info = kcalloc(vptr->options.numrx,
1608 sizeof(struct velocity_rd_info), GFP_KERNEL);
1609 if (!vptr->rx.info)
1610 goto out;
1611
1612 velocity_init_rx_ring_indexes(vptr);
1613
1614 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1615 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1616 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1617 velocity_free_rd_ring(vptr);
1618 goto out;
1619 }
1620
1621 ret = 0;
1622out:
1623 return ret;
1624}
1625
1626/**
1627 * velocity_init_td_ring - set up transmit ring
1628 * @vptr: velocity
1629 *
1630 * Set up the transmit ring and chain the ring pointers together.
1631 * Returns zero on success or a negative posix errno code for
1632 * failure.
1633 */
1634static int velocity_init_td_ring(struct velocity_info *vptr)
1635{
1636 int j;
1637
1638 /* Init the TD ring entries */
1639 for (j = 0; j < vptr->tx.numq; j++) {
1640
1641 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1642 sizeof(struct velocity_td_info),
1643 GFP_KERNEL);
1644 if (!vptr->tx.infos[j]) {
1645 while (--j >= 0)
1646 kfree(vptr->tx.infos[j]);
1647 return -ENOMEM;
1648 }
1649
1650 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1651 }
1652 return 0;
1653}
1654
1655/**
1656 * velocity_free_dma_rings - free PCI ring pointers
1657 * @vptr: Velocity to free from
1658 *
1659 * Clean up the PCI ring buffers allocated to this velocity.
1660 */
1661static void velocity_free_dma_rings(struct velocity_info *vptr)
1662{
1663 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1664 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1665
1666 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1667}
1668
1669
1670static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1671{
1672 int ret;
1673
1674 velocity_set_rxbufsize(vptr, mtu);
1675
1676 ret = velocity_init_dma_rings(vptr);
1677 if (ret < 0)
1678 goto out;
1679
1680 ret = velocity_init_rd_ring(vptr);
1681 if (ret < 0)
1682 goto err_free_dma_rings_0;
1683
1684 ret = velocity_init_td_ring(vptr);
1685 if (ret < 0)
1686 goto err_free_rd_ring_1;
1687out:
1688 return ret;
1689
1690err_free_rd_ring_1:
1691 velocity_free_rd_ring(vptr);
1692err_free_dma_rings_0:
1693 velocity_free_dma_rings(vptr);
1694 goto out;
1695}
1696
1697/**
1698 * velocity_free_tx_buf - free transmit buffer
1699 * @vptr: velocity
1700 * @tdinfo: buffer
1701 *
1702 * Release an transmit buffer. If the buffer was preallocated then
1703 * recycle it, if not then unmap the buffer.
1704 */
1705static void velocity_free_tx_buf(struct velocity_info *vptr,
1706 struct velocity_td_info *tdinfo, struct tx_desc *td)
1707{
1708 struct sk_buff *skb = tdinfo->skb;
1709
1710 /*
1711 * Don't unmap the pre-allocated tx_bufs
1712 */
1713 if (tdinfo->skb_dma) {
1714 int i;
1715
1716 for (i = 0; i < tdinfo->nskb_dma; i++) {
1717 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1718
1719 /* For scatter-gather */
1720 if (skb_shinfo(skb)->nr_frags > 0)
1721 pktlen = max_t(size_t, pktlen,
1722 td->td_buf[i].size & ~TD_QUEUE);
1723
1724 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1725 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1726 }
1727 }
1728 dev_kfree_skb_irq(skb);
1729 tdinfo->skb = NULL;
1730}
1731
1732
1733/*
1734 * FIXME: could we merge this with velocity_free_tx_buf ?
1735 */
1736static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1737 int q, int n)
1738{
1739 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1740 int i;
1741
1742 if (td_info == NULL)
1743 return;
1744
1745 if (td_info->skb) {
1746 for (i = 0; i < td_info->nskb_dma; i++) {
1747 if (td_info->skb_dma[i]) {
1748 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1749 td_info->skb->len, PCI_DMA_TODEVICE);
1750 td_info->skb_dma[i] = 0;
1751 }
1752 }
1753 dev_kfree_skb(td_info->skb);
1754 td_info->skb = NULL;
1755 }
1756}
1757
1758/**
1759 * velocity_free_td_ring - free td ring
1760 * @vptr: velocity
1761 *
1762 * Free up the transmit ring for this particular velocity adapter.
1763 * We free the ring contents but not the ring itself.
1764 */
1765static void velocity_free_td_ring(struct velocity_info *vptr)
1766{
1767 int i, j;
1768
1769 for (j = 0; j < vptr->tx.numq; j++) {
1770 if (vptr->tx.infos[j] == NULL)
1771 continue;
1772 for (i = 0; i < vptr->options.numtx; i++)
1773 velocity_free_td_ring_entry(vptr, j, i);
1774
1775 kfree(vptr->tx.infos[j]);
1776 vptr->tx.infos[j] = NULL;
1777 }
1778}
1779
1780
1781static void velocity_free_rings(struct velocity_info *vptr)
1782{
1783 velocity_free_td_ring(vptr);
1784 velocity_free_rd_ring(vptr);
1785 velocity_free_dma_rings(vptr);
1786}
1787
1788/**
1789 * velocity_error - handle error from controller
1790 * @vptr: velocity
1791 * @status: card status
1792 *
1793 * Process an error report from the hardware and attempt to recover
1794 * the card itself. At the moment we cannot recover from some
1795 * theoretically impossible errors but this could be fixed using
1796 * the pci_device_failed logic to bounce the hardware
1797 *
1798 */
1799static void velocity_error(struct velocity_info *vptr, int status)
1800{
1801
1802 if (status & ISR_TXSTLI) {
1803 struct mac_regs __iomem *regs = vptr->mac_regs;
1804
1805 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1806 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1807 writew(TRDCSR_RUN, &regs->TDCSRClr);
1808 netif_stop_queue(vptr->dev);
1809
1810 /* FIXME: port over the pci_device_failed code and use it
1811 here */
1812 }
1813
1814 if (status & ISR_SRCI) {
1815 struct mac_regs __iomem *regs = vptr->mac_regs;
1816 int linked;
1817
1818 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1819 vptr->mii_status = check_connection_type(regs);
1820
1821 /*
1822 * If it is a 3119, disable frame bursting in
1823 * halfduplex mode and enable it in fullduplex
1824 * mode
1825 */
1826 if (vptr->rev_id < REV_ID_VT3216_A0) {
1827 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1828 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1829 else
1830 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1831 }
1832 /*
1833 * Only enable CD heart beat counter in 10HD mode
1834 */
1835 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1836 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1837 else
1838 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1839
1840 setup_queue_timers(vptr);
1841 }
1842 /*
1843 * Get link status from PHYSR0
1844 */
1845 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1846
1847 if (linked) {
1848 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1849 netif_carrier_on(vptr->dev);
1850 } else {
1851 vptr->mii_status |= VELOCITY_LINK_FAIL;
1852 netif_carrier_off(vptr->dev);
1853 }
1854
1855 velocity_print_link_status(vptr);
1856 enable_flow_control_ability(vptr);
1857
1858 /*
