]> bbs.cooldavid.org Git - net-next-2.6.git/blame - tools/perf/builtin-timechart.c
perf/live: don't synthesize build ids at the end of a live mode trace
[net-next-2.6.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
10274989
AV
24#include "util/callchain.h"
25#include "util/strlist.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include "util/parse-options.h"
30#include "util/parse-events.h"
5cbd0805 31#include "util/event.h"
301a0b02 32#include "util/session.h"
10274989
AV
33#include "util/svghelper.h"
34
35static char const *input_name = "perf.data";
36static char const *output_name = "output.svg";
37
10274989
AV
38static unsigned int numcpus;
39static u64 min_freq; /* Lowest CPU frequency seen */
40static u64 max_freq; /* Highest CPU frequency seen */
41static u64 turbo_frequency;
42
43static u64 first_time, last_time;
44
c0555642 45static bool power_only;
39a90a8e 46
10274989 47
10274989
AV
48struct per_pid;
49struct per_pidcomm;
50
51struct cpu_sample;
52struct power_event;
53struct wake_event;
54
55struct sample_wrapper;
56
57/*
58 * Datastructure layout:
59 * We keep an list of "pid"s, matching the kernels notion of a task struct.
60 * Each "pid" entry, has a list of "comm"s.
61 * this is because we want to track different programs different, while
62 * exec will reuse the original pid (by design).
63 * Each comm has a list of samples that will be used to draw
64 * final graph.
65 */
66
67struct per_pid {
68 struct per_pid *next;
69
70 int pid;
71 int ppid;
72
73 u64 start_time;
74 u64 end_time;
75 u64 total_time;
76 int display;
77
78 struct per_pidcomm *all;
79 struct per_pidcomm *current;
10274989
AV
80};
81
82
83struct per_pidcomm {
84 struct per_pidcomm *next;
85
86 u64 start_time;
87 u64 end_time;
88 u64 total_time;
89
90 int Y;
91 int display;
92
93 long state;
94 u64 state_since;
95
96 char *comm;
97
98 struct cpu_sample *samples;
99};
100
101struct sample_wrapper {
102 struct sample_wrapper *next;
103
104 u64 timestamp;
105 unsigned char data[0];
106};
107
108#define TYPE_NONE 0
109#define TYPE_RUNNING 1
110#define TYPE_WAITING 2
111#define TYPE_BLOCKED 3
112
113struct cpu_sample {
114 struct cpu_sample *next;
115
116 u64 start_time;
117 u64 end_time;
118 int type;
119 int cpu;
120};
121
122static struct per_pid *all_data;
123
124#define CSTATE 1
125#define PSTATE 2
126
127struct power_event {
128 struct power_event *next;
129 int type;
130 int state;
131 u64 start_time;
132 u64 end_time;
133 int cpu;
134};
135
136struct wake_event {
137 struct wake_event *next;
138 int waker;
139 int wakee;
140 u64 time;
141};
142
143static struct power_event *power_events;
144static struct wake_event *wake_events;
145
bbe2987b
AV
146struct process_filter;
147struct process_filter {
5cbd0805
LZ
148 char *name;
149 int pid;
150 struct process_filter *next;
bbe2987b
AV
151};
152
153static struct process_filter *process_filter;
154
155
10274989
AV
156static struct per_pid *find_create_pid(int pid)
157{
158 struct per_pid *cursor = all_data;
159
160 while (cursor) {
161 if (cursor->pid == pid)
162 return cursor;
163 cursor = cursor->next;
164 }
165 cursor = malloc(sizeof(struct per_pid));
166 assert(cursor != NULL);
167 memset(cursor, 0, sizeof(struct per_pid));
168 cursor->pid = pid;
169 cursor->next = all_data;
170 all_data = cursor;
171 return cursor;
172}
173
174static void pid_set_comm(int pid, char *comm)
175{
176 struct per_pid *p;
177 struct per_pidcomm *c;
178 p = find_create_pid(pid);
179 c = p->all;
180 while (c) {
