]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - block/blk-core.c
block: use normal I/O path for discard requests
[net-next-2.6.git] / block / blk-core.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/fault-inject.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
33
34#include "blk.h"
35
36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
38
39static int __make_request(struct request_queue *q, struct bio *bio);
40
41/*
42 * For the allocated request tables
43 */
44static struct kmem_cache *request_cachep;
45
46/*
47 * For queue allocation
48 */
49struct kmem_cache *blk_requestq_cachep;
50
51/*
52 * Controlling structure to kblockd
53 */
54static struct workqueue_struct *kblockd_workqueue;
55
56static void drive_stat_acct(struct request *rq, int new_io)
57{
58 struct hd_struct *part;
59 int rw = rq_data_dir(rq);
60 int cpu;
61
62 if (!blk_do_io_stat(rq))
63 return;
64
65 cpu = part_stat_lock();
66 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
67
68 if (!new_io)
69 part_stat_inc(cpu, part, merges[rw]);
70 else {
71 part_round_stats(cpu, part);
72 part_inc_in_flight(part, rw);
73 }
74
75 part_stat_unlock();
76}
77
78void blk_queue_congestion_threshold(struct request_queue *q)
79{
80 int nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) + 1;
83 if (nr > q->nr_requests)
84 nr = q->nr_requests;
85 q->nr_congestion_on = nr;
86
87 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
88 if (nr < 1)
89 nr = 1;
90 q->nr_congestion_off = nr;
91}
92
93/**
94 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95 * @bdev: device
96 *
97 * Locates the passed device's request queue and returns the address of its
98 * backing_dev_info
99 *
100 * Will return NULL if the request queue cannot be located.
101 */
102struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
103{
104 struct backing_dev_info *ret = NULL;
105 struct request_queue *q = bdev_get_queue(bdev);
106
107 if (q)
108 ret = &q->backing_dev_info;
109 return ret;
110}
111EXPORT_SYMBOL(blk_get_backing_dev_info);
112
113void blk_rq_init(struct request_queue *q, struct request *rq)
114{
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->cmd = rq->__cmd;
125 rq->cmd_len = BLK_MAX_CDB;
126 rq->tag = -1;
127 rq->ref_count = 1;
128 rq->start_time = jiffies;
129}
130EXPORT_SYMBOL(blk_rq_init);
131
132static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134{
135 struct request_queue *q = rq->q;
136
137 if (&q->bar_rq != rq) {
138 if (error)
139 clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 error = -EIO;
142
143 if (unlikely(nbytes > bio->bi_size)) {
144 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
145 __func__, nbytes, bio->bi_size);
146 nbytes = bio->bi_size;
147 }
148
149 if (unlikely(rq->cmd_flags & REQ_QUIET))
150 set_bit(BIO_QUIET, &bio->bi_flags);
151
152 bio->bi_size -= nbytes;
153 bio->bi_sector += (nbytes >> 9);
154
155 if (bio_integrity(bio))
156 bio_integrity_advance(bio, nbytes);
157
158 if (bio->bi_size == 0)
159 bio_endio(bio, error);
160 } else {
161
162 /*
163 * Okay, this is the barrier request in progress, just
164 * record the error;
165 */
166 if (error && !q->orderr)
167 q->orderr = error;
168 }
169}
170
171void blk_dump_rq_flags(struct request *rq, char *msg)
172{
173 int bit;
174
175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 rq->cmd_flags);
178
179 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
180 (unsigned long long)blk_rq_pos(rq),
181 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
182 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
183 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
184
185 if (blk_pc_request(rq)) {
186 printk(KERN_INFO " cdb: ");
187 for (bit = 0; bit < BLK_MAX_CDB; bit++)
188 printk("%02x ", rq->cmd[bit]);
189 printk("\n");
190 }
191}
192EXPORT_SYMBOL(blk_dump_rq_flags);
193
194/*
195 * "plug" the device if there are no outstanding requests: this will
196 * force the transfer to start only after we have put all the requests
197 * on the list.
198 *
199 * This is called with interrupts off and no requests on the queue and
200 * with the queue lock held.
201 */
202void blk_plug_device(struct request_queue *q)
203{
204 WARN_ON(!irqs_disabled());
205
206 /*
207 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 * which will restart the queueing
209 */
210 if (blk_queue_stopped(q))
211 return;
212
213 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
214 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
215 trace_block_plug(q);
216 }
217}
218EXPORT_SYMBOL(blk_plug_device);
219
220/**
221 * blk_plug_device_unlocked - plug a device without queue lock held
222 * @q: The &struct request_queue to plug
223 *
224 * Description:
225 * Like @blk_plug_device(), but grabs the queue lock and disables
226 * interrupts.
227 **/
228void blk_plug_device_unlocked(struct request_queue *q)
229{
230 unsigned long flags;
231
232 spin_lock_irqsave(q->queue_lock, flags);
233 blk_plug_device(q);
234 spin_unlock_irqrestore(q->queue_lock, flags);
235}
236EXPORT_SYMBOL(blk_plug_device_unlocked);
237
238/*
239 * remove the queue from the plugged list, if present. called with
240 * queue lock held and interrupts disabled.
241 */
242int blk_remove_plug(struct request_queue *q)
243{
244 WARN_ON(!irqs_disabled());
245
246 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
247 return 0;
248
249 del_timer(&q->unplug_timer);
250 return 1;
251}
252EXPORT_SYMBOL(blk_remove_plug);
253
254/*
255 * remove the plug and let it rip..
256 */
257void __generic_unplug_device(struct request_queue *q)
258{
259 if (unlikely(blk_queue_stopped(q)))
260 return;
261 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
262 return;
263
264 q->request_fn(q);
265}
266
267/**
268 * generic_unplug_device - fire a request queue
269 * @q: The &struct request_queue in question
270 *
271 * Description:
272 * Linux uses plugging to build bigger requests queues before letting
273 * the device have at them. If a queue is plugged, the I/O scheduler
274 * is still adding and merging requests on the queue. Once the queue
275 * gets unplugged, the request_fn defined for the queue is invoked and
276 * transfers started.
277 **/
278void generic_unplug_device(struct request_queue *q)
279{
280 if (blk_queue_plugged(q)) {
281 spin_lock_irq(q->queue_lock);
282 __generic_unplug_device(q);
283 spin_unlock_irq(q->queue_lock);
284 }
285}
286EXPORT_SYMBOL(generic_unplug_device);
287
288static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
289 struct page *page)
290{
291 struct request_queue *q = bdi->unplug_io_data;
292
293 blk_unplug(q);
294}
295
296void blk_unplug_work(struct work_struct *work)
297{
298 struct request_queue *q =
299 container_of(work, struct request_queue, unplug_work);
300
301 trace_block_unplug_io(q);
302 q->unplug_fn(q);
303}
304
305void blk_unplug_timeout(unsigned long data)
306{
307 struct request_queue *q = (struct request_queue *)data;
308
309 trace_block_unplug_timer(q);
310 kblockd_schedule_work(q, &q->unplug_work);
311}
312
313void blk_unplug(struct request_queue *q)
314{
315 /*
316 * devices don't necessarily have an ->unplug_fn defined
317 */
318 if (q->unplug_fn) {
319 trace_block_unplug_io(q);
320 q->unplug_fn(q);
321 }
322}
323EXPORT_SYMBOL(blk_unplug);
324
325/**
326 * blk_start_queue - restart a previously stopped queue
327 * @q: The &struct request_queue in question
328 *
329 * Description:
330 * blk_start_queue() will clear the stop flag on the queue, and call
331 * the request_fn for the queue if it was in a stopped state when
332 * entered. Also see blk_stop_queue(). Queue lock must be held.
333 **/
334void blk_start_queue(struct request_queue *q)
335{
336 WARN_ON(!irqs_disabled());
337
338 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
339 __blk_run_queue(q);
340}
341EXPORT_SYMBOL(blk_start_queue);
342
343/**
344 * blk_stop_queue - stop a queue
345 * @q: The &struct request_queue in question
346 *
347 * Description:
348 * The Linux block layer assumes that a block driver will consume all
349 * entries on the request queue when the request_fn strategy is called.
350 * Often this will not happen, because of hardware limitations (queue
351 * depth settings). If a device driver gets a 'queue full' response,
352 * or if it simply chooses not to queue more I/O at one point, it can
353 * call this function to prevent the request_fn from being called until
354 * the driver has signalled it's ready to go again. This happens by calling
355 * blk_start_queue() to restart queue operations. Queue lock must be held.
356 **/
357void blk_stop_queue(struct request_queue *q)
358{
359 blk_remove_plug(q);
360 queue_flag_set(QUEUE_FLAG_STOPPED, q);
361}
362EXPORT_SYMBOL(blk_stop_queue);
363
364/**
365 * blk_sync_queue - cancel any pending callbacks on a queue
366 * @q: the queue
367 *
368 * Description:
369 * The block layer may perform asynchronous callback activity
370 * on a queue, such as calling the unplug function after a timeout.
371 * A block device may call blk_sync_queue to ensure that any
372 * such activity is cancelled, thus allowing it to release resources
373 * that the callbacks might use. The caller must already have made sure
374 * that its ->make_request_fn will not re-add plugging prior to calling
375 * this function.