1859 * Re-enable auto-polling because SRCI will disable
1860 * auto-polling
1861 */
1862
1863 enable_mii_autopoll(regs);
1864
1865 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1866 netif_stop_queue(vptr->dev);
1867 else
1868 netif_wake_queue(vptr->dev);
1869
1870 };
1871 if (status & ISR_MIBFI)
1872 velocity_update_hw_mibs(vptr);
1873 if (status & ISR_LSTEI)
1874 mac_rx_queue_wake(vptr->mac_regs);
1875}
1876
1877/**
1878 * tx_srv - transmit interrupt service
1879 * @vptr; Velocity
1880 * @status:
1881 *
1882 * Scan the queues looking for transmitted packets that
1883 * we can complete and clean up. Update any statistics as
1884 * necessary/
1885 */
1886static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1887{
1888 struct tx_desc *td;
1889 int qnum;
1890 int full = 0;
1891 int idx;
1892 int works = 0;
1893 struct velocity_td_info *tdinfo;
1894 struct net_device_stats *stats = &vptr->dev->stats;
1895
1896 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1897 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1898 idx = (idx + 1) % vptr->options.numtx) {
1899
1900 /*
1901 * Get Tx Descriptor
1902 */
1903 td = &(vptr->tx.rings[qnum][idx]);
1904 tdinfo = &(vptr->tx.infos[qnum][idx]);
1905
1906 if (td->tdesc0.len & OWNED_BY_NIC)
1907 break;
1908
1909 if ((works++ > 15))
1910 break;
1911
1912 if (td->tdesc0.TSR & TSR0_TERR) {
1913 stats->tx_errors++;
1914 stats->tx_dropped++;
1915 if (td->tdesc0.TSR & TSR0_CDH)
1916 stats->tx_heartbeat_errors++;
1917 if (td->tdesc0.TSR & TSR0_CRS)
1918 stats->tx_carrier_errors++;
1919 if (td->tdesc0.TSR & TSR0_ABT)
1920 stats->tx_aborted_errors++;
1921 if (td->tdesc0.TSR & TSR0_OWC)
1922 stats->tx_window_errors++;
1923 } else {
1924 stats->tx_packets++;
1925 stats->tx_bytes += tdinfo->skb->len;
1926 }
1927 velocity_free_tx_buf(vptr, tdinfo, td);
1928 vptr->tx.used[qnum]--;
1929 }
1930 vptr->tx.tail[qnum] = idx;
1931
1932 if (AVAIL_TD(vptr, qnum) < 1)
1933 full = 1;
1934 }
1935 /*
1936 * Look to see if we should kick the transmit network
1937 * layer for more work.
1938 */
1939 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1940 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1941 netif_wake_queue(vptr->dev);
1942 }
1943 return works;
1944}
1945
1946/**
1947 * velocity_rx_csum - checksum process
1948 * @rd: receive packet descriptor
1949 * @skb: network layer packet buffer
1950 *
1951 * Process the status bits for the received packet and determine
1952 * if the checksum was computed and verified by the hardware
1953 */
1954static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1955{
1956 skb->ip_summed = CHECKSUM_NONE;
1957
1958 if (rd->rdesc1.CSM & CSM_IPKT) {
1959 if (rd->rdesc1.CSM & CSM_IPOK) {
1960 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1961 (rd->rdesc1.CSM & CSM_UDPKT)) {
1962 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1963 return;
1964 }
1965 skb->ip_summed = CHECKSUM_UNNECESSARY;
1966 }
1967 }
1968}
1969
1970/**
1971 * velocity_rx_copy - in place Rx copy for small packets
1972 * @rx_skb: network layer packet buffer candidate
1973 * @pkt_size: received data size
1974 * @rd: receive packet descriptor
1975 * @dev: network device
1976 *
1977 * Replace the current skb that is scheduled for Rx processing by a
1978 * shorter, immediatly allocated skb, if the received packet is small
1979 * enough. This function returns a negative value if the received
1980 * packet is too big or if memory is exhausted.
1981 */
1982static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1983 struct velocity_info *vptr)
1984{
1985 int ret = -1;
1986 if (pkt_size < rx_copybreak) {
1987 struct sk_buff *new_skb;
1988
1989 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1990 if (new_skb) {
1991 new_skb->ip_summed = rx_skb[0]->ip_summed;
1992 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1993 *rx_skb = new_skb;
1994 ret = 0;
1995 }
1996
1997 }
1998 return ret;
1999}
2000
2001/**
2002 * velocity_iph_realign - IP header alignment
2003 * @vptr: velocity we are handling
2004 * @skb: network layer packet buffer
2005 * @pkt_size: received data size
2006 *
2007 * Align IP header on a 2 bytes boundary. This behavior can be
2008 * configured by the user.
2009 */
2010static inline void velocity_iph_realign(struct velocity_info *vptr,
2011 struct sk_buff *skb, int pkt_size)
2012{
2013 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2014 memmove(skb->data + 2, skb->data, pkt_size);
2015 skb_reserve(skb, 2);
2016 }
2017}
2018
2019
2020/**
2021 * velocity_receive_frame - received packet processor
2022 * @vptr: velocity we are handling
2023 * @idx: ring index
2024 *
2025 * A packet has arrived. We process the packet and if appropriate
2026 * pass the frame up the network stack
2027 */
2028static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2029{
2030 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2031 struct net_device_stats *stats = &vptr->dev->stats;
2032 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2033 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2034 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2035 struct sk_buff *skb;
2036
2037 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2038 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2039 stats->rx_length_errors++;
2040 return -EINVAL;
2041 }
2042
2043 if (rd->rdesc0.RSR & RSR_MAR)
2044 stats->multicast++;
2045
2046 skb = rd_info->skb;
2047
2048 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2049 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2050
2051 /*
2052 * Drop frame not meeting IEEE 802.3
2053 */
2054
2055 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2056 if (rd->rdesc0.RSR & RSR_RL) {
2057 stats->rx_length_errors++;
2058 return -EINVAL;
2059 }
2060 }
2061
2062 pci_action = pci_dma_sync_single_for_device;
2063
2064 velocity_rx_csum(rd, skb);
2065
2066 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2067 velocity_iph_realign(vptr, skb, pkt_len);
2068 pci_action = pci_unmap_single;
2069 rd_info->skb = NULL;
2070 }
2071
2072 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2073 PCI_DMA_FROMDEVICE);
2074
2075 skb_put(skb, pkt_len - 4);
2076 skb->protocol = eth_type_trans(skb, vptr->dev);
2077
2078 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
2079 vlan_hwaccel_rx(skb, vptr->vlgrp,
2080 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
2081 } else
2082 netif_rx(skb);
2083
2084 stats->rx_bytes += pkt_len;
2085
2086 return 0;
2087}
2088
2089
2090/**
2091 * velocity_rx_srv - service RX interrupt
2092 * @vptr: velocity
2093 * @status: adapter status (unused)
2094 *
2095 * Walk the receive ring of the velocity adapter and remove
2096 * any received packets from the receive queue. Hand the ring
2097 * slots back to the adapter for reuse.
