]> bbs.cooldavid.org Git - net-next-2.6.git/blame - tools/perf/builtin-timechart.c
perf timechart: Remove open-coded event parsing code
[net-next-2.6.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
24#include "util/string.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
5cbd0805
LZ
32#include "util/event.h"
33#include "util/data_map.h"
10274989
AV
34#include "util/svghelper.h"
35
36static char const *input_name = "perf.data";
37static char const *output_name = "output.svg";
38
39
10274989
AV
40static u64 sample_type;
41
42static unsigned int numcpus;
43static u64 min_freq; /* Lowest CPU frequency seen */
44static u64 max_freq; /* Highest CPU frequency seen */
45static u64 turbo_frequency;
46
47static u64 first_time, last_time;
48
39a90a8e
AV
49static int power_only;
50
10274989 51
10274989
AV
52struct per_pid;
53struct per_pidcomm;
54
55struct cpu_sample;
56struct power_event;
57struct wake_event;
58
59struct sample_wrapper;
60
61/*
62 * Datastructure layout:
63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
64 * Each "pid" entry, has a list of "comm"s.
65 * this is because we want to track different programs different, while
66 * exec will reuse the original pid (by design).
67 * Each comm has a list of samples that will be used to draw
68 * final graph.
69 */
70
71struct per_pid {
72 struct per_pid *next;
73
74 int pid;
75 int ppid;
76
77 u64 start_time;
78 u64 end_time;
79 u64 total_time;
80 int display;
81
82 struct per_pidcomm *all;
83 struct per_pidcomm *current;
84
85 int painted;
86};
87
88
89struct per_pidcomm {
90 struct per_pidcomm *next;
91
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
95
96 int Y;
97 int display;
98
99 long state;
100 u64 state_since;
101
102 char *comm;
103
104 struct cpu_sample *samples;
105};
106
107struct sample_wrapper {
108 struct sample_wrapper *next;
109
110 u64 timestamp;
111 unsigned char data[0];
112};
113
114#define TYPE_NONE 0
115#define TYPE_RUNNING 1
116#define TYPE_WAITING 2
117#define TYPE_BLOCKED 3
118
119struct cpu_sample {
120 struct cpu_sample *next;
121
122 u64 start_time;
123 u64 end_time;
124 int type;
125 int cpu;
126};
127
128static struct per_pid *all_data;
129
130#define CSTATE 1
131#define PSTATE 2
132
133struct power_event {
134 struct power_event *next;
135 int type;
136 int state;
137 u64 start_time;
138 u64 end_time;
139 int cpu;
140};
141
142struct wake_event {
143 struct wake_event *next;
144 int waker;
145 int wakee;
146 u64 time;
147};
148
149static struct power_event *power_events;
150static struct wake_event *wake_events;
151
152struct sample_wrapper *all_samples;
153
bbe2987b
AV
154
155struct process_filter;
156struct process_filter {
5cbd0805
LZ
157 char *name;
158 int pid;
159 struct process_filter *next;
bbe2987b
AV
160};
161
162static struct process_filter *process_filter;
163
164
10274989
AV
165static struct per_pid *find_create_pid(int pid)
166{
167 struct per_pid *cursor = all_data;
168
169 while (cursor) {
170 if (cursor->pid == pid)
171 return cursor;
172 cursor = cursor->next;
173 }
174 cursor = malloc(sizeof(struct per_pid));
175 assert(cursor != NULL);
176 memset(cursor, 0, sizeof(struct per_pid));
177 cursor->pid = pid;
178 cursor->next = all_data;
179 all_data = cursor;
180 return cursor;
181}
182
183static void pid_set_comm(int pid, char *comm)
184{
185 struct per_pid *p;
186 struct per_pidcomm *c;
187 p = find_create_pid(pid);
188 c = p->all;
189 while (c) {
190 if (c->comm && strcmp(c->comm, comm) == 0) {