181 if (c->comm && strcmp(c->comm, comm) == 0) {
182 p->current = c;
183 return;
184 }
185 if (!c->comm) {
186 c->comm = strdup(comm);
187 p->current = c;
188 return;
189 }
190 c = c->next;
191 }
192 c = malloc(sizeof(struct per_pidcomm));
193 assert(c != NULL);
194 memset(c, 0, sizeof(struct per_pidcomm));
195 c->comm = strdup(comm);
196 p->current = c;
197 c->next = p->all;
198 p->all = c;
199}
200
201static void pid_fork(int pid, int ppid, u64 timestamp)
202{
203 struct per_pid *p, *pp;
204 p = find_create_pid(pid);
205 pp = find_create_pid(ppid);
206 p->ppid = ppid;
207 if (pp->current && pp->current->comm && !p->current)
208 pid_set_comm(pid, pp->current->comm);
209
210 p->start_time = timestamp;
211 if (p->current) {
212 p->current->start_time = timestamp;
213 p->current->state_since = timestamp;
214 }
215}
216
217static void pid_exit(int pid, u64 timestamp)
218{
219 struct per_pid *p;
220 p = find_create_pid(pid);
221 p->end_time = timestamp;
222 if (p->current)
223 p->current->end_time = timestamp;
224}
225
226static void
227pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
228{
229 struct per_pid *p;
230 struct per_pidcomm *c;
231 struct cpu_sample *sample;
232
233 p = find_create_pid(pid);
234 c = p->current;
235 if (!c) {
236 c = malloc(sizeof(struct per_pidcomm));
237 assert(c != NULL);
238 memset(c, 0, sizeof(struct per_pidcomm));
239 p->current = c;
240 c->next = p->all;
241 p->all = c;
242 }
243
244 sample = malloc(sizeof(struct cpu_sample));
245 assert(sample != NULL);
246 memset(sample, 0, sizeof(struct cpu_sample));
247 sample->start_time = start;
248 sample->end_time = end;
249 sample->type = type;
250 sample->next = c->samples;
251 sample->cpu = cpu;
252 c->samples = sample;
253
254 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
255 c->total_time += (end-start);
256 p->total_time += (end-start);
257 }
258
259 if (c->start_time == 0 || c->start_time > start)
260 c->start_time = start;
261 if (p->start_time == 0 || p->start_time > start)
262 p->start_time = start;
263
264 if (cpu > numcpus)
265 numcpus = cpu;
266}
267
268#define MAX_CPUS 4096
269
270static u64 cpus_cstate_start_times[MAX_CPUS];
271static int cpus_cstate_state[MAX_CPUS];
272static u64 cpus_pstate_start_times[MAX_CPUS];
273static u64 cpus_pstate_state[MAX_CPUS];
274
d8f66248 275static int process_comm_event(event_t *event, struct perf_session *session __used)
10274989 276{
8f06d7e6 277 pid_set_comm(event->comm.tid, event->comm.comm);
10274989
AV
278 return 0;
279}
d8f66248
ACM
280
281static int process_fork_event(event_t *event, struct perf_session *session __used)
10274989
AV
282{
283 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
284 return 0;
285}
286
d8f66248 287static int process_exit_event(event_t *event, struct perf_session *session __used)
10274989
AV
288{
289 pid_exit(event->fork.pid, event->fork.time);
290 return 0;
291}
292
293struct trace_entry {
10274989
AV
294 unsigned short type;
295 unsigned char flags;
296 unsigned char preempt_count;
297 int pid;
028c5152 298 int lock_depth;
10274989
AV
299};
300
301struct power_entry {
302 struct trace_entry te;
303 s64 type;
304 s64 value;
305};
306
307#define TASK_COMM_LEN 16
308struct wakeup_entry {
309 struct trace_entry te;
310 char comm[TASK_COMM_LEN];
311 int pid;
312 int prio;
313 int success;
314};
315
316/*
317 * trace_flag_type is an enumeration that holds different
318 * states when a trace occurs. These are:
319 * IRQS_OFF - interrupts were disabled
320 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