376 *
377 */
378void blk_sync_queue(struct request_queue *q)
379{
380 del_timer_sync(&q->unplug_timer);
381 del_timer_sync(&q->timeout);
382 cancel_work_sync(&q->unplug_work);
383}
384EXPORT_SYMBOL(blk_sync_queue);
385
386/**
387 * __blk_run_queue - run a single device queue
388 * @q: The queue to run
389 *
390 * Description:
391 * See @blk_run_queue. This variant must be called with the queue lock
392 * held and interrupts disabled.
393 *
394 */
395void __blk_run_queue(struct request_queue *q)
396{
397 blk_remove_plug(q);
398
399 if (unlikely(blk_queue_stopped(q)))
400 return;
401
402 if (elv_queue_empty(q))
403 return;
404
405 /*
406 * Only recurse once to avoid overrunning the stack, let the unplug
407 * handling reinvoke the handler shortly if we already got there.
408 */
409 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
410 q->request_fn(q);
411 queue_flag_clear(QUEUE_FLAG_REENTER, q);
412 } else {
413 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
414 kblockd_schedule_work(q, &q->unplug_work);
415 }
416}
417EXPORT_SYMBOL(__blk_run_queue);
418
419/**
420 * blk_run_queue - run a single device queue
421 * @q: The queue to run
422 *
423 * Description:
424 * Invoke request handling on this queue, if it has pending work to do.
425 * May be used to restart queueing when a request has completed.
426 */
427void blk_run_queue(struct request_queue *q)
428{
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
433 spin_unlock_irqrestore(q->queue_lock, flags);
434}
435EXPORT_SYMBOL(blk_run_queue);
436
437void blk_put_queue(struct request_queue *q)
438{
439 kobject_put(&q->kobj);
440}
441
442void blk_cleanup_queue(struct request_queue *q)
443{
444 /*
445 * We know we have process context here, so we can be a little
446 * cautious and ensure that pending block actions on this device
447 * are done before moving on. Going into this function, we should
448 * not have processes doing IO to this device.
449 */
450 blk_sync_queue(q);
451
452 mutex_lock(&q->sysfs_lock);
453 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
454 mutex_unlock(&q->sysfs_lock);
455
456 if (q->elevator)
457 elevator_exit(q->elevator);
458
459 blk_put_queue(q);
460}
461EXPORT_SYMBOL(blk_cleanup_queue);
462
463static int blk_init_free_list(struct request_queue *q)
464{
465 struct request_list *rl = &q->rq;
466
467 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
468 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
469 rl->elvpriv = 0;
470 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
471 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
472
473 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
474 mempool_free_slab, request_cachep, q->node);
475
476 if (!rl->rq_pool)
477 return -ENOMEM;
478
479 return 0;
480}
481
482struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
483{
484 return blk_alloc_queue_node(gfp_mask, -1);
485}
486EXPORT_SYMBOL(blk_alloc_queue);
487
488struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
489{
490 struct request_queue *q;
491 int err;
492
493 q = kmem_cache_alloc_node(blk_requestq_cachep,
494 gfp_mask | __GFP_ZERO, node_id);
495 if (!q)
496 return NULL;
497
498 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
499 q->backing_dev_info.unplug_io_data = q;
500 q->backing_dev_info.ra_pages =
501 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
502 q->backing_dev_info.state = 0;
503 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
504 q->backing_dev_info.name = "block";
505
506 err = bdi_init(&q->backing_dev_info);
507 if (err) {
508 kmem_cache_free(blk_requestq_cachep, q);
509 return NULL;
510 }
511
512 init_timer(&q->unplug_timer);
513 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
514 INIT_LIST_HEAD(&q->timeout_list);
515 INIT_WORK(&q->unplug_work, blk_unplug_work);
516
517 kobject_init(&q->kobj, &blk_queue_ktype);
518
519 mutex_init(&q->sysfs_lock);
520 spin_lock_init(&q->__queue_lock);
521
522 return q;
523}
524EXPORT_SYMBOL(blk_alloc_queue_node);
525
526/**
527 * blk_init_queue - prepare a request queue for use with a block device
528 * @rfn: The function to be called to process requests that have been
529 * placed on the queue.
530 * @lock: Request queue spin lock
531 *
532 * Description:
533 * If a block device wishes to use the standard request handling procedures,
534 * which sorts requests and coalesces adjacent requests, then it must
535 * call blk_init_queue(). The function @rfn will be called when there
536 * are requests on the queue that need to be processed. If the device
537 * supports plugging, then @rfn may not be called immediately when requests
538 * are available on the queue, but may be called at some time later instead.
539 * Plugged queues are generally unplugged when a buffer belonging to one
540 * of the requests on the queue is needed, or due to memory pressure.
541 *
542 * @rfn is not required, or even expected, to remove all requests off the
543 * queue, but only as many as it can handle at a time. If it does leave
544 * requests on the queue, it is responsible for arranging that the requests
545 * get dealt with eventually.
546 *
547 * The queue spin lock must be held while manipulating the requests on the
548 * request queue; this lock will be taken also from interrupt context, so irq
549 * disabling is needed for it.
550 *
551 * Function returns a pointer to the initialized request queue, or %NULL if
552 * it didn't succeed.
553 *
554 * Note:
555 * blk_init_queue() must be paired with a blk_cleanup_queue() call
556 * when the block device is deactivated (such as at module unload).
557 **/
558
559struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
560{
561 return blk_init_queue_node(rfn, lock, -1);
562}
563EXPORT_SYMBOL(blk_init_queue);
564
565struct request_queue *
566blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
567{
568 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
569
570 if (!q)
571 return NULL;
572
573 q->node = node_id;
574 if (blk_init_free_list(q)) {
575 kmem_cache_free(blk_requestq_cachep, q);
576 return NULL;
577 }
578
579 q->request_fn = rfn;
580 q->prep_rq_fn = NULL;
581 q->unplug_fn = generic_unplug_device;
582 q->queue_flags = QUEUE_FLAG_DEFAULT;
583 q->queue_lock = lock;
584
585 /*
586 * This also sets hw/phys segments, boundary and size
587 */
588 blk_queue_make_request(q, __make_request);
589
590 q->sg_reserved_size = INT_MAX;
591
592 /*
593 * all done
594 */
595 if (!elevator_init(q, NULL)) {
596 blk_queue_congestion_threshold(q);
597 return q;
598 }
599
600 blk_put_queue(q);
601 return NULL;
602}
603EXPORT_SYMBOL(blk_init_queue_node);
604
605int blk_get_queue(struct request_queue *q)
606{
607 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
608 kobject_get(&q->kobj);
609 return 0;
610 }
611
612 return 1;
613}
614
615static inline void blk_free_request(struct request_queue *q, struct request *rq)
616{
617 if (rq->cmd_flags & REQ_ELVPRIV)
618 elv_put_request(q, rq);
619 mempool_free(rq, q->rq.rq_pool);
620}
621
622static struct request *
623blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
624{
625 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
626
627 if (!rq)
628 return NULL;
629
630 blk_rq_init(q, rq);
631
632 rq->cmd_flags = flags | REQ_ALLOCED;
633
634 if (priv) {
635 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
636 mempool_free(rq, q->rq.rq_pool);
637 return NULL;
638 }
639 rq->cmd_flags |= REQ_ELVPRIV;
640 }
641
642 return rq;
643}
644
645/*
646 * ioc_batching returns true if the ioc is a valid batching request and
647 * should be given priority access to a request.
648 */
649static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
650{
651 if (!ioc)
652 return 0;
653
654 /*
655 * Make sure the process is able to allocate at least 1 request
656 * even if the batch times out, otherwise we could theoretically
657 * lose wakeups.
658 */
659 return ioc->nr_batch_requests == q->nr_batching ||
660 (ioc->nr_batch_requests > 0
661 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
662}
663
664/*
665 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
666 * will cause the process to be a "batcher" on all queues in the system. This
667 * is the behaviour we want though - once it gets a wakeup it should be given
668 * a nice run.
669 */
670static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
671{
672 if (!ioc || ioc_batching(q, ioc))
673 return;
674
675 ioc->nr_batch_requests = q->nr_batching;
676 ioc->last_waited = jiffies;
677}
678
679static void __freed_request(struct request_queue *q, int sync)
680{
681 struct request_list *rl = &q->rq;
682
683 if (rl->count[sync] < queue_congestion_off_threshold(q))
684 blk_clear_queue_congested(q, sync);
685
686 if (rl->count[sync] + 1 <= q->nr_requests) {
687 if (waitqueue_active(&rl->wait[sync]))
688 wake_up(&rl->wait[sync]);
689
690 blk_clear_queue_full(q, sync);
691 }
692}
693
694/*
695 * A request has just been released. Account for it, update the full and
696 * congestion status, wake up any waiters. Called under q->queue_lock.
697 */
698static void freed_request(struct request_queue *q, int sync, int priv)
699{
700 struct request_list *rl = &q->rq;
701
702 rl->count[sync]--;
703 if (priv)
704 rl->elvpriv--;
705
706 __freed_request(q, sync);
707
708 if (unlikely(rl->starved[sync ^ 1]))
709 __freed_request(q, sync ^ 1);
710}
711
712/*
713 * Get a free request, queue_lock must be held.
714 * Returns NULL on failure, with queue_lock held.
715 * Returns !NULL on success, with queue_lock *not held*.