2098 */
2099static int velocity_rx_srv(struct velocity_info *vptr, int status,
2100 int budget_left)
2101{
2102 struct net_device_stats *stats = &vptr->dev->stats;
2103 int rd_curr = vptr->rx.curr;
2104 int works = 0;
2105
2106 while (works < budget_left) {
2107 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2108
2109 if (!vptr->rx.info[rd_curr].skb)
2110 break;
2111
2112 if (rd->rdesc0.len & OWNED_BY_NIC)
2113 break;
2114
2115 rmb();
2116
2117 /*
2118 * Don't drop CE or RL error frame although RXOK is off
2119 */
2120 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2121 if (velocity_receive_frame(vptr, rd_curr) < 0)
2122 stats->rx_dropped++;
2123 } else {
2124 if (rd->rdesc0.RSR & RSR_CRC)
2125 stats->rx_crc_errors++;
2126 if (rd->rdesc0.RSR & RSR_FAE)
2127 stats->rx_frame_errors++;
2128
2129 stats->rx_dropped++;
2130 }
2131
2132 rd->size |= RX_INTEN;
2133
2134 rd_curr++;
2135 if (rd_curr >= vptr->options.numrx)
2136 rd_curr = 0;
2137 works++;
2138 }
2139
2140 vptr->rx.curr = rd_curr;
2141
2142 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2143 velocity_give_many_rx_descs(vptr);
2144
2145 VAR_USED(stats);
2146 return works;
2147}
2148
2149static int velocity_poll(struct napi_struct *napi, int budget)
2150{
2151 struct velocity_info *vptr = container_of(napi,
2152 struct velocity_info, napi);
2153 unsigned int rx_done;
2154 u32 isr_status;
2155
2156 spin_lock(&vptr->lock);
2157 isr_status = mac_read_isr(vptr->mac_regs);
2158
2159 /* Ack the interrupt */
2160 mac_write_isr(vptr->mac_regs, isr_status);
2161 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2162 velocity_error(vptr, isr_status);
2163
2164 /*
2165 * Do rx and tx twice for performance (taken from the VIA
2166 * out-of-tree driver).
2167 */
2168 rx_done = velocity_rx_srv(vptr, isr_status, budget / 2);
2169 velocity_tx_srv(vptr, isr_status);
2170 rx_done += velocity_rx_srv(vptr, isr_status, budget - rx_done);
2171 velocity_tx_srv(vptr, isr_status);
2172
2173 spin_unlock(&vptr->lock);
2174
2175 /* If budget not fully consumed, exit the polling mode */
2176 if (rx_done < budget) {
2177 napi_complete(napi);
2178 mac_enable_int(vptr->mac_regs);
2179 }
2180
2181 return rx_done;
2182}
2183
2184/**
2185 * velocity_intr - interrupt callback
2186 * @irq: interrupt number
2187 * @dev_instance: interrupting device
2188 *
2189 * Called whenever an interrupt is generated by the velocity
2190 * adapter IRQ line. We may not be the source of the interrupt
2191 * and need to identify initially if we are, and if not exit as
2192 * efficiently as possible.
2193 */
2194static irqreturn_t velocity_intr(int irq, void *dev_instance)
2195{
2196 struct net_device *dev = dev_instance;
2197 struct velocity_info *vptr = netdev_priv(dev);
2198 u32 isr_status;
2199
2200 spin_lock(&vptr->lock);
2201 isr_status = mac_read_isr(vptr->mac_regs);
2202
2203 /* Not us ? */
2204 if (isr_status == 0) {
2205 spin_unlock(&vptr->lock);
2206 return IRQ_NONE;
2207 }
2208
2209 if (likely(napi_schedule_prep(&vptr->napi))) {
2210 mac_disable_int(vptr->mac_regs);
2211 __napi_schedule(&vptr->napi);
2212 }
2213 spin_unlock(&vptr->lock);
2214
2215 return IRQ_HANDLED;
2216}
2217
2218/**
2219 * velocity_open - interface activation callback
2220 * @dev: network layer device to open
2221 *
2222 * Called when the network layer brings the interface up. Returns
2223 * a negative posix error code on failure, or zero on success.
2224 *
2225 * All the ring allocation and set up is done on open for this
2226 * adapter to minimise memory usage when inactive
2227 */
2228static int velocity_open(struct net_device *dev)
2229{
2230 struct velocity_info *vptr = netdev_priv(dev);
2231 int ret;
2232
2233 ret = velocity_init_rings(vptr, dev->mtu);
2234 if (ret < 0)
2235 goto out;
2236
2237 /* Ensure chip is running */
2238 pci_set_power_state(vptr->pdev, PCI_D0);
2239
2240 velocity_give_many_rx_descs(vptr);
2241
2242 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2243
2244 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2245 dev->name, dev);
2246 if (ret < 0) {
2247 /* Power down the chip */
2248 pci_set_power_state(vptr->pdev, PCI_D3hot);
2249 velocity_free_rings(vptr);
2250 goto out;
2251 }
2252
2253 mac_enable_int(vptr->mac_regs);
2254 netif_start_queue(dev);
2255 napi_enable(&vptr->napi);
2256 vptr->flags |= VELOCITY_FLAGS_OPENED;
2257out:
2258 return ret;
2259}
2260
2261/**
2262 * velocity_shutdown - shut down the chip
2263 * @vptr: velocity to deactivate
2264 *
2265 * Shuts down the internal operations of the velocity and
2266 * disables interrupts, autopolling, transmit and receive
2267 */
2268static void velocity_shutdown(struct velocity_info *vptr)
2269{
2270 struct mac_regs __iomem *regs = vptr->mac_regs;
2271 mac_disable_int(regs);
2272 writel(CR0_STOP, &regs->CR0Set);
2273 writew(0xFFFF, &regs->TDCSRClr);
2274 writeb(0xFF, &regs->RDCSRClr);
2275 safe_disable_mii_autopoll(regs);
2276 mac_clear_isr(regs);
2277}
2278
2279/**
2280 * velocity_change_mtu - MTU change callback
2281 * @dev: network device
2282 * @new_mtu: desired MTU
2283 *
2284 * Handle requests from the networking layer for MTU change on
2285 * this interface. It gets called on a change by the network layer.
2286 * Return zero for success or negative posix error code.