321 * NEED_RESCED - reschedule is requested
322 * HARDIRQ - inside an interrupt handler
323 * SOFTIRQ - inside a softirq handler
324 */
325enum trace_flag_type {
326 TRACE_FLAG_IRQS_OFF = 0x01,
327 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
328 TRACE_FLAG_NEED_RESCHED = 0x04,
329 TRACE_FLAG_HARDIRQ = 0x08,
330 TRACE_FLAG_SOFTIRQ = 0x10,
331};
332
333
334
335struct sched_switch {
336 struct trace_entry te;
337 char prev_comm[TASK_COMM_LEN];
338 int prev_pid;
339 int prev_prio;
340 long prev_state; /* Arjan weeps. */
341 char next_comm[TASK_COMM_LEN];
342 int next_pid;
343 int next_prio;
344};
345
346static void c_state_start(int cpu, u64 timestamp, int state)
347{
348 cpus_cstate_start_times[cpu] = timestamp;
349 cpus_cstate_state[cpu] = state;
350}
351
352static void c_state_end(int cpu, u64 timestamp)
353{
354 struct power_event *pwr;
355 pwr = malloc(sizeof(struct power_event));
356 if (!pwr)
357 return;
358 memset(pwr, 0, sizeof(struct power_event));
359
360 pwr->state = cpus_cstate_state[cpu];
361 pwr->start_time = cpus_cstate_start_times[cpu];
362 pwr->end_time = timestamp;
363 pwr->cpu = cpu;
364 pwr->type = CSTATE;
365 pwr->next = power_events;
366
367 power_events = pwr;
368}
369
370static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
371{
372 struct power_event *pwr;
373 pwr = malloc(sizeof(struct power_event));
374
375 if (new_freq > 8000000) /* detect invalid data */
376 return;
377
378 if (!pwr)
379 return;
380 memset(pwr, 0, sizeof(struct power_event));
381
382 pwr->state = cpus_pstate_state[cpu];
383 pwr->start_time = cpus_pstate_start_times[cpu];
384 pwr->end_time = timestamp;
385 pwr->cpu = cpu;
386 pwr->type = PSTATE;
387 pwr->next = power_events;
388
389 if (!pwr->start_time)
390 pwr->start_time = first_time;
391
392 power_events = pwr;
393
394 cpus_pstate_state[cpu] = new_freq;
395 cpus_pstate_start_times[cpu] = timestamp;
396
397 if ((u64)new_freq > max_freq)
398 max_freq = new_freq;
399
400 if (new_freq < min_freq || min_freq == 0)
401 min_freq = new_freq;
402
403 if (new_freq == max_freq - 1000)
404 turbo_frequency = max_freq;
405}
406
407static void
408sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
409{
410 struct wake_event *we;
411 struct per_pid *p;
412 struct wakeup_entry *wake = (void *)te;
413
414 we = malloc(sizeof(struct wake_event));
415 if (!we)
416 return;
417
418 memset(we, 0, sizeof(struct wake_event));
419 we->time = timestamp;
420 we->waker = pid;
421
422 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
423 we->waker = -1;
424
425 we->wakee = wake->pid;
426 we->next = wake_events;
427 wake_events = we;
428 p = find_create_pid(we->wakee);
429
430 if (p && p->current && p->current->state == TYPE_NONE) {
431 p->current->state_since = timestamp;
432 p->current->state = TYPE_WAITING;
433 }
434 if (p && p->current && p->current->state == TYPE_BLOCKED) {
435 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
436 p->current->state_since = timestamp;
437 p->current->state = TYPE_WAITING;
438 }
439}
440
441static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
442{
443 struct per_pid *p = NULL, *prev_p;
444 struct sched_switch *sw = (void *)te;
445
446
447 prev_p = find_create_pid(sw->prev_pid);
448
449 p = find_create_pid(sw->next_pid);
450
451 if (prev_p->current && prev_p->current->state != TYPE_NONE)
452 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
453 if (p && p->current) {
454 if (p->current->state != TYPE_NONE)
455 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