191 p->current = c;
192 return;
193 }
194 if (!c->comm) {
195 c->comm = strdup(comm);
196 p->current = c;
197 return;
198 }
199 c = c->next;
200 }
201 c = malloc(sizeof(struct per_pidcomm));
202 assert(c != NULL);
203 memset(c, 0, sizeof(struct per_pidcomm));
204 c->comm = strdup(comm);
205 p->current = c;
206 c->next = p->all;
207 p->all = c;
208}
209
210static void pid_fork(int pid, int ppid, u64 timestamp)
211{
212 struct per_pid *p, *pp;
213 p = find_create_pid(pid);
214 pp = find_create_pid(ppid);
215 p->ppid = ppid;
216 if (pp->current && pp->current->comm && !p->current)
217 pid_set_comm(pid, pp->current->comm);
218
219 p->start_time = timestamp;
220 if (p->current) {
221 p->current->start_time = timestamp;
222 p->current->state_since = timestamp;
223 }
224}
225
226static void pid_exit(int pid, u64 timestamp)
227{
228 struct per_pid *p;
229 p = find_create_pid(pid);
230 p->end_time = timestamp;
231 if (p->current)
232 p->current->end_time = timestamp;
233}
234
235static void
236pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
237{
238 struct per_pid *p;
239 struct per_pidcomm *c;
240 struct cpu_sample *sample;
241
242 p = find_create_pid(pid);
243 c = p->current;
244 if (!c) {
245 c = malloc(sizeof(struct per_pidcomm));
246 assert(c != NULL);
247 memset(c, 0, sizeof(struct per_pidcomm));
248 p->current = c;
249 c->next = p->all;
250 p->all = c;
251 }
252
253 sample = malloc(sizeof(struct cpu_sample));
254 assert(sample != NULL);
255 memset(sample, 0, sizeof(struct cpu_sample));
256 sample->start_time = start;
257 sample->end_time = end;
258 sample->type = type;
259 sample->next = c->samples;
260 sample->cpu = cpu;
261 c->samples = sample;
262
263 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
264 c->total_time += (end-start);
265 p->total_time += (end-start);
266 }
267
268 if (c->start_time == 0 || c->start_time > start)
269 c->start_time = start;
270 if (p->start_time == 0 || p->start_time > start)
271 p->start_time = start;
272
273 if (cpu > numcpus)
274 numcpus = cpu;
275}
276
277#define MAX_CPUS 4096
278
279static u64 cpus_cstate_start_times[MAX_CPUS];
280static int cpus_cstate_state[MAX_CPUS];
281static u64 cpus_pstate_start_times[MAX_CPUS];
282static u64 cpus_pstate_state[MAX_CPUS];
283
284static int
285process_comm_event(event_t *event)
286{
287 pid_set_comm(event->comm.pid, event->comm.comm);
288 return 0;
289}
290static int
291process_fork_event(event_t *event)
292{
293 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
294 return 0;
295}
296
297static int
298process_exit_event(event_t *event)
299{
300 pid_exit(event->fork.pid, event->fork.time);
301 return 0;
302}
303
304struct trace_entry {
305 u32 size;
306 unsigned short type;
307 unsigned char flags;
308 unsigned char preempt_count;
309 int pid;
310 int tgid;
311};
312
313struct power_entry {
314 struct trace_entry te;
315 s64 type;
316 s64 value;
317};
318
319#define TASK_COMM_LEN 16
320struct wakeup_entry {
321 struct trace_entry te;
322 char comm[TASK_COMM_LEN];
323 int pid;
324 int prio;
325 int success;
326};
327
328/*
329 * trace_flag_type is an enumeration that holds different
330 * states when a trace occurs. These are:
331 * IRQS_OFF - interrupts were disabled
332 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
333 * NEED_RESCED - reschedule is requested
334 * HARDIRQ - inside an interrupt handler
335 * SOFTIRQ - inside a softirq handler
336 */
337enum trace_flag_type {