716 */
717static struct request *get_request(struct request_queue *q, int rw_flags,
718 struct bio *bio, gfp_t gfp_mask)
719{
720 struct request *rq = NULL;
721 struct request_list *rl = &q->rq;
722 struct io_context *ioc = NULL;
723 const bool is_sync = rw_is_sync(rw_flags) != 0;
724 int may_queue, priv;
725
726 may_queue = elv_may_queue(q, rw_flags);
727 if (may_queue == ELV_MQUEUE_NO)
728 goto rq_starved;
729
730 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
731 if (rl->count[is_sync]+1 >= q->nr_requests) {
732 ioc = current_io_context(GFP_ATOMIC, q->node);
733 /*
734 * The queue will fill after this allocation, so set
735 * it as full, and mark this process as "batching".
736 * This process will be allowed to complete a batch of
737 * requests, others will be blocked.
738 */
739 if (!blk_queue_full(q, is_sync)) {
740 ioc_set_batching(q, ioc);
741 blk_set_queue_full(q, is_sync);
742 } else {
743 if (may_queue != ELV_MQUEUE_MUST
744 && !ioc_batching(q, ioc)) {
745 /*
746 * The queue is full and the allocating
747 * process is not a "batcher", and not
748 * exempted by the IO scheduler
749 */
750 goto out;
751 }
752 }
753 }
754 blk_set_queue_congested(q, is_sync);
755 }
756
757 /*
758 * Only allow batching queuers to allocate up to 50% over the defined
759 * limit of requests, otherwise we could have thousands of requests
760 * allocated with any setting of ->nr_requests
761 */
762 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
763 goto out;
764
765 rl->count[is_sync]++;
766 rl->starved[is_sync] = 0;
767
768 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
769 if (priv)
770 rl->elvpriv++;
771
772 if (blk_queue_io_stat(q))
773 rw_flags |= REQ_IO_STAT;
774 spin_unlock_irq(q->queue_lock);
775
776 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
777 if (unlikely(!rq)) {
778 /*
779 * Allocation failed presumably due to memory. Undo anything
780 * we might have messed up.
781 *
782 * Allocating task should really be put onto the front of the
783 * wait queue, but this is pretty rare.
784 */
785 spin_lock_irq(q->queue_lock);
786 freed_request(q, is_sync, priv);
787
788 /*
789 * in the very unlikely event that allocation failed and no
790 * requests for this direction was pending, mark us starved
791 * so that freeing of a request in the other direction will
792 * notice us. another possible fix would be to split the
793 * rq mempool into READ and WRITE
794 */
795rq_starved:
796 if (unlikely(rl->count[is_sync] == 0))
797 rl->starved[is_sync] = 1;
798
799 goto out;
800 }
801
802 /*
803 * ioc may be NULL here, and ioc_batching will be false. That's
804 * OK, if the queue is under the request limit then requests need
805 * not count toward the nr_batch_requests limit. There will always
806 * be some limit enforced by BLK_BATCH_TIME.
807 */
808 if (ioc_batching(q, ioc))
809 ioc->nr_batch_requests--;
810
811 trace_block_getrq(q, bio, rw_flags & 1);
812out:
813 return rq;
814}
815
816/*
817 * No available requests for this queue, unplug the device and wait for some
818 * requests to become available.
819 *
820 * Called with q->queue_lock held, and returns with it unlocked.
821 */
822static struct request *get_request_wait(struct request_queue *q, int rw_flags,
823 struct bio *bio)
824{
825 const bool is_sync = rw_is_sync(rw_flags) != 0;
826 struct request *rq;
827
828 rq = get_request(q, rw_flags, bio, GFP_NOIO);
829 while (!rq) {
830 DEFINE_WAIT(wait);
831 struct io_context *ioc;
832 struct request_list *rl = &q->rq;
833
834 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
835 TASK_UNINTERRUPTIBLE);
836
837 trace_block_sleeprq(q, bio, rw_flags & 1);
838
839 __generic_unplug_device(q);
840 spin_unlock_irq(q->queue_lock);
841 io_schedule();
842
843 /*
844 * After sleeping, we become a "batching" process and
845 * will be able to allocate at least one request, and
846 * up to a big batch of them for a small period time.
847 * See ioc_batching, ioc_set_batching
848 */
849 ioc = current_io_context(GFP_NOIO, q->node);
850 ioc_set_batching(q, ioc);
851
852 spin_lock_irq(q->queue_lock);
853 finish_wait(&rl->wait[is_sync], &wait);
854
855 rq = get_request(q, rw_flags, bio, GFP_NOIO);
856 };
857
858 return rq;
859}
860
861struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
862{
863 struct request *rq;
864
865 BUG_ON(rw != READ && rw != WRITE);
866
867 spin_lock_irq(q->queue_lock);
868 if (gfp_mask & __GFP_WAIT) {
869 rq = get_request_wait(q, rw, NULL);
870 } else {
871 rq = get_request(q, rw, NULL, gfp_mask);
872 if (!rq)
873 spin_unlock_irq(q->queue_lock);
874 }
875 /* q->queue_lock is unlocked at this point */
876
877 return rq;
878}
879EXPORT_SYMBOL(blk_get_request);
880
881/**
882 * blk_make_request - given a bio, allocate a corresponding struct request.
883 * @q: target request queue
884 * @bio: The bio describing the memory mappings that will be submitted for IO.
885 * It may be a chained-bio properly constructed by block/bio layer.
886 * @gfp_mask: gfp flags to be used for memory allocation
887 *
888 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
889 * type commands. Where the struct request needs to be farther initialized by
890 * the caller. It is passed a &struct bio, which describes the memory info of
891 * the I/O transfer.
892 *
893 * The caller of blk_make_request must make sure that bi_io_vec
894 * are set to describe the memory buffers. That bio_data_dir() will return
895 * the needed direction of the request. (And all bio's in the passed bio-chain
896 * are properly set accordingly)
897 *
898 * If called under none-sleepable conditions, mapped bio buffers must not
899 * need bouncing, by calling the appropriate masked or flagged allocator,
900 * suitable for the target device. Otherwise the call to blk_queue_bounce will
901 * BUG.
902 *
903 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
904 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
905 * anything but the first bio in the chain. Otherwise you risk waiting for IO
906 * completion of a bio that hasn't been submitted yet, thus resulting in a
907 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
908 * of bio_alloc(), as that avoids the mempool deadlock.
909 * If possible a big IO should be split into smaller parts when allocation
910 * fails. Partial allocation should not be an error, or you risk a live-lock.
911 */
912struct request *blk_make_request(struct request_queue *q, struct bio *bio,
913 gfp_t gfp_mask)
914{
915 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
916
917 if (unlikely(!rq))
918 return ERR_PTR(-ENOMEM);
919
920 for_each_bio(bio) {
921 struct bio *bounce_bio = bio;
922 int ret;
923
924 blk_queue_bounce(q, &bounce_bio);
925 ret = blk_rq_append_bio(q, rq, bounce_bio);
926 if (unlikely(ret)) {
927 blk_put_request(rq);
928 return ERR_PTR(ret);
929 }
930 }
931
932 return rq;
933}
934EXPORT_SYMBOL(blk_make_request);
935
936/**
937 * blk_requeue_request - put a request back on queue
938 * @q: request queue where request should be inserted
939 * @rq: request to be inserted
940 *
941 * Description:
942 * Drivers often keep queueing requests until the hardware cannot accept
943 * more, when that condition happens we need to put the request back
944 * on the queue. Must be called with queue lock held.
945 */
946void blk_requeue_request(struct request_queue *q, struct request *rq)
947{
948 blk_delete_timer(rq);
949 blk_clear_rq_complete(rq);
950 trace_block_rq_requeue(q, rq);
951
952 if (blk_rq_tagged(rq))
953 blk_queue_end_tag(q, rq);
954
955 BUG_ON(blk_queued_rq(rq));
956
957 elv_requeue_request(q, rq);
958}
959EXPORT_SYMBOL(blk_requeue_request);
960
961/**
962 * blk_insert_request - insert a special request into a request queue
963 * @q: request queue where request should be inserted
964 * @rq: request to be inserted
965 * @at_head: insert request at head or tail of queue
966 * @data: private data
967 *
968 * Description:
969 * Many block devices need to execute commands asynchronously, so they don't
970 * block the whole kernel from preemption during request execution. This is
971 * accomplished normally by inserting aritficial requests tagged as
972 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
973 * be scheduled for actual execution by the request queue.
974 *
975 * We have the option of inserting the head or the tail of the queue.
976 * Typically we use the tail for new ioctls and so forth. We use the head
977 * of the queue for things like a QUEUE_FULL message from a device, or a
978 * host that is unable to accept a particular command.
979 */
980void blk_insert_request(struct request_queue *q, struct request *rq,
981 int at_head, void *data)
982{
983 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
984 unsigned long flags;
985
986 /*
987 * tell I/O scheduler that this isn't a regular read/write (ie it
988 * must not attempt merges on this) and that it acts as a soft
989 * barrier
990 */
991 rq->cmd_type = REQ_TYPE_SPECIAL;
992
993 rq->special = data;
994
995 spin_lock_irqsave(q->queue_lock, flags);
996
997 /*
998 * If command is tagged, release the tag
999 */
1000 if (blk_rq_tagged(rq))
1001 blk_queue_end_tag(q, rq);
1002
1003 drive_stat_acct(rq, 1);
1004 __elv_add_request(q, rq, where, 0);
1005 __blk_run_queue(q);
1006 spin_unlock_irqrestore(q->queue_lock, flags);
1007}
1008EXPORT_SYMBOL(blk_insert_request);
1009
1010/*
1011 * add-request adds a request to the linked list.