456
457 p->current->state_since = timestamp;
458 p->current->state = TYPE_RUNNING;
459 }
460
461 if (prev_p->current) {
462 prev_p->current->state = TYPE_NONE;
463 prev_p->current->state_since = timestamp;
464 if (sw->prev_state & 2)
465 prev_p->current->state = TYPE_BLOCKED;
466 if (sw->prev_state == 0)
467 prev_p->current->state = TYPE_WAITING;
468 }
469}
470
471
c019879b 472static int process_sample_event(event_t *event, struct perf_session *session)
10274989 473{
180f95e2 474 struct sample_data data;
10274989
AV
475 struct trace_entry *te;
476
180f95e2 477 memset(&data, 0, sizeof(data));
10274989 478
c019879b 479 event__parse_sample(event, session->sample_type, &data);
10274989 480
c019879b 481 if (session->sample_type & PERF_SAMPLE_TIME) {
180f95e2
OH
482 if (!first_time || first_time > data.time)
483 first_time = data.time;
484 if (last_time < data.time)
485 last_time = data.time;
10274989 486 }
180f95e2
OH
487
488 te = (void *)data.raw_data;
c019879b 489 if (session->sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
10274989
AV
490 char *event_str;
491 struct power_entry *pe;
492
493 pe = (void *)te;
494
495 event_str = perf_header__find_event(te->type);
496
497 if (!event_str)
498 return 0;
499
500 if (strcmp(event_str, "power:power_start") == 0)
180f95e2 501 c_state_start(data.cpu, data.time, pe->value);
10274989
AV
502
503 if (strcmp(event_str, "power:power_end") == 0)
180f95e2 504 c_state_end(data.cpu, data.time);
10274989
AV
505
506 if (strcmp(event_str, "power:power_frequency") == 0)
180f95e2 507 p_state_change(data.cpu, data.time, pe->value);
10274989
AV
508
509 if (strcmp(event_str, "sched:sched_wakeup") == 0)
180f95e2 510 sched_wakeup(data.cpu, data.time, data.pid, te);
10274989
AV
511
512 if (strcmp(event_str, "sched:sched_switch") == 0)
180f95e2 513 sched_switch(data.cpu, data.time, te);
10274989
AV
514 }
515 return 0;
516}
517
518/*
519 * After the last sample we need to wrap up the current C/P state
520 * and close out each CPU for these.
521 */
522static void end_sample_processing(void)
523{
524 u64 cpu;
525 struct power_event *pwr;
526
39a90a8e 527 for (cpu = 0; cpu <= numcpus; cpu++) {
10274989
AV
528 pwr = malloc(sizeof(struct power_event));
529 if (!pwr)
530 return;
531 memset(pwr, 0, sizeof(struct power_event));
532
533 /* C state */
534#if 0
535 pwr->state = cpus_cstate_state[cpu];
536 pwr->start_time = cpus_cstate_start_times[cpu];
537 pwr->end_time = last_time;
538 pwr->cpu = cpu;
539 pwr->type = CSTATE;
540 pwr->next = power_events;
541
542 power_events = pwr;
543#endif
544 /* P state */
545
546 pwr = malloc(sizeof(struct power_event));
547 if (!pwr)
548 return;
549 memset(pwr, 0, sizeof(struct power_event));
550
551 pwr->state = cpus_pstate_state[cpu];
552 pwr->start_time = cpus_pstate_start_times[cpu];
553 pwr->end_time = last_time;
554 pwr->cpu = cpu;
555 pwr->type = PSTATE;
556 pwr->next = power_events;
557
558 if (!pwr->start_time)
559 pwr->start_time = first_time;
560 if (!pwr->state)
561 pwr->state = min_freq;
562 power_events = pwr;
563 }
564}
565
10274989
AV
566/*
567 * Sort the pid datastructure
568 */
569static void sort_pids(void)
570{
571 struct per_pid *new_list, *p, *cursor, *prev;
572 /* sort by ppid first, then by pid, lowest to highest */
573
574 new_list = NULL;
575
576 while (all_data) {
577 p = all_data;
578 all_data = p->next;
579 p->next = NULL;
580
581 if (new_list == NULL) {
582 new_list = p;
583 p->next = NULL;
584 continue;
585 }
586 prev = NULL;