338 TRACE_FLAG_IRQS_OFF = 0x01,
339 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
340 TRACE_FLAG_NEED_RESCHED = 0x04,
341 TRACE_FLAG_HARDIRQ = 0x08,
342 TRACE_FLAG_SOFTIRQ = 0x10,
343};
344
345
346
347struct sched_switch {
348 struct trace_entry te;
349 char prev_comm[TASK_COMM_LEN];
350 int prev_pid;
351 int prev_prio;
352 long prev_state; /* Arjan weeps. */
353 char next_comm[TASK_COMM_LEN];
354 int next_pid;
355 int next_prio;
356};
357
358static void c_state_start(int cpu, u64 timestamp, int state)
359{
360 cpus_cstate_start_times[cpu] = timestamp;
361 cpus_cstate_state[cpu] = state;
362}
363
364static void c_state_end(int cpu, u64 timestamp)
365{
366 struct power_event *pwr;
367 pwr = malloc(sizeof(struct power_event));
368 if (!pwr)
369 return;
370 memset(pwr, 0, sizeof(struct power_event));
371
372 pwr->state = cpus_cstate_state[cpu];
373 pwr->start_time = cpus_cstate_start_times[cpu];
374 pwr->end_time = timestamp;
375 pwr->cpu = cpu;
376 pwr->type = CSTATE;
377 pwr->next = power_events;
378
379 power_events = pwr;
380}
381
382static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
383{
384 struct power_event *pwr;
385 pwr = malloc(sizeof(struct power_event));
386
387 if (new_freq > 8000000) /* detect invalid data */
388 return;
389
390 if (!pwr)
391 return;
392 memset(pwr, 0, sizeof(struct power_event));
393
394 pwr->state = cpus_pstate_state[cpu];
395 pwr->start_time = cpus_pstate_start_times[cpu];
396 pwr->end_time = timestamp;
397 pwr->cpu = cpu;
398 pwr->type = PSTATE;
399 pwr->next = power_events;
400
401 if (!pwr->start_time)
402 pwr->start_time = first_time;
403
404 power_events = pwr;
405
406 cpus_pstate_state[cpu] = new_freq;
407 cpus_pstate_start_times[cpu] = timestamp;
408
409 if ((u64)new_freq > max_freq)
410 max_freq = new_freq;
411
412 if (new_freq < min_freq || min_freq == 0)
413 min_freq = new_freq;
414
415 if (new_freq == max_freq - 1000)
416 turbo_frequency = max_freq;
417}
418
419static void
420sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
421{
422 struct wake_event *we;
423 struct per_pid *p;
424 struct wakeup_entry *wake = (void *)te;
425
426 we = malloc(sizeof(struct wake_event));
427 if (!we)
428 return;
429
430 memset(we, 0, sizeof(struct wake_event));
431 we->time = timestamp;
432 we->waker = pid;
433
434 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
435 we->waker = -1;
436
437 we->wakee = wake->pid;
438 we->next = wake_events;
439 wake_events = we;
440 p = find_create_pid(we->wakee);
441
442 if (p && p->current && p->current->state == TYPE_NONE) {
443 p->current->state_since = timestamp;
444 p->current->state = TYPE_WAITING;
445 }
446 if (p && p->current && p->current->state == TYPE_BLOCKED) {
447 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
448 p->current->state_since = timestamp;
449 p->current->state = TYPE_WAITING;
450 }
451}
452
453static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
454{
455 struct per_pid *p = NULL, *prev_p;
456 struct sched_switch *sw = (void *)te;
457
458
459 prev_p = find_create_pid(sw->prev_pid);
460
461 p = find_create_pid(sw->next_pid);
462
463 if (prev_p->current && prev_p->current->state != TYPE_NONE)
464 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
465 if (p && p->current) {
466 if (p->current->state != TYPE_NONE)
467 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
468
469 p->current->state_since = timestamp;
470 p->current->state = TYPE_RUNNING;
471 }
472
473 if (prev_p->current) {