2287 */
2288static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2289{
2290 struct velocity_info *vptr = netdev_priv(dev);
2291 int ret = 0;
2292
2293 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2294 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2295 vptr->dev->name);
2296 ret = -EINVAL;
2297 goto out_0;
2298 }
2299
2300 if (!netif_running(dev)) {
2301 dev->mtu = new_mtu;
2302 goto out_0;
2303 }
2304
2305 if (dev->mtu != new_mtu) {
2306 struct velocity_info *tmp_vptr;
2307 unsigned long flags;
2308 struct rx_info rx;
2309 struct tx_info tx;
2310
2311 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2312 if (!tmp_vptr) {
2313 ret = -ENOMEM;
2314 goto out_0;
2315 }
2316
2317 tmp_vptr->dev = dev;
2318 tmp_vptr->pdev = vptr->pdev;
2319 tmp_vptr->options = vptr->options;
2320 tmp_vptr->tx.numq = vptr->tx.numq;
2321
2322 ret = velocity_init_rings(tmp_vptr, new_mtu);
2323 if (ret < 0)
2324 goto out_free_tmp_vptr_1;
2325
2326 spin_lock_irqsave(&vptr->lock, flags);
2327
2328 netif_stop_queue(dev);
2329 velocity_shutdown(vptr);
2330
2331 rx = vptr->rx;
2332 tx = vptr->tx;
2333
2334 vptr->rx = tmp_vptr->rx;
2335 vptr->tx = tmp_vptr->tx;
2336
2337 tmp_vptr->rx = rx;
2338 tmp_vptr->tx = tx;
2339
2340 dev->mtu = new_mtu;
2341
2342 velocity_give_many_rx_descs(vptr);
2343
2344 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2345
2346 mac_enable_int(vptr->mac_regs);
2347 netif_start_queue(dev);
2348
2349 spin_unlock_irqrestore(&vptr->lock, flags);
2350
2351 velocity_free_rings(tmp_vptr);
2352
2353out_free_tmp_vptr_1:
2354 kfree(tmp_vptr);
2355 }
2356out_0:
2357 return ret;
2358}
2359
2360/**
2361 * velocity_mii_ioctl - MII ioctl handler
2362 * @dev: network device
2363 * @ifr: the ifreq block for the ioctl
2364 * @cmd: the command
2365 *
2366 * Process MII requests made via ioctl from the network layer. These
2367 * are used by tools like kudzu to interrogate the link state of the
2368 * hardware
2369 */
2370static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2371{
2372 struct velocity_info *vptr = netdev_priv(dev);
2373 struct mac_regs __iomem *regs = vptr->mac_regs;
2374 unsigned long flags;
2375 struct mii_ioctl_data *miidata = if_mii(ifr);
2376 int err;
2377
2378 switch (cmd) {
2379 case SIOCGMIIPHY:
2380 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2381 break;
2382 case SIOCGMIIREG:
2383 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2384 return -ETIMEDOUT;
2385 break;
2386 case SIOCSMIIREG:
2387 spin_lock_irqsave(&vptr->lock, flags);
2388 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2389 spin_unlock_irqrestore(&vptr->lock, flags);
2390 check_connection_type(vptr->mac_regs);
2391 if (err)
2392 return err;
2393 break;
2394 default:
2395 return -EOPNOTSUPP;
2396 }
2397 return 0;
2398}
2399
2400
2401/**
2402 * velocity_ioctl - ioctl entry point
2403 * @dev: network device
2404 * @rq: interface request ioctl
2405 * @cmd: command code
2406 *
2407 * Called when the user issues an ioctl request to the network
2408 * device in question. The velocity interface supports MII.
2409 */
2410static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2411{
2412 struct velocity_info *vptr = netdev_priv(dev);
2413 int ret;
2414
2415 /* If we are asked for information and the device is power
2416 saving then we need to bring the device back up to talk to it */
2417
2418 if (!netif_running(dev))
2419 pci_set_power_state(vptr->pdev, PCI_D0);
2420
2421 switch (cmd) {
2422 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2423 case SIOCGMIIREG: /* Read MII PHY register. */
2424 case SIOCSMIIREG: /* Write to MII PHY register. */
2425 ret = velocity_mii_ioctl(dev, rq, cmd);
2426 break;
2427
2428 default:
2429 ret = -EOPNOTSUPP;
2430 }
2431 if (!netif_running(dev))
2432 pci_set_power_state(vptr->pdev, PCI_D3hot);
2433
2434
2435 return ret;
2436}
2437
2438/**
2439 * velocity_get_status - statistics callback
2440 * @dev: network device
2441 *
2442 * Callback from the network layer to allow driver statistics
2443 * to be resynchronized with hardware collected state. In the
2444 * case of the velocity we need to pull the MIB counters from
2445 * the hardware into the counters before letting the network
2446 * layer display them.
2447 */
2448static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2449{
2450 struct velocity_info *vptr = netdev_priv(dev);
2451
2452 /* If the hardware is down, don't touch MII */
2453 if (!netif_running(dev))
2454 return &dev->stats;
2455
2456 spin_lock_irq(&vptr->lock);
2457 velocity_update_hw_mibs(vptr);
2458 spin_unlock_irq(&vptr->lock);
2459
2460 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2461 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2462 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2463
2464// unsigned long rx_dropped; /* no space in linux buffers */
2465 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2466 /* detailed rx_errors: */
2467// unsigned long rx_length_errors;
2468// unsigned long rx_over_errors; /* receiver ring buff overflow */
2469 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2470// unsigned long rx_frame_errors; /* recv'd frame alignment error */
2471// unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2472// unsigned long rx_missed_errors; /* receiver missed packet */
2473
2474 /* detailed tx_errors */
2475// unsigned long tx_fifo_errors;
2476
2477 return &dev->stats;
2478}
2479
2480/**
2481 * velocity_close - close adapter callback
2482 * @dev: network device
2483 *
2484 * Callback from the network layer when the velocity is being
2485 * deactivated by the network layer
2486 */
2487static int velocity_close(struct net_device *dev)
2488{
2489 struct velocity_info *vptr = netdev_priv(dev);
2490
2491 napi_disable(&vptr->napi);
2492 netif_stop_queue(dev);
2493 velocity_shutdown(vptr);
2494
2495 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2496 velocity_get_ip(vptr);
2497 if (dev->irq != 0)
2498 free_irq(dev->irq, dev);
2499
2500 /* Power down the chip */
2501 pci_set_power_state(vptr->pdev, PCI_D3hot);
2502
2503 velocity_free_rings(vptr);
2504
2505 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2506 return 0;
2507}
2508
2509/**
2510 * velocity_xmit - transmit packet callback
2511 * @skb: buffer to transmit
2512 * @dev: network device
2513 *
2514 * Called by the networ layer to request a packet is queued to
2515 * the velocity. Returns zero on success.