587 cursor = new_list;
588 while (cursor) {
589 if (cursor->ppid > p->ppid ||
590 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
591 /* must insert before */
592 if (prev) {
593 p->next = prev->next;
594 prev->next = p;
595 cursor = NULL;
596 continue;
597 } else {
598 p->next = new_list;
599 new_list = p;
600 cursor = NULL;
601 continue;
602 }
603 }
604
605 prev = cursor;
606 cursor = cursor->next;
607 if (!cursor)
608 prev->next = p;
609 }
610 }
611 all_data = new_list;
612}
613
614
615static void draw_c_p_states(void)
616{
617 struct power_event *pwr;
618 pwr = power_events;
619
620 /*
621 * two pass drawing so that the P state bars are on top of the C state blocks
622 */
623 while (pwr) {
624 if (pwr->type == CSTATE)
625 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
626 pwr = pwr->next;
627 }
628
629 pwr = power_events;
630 while (pwr) {
631 if (pwr->type == PSTATE) {
632 if (!pwr->state)
633 pwr->state = min_freq;
634 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
635 }
636 pwr = pwr->next;
637 }
638}
639
640static void draw_wakeups(void)
641{
642 struct wake_event *we;
643 struct per_pid *p;
644 struct per_pidcomm *c;
645
646 we = wake_events;
647 while (we) {
648 int from = 0, to = 0;
4f1202c8 649 char *task_from = NULL, *task_to = NULL;
10274989
AV
650
651 /* locate the column of the waker and wakee */
652 p = all_data;
653 while (p) {
654 if (p->pid == we->waker || p->pid == we->wakee) {
655 c = p->all;
656 while (c) {
657 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 658 if (p->pid == we->waker && !from) {
10274989 659 from = c->Y;
3bc2a39c 660 task_from = strdup(c->comm);
4f1202c8 661 }
bbe2987b 662 if (p->pid == we->wakee && !to) {
10274989 663 to = c->Y;
3bc2a39c 664 task_to = strdup(c->comm);
4f1202c8 665 }
10274989
AV
666 }
667 c = c->next;
668 }
3bc2a39c
AV
669 c = p->all;
670 while (c) {
671 if (p->pid == we->waker && !from) {
672 from = c->Y;
673 task_from = strdup(c->comm);
674 }
675 if (p->pid == we->wakee && !to) {
676 to = c->Y;
677 task_to = strdup(c->comm);
678 }
679 c = c->next;
680 }
10274989
AV
681 }
682 p = p->next;
683 }
684
3bc2a39c
AV
685 if (!task_from) {
686 task_from = malloc(40);
687 sprintf(task_from, "[%i]", we->waker);
688 }
689 if (!task_to) {
690 task_to = malloc(40);
691 sprintf(task_to, "[%i]", we->wakee);
692 }
693
10274989
AV
694 if (we->waker == -1)
695 svg_interrupt(we->time, to);
696 else if (from && to && abs(from - to) == 1)
697 svg_wakeline(we->time, from, to);
698 else
4f1202c8 699 svg_partial_wakeline(we->time, from, task_from, to, task_to);
10274989 700 we = we->next;
3bc2a39c
AV
701
702 free(task_from);
703 free(task_to);
10274989
AV
704 }
705}
706
707static void draw_cpu_usage(void)
708{
709 struct per_pid *p;
710 struct per_pidcomm *c;
711 struct cpu_sample *sample;
712 p = all_data;
713 while (p) {
714 c = p->all;
715 while (c) {
716 sample = c->samples;
717 while (sample) {
718 if (sample->type == TYPE_RUNNING)
719 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
720
721 sample = sample->next;
722 }
723 c = c->next;
724 }
725 p = p->next;
726 }
727}
728
729static void draw_process_bars(void)
730{
731 struct per_pid *p;
732 struct per_pidcomm *c;
733 struct cpu_sample *sample;
734 int Y = 0;
735
736 Y = 2 * numcpus + 2;
737
738 p = all_data;
739 while (p) {
740 c = p->all;
741 while (c) {
742 if (!c->display) {
743 c->Y = 0;
744 c = c->next;
745 continue;
746 }
747
a92fe7b3 748 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
749 sample = c->samples;