474 prev_p->current->state = TYPE_NONE;
475 prev_p->current->state_since = timestamp;
476 if (sw->prev_state & 2)
477 prev_p->current->state = TYPE_BLOCKED;
478 if (sw->prev_state == 0)
479 prev_p->current->state = TYPE_WAITING;
480 }
481}
482
483
484static int
485process_sample_event(event_t *event)
486{
487 int cursor = 0;
488 u64 addr = 0;
489 u64 stamp = 0;
490 u32 cpu = 0;
491 u32 pid = 0;
492 struct trace_entry *te;
493
494 if (sample_type & PERF_SAMPLE_IP)
495 cursor++;
496
497 if (sample_type & PERF_SAMPLE_TID) {
498 pid = event->sample.array[cursor]>>32;
499 cursor++;
500 }
501 if (sample_type & PERF_SAMPLE_TIME) {
502 stamp = event->sample.array[cursor++];
503
504 if (!first_time || first_time > stamp)
505 first_time = stamp;
506 if (last_time < stamp)
507 last_time = stamp;
508
509 }
510 if (sample_type & PERF_SAMPLE_ADDR)
511 addr = event->sample.array[cursor++];
512 if (sample_type & PERF_SAMPLE_ID)
513 cursor++;
514 if (sample_type & PERF_SAMPLE_STREAM_ID)
515 cursor++;
516 if (sample_type & PERF_SAMPLE_CPU)
517 cpu = event->sample.array[cursor++] & 0xFFFFFFFF;
518 if (sample_type & PERF_SAMPLE_PERIOD)
519 cursor++;
520
521 te = (void *)&event->sample.array[cursor];
522
523 if (sample_type & PERF_SAMPLE_RAW && te->size > 0) {
524 char *event_str;
525 struct power_entry *pe;
526
527 pe = (void *)te;
528
529 event_str = perf_header__find_event(te->type);
530
531 if (!event_str)
532 return 0;
533
534 if (strcmp(event_str, "power:power_start") == 0)
535 c_state_start(cpu, stamp, pe->value);
536
537 if (strcmp(event_str, "power:power_end") == 0)
538 c_state_end(cpu, stamp);
539
540 if (strcmp(event_str, "power:power_frequency") == 0)
541 p_state_change(cpu, stamp, pe->value);
542
543 if (strcmp(event_str, "sched:sched_wakeup") == 0)
544 sched_wakeup(cpu, stamp, pid, te);
545
546 if (strcmp(event_str, "sched:sched_switch") == 0)
547 sched_switch(cpu, stamp, te);
548 }
549 return 0;
550}
551
552/*
553 * After the last sample we need to wrap up the current C/P state
554 * and close out each CPU for these.
555 */
556static void end_sample_processing(void)
557{
558 u64 cpu;
559 struct power_event *pwr;
560
39a90a8e 561 for (cpu = 0; cpu <= numcpus; cpu++) {
10274989
AV
562 pwr = malloc(sizeof(struct power_event));
563 if (!pwr)
564 return;
565 memset(pwr, 0, sizeof(struct power_event));
566
567 /* C state */
568#if 0
569 pwr->state = cpus_cstate_state[cpu];
570 pwr->start_time = cpus_cstate_start_times[cpu];
571 pwr->end_time = last_time;
572 pwr->cpu = cpu;
573 pwr->type = CSTATE;
574 pwr->next = power_events;
575
576 power_events = pwr;
577#endif
578 /* P state */
579
580 pwr = malloc(sizeof(struct power_event));
581 if (!pwr)
582 return;
583 memset(pwr, 0, sizeof(struct power_event));
584
585 pwr->state = cpus_pstate_state[cpu];
586 pwr->start_time = cpus_pstate_start_times[cpu];
587 pwr->end_time = last_time;
588 pwr->cpu = cpu;
589 pwr->type = PSTATE;
590 pwr->next = power_events;
591
592 if (!pwr->start_time)
593 pwr->start_time = first_time;
594 if (!pwr->state)
595 pwr->state = min_freq;
596 power_events = pwr;
597 }
598}
599
600static u64 sample_time(event_t *event)
601{
602 int cursor;
603
604 cursor = 0;
605 if (sample_type & PERF_SAMPLE_IP)
606 cursor++;
607 if (sample_type & PERF_SAMPLE_TID)
608 cursor++;
609 if (sample_type & PERF_SAMPLE_TIME)
610 return event->sample.array[cursor];
611 return 0;
612}
613
614
615/*
616 * We first queue all events, sorted backwards by insertion.