1012 * queue lock is held and interrupts disabled, as we muck with the
1013 * request queue list.
1014 */
1015static inline void add_request(struct request_queue *q, struct request *req)
1016{
1017 drive_stat_acct(req, 1);
1018
1019 /*
1020 * elevator indicated where it wants this request to be
1021 * inserted at elevator_merge time
1022 */
1023 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1024}
1025
1026static void part_round_stats_single(int cpu, struct hd_struct *part,
1027 unsigned long now)
1028{
1029 if (now == part->stamp)
1030 return;
1031
1032 if (part->in_flight) {
1033 __part_stat_add(cpu, part, time_in_queue,
1034 part_in_flight(part) * (now - part->stamp));
1035 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1036 }
1037 part->stamp = now;
1038}
1039
1040/**
1041 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1042 * @cpu: cpu number for stats access
1043 * @part: target partition
1044 *
1045 * The average IO queue length and utilisation statistics are maintained
1046 * by observing the current state of the queue length and the amount of
1047 * time it has been in this state for.
1048 *
1049 * Normally, that accounting is done on IO completion, but that can result
1050 * in more than a second's worth of IO being accounted for within any one
1051 * second, leading to >100% utilisation. To deal with that, we call this
1052 * function to do a round-off before returning the results when reading
1053 * /proc/diskstats. This accounts immediately for all queue usage up to
1054 * the current jiffies and restarts the counters again.
1055 */
1056void part_round_stats(int cpu, struct hd_struct *part)
1057{
1058 unsigned long now = jiffies;
1059
1060 if (part->partno)
1061 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1062 part_round_stats_single(cpu, part, now);
1063}
1064EXPORT_SYMBOL_GPL(part_round_stats);
1065
1066/*
1067 * queue lock must be held
1068 */
1069void __blk_put_request(struct request_queue *q, struct request *req)
1070{
1071 if (unlikely(!q))
1072 return;
1073 if (unlikely(--req->ref_count))
1074 return;
1075
1076 elv_completed_request(q, req);
1077
1078 /* this is a bio leak */
1079 WARN_ON(req->bio != NULL);
1080
1081 /*
1082 * Request may not have originated from ll_rw_blk. if not,
1083 * it didn't come out of our reserved rq pools
1084 */
1085 if (req->cmd_flags & REQ_ALLOCED) {
1086 int is_sync = rq_is_sync(req) != 0;
1087 int priv = req->cmd_flags & REQ_ELVPRIV;
1088
1089 BUG_ON(!list_empty(&req->queuelist));
1090 BUG_ON(!hlist_unhashed(&req->hash));
1091
1092 blk_free_request(q, req);
1093 freed_request(q, is_sync, priv);
1094 }
1095}
1096EXPORT_SYMBOL_GPL(__blk_put_request);
1097
1098void blk_put_request(struct request *req)
1099{
1100 unsigned long flags;
1101 struct request_queue *q = req->q;
1102
1103 spin_lock_irqsave(q->queue_lock, flags);
1104 __blk_put_request(q, req);
1105 spin_unlock_irqrestore(q->queue_lock, flags);
1106}
1107EXPORT_SYMBOL(blk_put_request);
1108
1109void init_request_from_bio(struct request *req, struct bio *bio)
1110{
1111 req->cpu = bio->bi_comp_cpu;
1112 req->cmd_type = REQ_TYPE_FS;
1113
1114 /*
1115 * Inherit FAILFAST from bio (for read-ahead, and explicit
1116 * FAILFAST). FAILFAST flags are identical for req and bio.
1117 */
1118 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
1119 req->cmd_flags |= REQ_FAILFAST_MASK;
1120 else
1121 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1122
1123 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
1124 req->cmd_flags |= REQ_DISCARD;
1125 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
1126 req->cmd_flags |= REQ_SOFTBARRIER;
1127 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
1128 req->cmd_flags |= REQ_HARDBARRIER;
1129
1130 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
1131 req->cmd_flags |= REQ_RW_SYNC;
1132 if (bio_rw_flagged(bio, BIO_RW_META))
1133 req->cmd_flags |= REQ_RW_META;
1134 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
1135 req->cmd_flags |= REQ_NOIDLE;
1136
1137 req->errors = 0;
1138 req->__sector = bio->bi_sector;
1139 req->ioprio = bio_prio(bio);
1140 blk_rq_bio_prep(req->q, req, bio);
1141}
1142
1143/*
1144 * Only disabling plugging for non-rotational devices if it does tagging
1145 * as well, otherwise we do need the proper merging
1146 */
1147static inline bool queue_should_plug(struct request_queue *q)
1148{
1149 return !(blk_queue_nonrot(q) && blk_queue_queuing(q));
1150}
1151
1152static int __make_request(struct request_queue *q, struct bio *bio)
1153{
1154 struct request *req;
1155 int el_ret;
1156 unsigned int bytes = bio->bi_size;
1157 const unsigned short prio = bio_prio(bio);
1158 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1159 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
1160 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1161 int rw_flags;
1162
1163 if (bio_rw_flagged(bio, BIO_RW_BARRIER) && bio_has_data(bio) &&
1164 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1165 bio_endio(bio, -EOPNOTSUPP);
1166 return 0;
1167 }
1168 /*
1169 * low level driver can indicate that it wants pages above a
1170 * certain limit bounced to low memory (ie for highmem, or even
1171 * ISA dma in theory)
1172 */
1173 blk_queue_bounce(q, &bio);
1174
1175 spin_lock_irq(q->queue_lock);
1176
1177 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1178 goto get_rq;
1179
1180 el_ret = elv_merge(q, &req, bio);
1181 switch (el_ret) {
1182 case ELEVATOR_BACK_MERGE:
1183 BUG_ON(!rq_mergeable(req));
1184
1185 if (!ll_back_merge_fn(q, req, bio))
1186 break;
1187
1188 trace_block_bio_backmerge(q, bio);
1189
1190 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1191 blk_rq_set_mixed_merge(req);
1192
1193 req->biotail->bi_next = bio;
1194 req->biotail = bio;
1195 req->__data_len += bytes;
1196 req->ioprio = ioprio_best(req->ioprio, prio);
1197 if (!blk_rq_cpu_valid(req))
1198 req->cpu = bio->bi_comp_cpu;
1199 drive_stat_acct(req, 0);
1200 if (!attempt_back_merge(q, req))
1201 elv_merged_request(q, req, el_ret);
1202 goto out;
1203
1204 case ELEVATOR_FRONT_MERGE:
1205 BUG_ON(!rq_mergeable(req));
1206
1207 if (!ll_front_merge_fn(q, req, bio))
1208 break;
1209
1210 trace_block_bio_frontmerge(q, bio);
1211
1212 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1213 blk_rq_set_mixed_merge(req);
1214 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1215 req->cmd_flags |= ff;
1216 }
1217
1218 bio->bi_next = req->bio;
1219 req->bio = bio;
1220
1221 /*
1222 * may not be valid. if the low level driver said
1223 * it didn't need a bounce buffer then it better
1224 * not touch req->buffer either...
1225 */
1226 req->buffer = bio_data(bio);
1227 req->__sector = bio->bi_sector;
1228 req->__data_len += bytes;
1229 req->ioprio = ioprio_best(req->ioprio, prio);
1230 if (!blk_rq_cpu_valid(req))
1231 req->cpu = bio->bi_comp_cpu;
1232 drive_stat_acct(req, 0);
1233 if (!attempt_front_merge(q, req))
1234 elv_merged_request(q, req, el_ret);
1235 goto out;
1236
1237 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1238 default:
1239 ;
1240 }
1241
1242get_rq:
1243 /*
1244 * This sync check and mask will be re-done in init_request_from_bio(),
1245 * but we need to set it earlier to expose the sync flag to the
1246 * rq allocator and io schedulers.
1247 */
1248 rw_flags = bio_data_dir(bio);
1249 if (sync)
1250 rw_flags |= REQ_RW_SYNC;
1251
1252 /*
1253 * Grab a free request. This is might sleep but can not fail.
1254 * Returns with the queue unlocked.
1255 */
1256 req = get_request_wait(q, rw_flags, bio);
1257
1258 /*
1259 * After dropping the lock and possibly sleeping here, our request
1260 * may now be mergeable after it had proven unmergeable (above).
1261 * We don't worry about that case for efficiency. It won't happen
1262 * often, and the elevators are able to handle it.