2516 */
2517static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2518 struct net_device *dev)
2519{
2520 struct velocity_info *vptr = netdev_priv(dev);
2521 int qnum = 0;
2522 struct tx_desc *td_ptr;
2523 struct velocity_td_info *tdinfo;
2524 unsigned long flags;
2525 int pktlen;
2526 int index, prev;
2527 int i = 0;
2528
2529 if (skb_padto(skb, ETH_ZLEN))
2530 goto out;
2531
2532 /* The hardware can handle at most 7 memory segments, so merge
2533 * the skb if there are more */
2534 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2535 kfree_skb(skb);
2536 return NETDEV_TX_OK;
2537 }
2538
2539 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2540 max_t(unsigned int, skb->len, ETH_ZLEN) :
2541 skb_headlen(skb);
2542
2543 spin_lock_irqsave(&vptr->lock, flags);
2544
2545 index = vptr->tx.curr[qnum];
2546 td_ptr = &(vptr->tx.rings[qnum][index]);
2547 tdinfo = &(vptr->tx.infos[qnum][index]);
2548
2549 td_ptr->tdesc1.TCR = TCR0_TIC;
2550 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2551
2552 /*
2553 * Map the linear network buffer into PCI space and
2554 * add it to the transmit ring.
2555 */
2556 tdinfo->skb = skb;
2557 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2558 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2559 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2560 td_ptr->td_buf[0].pa_high = 0;
2561 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2562
2563 /* Handle fragments */
2564 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2565 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2566
2567 tdinfo->skb_dma[i + 1] = pci_map_page(vptr->pdev, frag->page,
2568 frag->page_offset, frag->size,
2569 PCI_DMA_TODEVICE);
2570
2571 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2572 td_ptr->td_buf[i + 1].pa_high = 0;
2573 td_ptr->td_buf[i + 1].size = cpu_to_le16(frag->size);
2574 }
2575 tdinfo->nskb_dma = i + 1;
2576
2577 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2578
2579 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2580 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2581 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2582 }
2583
2584 /*
2585 * Handle hardware checksum
2586 */
2587 if ((dev->features & NETIF_F_IP_CSUM) &&
2588 (skb->ip_summed == CHECKSUM_PARTIAL)) {
2589 const struct iphdr *ip = ip_hdr(skb);
2590 if (ip->protocol == IPPROTO_TCP)
2591 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2592 else if (ip->protocol == IPPROTO_UDP)
2593 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2594 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2595 }
2596
2597 prev = index - 1;
2598 if (prev < 0)
2599 prev = vptr->options.numtx - 1;
2600 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2601 vptr->tx.used[qnum]++;
2602 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2603
2604 if (AVAIL_TD(vptr, qnum) < 1)
2605 netif_stop_queue(dev);
2606
2607 td_ptr = &(vptr->tx.rings[qnum][prev]);
2608 td_ptr->td_buf[0].size |= TD_QUEUE;
2609 mac_tx_queue_wake(vptr->mac_regs, qnum);
2610
2611 dev->trans_start = jiffies;
2612 spin_unlock_irqrestore(&vptr->lock, flags);
2613out:
2614 return NETDEV_TX_OK;
2615}
2616
2617
2618static const struct net_device_ops velocity_netdev_ops = {
2619 .ndo_open = velocity_open,
2620 .ndo_stop = velocity_close,
2621 .ndo_start_xmit = velocity_xmit,
2622 .ndo_get_stats = velocity_get_stats,
2623 .ndo_validate_addr = eth_validate_addr,
2624 .ndo_set_mac_address = eth_mac_addr,
2625 .ndo_set_multicast_list = velocity_set_multi,
2626 .ndo_change_mtu = velocity_change_mtu,
2627 .ndo_do_ioctl = velocity_ioctl,
2628 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2629 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2630 .ndo_vlan_rx_register = velocity_vlan_rx_register,
2631};
2632
2633/**
2634 * velocity_init_info - init private data
2635 * @pdev: PCI device
2636 * @vptr: Velocity info
2637 * @info: Board type
2638 *
2639 * Set up the initial velocity_info struct for the device that has been
2640 * discovered.
2641 */
2642static void __devinit velocity_init_info(struct pci_dev *pdev,
2643 struct velocity_info *vptr,
2644 const struct velocity_info_tbl *info)
2645{
2646 memset(vptr, 0, sizeof(struct velocity_info));
2647
2648 vptr->pdev = pdev;
2649 vptr->chip_id = info->chip_id;
2650 vptr->tx.numq = info->txqueue;
2651 vptr->multicast_limit = MCAM_SIZE;
2652 spin_lock_init(&vptr->lock);
2653}
2654
2655/**
2656 * velocity_get_pci_info - retrieve PCI info for device
2657 * @vptr: velocity device
2658 * @pdev: PCI device it matches
2659 *
2660 * Retrieve the PCI configuration space data that interests us from
2661 * the kernel PCI layer
2662 */
2663static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2664{
2665 vptr->rev_id = pdev->revision;
2666
2667 pci_set_master(pdev);
2668
2669 vptr->ioaddr = pci_resource_start(pdev, 0);
2670 vptr->memaddr = pci_resource_start(pdev, 1);
2671
2672 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2673 dev_err(&pdev->dev,
2674 "region #0 is not an I/O resource, aborting.\n");
2675 return -EINVAL;
2676 }
2677
2678 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2679 dev_err(&pdev->dev,
2680 "region #1 is an I/O resource, aborting.\n");
2681 return -EINVAL;
2682 }
2683
2684 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2685 dev_err(&pdev->dev, "region #1 is too small.\n");
2686 return -EINVAL;
2687 }
2688 vptr->pdev = pdev;
2689
2690 return 0;
2691}
2692
2693/**
2694 * velocity_print_info - per driver data
2695 * @vptr: velocity
2696 *
2697 * Print per driver data as the kernel driver finds Velocity
2698 * hardware
2699 */
2700static void __devinit velocity_print_info(struct velocity_info *vptr)
2701{
2702 struct net_device *dev = vptr->dev;
2703
2704 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2705 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
2706 dev->name,
2707 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2708 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2709}
2710
2711static u32 velocity_get_link(struct net_device *dev)
2712{
2713 struct velocity_info *vptr = netdev_priv(dev);
2714 struct mac_regs __iomem *regs = vptr->mac_regs;
2715 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2716}
2717
2718
2719/**
2720 * velocity_found1 - set up discovered velocity card
2721 * @pdev: PCI device
2722 * @ent: PCI device table entry that matched
2723 *
2724 * Configure a discovered adapter from scratch. Return a negative
2725 * errno error code on failure paths.
2726 */
2727static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2728{
2729 static int first = 1;
2730 struct net_device *dev;
2731 int i;
2732 const char *drv_string;
2733 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2734 struct velocity_info *vptr;
2735 struct mac_regs __iomem *regs;
2736 int ret = -ENOMEM;
2737
2738 /* FIXME: this driver, like almost all other ethernet drivers,
2739 * can support more than MAX_UNITS.