617 * The order will get flipped later.
618 */
619static int
620queue_sample_event(event_t *event)
621{
622 struct sample_wrapper *copy, *prev;
623 int size;
624
625 size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
626
627 copy = malloc(size);
628 if (!copy)
629 return 1;
630
631 memset(copy, 0, size);
632
633 copy->next = NULL;
634 copy->timestamp = sample_time(event);
635
636 memcpy(&copy->data, event, event->sample.header.size);
637
638 /* insert in the right place in the list */
639
640 if (!all_samples) {
641 /* first sample ever */
642 all_samples = copy;
643 return 0;
644 }
645
646 if (all_samples->timestamp < copy->timestamp) {
647 /* insert at the head of the list */
648 copy->next = all_samples;
649 all_samples = copy;
650 return 0;
651 }
652
653 prev = all_samples;
654 while (prev->next) {
655 if (prev->next->timestamp < copy->timestamp) {
656 copy->next = prev->next;
657 prev->next = copy;
658 return 0;
659 }
660 prev = prev->next;
661 }
662 /* insert at the end of the list */
663 prev->next = copy;
664
665 return 0;
666}
667
668static void sort_queued_samples(void)
669{
670 struct sample_wrapper *cursor, *next;
671
672 cursor = all_samples;
673 all_samples = NULL;
674
675 while (cursor) {
676 next = cursor->next;
677 cursor->next = all_samples;
678 all_samples = cursor;
679 cursor = next;
680 }
681}
682
683/*
684 * Sort the pid datastructure
685 */
686static void sort_pids(void)
687{
688 struct per_pid *new_list, *p, *cursor, *prev;
689 /* sort by ppid first, then by pid, lowest to highest */
690
691 new_list = NULL;
692
693 while (all_data) {
694 p = all_data;
695 all_data = p->next;
696 p->next = NULL;
697
698 if (new_list == NULL) {
699 new_list = p;
700 p->next = NULL;
701 continue;
702 }
703 prev = NULL;
704 cursor = new_list;
705 while (cursor) {
706 if (cursor->ppid > p->ppid ||
707 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
708 /* must insert before */
709 if (prev) {
710 p->next = prev->next;
711 prev->next = p;
712 cursor = NULL;
713 continue;
714 } else {
715 p->next = new_list;
716 new_list = p;
717 cursor = NULL;
718 continue;
719 }
720 }
721
722 prev = cursor;
723 cursor = cursor->next;
724 if (!cursor)
725 prev->next = p;
726 }
727 }
728 all_data = new_list;
729}
730
731
732static void draw_c_p_states(void)
733{
734 struct power_event *pwr;
735 pwr = power_events;
736
737 /*
738 * two pass drawing so that the P state bars are on top of the C state blocks
739 */
740 while (pwr) {
741 if (pwr->type == CSTATE)
742 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
743 pwr = pwr->next;
744 }
745
746 pwr = power_events;
747 while (pwr) {
748 if (pwr->type == PSTATE) {
749 if (!pwr->state)
750 pwr->state = min_freq;
751 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
752 }
753 pwr = pwr->next;
754 }
755}
756
757static void draw_wakeups(void)
758{
759 struct wake_event *we;
760 struct per_pid *p;
761 struct per_pidcomm *c;
762
763 we = wake_events;
764 while (we) {
765 int from = 0, to = 0;
4f1202c8 766 char *task_from = NULL, *task_to = NULL;
10274989
AV
767
768 /* locate the column of the waker and wakee */
769 p = all_data;
770 while (p) {
771 if (p->pid == we->waker || p->pid == we->wakee) {
772 c = p->all;
773 while (c) {