1263 */
1264 init_request_from_bio(req, bio);
1265
1266 spin_lock_irq(q->queue_lock);
1267 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1268 bio_flagged(bio, BIO_CPU_AFFINE))
1269 req->cpu = blk_cpu_to_group(smp_processor_id());
1270 if (queue_should_plug(q) && elv_queue_empty(q))
1271 blk_plug_device(q);
1272 add_request(q, req);
1273out:
1274 if (unplug || !queue_should_plug(q))
1275 __generic_unplug_device(q);
1276 spin_unlock_irq(q->queue_lock);
1277 return 0;
1278}
1279
1280/*
1281 * If bio->bi_dev is a partition, remap the location
1282 */
1283static inline void blk_partition_remap(struct bio *bio)
1284{
1285 struct block_device *bdev = bio->bi_bdev;
1286
1287 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1288 struct hd_struct *p = bdev->bd_part;
1289
1290 bio->bi_sector += p->start_sect;
1291 bio->bi_bdev = bdev->bd_contains;
1292
1293 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1294 bdev->bd_dev,
1295 bio->bi_sector - p->start_sect);
1296 }
1297}
1298
1299static void handle_bad_sector(struct bio *bio)
1300{
1301 char b[BDEVNAME_SIZE];
1302
1303 printk(KERN_INFO "attempt to access beyond end of device\n");
1304 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1305 bdevname(bio->bi_bdev, b),
1306 bio->bi_rw,
1307 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1308 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1309
1310 set_bit(BIO_EOF, &bio->bi_flags);
1311}
1312
1313#ifdef CONFIG_FAIL_MAKE_REQUEST
1314
1315static DECLARE_FAULT_ATTR(fail_make_request);
1316
1317static int __init setup_fail_make_request(char *str)
1318{
1319 return setup_fault_attr(&fail_make_request, str);
1320}
1321__setup("fail_make_request=", setup_fail_make_request);
1322
1323static int should_fail_request(struct bio *bio)
1324{
1325 struct hd_struct *part = bio->bi_bdev->bd_part;
1326
1327 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1328 return should_fail(&fail_make_request, bio->bi_size);
1329
1330 return 0;
1331}
1332
1333static int __init fail_make_request_debugfs(void)
1334{
1335 return init_fault_attr_dentries(&fail_make_request,
1336 "fail_make_request");
1337}
1338
1339late_initcall(fail_make_request_debugfs);
1340
1341#else /* CONFIG_FAIL_MAKE_REQUEST */
1342
1343static inline int should_fail_request(struct bio *bio)
1344{
1345 return 0;
1346}
1347
1348#endif /* CONFIG_FAIL_MAKE_REQUEST */
1349
1350/*
1351 * Check whether this bio extends beyond the end of the device.
1352 */
1353static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1354{
1355 sector_t maxsector;
1356
1357 if (!nr_sectors)
1358 return 0;
1359
1360 /* Test device or partition size, when known. */
1361 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1362 if (maxsector) {
1363 sector_t sector = bio->bi_sector;
1364
1365 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1366 /*
1367 * This may well happen - the kernel calls bread()
1368 * without checking the size of the device, e.g., when
1369 * mounting a device.
1370 */
1371 handle_bad_sector(bio);
1372 return 1;
1373 }
1374 }
1375
1376 return 0;
1377}
1378
1379/**
1380 * generic_make_request - hand a buffer to its device driver for I/O
1381 * @bio: The bio describing the location in memory and on the device.
1382 *
1383 * generic_make_request() is used to make I/O requests of block
1384 * devices. It is passed a &struct bio, which describes the I/O that needs
1385 * to be done.
1386 *
1387 * generic_make_request() does not return any status. The
1388 * success/failure status of the request, along with notification of
1389 * completion, is delivered asynchronously through the bio->bi_end_io
1390 * function described (one day) else where.
1391 *
1392 * The caller of generic_make_request must make sure that bi_io_vec
1393 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1394 * set to describe the device address, and the
1395 * bi_end_io and optionally bi_private are set to describe how
1396 * completion notification should be signaled.
1397 *
1398 * generic_make_request and the drivers it calls may use bi_next if this
1399 * bio happens to be merged with someone else, and may change bi_dev and
1400 * bi_sector for remaps as it sees fit. So the values of these fields
1401 * should NOT be depended on after the call to generic_make_request.
1402 */
1403static inline void __generic_make_request(struct bio *bio)
1404{
1405 struct request_queue *q;
1406 sector_t old_sector;
1407 int ret, nr_sectors = bio_sectors(bio);
1408 dev_t old_dev;
1409 int err = -EIO;
1410
1411 might_sleep();
1412
1413 if (bio_check_eod(bio, nr_sectors))
1414 goto end_io;
1415
1416 /*
1417 * Resolve the mapping until finished. (drivers are
1418 * still free to implement/resolve their own stacking
1419 * by explicitly returning 0)
1420 *
1421 * NOTE: we don't repeat the blk_size check for each new device.
1422 * Stacking drivers are expected to know what they are doing.
1423 */
1424 old_sector = -1;
1425 old_dev = 0;
1426 do {
1427 char b[BDEVNAME_SIZE];
1428
1429 q = bdev_get_queue(bio->bi_bdev);
1430 if (unlikely(!q)) {
1431 printk(KERN_ERR
1432 "generic_make_request: Trying to access "
1433 "nonexistent block-device %s (%Lu)\n",
1434 bdevname(bio->bi_bdev, b),
1435 (long long) bio->bi_sector);
1436 goto end_io;
1437 }
1438
1439 if (unlikely(nr_sectors > queue_max_hw_sectors(q))) {
1440 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1441 bdevname(bio->bi_bdev, b),
1442 bio_sectors(bio),
1443 queue_max_hw_sectors(q));
1444 goto end_io;
1445 }
1446
1447 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1448 goto end_io;
1449
1450 if (should_fail_request(bio))
1451 goto end_io;
1452
1453 /*
1454 * If this device has partitions, remap block n
1455 * of partition p to block n+start(p) of the disk.
1456 */
1457 blk_partition_remap(bio);
1458
1459 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1460 goto end_io;
1461
1462 if (old_sector != -1)
1463 trace_block_remap(q, bio, old_dev, old_sector);
1464
1465 old_sector = bio->bi_sector;
1466 old_dev = bio->bi_bdev->bd_dev;
1467
1468 if (bio_check_eod(bio, nr_sectors))
1469 goto end_io;
1470
1471 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1472 !blk_queue_discard(q)) {
1473 err = -EOPNOTSUPP;
1474 goto end_io;
1475 }
1476
1477 trace_block_bio_queue(q, bio);
1478
1479 ret = q->make_request_fn(q, bio);
1480 } while (ret);
1481
1482 return;
1483
1484end_io:
1485 bio_endio(bio, err);
1486}
1487
1488/*
1489 * We only want one ->make_request_fn to be active at a time,
1490 * else stack usage with stacked devices could be a problem.
1491 * So use current->bio_{list,tail} to keep a list of requests
1492 * submited by a make_request_fn function.
1493 * current->bio_tail is also used as a flag to say if
1494 * generic_make_request is currently active in this task or not.
1495 * If it is NULL, then no make_request is active. If it is non-NULL,
1496 * then a make_request is active, and new requests should be added
1497 * at the tail
1498 */
1499void generic_make_request(struct bio *bio)
1500{
1501 if (current->bio_tail) {
1502 /* make_request is active */
1503 *(current->bio_tail) = bio;
1504 bio->bi_next = NULL;
1505 current->bio_tail = &bio->bi_next;
1506 return;
1507 }
1508 /* following loop may be a bit non-obvious, and so deserves some
1509 * explanation.
1510 * Before entering the loop, bio->bi_next is NULL (as all callers
1511 * ensure that) so we have a list with a single bio.
1512 * We pretend that we have just taken it off a longer list, so
1513 * we assign bio_list to the next (which is NULL) and bio_tail
1514 * to &bio_list, thus initialising the bio_list of new bios to be
1515 * added. __generic_make_request may indeed add some more bios
1516 * through a recursive call to generic_make_request. If it
1517 * did, we find a non-NULL value in bio_list and re-enter the loop
1518 * from the top. In this case we really did just take the bio
1519 * of the top of the list (no pretending) and so fixup bio_list and
1520 * bio_tail or bi_next, and call into __generic_make_request again.
1521 *
1522 * The loop was structured like this to make only one call to
1523 * __generic_make_request (which is important as it is large and
1524 * inlined) and to keep the structure simple.
1525 */
1526 BUG_ON(bio->bi_next);
1527 do {
1528 current->bio_list = bio->bi_next;
1529 if (bio->bi_next == NULL)
1530 current->bio_tail = &current->bio_list;
1531 else
1532 bio->bi_next = NULL;
1533 __generic_make_request(bio);
1534 bio = current->bio_list;
1535 } while (bio);
1536 current->bio_tail = NULL; /* deactivate */
1537}
1538EXPORT_SYMBOL(generic_make_request);
1539
1540/**
1541 * submit_bio - submit a bio to the block device layer for I/O
1542 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1543 * @bio: The &struct bio which describes the I/O
1544 *
1545 * submit_bio() is very similar in purpose to generic_make_request(), and
1546 * uses that function to do most of the work. Both are fairly rough
1547 * interfaces; @bio must be presetup and ready for I/O.
1548 *
1549 */
1550void submit_bio(int rw, struct bio *bio)
1551{
1552 int count = bio_sectors(bio);
1553
1554 bio->bi_rw |= rw;
1555
1556 /*
1557 * If it's a regular read/write or a barrier with data attached,
1558 * go through the normal accounting stuff before submission.
1559 */
1560 if (bio_has_data(bio)) {
1561 if (rw & WRITE) {
1562 count_vm_events(PGPGOUT, count);
1563 } else {
1564 task_io_account_read(bio->bi_size);
1565 count_vm_events(PGPGIN, count);
1566 }
1567
1568 if (unlikely(block_dump)) {
1569 char b[BDEVNAME_SIZE];
1570 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1571 current->comm, task_pid_nr(current),
1572 (rw & WRITE) ? "WRITE" : "READ",
1573 (unsigned long long)bio->bi_sector,
1574 bdevname(bio->bi_bdev, b));
1575 }
1576 }
1577
1578 generic_make_request(bio);
1579}
1580EXPORT_SYMBOL(submit_bio);
1581
1582/**
1583 * blk_rq_check_limits - Helper function to check a request for the queue limit
1584 * @q: the queue
1585 * @rq: the request being checked
1586 *
1587 * Description:
1588 * @rq may have been made based on weaker limitations of upper-level queues
1589 * in request stacking drivers, and it may violate the limitation of @q.