2740 */
2741 if (velocity_nics >= MAX_UNITS) {
2742 dev_notice(&pdev->dev, "already found %d NICs.\n",
2743 velocity_nics);
2744 return -ENODEV;
2745 }
2746
2747 dev = alloc_etherdev(sizeof(struct velocity_info));
2748 if (!dev) {
2749 dev_err(&pdev->dev, "allocate net device failed.\n");
2750 goto out;
2751 }
2752
2753 /* Chain it all together */
2754
2755 SET_NETDEV_DEV(dev, &pdev->dev);
2756 vptr = netdev_priv(dev);
2757
2758
2759 if (first) {
2760 printk(KERN_INFO "%s Ver. %s\n",
2761 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2762 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2763 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2764 first = 0;
2765 }
2766
2767 velocity_init_info(pdev, vptr, info);
2768
2769 vptr->dev = dev;
2770
2771 dev->irq = pdev->irq;
2772
2773 ret = pci_enable_device(pdev);
2774 if (ret < 0)
2775 goto err_free_dev;
2776
2777 ret = velocity_get_pci_info(vptr, pdev);
2778 if (ret < 0) {
2779 /* error message already printed */
2780 goto err_disable;
2781 }
2782
2783 ret = pci_request_regions(pdev, VELOCITY_NAME);
2784 if (ret < 0) {
2785 dev_err(&pdev->dev, "No PCI resources.\n");
2786 goto err_disable;
2787 }
2788
2789 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2790 if (regs == NULL) {
2791 ret = -EIO;
2792 goto err_release_res;
2793 }
2794
2795 vptr->mac_regs = regs;
2796
2797 mac_wol_reset(regs);
2798
2799 dev->base_addr = vptr->ioaddr;
2800
2801 for (i = 0; i < 6; i++)
2802 dev->dev_addr[i] = readb(&regs->PAR[i]);
2803
2804
2805 drv_string = dev_driver_string(&pdev->dev);
2806
2807 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2808
2809 /*
2810 * Mask out the options cannot be set to the chip
2811 */
2812
2813 vptr->options.flags &= info->flags;
2814
2815 /*
2816 * Enable the chip specified capbilities
2817 */
2818
2819 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2820
2821 vptr->wol_opts = vptr->options.wol_opts;
2822 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2823
2824 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2825
2826 dev->irq = pdev->irq;
2827 dev->netdev_ops = &velocity_netdev_ops;
2828 dev->ethtool_ops = &velocity_ethtool_ops;
2829 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2830
2831 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2832 NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2833
2834 ret = register_netdev(dev);
2835 if (ret < 0)
2836 goto err_iounmap;
2837
2838 if (!velocity_get_link(dev)) {
2839 netif_carrier_off(dev);
2840 vptr->mii_status |= VELOCITY_LINK_FAIL;
2841 }
2842
2843 velocity_print_info(vptr);
2844 pci_set_drvdata(pdev, dev);
2845
2846 /* and leave the chip powered down */
2847
2848 pci_set_power_state(pdev, PCI_D3hot);
2849 velocity_nics++;
2850out:
2851 return ret;
2852
2853err_iounmap:
2854 iounmap(regs);
2855err_release_res:
2856 pci_release_regions(pdev);
2857err_disable:
2858 pci_disable_device(pdev);
2859err_free_dev:
2860 free_netdev(dev);
2861 goto out;
2862}
2863
2864
2865#ifdef CONFIG_PM
2866/**
2867 * wol_calc_crc - WOL CRC
2868 * @pattern: data pattern
2869 * @mask_pattern: mask
2870 *
2871 * Compute the wake on lan crc hashes for the packet header
2872 * we are interested in.
2873 */
2874static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2875{
2876 u16 crc = 0xFFFF;
2877 u8 mask;
2878 int i, j;
2879
2880 for (i = 0; i < size; i++) {
2881 mask = mask_pattern[i];
2882
2883 /* Skip this loop if the mask equals to zero */
2884 if (mask == 0x00)
2885 continue;
2886
2887 for (j = 0; j < 8; j++) {
2888 if ((mask & 0x01) == 0) {
2889 mask >>= 1;
2890 continue;
2891 }
2892 mask >>= 1;
2893 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2894 }
2895 }
2896 /* Finally, invert the result once to get the correct data */
2897 crc = ~crc;
2898 return bitrev32(crc) >> 16;
2899}
2900
2901/**
2902 * velocity_set_wol - set up for wake on lan
2903 * @vptr: velocity to set WOL status on
2904 *
2905 * Set a card up for wake on lan either by unicast or by
2906 * ARP packet.
2907 *
2908 * FIXME: check static buffer is safe here
2909 */
2910static int velocity_set_wol(struct velocity_info *vptr)
2911{
2912 struct mac_regs __iomem *regs = vptr->mac_regs;
2913 static u8 buf[256];
2914 int i;
2915
2916 static u32 mask_pattern[2][4] = {
2917 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2918 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2919 };
2920
2921 writew(0xFFFF, &regs->WOLCRClr);
2922 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2923 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2924
2925 /*
2926 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2927 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2928 */
2929
2930 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2931 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2932
2933 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2934 struct arp_packet *arp = (struct arp_packet *) buf;
2935 u16 crc;
2936 memset(buf, 0, sizeof(struct arp_packet) + 7);
2937
2938 for (i = 0; i < 4; i++)
2939 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2940
2941 arp->type = htons(ETH_P_ARP);
2942 arp->ar_op = htons(1);
2943
2944 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2945
2946 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2947 (u8 *) & mask_pattern[0][0]);
2948
2949 writew(crc, &regs->PatternCRC[0]);
2950 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2951 }
2952
2953 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2954 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2955
2956 writew(0x0FFF, &regs->WOLSRClr);
2957
2958 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2959 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2960 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2961
2962 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2963 }
2964
2965 if (vptr->mii_status & VELOCITY_SPEED_1000)
2966 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2967
2968 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2969
2970 {
2971 u8 GCR;
2972 GCR = readb(&regs->CHIPGCR);
2973 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2974 writeb(GCR, &regs->CHIPGCR);
2975 }
2976
2977 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2978 /* Turn on SWPTAG just before entering power mode */
2979 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2980 /* Go to bed ..... */
2981 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2982
2983 return 0;
2984}
2985
2986/**
2987 * velocity_save_context - save registers
2988 * @vptr: velocity
2989 * @context: buffer for stored context
2990 *
2991 * Retrieve the current configuration from the velocity hardware
2992 * and stash it in the context structure, for use by the context
2993 * restore functions. This allows us to save things we need across
2994 * power down states
2995 */
2996static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2997{
2998 struct mac_regs __iomem *regs = vptr->mac_regs;
2999 u16 i;
3000 u8 __iomem *ptr = (u8 __iomem *)regs;
3001
3002 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3003 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3004
3005 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3006 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3007
3008 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3009 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3010
3011}
3012
3013static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3014{
3015 struct net_device *dev = pci_get_drvdata(pdev);
3016 struct velocity_info *vptr = netdev_priv(dev);
3017 unsigned long flags;
3018
3019 if (!netif_running(vptr->dev))
3020 return 0;
3021
3022 netif_device_detach(vptr->dev);
3023
3024 spin_lock_irqsave(&vptr->lock, flags);
3025 pci_save_state(pdev);
3026#ifdef ETHTOOL_GWOL
3027 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3028 velocity_get_ip(vptr);
3029 velocity_save_context(vptr, &vptr->context);
3030 velocity_shutdown(vptr);
3031 velocity_set_wol(vptr);
3032 pci_enable_wake(pdev, PCI_D3hot, 1);
3033 pci_set_power_state(pdev, PCI_D3hot);
3034 } else {
3035 velocity_save_context(vptr, &vptr->context);
3036 velocity_shutdown(vptr);
3037 pci_disable_device(pdev);
3038 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3039 }
3040#else
3041 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3042#endif
3043 spin_unlock_irqrestore(&vptr->lock, flags);
3044 return 0;
3045}
3046
3047/**
3048 * velocity_restore_context - restore registers
3049 * @vptr: velocity
3050 * @context: buffer for stored context
3051 *
3052 * Reload the register configuration from the velocity context
3053 * created by velocity_save_context.