774 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 775 if (p->pid == we->waker && !from) {
10274989 776 from = c->Y;
3bc2a39c 777 task_from = strdup(c->comm);
4f1202c8 778 }
bbe2987b 779 if (p->pid == we->wakee && !to) {
10274989 780 to = c->Y;
3bc2a39c 781 task_to = strdup(c->comm);
4f1202c8 782 }
10274989
AV
783 }
784 c = c->next;
785 }
3bc2a39c
AV
786 c = p->all;
787 while (c) {
788 if (p->pid == we->waker && !from) {
789 from = c->Y;
790 task_from = strdup(c->comm);
791 }
792 if (p->pid == we->wakee && !to) {
793 to = c->Y;
794 task_to = strdup(c->comm);
795 }
796 c = c->next;
797 }
10274989
AV
798 }
799 p = p->next;
800 }
801
3bc2a39c
AV
802 if (!task_from) {
803 task_from = malloc(40);
804 sprintf(task_from, "[%i]", we->waker);
805 }
806 if (!task_to) {
807 task_to = malloc(40);
808 sprintf(task_to, "[%i]", we->wakee);
809 }
810
10274989
AV
811 if (we->waker == -1)
812 svg_interrupt(we->time, to);
813 else if (from && to && abs(from - to) == 1)
814 svg_wakeline(we->time, from, to);
815 else
4f1202c8 816 svg_partial_wakeline(we->time, from, task_from, to, task_to);
10274989 817 we = we->next;
3bc2a39c
AV
818
819 free(task_from);
820 free(task_to);
10274989
AV
821 }
822}
823
824static void draw_cpu_usage(void)
825{
826 struct per_pid *p;
827 struct per_pidcomm *c;
828 struct cpu_sample *sample;
829 p = all_data;
830 while (p) {
831 c = p->all;
832 while (c) {
833 sample = c->samples;
834 while (sample) {
835 if (sample->type == TYPE_RUNNING)
836 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
837
838 sample = sample->next;
839 }
840 c = c->next;
841 }
842 p = p->next;
843 }
844}
845
846static void draw_process_bars(void)
847{
848 struct per_pid *p;
849 struct per_pidcomm *c;
850 struct cpu_sample *sample;
851 int Y = 0;
852
853 Y = 2 * numcpus + 2;
854
855 p = all_data;
856 while (p) {
857 c = p->all;
858 while (c) {
859 if (!c->display) {
860 c->Y = 0;
861 c = c->next;
862 continue;
863 }
864
a92fe7b3 865 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
866 sample = c->samples;
867 while (sample) {
868 if (sample->type == TYPE_RUNNING)
a92fe7b3 869 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
10274989
AV
870 if (sample->type == TYPE_BLOCKED)
871 svg_box(Y, sample->start_time, sample->end_time, "blocked");
872 if (sample->type == TYPE_WAITING)
a92fe7b3 873 svg_waiting(Y, sample->start_time, sample->end_time);
10274989
AV
874 sample = sample->next;
875 }
876
877 if (c->comm) {
878 char comm[256];
879 if (c->total_time > 5000000000) /* 5 seconds */
880 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
881 else
882 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
883
884 svg_text(Y, c->start_time, comm);
885 }
886 c->Y = Y;
887 Y++;
888 c = c->next;
889 }
890 p = p->next;
891 }
892}
893
bbe2987b
AV
894static void add_process_filter(const char *string)
895{
896 struct process_filter *filt;
897 int pid;
898
899 pid = strtoull(string, NULL, 10);
900 filt = malloc(sizeof(struct process_filter));
901 if (!filt)
902 return;
903
904 filt->name = strdup(string);
905 filt->pid = pid;
906 filt->next = process_filter;
907
908 process_filter = filt;
909}
910
911static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
912{
913 struct process_filter *filt;
914 if (!process_filter)