750 while (sample) {
751 if (sample->type == TYPE_RUNNING)
a92fe7b3 752 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
10274989
AV
753 if (sample->type == TYPE_BLOCKED)
754 svg_box(Y, sample->start_time, sample->end_time, "blocked");
755 if (sample->type == TYPE_WAITING)
a92fe7b3 756 svg_waiting(Y, sample->start_time, sample->end_time);
10274989
AV
757 sample = sample->next;
758 }
759
760 if (c->comm) {
761 char comm[256];
762 if (c->total_time > 5000000000) /* 5 seconds */
763 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
764 else
765 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
766
767 svg_text(Y, c->start_time, comm);
768 }
769 c->Y = Y;
770 Y++;
771 c = c->next;
772 }
773 p = p->next;
774 }
775}
776
bbe2987b
AV
777static void add_process_filter(const char *string)
778{
779 struct process_filter *filt;
780 int pid;
781
782 pid = strtoull(string, NULL, 10);
783 filt = malloc(sizeof(struct process_filter));
784 if (!filt)
785 return;
786
787 filt->name = strdup(string);
788 filt->pid = pid;
789 filt->next = process_filter;
790
791 process_filter = filt;
792}
793
794static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
795{
796 struct process_filter *filt;
797 if (!process_filter)
798 return 1;
799
800 filt = process_filter;
801 while (filt) {
802 if (filt->pid && p->pid == filt->pid)
803 return 1;
804 if (strcmp(filt->name, c->comm) == 0)
805 return 1;
806 filt = filt->next;
807 }
808 return 0;
809}
810
811static int determine_display_tasks_filtered(void)
812{
813 struct per_pid *p;
814 struct per_pidcomm *c;
815 int count = 0;
816
817 p = all_data;
818 while (p) {
819 p->display = 0;
820 if (p->start_time == 1)
821 p->start_time = first_time;
822
823 /* no exit marker, task kept running to the end */
824 if (p->end_time == 0)
825 p->end_time = last_time;
826
827 c = p->all;
828
829 while (c) {
830 c->display = 0;
831
832 if (c->start_time == 1)
833 c->start_time = first_time;
834
835 if (passes_filter(p, c)) {
836 c->display = 1;
837 p->display = 1;
838 count++;
839 }
840
841 if (c->end_time == 0)
842 c->end_time = last_time;
843
844 c = c->next;
845 }
846 p = p->next;
847 }
848 return count;
849}
850
10274989
AV
851static int determine_display_tasks(u64 threshold)
852{
853 struct per_pid *p;
854 struct per_pidcomm *c;
855 int count = 0;
856
bbe2987b
AV
857 if (process_filter)
858 return determine_display_tasks_filtered();
859
10274989
AV
860 p = all_data;
861 while (p) {
862 p->display = 0;
863 if (p->start_time == 1)
864 p->start_time = first_time;
865
866 /* no exit marker, task kept running to the end */
867 if (p->end_time == 0)
868 p->end_time = last_time;
39a90a8e 869 if (p->total_time >= threshold && !power_only)
10274989
AV
870 p->display = 1;
871
872 c = p->all;
873
874 while (c) {
875 c->display = 0;
876
877 if (c->start_time == 1)
878 c->start_time = first_time;
879
39a90a8e 880 if (c->total_time >= threshold && !power_only) {
10274989
AV
881 c->display = 1;
882 count++;
883 }
884
885 if (c->end_time == 0)
886 c->end_time = last_time;
887
888 c = c->next;
889 }
890 p = p->next;
891 }
892 return count;
893}
894
895
896
897#define TIME_THRESH 10000000
898
899static void write_svg_file(const char *filename)
900{
901 u64 i;
902 int count;
903
904 numcpus++;
905
906
907 count = determine_display_tasks(TIME_THRESH);
908
909 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
910 if (count < 15)
911 count = determine_display_tasks(TIME_THRESH / 10);
912
5094b655 913 open_svg(filename, numcpus, count, first_time, last_time);