3054 */
3055static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3056{
3057 struct mac_regs __iomem *regs = vptr->mac_regs;
3058 int i;
3059 u8 __iomem *ptr = (u8 __iomem *)regs;
3060
3061 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3062 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3063
3064 /* Just skip cr0 */
3065 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3066 /* Clear */
3067 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3068 /* Set */
3069 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3070 }
3071
3072 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3073 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3074
3075 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3076 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3077
3078 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3079 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3080}
3081
3082static int velocity_resume(struct pci_dev *pdev)
3083{
3084 struct net_device *dev = pci_get_drvdata(pdev);
3085 struct velocity_info *vptr = netdev_priv(dev);
3086 unsigned long flags;
3087 int i;
3088
3089 if (!netif_running(vptr->dev))
3090 return 0;
3091
3092 pci_set_power_state(pdev, PCI_D0);
3093 pci_enable_wake(pdev, 0, 0);
3094 pci_restore_state(pdev);
3095
3096 mac_wol_reset(vptr->mac_regs);
3097
3098 spin_lock_irqsave(&vptr->lock, flags);
3099 velocity_restore_context(vptr, &vptr->context);
3100 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3101 mac_disable_int(vptr->mac_regs);
3102
3103 velocity_tx_srv(vptr, 0);
3104
3105 for (i = 0; i < vptr->tx.numq; i++) {
3106 if (vptr->tx.used[i])
3107 mac_tx_queue_wake(vptr->mac_regs, i);
3108 }
3109
3110 mac_enable_int(vptr->mac_regs);
3111 spin_unlock_irqrestore(&vptr->lock, flags);
3112 netif_device_attach(vptr->dev);
3113
3114 return 0;
3115}
3116#endif
3117
3118/*
3119 * Definition for our device driver. The PCI layer interface
3120 * uses this to handle all our card discover and plugging
3121 */
3122static struct pci_driver velocity_driver = {
3123 .name = VELOCITY_NAME,
3124 .id_table = velocity_id_table,
3125 .probe = velocity_found1,
3126 .remove = __devexit_p(velocity_remove1),
3127#ifdef CONFIG_PM
3128 .suspend = velocity_suspend,
3129 .resume = velocity_resume,
3130#endif
3131};
3132
3133
3134/**
3135 * velocity_ethtool_up - pre hook for ethtool
3136 * @dev: network device
3137 *
3138 * Called before an ethtool operation. We need to make sure the
3139 * chip is out of D3 state before we poke at it.
3140 */
3141static int velocity_ethtool_up(struct net_device *dev)
3142{
3143 struct velocity_info *vptr = netdev_priv(dev);
3144 if (!netif_running(dev))
3145 pci_set_power_state(vptr->pdev, PCI_D0);
3146 return 0;
3147}
3148
3149/**
3150 * velocity_ethtool_down - post hook for ethtool
3151 * @dev: network device
3152 *
3153 * Called after an ethtool operation. Restore the chip back to D3
3154 * state if it isn't running.
3155 */
3156static void velocity_ethtool_down(struct net_device *dev)
3157{
3158 struct velocity_info *vptr = netdev_priv(dev);
3159 if (!netif_running(dev))
3160 pci_set_power_state(vptr->pdev, PCI_D3hot);
3161}
3162
3163static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3164{
3165 struct velocity_info *vptr = netdev_priv(dev);
3166 struct mac_regs __iomem *regs = vptr->mac_regs;
3167 u32 status;
3168 status = check_connection_type(vptr->mac_regs);
3169
3170 cmd->supported = SUPPORTED_TP |
3171 SUPPORTED_Autoneg |
3172 SUPPORTED_10baseT_Half |
3173 SUPPORTED_10baseT_Full |
3174 SUPPORTED_100baseT_Half |
3175 SUPPORTED_100baseT_Full |
3176 SUPPORTED_1000baseT_Half |
3177 SUPPORTED_1000baseT_Full;
3178 if (status & VELOCITY_SPEED_1000)
3179 cmd->speed = SPEED_1000;
3180 else if (status & VELOCITY_SPEED_100)
3181 cmd->speed = SPEED_100;
3182 else
3183 cmd->speed = SPEED_10;
3184 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3185 cmd->port = PORT_TP;
3186 cmd->transceiver = XCVR_INTERNAL;
3187 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3188
3189 if (status & VELOCITY_DUPLEX_FULL)
3190 cmd->duplex = DUPLEX_FULL;
3191 else
3192 cmd->duplex = DUPLEX_HALF;
3193
3194 return 0;
3195}
3196
3197static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3198{
3199 struct velocity_info *vptr = netdev_priv(dev);
3200 u32 curr_status;
3201 u32 new_status = 0;
3202 int ret = 0;
3203
3204 curr_status = check_connection_type(vptr->mac_regs);
3205 curr_status &= (~VELOCITY_LINK_FAIL);
3206
3207 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3208 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3209 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3210 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3211
3212 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3213 ret = -EINVAL;
3214 else
3215 velocity_set_media_mode(vptr, new_status);
3216
3217 return ret;
3218}
3219
3220static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3221{
3222 struct velocity_info *vptr = netdev_priv(dev);
3223 strcpy(info->driver, VELOCITY_NAME);
3224 strcpy(info->version, VELOCITY_VERSION);
3225 strcpy(info->bus_info, pci_name(vptr->pdev));
3226}
3227
3228static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3229{
3230 struct velocity_info *vptr = netdev_priv(dev);
3231 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3232 wol->wolopts |= WAKE_MAGIC;
3233 /*
3234 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3235 wol.wolopts|=WAKE_PHY;
3236 */
3237 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3238 wol->wolopts |= WAKE_UCAST;
3239 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3240 wol->wolopts |= WAKE_ARP;
3241 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3242}
3243
3244static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3245{
3246 struct velocity_info *vptr = netdev_priv(dev);
3247
3248 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3249 return -EFAULT;
3250 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3251
3252 /*
3253 if (wol.wolopts & WAKE_PHY) {