915 return 1;
916
917 filt = process_filter;
918 while (filt) {
919 if (filt->pid && p->pid == filt->pid)
920 return 1;
921 if (strcmp(filt->name, c->comm) == 0)
922 return 1;
923 filt = filt->next;
924 }
925 return 0;
926}
927
928static int determine_display_tasks_filtered(void)
929{
930 struct per_pid *p;
931 struct per_pidcomm *c;
932 int count = 0;
933
934 p = all_data;
935 while (p) {
936 p->display = 0;
937 if (p->start_time == 1)
938 p->start_time = first_time;
939
940 /* no exit marker, task kept running to the end */
941 if (p->end_time == 0)
942 p->end_time = last_time;
943
944 c = p->all;
945
946 while (c) {
947 c->display = 0;
948
949 if (c->start_time == 1)
950 c->start_time = first_time;
951
952 if (passes_filter(p, c)) {
953 c->display = 1;
954 p->display = 1;
955 count++;
956 }
957
958 if (c->end_time == 0)
959 c->end_time = last_time;
960
961 c = c->next;
962 }
963 p = p->next;
964 }
965 return count;
966}
967
10274989
AV
968static int determine_display_tasks(u64 threshold)
969{
970 struct per_pid *p;
971 struct per_pidcomm *c;
972 int count = 0;
973
bbe2987b
AV
974 if (process_filter)
975 return determine_display_tasks_filtered();
976
10274989
AV
977 p = all_data;
978 while (p) {
979 p->display = 0;
980 if (p->start_time == 1)
981 p->start_time = first_time;
982
983 /* no exit marker, task kept running to the end */
984 if (p->end_time == 0)
985 p->end_time = last_time;
39a90a8e 986 if (p->total_time >= threshold && !power_only)
10274989
AV
987 p->display = 1;
988
989 c = p->all;
990
991 while (c) {
992 c->display = 0;
993
994 if (c->start_time == 1)
995 c->start_time = first_time;
996
39a90a8e 997 if (c->total_time >= threshold && !power_only) {
10274989
AV
998 c->display = 1;
999 count++;
1000 }
1001
1002 if (c->end_time == 0)
1003 c->end_time = last_time;
1004
1005 c = c->next;
1006 }
1007 p = p->next;
1008 }
1009 return count;
1010}
1011
1012
1013
1014#define TIME_THRESH 10000000
1015
1016static void write_svg_file(const char *filename)
1017{
1018 u64 i;
1019 int count;
1020
1021 numcpus++;
1022
1023
1024 count = determine_display_tasks(TIME_THRESH);
1025
1026 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
1027 if (count < 15)
1028 count = determine_display_tasks(TIME_THRESH / 10);
1029
5094b655 1030 open_svg(filename, numcpus, count, first_time, last_time);
10274989 1031
5094b655 1032 svg_time_grid();
10274989
AV
1033 svg_legenda();
1034
1035 for (i = 0; i < numcpus; i++)
1036 svg_cpu_box(i, max_freq, turbo_frequency);
1037
1038 draw_cpu_usage();
1039 draw_process_bars();
1040 draw_c_p_states();
1041 draw_wakeups();
1042
1043 svg_close();
1044}
1045
10274989
AV
1046static void process_samples(void)
1047{
1048 struct sample_wrapper *cursor;
1049 event_t *event;
1050
1051 sort_queued_samples();
1052
1053 cursor = all_samples;
1054 while (cursor) {
1055 event = (void *)&cursor->data;
1056 cursor = cursor->next;
1057 process_sample_event(event);
1058 }
1059}
1060
5cbd0805 1061static int sample_type_check(u64 type)
10274989 1062{
5cbd0805 1063 sample_type = type;
10274989 1064
5cbd0805
LZ
1065 if (!(sample_type & PERF_SAMPLE_RAW)) {
1066 fprintf(stderr, "No trace samples found in the file.\n"
1067 "Have you used 'perf timechart record' to record it?\n");
1068 return -1;
10274989