1590 * Since the block layer and the underlying device driver trust @rq
1591 * after it is inserted to @q, it should be checked against @q before
1592 * the insertion using this generic function.
1593 *
1594 * This function should also be useful for request stacking drivers
1595 * in some cases below, so export this fuction.
1596 * Request stacking drivers like request-based dm may change the queue
1597 * limits while requests are in the queue (e.g. dm's table swapping).
1598 * Such request stacking drivers should check those requests agaist
1599 * the new queue limits again when they dispatch those requests,
1600 * although such checkings are also done against the old queue limits
1601 * when submitting requests.
1602 */
1603int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1604{
1605 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1606 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1607 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1608 return -EIO;
1609 }
1610
1611 /*
1612 * queue's settings related to segment counting like q->bounce_pfn
1613 * may differ from that of other stacking queues.
1614 * Recalculate it to check the request correctly on this queue's
1615 * limitation.
1616 */
1617 blk_recalc_rq_segments(rq);
1618 if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1619 rq->nr_phys_segments > queue_max_hw_segments(q)) {
1620 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1621 return -EIO;
1622 }
1623
1624 return 0;
1625}
1626EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1627
1628/**
1629 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1630 * @q: the queue to submit the request
1631 * @rq: the request being queued
1632 */
1633int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1634{
1635 unsigned long flags;
1636
1637 if (blk_rq_check_limits(q, rq))
1638 return -EIO;
1639
1640#ifdef CONFIG_FAIL_MAKE_REQUEST
1641 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1642 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1643 return -EIO;
1644#endif
1645
1646 spin_lock_irqsave(q->queue_lock, flags);
1647
1648 /*
1649 * Submitting request must be dequeued before calling this function
1650 * because it will be linked to another request_queue
1651 */
1652 BUG_ON(blk_queued_rq(rq));
1653
1654 drive_stat_acct(rq, 1);
1655 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1656
1657 spin_unlock_irqrestore(q->queue_lock, flags);
1658
1659 return 0;
1660}
1661EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1662
1663/**
1664 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1665 * @rq: request to examine
1666 *
1667 * Description:
1668 * A request could be merge of IOs which require different failure
1669 * handling. This function determines the number of bytes which
1670 * can be failed from the beginning of the request without
1671 * crossing into area which need to be retried further.
1672 *
1673 * Return:
1674 * The number of bytes to fail.
1675 *
1676 * Context:
1677 * queue_lock must be held.
1678 */
1679unsigned int blk_rq_err_bytes(const struct request *rq)
1680{
1681 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1682 unsigned int bytes = 0;
1683 struct bio *bio;
1684
1685 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1686 return blk_rq_bytes(rq);
1687
1688 /*
1689 * Currently the only 'mixing' which can happen is between
1690 * different fastfail types. We can safely fail portions
1691 * which have all the failfast bits that the first one has -
1692 * the ones which are at least as eager to fail as the first
1693 * one.
1694 */
1695 for (bio = rq->bio; bio; bio = bio->bi_next) {
1696 if ((bio->bi_rw & ff) != ff)
1697 break;
1698 bytes += bio->bi_size;
1699 }
1700
1701 /* this could lead to infinite loop */
1702 BUG_ON(blk_rq_bytes(rq) && !bytes);
1703 return bytes;
1704}
1705EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1706
1707static void blk_account_io_completion(struct request *req, unsigned int bytes)
1708{
1709 if (blk_do_io_stat(req)) {
1710 const int rw = rq_data_dir(req);
1711 struct hd_struct *part;
1712 int cpu;
1713
1714 cpu = part_stat_lock();
1715 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1716 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1717 part_stat_unlock();
1718 }
1719}
1720
1721static void blk_account_io_done(struct request *req)
1722{
1723 /*
1724 * Account IO completion. bar_rq isn't accounted as a normal
1725 * IO on queueing nor completion. Accounting the containing
1726 * request is enough.
1727 */
1728 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1729 unsigned long duration = jiffies - req->start_time;
1730 const int rw = rq_data_dir(req);
1731 struct hd_struct *part;
1732 int cpu;
1733
1734 cpu = part_stat_lock();
1735 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1736
1737 part_stat_inc(cpu, part, ios[rw]);
1738 part_stat_add(cpu, part, ticks[rw], duration);
1739 part_round_stats(cpu, part);
1740 part_dec_in_flight(part, rw);
1741
1742 part_stat_unlock();
1743 }
1744}
1745
1746/**
1747 * blk_peek_request - peek at the top of a request queue
1748 * @q: request queue to peek at
1749 *
1750 * Description:
1751 * Return the request at the top of @q. The returned request
1752 * should be started using blk_start_request() before LLD starts
1753 * processing it.
1754 *
1755 * Return:
1756 * Pointer to the request at the top of @q if available. Null
1757 * otherwise.
1758 *
1759 * Context:
1760 * queue_lock must be held.
1761 */
1762struct request *blk_peek_request(struct request_queue *q)
1763{
1764 struct request *rq;
1765 int ret;
1766
1767 while ((rq = __elv_next_request(q)) != NULL) {
1768 if (!(rq->cmd_flags & REQ_STARTED)) {
1769 /*
1770 * This is the first time the device driver
1771 * sees this request (possibly after
1772 * requeueing). Notify IO scheduler.
1773 */
1774 if (blk_sorted_rq(rq))
1775 elv_activate_rq(q, rq);
1776
1777 /*
1778 * just mark as started even if we don't start
1779 * it, a request that has been delayed should
1780 * not be passed by new incoming requests
1781 */
1782 rq->cmd_flags |= REQ_STARTED;
1783 trace_block_rq_issue(q, rq);
1784 }
1785
1786 if (!q->boundary_rq || q->boundary_rq == rq) {
1787 q->end_sector = rq_end_sector(rq);
1788 q->boundary_rq = NULL;
1789 }
1790
1791 if (rq->cmd_flags & REQ_DONTPREP)
1792 break;
1793
1794 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1795 /*
1796 * make sure space for the drain appears we
1797 * know we can do this because max_hw_segments
1798 * has been adjusted to be one fewer than the
1799 * device can handle
1800 */
1801 rq->nr_phys_segments++;
1802 }
1803
1804 if (!q->prep_rq_fn)
1805 break;
1806
1807 ret = q->prep_rq_fn(q, rq);
1808 if (ret == BLKPREP_OK) {
1809 break;
1810 } else if (ret == BLKPREP_DEFER) {
1811 /*
1812 * the request may have been (partially) prepped.
1813 * we need to keep this request in the front to
1814 * avoid resource deadlock. REQ_STARTED will
1815 * prevent other fs requests from passing this one.
1816 */
1817 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1818 !(rq->cmd_flags & REQ_DONTPREP)) {
1819 /*
1820 * remove the space for the drain we added
1821 * so that we don't add it again
1822 */
1823 --rq->nr_phys_segments;
1824 }
1825
1826 rq = NULL;
1827 break;
1828 } else if (ret == BLKPREP_KILL) {
1829 rq->cmd_flags |= REQ_QUIET;
1830 /*
1831 * Mark this request as started so we don't trigger
1832 * any debug logic in the end I/O path.
1833 */
1834 blk_start_request(rq);
1835 __blk_end_request_all(rq, -EIO);
1836 } else {
1837 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1838 break;
1839 }
1840 }
1841
1842 return rq;
1843}
1844EXPORT_SYMBOL(blk_peek_request);
1845
1846void blk_dequeue_request(struct request *rq)
1847{
1848 struct request_queue *q = rq->q;
1849
1850 BUG_ON(list_empty(&rq->queuelist));
1851 BUG_ON(ELV_ON_HASH(rq));
1852
1853 list_del_init(&rq->queuelist);
1854
1855 /*
1856 * the time frame between a request being removed from the lists
1857 * and to it is freed is accounted as io that is in progress at
1858 * the driver side.
1859 */
1860 if (blk_account_rq(rq)) {
1861 q->in_flight[rq_is_sync(rq)]++;
1862 /*
1863 * Mark this device as supporting hardware queuing, if
1864 * we have more IOs in flight than 4.
1865 */
1866 if (!blk_queue_queuing(q) && queue_in_flight(q) > 4)
1867 set_bit(QUEUE_FLAG_CQ, &q->queue_flags);
1868 }
1869}
1870
1871/**
1872 * blk_start_request - start request processing on the driver
1873 * @req: request to dequeue
1874 *
1875 * Description:
1876 * Dequeue @req and start timeout timer on it. This hands off the
1877 * request to the driver.
1878 *
1879 * Block internal functions which don't want to start timer should
1880 * call blk_dequeue_request().
1881 *
1882 * Context:
1883 * queue_lock must be held.
1884 */
1885void blk_start_request(struct request *req)
1886{
1887 blk_dequeue_request(req);
1888
1889 /*
1890 * We are now handing the request to the hardware, initialize
1891 * resid_len to full count and add the timeout handler.