10274989 914
5094b655 915 svg_time_grid();
10274989
AV
916 svg_legenda();
917
918 for (i = 0; i < numcpus; i++)
919 svg_cpu_box(i, max_freq, turbo_frequency);
920
921 draw_cpu_usage();
922 draw_process_bars();
923 draw_c_p_states();
924 draw_wakeups();
925
926 svg_close();
927}
928
301a0b02 929static struct perf_event_ops event_ops = {
9df9bbba
FW
930 .comm = process_comm_event,
931 .fork = process_fork_event,
932 .exit = process_exit_event,
933 .sample = process_sample_event,
934 .ordered_samples = true,
5cbd0805 935};
10274989 936
5cbd0805
LZ
937static int __cmd_timechart(void)
938{
75be6cf4 939 struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0);
d549c769 940 int ret = -EINVAL;
10274989 941
94c744b6
ACM
942 if (session == NULL)
943 return -ENOMEM;
944
d549c769
ACM
945 if (!perf_session__has_traces(session, "timechart record"))
946 goto out_delete;
947
ec913369 948 ret = perf_session__process_events(session, &event_ops);
5cbd0805 949 if (ret)
94c744b6 950 goto out_delete;
10274989 951
10274989
AV
952 end_sample_processing();
953
954 sort_pids();
955
956 write_svg_file(output_name);
957
6beba7ad
ACM
958 pr_info("Written %2.1f seconds of trace to %s.\n",
959 (last_time - first_time) / 1000000000.0, output_name);
94c744b6
ACM
960out_delete:
961 perf_session__delete(session);
962 return ret;
10274989
AV
963}
964
3c09eebd
AV
965static const char * const timechart_usage[] = {
966 "perf timechart [<options>] {record}",
10274989
AV
967 NULL
968};
969
3c09eebd
AV
970static const char *record_args[] = {
971 "record",
972 "-a",
973 "-R",
3c09eebd
AV
974 "-f",
975 "-c", "1",
976 "-e", "power:power_start",
977 "-e", "power:power_end",
978 "-e", "power:power_frequency",
979 "-e", "sched:sched_wakeup",
980 "-e", "sched:sched_switch",
981};
982
983static int __cmd_record(int argc, const char **argv)
984{
985 unsigned int rec_argc, i, j;
986 const char **rec_argv;
987
988 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
989 rec_argv = calloc(rec_argc + 1, sizeof(char *));
990
991 for (i = 0; i < ARRAY_SIZE(record_args); i++)
992 rec_argv[i] = strdup(record_args[i]);
993
994 for (j = 1; j < (unsigned int)argc; j++, i++)
995 rec_argv[i] = argv[j];
996
997 return cmd_record(i, rec_argv, NULL);
998}
999
bbe2987b
AV
1000static int
1001parse_process(const struct option *opt __used, const char *arg, int __used unset)
1002{
1003 if (arg)
1004 add_process_filter(arg);
1005 return 0;
1006}
1007
10274989
AV
1008static const struct option options[] = {
1009 OPT_STRING('i', "input", &input_name, "file",
1010 "input file name"),
1011 OPT_STRING('o', "output", &output_name, "file",
1012 "output file name"),
5094b655
AV
1013 OPT_INTEGER('w', "width", &svg_page_width,
1014 "page width"),
bbe2987b 1015 OPT_BOOLEAN('P', "power-only", &power_only,
39a90a8e 1016 "output power data only"),
bbe2987b
AV
1017 OPT_CALLBACK('p', "process", NULL, "process",
1018 "process selector. Pass a pid or process name.",
1019 parse_process),
10274989
AV
1020 OPT_END()
1021};
1022
1023
1024int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1025{
3c09eebd
AV
1026 argc = parse_options(argc, argv, options, timechart_usage,
1027 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1028
655000e7
ACM
1029 symbol__init();
1030
3c09eebd
AV
1031 if (argc && !strncmp(argv[0], "rec", 3))
1032 return __cmd_record(argc, argv);
1033 else if (argc)
1034 usage_with_options(timechart_usage, options);
10274989
AV
1035
1036 setup_pager();
1037
1038 return __cmd_timechart();
1039}