3254 vptr->wol_opts|=VELOCITY_WOL_PHY;
3255 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3256 }
3257 */
3258
3259 if (wol->wolopts & WAKE_MAGIC) {
3260 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3261 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3262 }
3263 if (wol->wolopts & WAKE_UCAST) {
3264 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3265 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3266 }
3267 if (wol->wolopts & WAKE_ARP) {
3268 vptr->wol_opts |= VELOCITY_WOL_ARP;
3269 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3270 }
3271 memcpy(vptr->wol_passwd, wol->sopass, 6);
3272 return 0;
3273}
3274
3275static u32 velocity_get_msglevel(struct net_device *dev)
3276{
3277 return msglevel;
3278}
3279
3280static void velocity_set_msglevel(struct net_device *dev, u32 value)
3281{
3282 msglevel = value;
3283}
3284
3285static int get_pending_timer_val(int val)
3286{
3287 int mult_bits = val >> 6;
3288 int mult = 1;
3289
3290 switch (mult_bits)
3291 {
3292 case 1:
3293 mult = 4; break;
3294 case 2:
3295 mult = 16; break;
3296 case 3:
3297 mult = 64; break;
3298 case 0:
3299 default:
3300 break;
3301 }
3302
3303 return (val & 0x3f) * mult;
3304}
3305
3306static void set_pending_timer_val(int *val, u32 us)
3307{
3308 u8 mult = 0;
3309 u8 shift = 0;
3310
3311 if (us >= 0x3f) {
3312 mult = 1; /* mult with 4 */
3313 shift = 2;
3314 }
3315 if (us >= 0x3f * 4) {
3316 mult = 2; /* mult with 16 */
3317 shift = 4;
3318 }
3319 if (us >= 0x3f * 16) {
3320 mult = 3; /* mult with 64 */
3321 shift = 6;
3322 }
3323
3324 *val = (mult << 6) | ((us >> shift) & 0x3f);
3325}
3326
3327
3328static int velocity_get_coalesce(struct net_device *dev,
3329 struct ethtool_coalesce *ecmd)
3330{
3331 struct velocity_info *vptr = netdev_priv(dev);
3332
3333 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3334 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3335
3336 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3337 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3338
3339 return 0;
3340}
3341
3342static int velocity_set_coalesce(struct net_device *dev,
3343 struct ethtool_coalesce *ecmd)
3344{
3345 struct velocity_info *vptr = netdev_priv(dev);
3346 int max_us = 0x3f * 64;
3347
3348 /* 6 bits of */
3349 if (ecmd->tx_coalesce_usecs > max_us)
3350 return -EINVAL;
3351 if (ecmd->rx_coalesce_usecs > max_us)
3352 return -EINVAL;
3353
3354 if (ecmd->tx_max_coalesced_frames > 0xff)
3355 return -EINVAL;
3356 if (ecmd->rx_max_coalesced_frames > 0xff)
3357 return -EINVAL;
3358
3359 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3360 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3361
3362 set_pending_timer_val(&vptr->options.rxqueue_timer,
3363 ecmd->rx_coalesce_usecs);
3364 set_pending_timer_val(&vptr->options.txqueue_timer,
3365 ecmd->tx_coalesce_usecs);
3366
3367 /* Setup the interrupt suppression and queue timers */
3368 mac_disable_int(vptr->mac_regs);
3369 setup_adaptive_interrupts(vptr);
3370 setup_queue_timers(vptr);
3371
3372 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3373 mac_clear_isr(vptr->mac_regs);
3374 mac_enable_int(vptr->mac_regs);
3375
3376 return 0;
3377}
3378
3379static const struct ethtool_ops velocity_ethtool_ops = {
3380 .get_settings = velocity_get_settings,
3381 .set_settings = velocity_set_settings,
3382 .get_drvinfo = velocity_get_drvinfo,
3383 .set_tx_csum = ethtool_op_set_tx_csum,
3384 .get_tx_csum = ethtool_op_get_tx_csum,
3385 .get_wol = velocity_ethtool_get_wol,
3386 .set_wol = velocity_ethtool_set_wol,
3387 .get_msglevel = velocity_get_msglevel,
3388 .set_msglevel = velocity_set_msglevel,
3389 .set_sg = ethtool_op_set_sg,
3390 .get_link = velocity_get_link,
3391 .get_coalesce = velocity_get_coalesce,
3392 .set_coalesce = velocity_set_coalesce,
3393 .begin = velocity_ethtool_up,
3394 .complete = velocity_ethtool_down
3395};
3396
3397#ifdef CONFIG_PM
3398#ifdef CONFIG_INET
3399static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3400{
3401 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3402 struct net_device *dev = ifa->ifa_dev->dev;
3403
3404 if (dev_net(dev) == &init_net &&
3405 dev->netdev_ops == &velocity_netdev_ops)
3406 velocity_get_ip(netdev_priv(dev));
3407
3408 return NOTIFY_DONE;
3409}
3410#endif /* CONFIG_INET */
3411#endif /* CONFIG_PM */
3412
3413#if defined(CONFIG_PM) && defined(CONFIG_INET)
3414static struct notifier_block velocity_inetaddr_notifier = {
3415 .notifier_call = velocity_netdev_event,
3416};
3417
3418static void velocity_register_notifier(void)
3419{
3420 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3421}
3422
3423static void velocity_unregister_notifier(void)
3424{
3425 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3426}
3427
3428#else
3429
3430#define velocity_register_notifier() do {} while (0)
3431#define velocity_unregister_notifier() do {} while (0)
3432
3433#endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3434
3435/**
3436 * velocity_init_module - load time function
3437 *
3438 * Called when the velocity module is loaded. The PCI driver
3439 * is registered with the PCI layer, and in turn will call
3440 * the probe functions for each velocity adapter installed
3441 * in the system.
3442 */
3443static int __init velocity_init_module(void)
3444{
3445 int ret;
3446
3447 velocity_register_notifier();
3448 ret = pci_register_driver(&velocity_driver);
3449 if (ret < 0)
3450 velocity_unregister_notifier();
3451 return ret;
3452}
3453
3454/**
3455 * velocity_cleanup - module unload
3456 *
3457 * When the velocity hardware is unloaded this function is called.
3458 * It will clean up the notifiers and the unregister the PCI
3459 * driver interface for this hardware. This in turn cleans up
3460 * all discovered interfaces before returning from the function
3461 */
3462static void __exit velocity_cleanup_module(void)
3463{
3464 velocity_unregister_notifier();
3465 pci_unregister_driver(&velocity_driver);
3466}
3467
3468module_init(velocity_init_module);
3469module_exit(velocity_cleanup_module);