1892 */
1893 req->resid_len = blk_rq_bytes(req);
1894 if (unlikely(blk_bidi_rq(req)))
1895 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1896
1897 blk_add_timer(req);
1898}
1899EXPORT_SYMBOL(blk_start_request);
1900
1901/**
1902 * blk_fetch_request - fetch a request from a request queue
1903 * @q: request queue to fetch a request from
1904 *
1905 * Description:
1906 * Return the request at the top of @q. The request is started on
1907 * return and LLD can start processing it immediately.
1908 *
1909 * Return:
1910 * Pointer to the request at the top of @q if available. Null
1911 * otherwise.
1912 *
1913 * Context:
1914 * queue_lock must be held.
1915 */
1916struct request *blk_fetch_request(struct request_queue *q)
1917{
1918 struct request *rq;
1919
1920 rq = blk_peek_request(q);
1921 if (rq)
1922 blk_start_request(rq);
1923 return rq;
1924}
1925EXPORT_SYMBOL(blk_fetch_request);
1926
1927/**
1928 * blk_update_request - Special helper function for request stacking drivers
1929 * @req: the request being processed
1930 * @error: %0 for success, < %0 for error
1931 * @nr_bytes: number of bytes to complete @req
1932 *
1933 * Description:
1934 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1935 * the request structure even if @req doesn't have leftover.
1936 * If @req has leftover, sets it up for the next range of segments.
1937 *
1938 * This special helper function is only for request stacking drivers
1939 * (e.g. request-based dm) so that they can handle partial completion.
1940 * Actual device drivers should use blk_end_request instead.
1941 *
1942 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1943 * %false return from this function.
1944 *
1945 * Return:
1946 * %false - this request doesn't have any more data
1947 * %true - this request has more data
1948 **/
1949bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1950{
1951 int total_bytes, bio_nbytes, next_idx = 0;
1952 struct bio *bio;
1953
1954 if (!req->bio)
1955 return false;
1956
1957 trace_block_rq_complete(req->q, req);
1958
1959 /*
1960 * For fs requests, rq is just carrier of independent bio's
1961 * and each partial completion should be handled separately.
1962 * Reset per-request error on each partial completion.
1963 *
1964 * TODO: tj: This is too subtle. It would be better to let
1965 * low level drivers do what they see fit.
1966 */
1967 if (blk_fs_request(req))
1968 req->errors = 0;
1969
1970 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1971 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1972 req->rq_disk ? req->rq_disk->disk_name : "?",
1973 (unsigned long long)blk_rq_pos(req));
1974 }
1975
1976 blk_account_io_completion(req, nr_bytes);
1977
1978 total_bytes = bio_nbytes = 0;
1979 while ((bio = req->bio) != NULL) {
1980 int nbytes;
1981
1982 if (nr_bytes >= bio->bi_size) {
1983 req->bio = bio->bi_next;
1984 nbytes = bio->bi_size;
1985 req_bio_endio(req, bio, nbytes, error);
1986 next_idx = 0;
1987 bio_nbytes = 0;
1988 } else {
1989 int idx = bio->bi_idx + next_idx;
1990
1991 if (unlikely(idx >= bio->bi_vcnt)) {
1992 blk_dump_rq_flags(req, "__end_that");
1993 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1994 __func__, idx, bio->bi_vcnt);
1995 break;
1996 }
1997
1998 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1999 BIO_BUG_ON(nbytes > bio->bi_size);
2000
2001 /*
2002 * not a complete bvec done
2003 */
2004 if (unlikely(nbytes > nr_bytes)) {
2005 bio_nbytes += nr_bytes;
2006 total_bytes += nr_bytes;
2007 break;
2008 }
2009
2010 /*
2011 * advance to the next vector
2012 */
2013 next_idx++;
2014 bio_nbytes += nbytes;
2015 }
2016
2017 total_bytes += nbytes;
2018 nr_bytes -= nbytes;
2019
2020 bio = req->bio;
2021 if (bio) {
2022 /*
2023 * end more in this run, or just return 'not-done'
2024 */
2025 if (unlikely(nr_bytes <= 0))
2026 break;
2027 }
2028 }
2029
2030 /*
2031 * completely done
2032 */
2033 if (!req->bio) {
2034 /*
2035 * Reset counters so that the request stacking driver
2036 * can find how many bytes remain in the request
2037 * later.
2038 */
2039 req->__data_len = 0;
2040 return false;
2041 }
2042
2043 /*
2044 * if the request wasn't completed, update state
2045 */
2046 if (bio_nbytes) {
2047 req_bio_endio(req, bio, bio_nbytes, error);
2048 bio->bi_idx += next_idx;
2049 bio_iovec(bio)->bv_offset += nr_bytes;
2050 bio_iovec(bio)->bv_len -= nr_bytes;
2051 }
2052
2053 req->__data_len -= total_bytes;
2054 req->buffer = bio_data(req->bio);
2055
2056 /* update sector only for requests with clear definition of sector */
2057 if (blk_fs_request(req) || blk_discard_rq(req))
2058 req->__sector += total_bytes >> 9;
2059
2060 /* mixed attributes always follow the first bio */
2061 if (req->cmd_flags & REQ_MIXED_MERGE) {
2062 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2063 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2064 }
2065
2066 /*
2067 * If total number of sectors is less than the first segment
2068 * size, something has gone terribly wrong.
2069 */
2070 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2071 printk(KERN_ERR "blk: request botched\n");
2072 req->__data_len = blk_rq_cur_bytes(req);
2073 }
2074
2075 /* recalculate the number of segments */
2076 blk_recalc_rq_segments(req);
2077
2078 return true;
2079}
2080EXPORT_SYMBOL_GPL(blk_update_request);
2081
2082static bool blk_update_bidi_request(struct request *rq, int error,
2083 unsigned int nr_bytes,
2084 unsigned int bidi_bytes)
2085{
2086 if (blk_update_request(rq, error, nr_bytes))
2087 return true;
2088
2089 /* Bidi request must be completed as a whole */
2090 if (unlikely(blk_bidi_rq(rq)) &&
2091 blk_update_request(rq->next_rq, error, bidi_bytes))
2092 return true;
2093
2094 add_disk_randomness(rq->rq_disk);
2095
2096 return false;
2097}
2098
2099/*
2100 * queue lock must be held
2101 */
2102static void blk_finish_request(struct request *req, int error)
2103{
2104 if (blk_rq_tagged(req))
2105 blk_queue_end_tag(req->q, req);
2106
2107 BUG_ON(blk_queued_rq(req));
2108
2109 if (unlikely(laptop_mode) && blk_fs_request(req))
2110 laptop_io_completion();
2111
2112 blk_delete_timer(req);
2113
2114 blk_account_io_done(req);
2115
2116 if (req->end_io)
2117 req->end_io(req, error);
2118 else {
2119 if (blk_bidi_rq(req))
2120 __blk_put_request(req->next_rq->q, req->next_rq);
2121
2122 __blk_put_request(req->q, req);
2123 }
2124}
2125
2126/**
2127 * blk_end_bidi_request - Complete a bidi request
2128 * @rq: the request to complete
2129 * @error: %0 for success, < %0 for error
2130 * @nr_bytes: number of bytes to complete @rq
2131 * @bidi_bytes: number of bytes to complete @rq->next_rq
2132 *
2133 * Description:
2134 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2135 * Drivers that supports bidi can safely call this member for any
2136 * type of request, bidi or uni. In the later case @bidi_bytes is
2137 * just ignored.
2138 *
2139 * Return:
2140 * %false - we are done with this request
2141 * %true - still buffers pending for this request
2142 **/
2143static bool blk_end_bidi_request(struct request *rq, int error,
2144 unsigned int nr_bytes, unsigned int bidi_bytes)
2145{
2146 struct request_queue *q = rq->q;
2147 unsigned long flags;
2148
2149 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2150 return true;
2151
2152 spin_lock_irqsave(q->queue_lock, flags);
2153 blk_finish_request(rq, error);
2154 spin_unlock_irqrestore(q->queue_lock, flags);
2155
2156 return false;
2157}
2158
2159/**
2160 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2161 * @rq: the request to complete
2162 * @error: %0 for success, < %0 for error
2163 * @nr_bytes: number of bytes to complete @rq
2164 * @bidi_bytes: number of bytes to complete @rq->next_rq
2165 *
2166 * Description:
2167 * Identical to blk_end_bidi_request() except that queue lock is
2168 * assumed to be locked on entry and remains so on return.
2169 *
2170 * Return:
2171 * %false - we are done with this request
2172 * %true - still buffers pending for this request
2173 **/
2174static bool __blk_end_bidi_request(struct request *rq, int error,
2175 unsigned int nr_bytes, unsigned int bidi_bytes)
2176{
2177 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2178 return true;
2179
2180 blk_finish_request(rq, error);
2181
2182 return false;
2183}
2184
2185/**
2186 * blk_end_request - Helper function for drivers to complete the request.
2187 * @rq: the request being processed
2188 * @error: %0 for success, < %0 for error
2189 * @nr_bytes: number of bytes to complete
2190 *
2191 * Description:
2192 * Ends I/O on a number of bytes attached to @rq.
2193 * If @rq has leftover, sets it up for the next range of segments.
2194 *
2195 * Return:
2196 * %false - we are done with this request
2197 * %true - still buffers pending for this request
2198 **/
2199bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2200{
2201 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2202}
2203EXPORT_SYMBOL(blk_end_request);
2204
2205/**
2206 * blk_end_request_all - Helper function for drives to finish the request.
2207 * @rq: the request to finish
2208 * @error: %0 for success, < %0 for error
2209 *
2210 * Description:
2211 * Completely finish @rq.
2212 */
2213void blk_end_request_all(struct request *rq, int error)
2214{
2215 bool pending;
2216 unsigned int bidi_bytes = 0;
2217
2218 if (unlikely(blk_bidi_rq(rq)))
2219 bidi_bytes = blk_rq_bytes(rq->next_rq);
2220
2221 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2222 BUG_ON(pending);
2223}
2224EXPORT_SYMBOL(blk_end_request_all);
2225
2226/**
2227 * blk_end_request_cur - Helper function to finish the current request chunk.
2228 * @rq: the request to finish the current chunk for
2229 * @error: %0 for success, < %0 for error
2230 *
2231 * Description:
2232 * Complete the current consecutively mapped chunk from @rq.
2233 *
2234 * Return:
2235 * %false - we are done with this request
2236 * %true - still buffers pending for this request
2237 */
2238bool blk_end_request_cur(struct request *rq, int error)
2239{
2240 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2241}
2242EXPORT_SYMBOL(blk_end_request_cur);
2243
2244/**
2245 * blk_end_request_err - Finish a request till the next failure boundary.
2246 * @rq: the request to finish till the next failure boundary for
2247 * @error: must be negative errno
2248 *
2249 * Description:
2250 * Complete @rq till the next failure boundary.
2251 *
2252 * Return:
2253 * %false - we are done with this request
2254 * %true - still buffers pending for this request
2255 */
2256bool blk_end_request_err(struct request *rq, int error)
2257{
2258 WARN_ON(error >= 0);
2259 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2260}
2261EXPORT_SYMBOL_GPL(blk_end_request_err);
2262
2263/**
2264 * __blk_end_request - Helper function for drivers to complete the request.
2265 * @rq: the request being processed
2266 * @error: %0 for success, < %0 for error
2267 * @nr_bytes: number of bytes to complete
2268 *
2269 * Description:
2270 * Must be called with queue lock held unlike blk_end_request().
2271 *
2272 * Return:
2273 * %false - we are done with this request
2274 * %true - still buffers pending for this request
2275 **/
2276bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2277{
2278 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2279}
2280EXPORT_SYMBOL(__blk_end_request);
2281
2282/**
2283 * __blk_end_request_all - Helper function for drives to finish the request.
2284 * @rq: the request to finish
2285 * @error: %0 for success, < %0 for error
2286 *
2287 * Description:
2288 * Completely finish @rq. Must be called with queue lock held.
2289 */
2290void __blk_end_request_all(struct request *rq, int error)
2291{
2292 bool pending;
2293 unsigned int bidi_bytes = 0;
2294
2295 if (unlikely(blk_bidi_rq(rq)))
2296 bidi_bytes = blk_rq_bytes(rq->next_rq);
2297
2298 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2299 BUG_ON(pending);
2300}
2301EXPORT_SYMBOL(__blk_end_request_all);
2302
2303/**
2304 * __blk_end_request_cur - Helper function to finish the current request chunk.
2305 * @rq: the request to finish the current chunk for
2306 * @error: %0 for success, < %0 for error
2307 *
2308 * Description:
2309 * Complete the current consecutively mapped chunk from @rq. Must
2310 * be called with queue lock held.
2311 *
2312 * Return:
2313 * %false - we are done with this request
2314 * %true - still buffers pending for this request
2315 */
2316bool __blk_end_request_cur(struct request *rq, int error)
2317{
2318 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2319}
2320EXPORT_SYMBOL(__blk_end_request_cur);
2321
2322/**
2323 * __blk_end_request_err - Finish a request till the next failure boundary.
2324 * @rq: the request to finish till the next failure boundary for
2325 * @error: must be negative errno
2326 *
2327 * Description:
2328 * Complete @rq till the next failure boundary. Must be called
2329 * with queue lock held.
2330 *
2331 * Return:
2332 * %false - we are done with this request
2333 * %true - still buffers pending for this request
2334 */
2335bool __blk_end_request_err(struct request *rq, int error)
2336{
2337 WARN_ON(error >= 0);
2338 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2339}
2340EXPORT_SYMBOL_GPL(__blk_end_request_err);
2341
2342void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2343 struct bio *bio)
2344{
2345 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2346 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2347
2348 if (bio_has_data(bio)) {
2349 rq->nr_phys_segments = bio_phys_segments(q, bio);
2350 rq->buffer = bio_data(bio);
2351 }
2352 rq->__data_len = bio->bi_size;
2353 rq->bio = rq->biotail = bio;
2354
2355 if (bio->bi_bdev)
2356 rq->rq_disk = bio->bi_bdev->bd_disk;
2357}
2358
2359/**
2360 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2361 * @q : the queue of the device being checked
2362 *
2363 * Description:
2364 * Check if underlying low-level drivers of a device are busy.
2365 * If the drivers want to export their busy state, they must set own
2366 * exporting function using blk_queue_lld_busy() first.
2367 *
2368 * Basically, this function is used only by request stacking drivers
2369 * to stop dispatching requests to underlying devices when underlying
2370 * devices are busy. This behavior helps more I/O merging on the queue
2371 * of the request stacking driver and prevents I/O throughput regression
2372 * on burst I/O load.
2373 *
2374 * Return:
2375 * 0 - Not busy (The request stacking driver should dispatch request)
2376 * 1 - Busy (The request stacking driver should stop dispatching request)
2377 */
2378int blk_lld_busy(struct request_queue *q)
2379{
2380 if (q->lld_busy_fn)
2381 return q->lld_busy_fn(q);
2382
2383 return 0;
2384}
2385EXPORT_SYMBOL_GPL(blk_lld_busy);
2386
2387/**
2388 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2389 * @rq: the clone request to be cleaned up
2390 *
2391 * Description:
2392 * Free all bios in @rq for a cloned request.
2393 */
2394void blk_rq_unprep_clone(struct request *rq)
2395{
2396 struct bio *bio;
2397
2398 while ((bio = rq->bio) != NULL) {
2399 rq->bio = bio->bi_next;
2400
2401 bio_put(bio);
2402 }
2403}
2404EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2405
2406/*
2407 * Copy attributes of the original request to the clone request.
2408 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2409 */
2410static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2411{
2412 dst->cpu = src->cpu;
2413 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2414 dst->cmd_type = src->cmd_type;
2415 dst->__sector = blk_rq_pos(src);
2416 dst->__data_len = blk_rq_bytes(src);
2417 dst->nr_phys_segments = src->nr_phys_segments;
2418 dst->ioprio = src->ioprio;
2419 dst->extra_len = src->extra_len;
2420}
2421
2422/**
2423 * blk_rq_prep_clone - Helper function to setup clone request
2424 * @rq: the request to be setup
2425 * @rq_src: original request to be cloned
2426 * @bs: bio_set that bios for clone are allocated from
2427 * @gfp_mask: memory allocation mask for bio
2428 * @bio_ctr: setup function to be called for each clone bio.
2429 * Returns %0 for success, non %0 for failure.
2430 * @data: private data to be passed to @bio_ctr
2431 *
2432 * Description:
2433 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2434 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2435 * are not copied, and copying such parts is the caller's responsibility.
2436 * Also, pages which the original bios are pointing to are not copied
2437 * and the cloned bios just point same pages.
2438 * So cloned bios must be completed before original bios, which means
2439 * the caller must complete @rq before @rq_src.
2440 */
2441int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2442 struct bio_set *bs, gfp_t gfp_mask,
2443 int (*bio_ctr)(struct bio *, struct bio *, void *),
2444 void *data)
2445{
2446 struct bio *bio, *bio_src;
2447
2448 if (!bs)
2449 bs = fs_bio_set;
2450
2451 blk_rq_init(NULL, rq);
2452
2453 __rq_for_each_bio(bio_src, rq_src) {
2454 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2455 if (!bio)
2456 goto free_and_out;
2457
2458 __bio_clone(bio, bio_src);
2459
2460 if (bio_integrity(bio_src) &&
2461 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2462 goto free_and_out;
2463
2464 if (bio_ctr && bio_ctr(bio, bio_src, data))
2465 goto free_and_out;
2466
2467 if (rq->bio) {
2468 rq->biotail->bi_next = bio;
2469 rq->biotail = bio;
2470 } else
2471 rq->bio = rq->biotail = bio;
2472 }
2473
2474 __blk_rq_prep_clone(rq, rq_src);
2475
2476 return 0;
2477
2478free_and_out:
2479 if (bio)
2480 bio_free(bio, bs);
2481 blk_rq_unprep_clone(rq);
2482
2483 return -ENOMEM;
2484}
2485EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2486
2487int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2488{
2489 return queue_work(kblockd_workqueue, work);
2490}
2491EXPORT_SYMBOL(kblockd_schedule_work);
2492
2493int __init blk_dev_init(void)
2494{
2495 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2496 sizeof(((struct request *)0)->cmd_flags));
2497
2498 kblockd_workqueue = create_workqueue("kblockd");
2499 if (!kblockd_workqueue)
2500 panic("Failed to create kblockd\n");
2501
2502 request_cachep = kmem_cache_create("blkdev_requests",
2503 sizeof(struct request), 0, SLAB_PANIC, NULL);
2504
2505 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2506 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2507
2508 return 0;
2509}
2510