AV
1069 }
1070
5cbd0805
LZ
1071 return 0;
1072}
10274989 1073
5cbd0805
LZ
1074static struct perf_file_handler file_handler = {
1075 .process_comm_event = process_comm_event,
1076 .process_fork_event = process_fork_event,
1077 .process_exit_event = process_exit_event,
1078 .process_sample_event = queue_sample_event,
1079 .sample_type_check = sample_type_check,
1080};
10274989 1081
5cbd0805
LZ
1082static int __cmd_timechart(void)
1083{
1084 struct perf_header *header;
1085 int ret;
10274989 1086
5cbd0805 1087 register_perf_file_handler(&file_handler);
10274989 1088
5cbd0805
LZ
1089 ret = mmap_dispatch_perf_file(&header, input_name, 0, 0,
1090 &event__cwdlen, &event__cwd);
1091 if (ret)
1092 return EXIT_FAILURE;
10274989
AV
1093
1094 process_samples();
1095
1096 end_sample_processing();
1097
1098 sort_pids();
1099
1100 write_svg_file(output_name);
1101
6beba7ad
ACM
1102 pr_info("Written %2.1f seconds of trace to %s.\n",
1103 (last_time - first_time) / 1000000000.0, output_name);
10274989 1104
5cbd0805 1105 return EXIT_SUCCESS;
10274989
AV
1106}
1107
3c09eebd
AV
1108static const char * const timechart_usage[] = {
1109 "perf timechart [<options>] {record}",
10274989
AV
1110 NULL
1111};
1112
3c09eebd
AV
1113static const char *record_args[] = {
1114 "record",
1115 "-a",
1116 "-R",
1117 "-M",
1118 "-f",
1119 "-c", "1",
1120 "-e", "power:power_start",
1121 "-e", "power:power_end",
1122 "-e", "power:power_frequency",
1123 "-e", "sched:sched_wakeup",
1124 "-e", "sched:sched_switch",
1125};
1126
1127static int __cmd_record(int argc, const char **argv)
1128{
1129 unsigned int rec_argc, i, j;
1130 const char **rec_argv;
1131
1132 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1133 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1134
1135 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1136 rec_argv[i] = strdup(record_args[i]);
1137
1138 for (j = 1; j < (unsigned int)argc; j++, i++)
1139 rec_argv[i] = argv[j];
1140
1141 return cmd_record(i, rec_argv, NULL);
1142}
1143
bbe2987b
AV
1144static int
1145parse_process(const struct option *opt __used, const char *arg, int __used unset)
1146{
1147 if (arg)
1148 add_process_filter(arg);
1149 return 0;
1150}
1151
10274989
AV
1152static const struct option options[] = {
1153 OPT_STRING('i', "input", &input_name, "file",
1154 "input file name"),
1155 OPT_STRING('o', "output", &output_name, "file",
1156 "output file name"),
5094b655
AV
1157 OPT_INTEGER('w', "width", &svg_page_width,
1158 "page width"),
bbe2987b 1159 OPT_BOOLEAN('P', "power-only", &power_only,
39a90a8e 1160 "output power data only"),
bbe2987b
AV
1161 OPT_CALLBACK('p', "process", NULL, "process",
1162 "process selector. Pass a pid or process name.",
1163 parse_process),
10274989
AV
1164 OPT_END()
1165};
1166
1167
1168int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1169{
00a192b3 1170 symbol__init(0);
10274989 1171
3c09eebd
AV
1172 argc = parse_options(argc, argv, options, timechart_usage,
1173 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1174
3c09eebd
AV
1175 if (argc && !strncmp(argv[0], "rec", 3))
1176 return __cmd_record(argc, argv);
1177 else if (argc)
1178 usage_with_options(timechart_usage, options);
10274989
AV
1179
1180 setup_pager();
1181
1182 return __cmd_timechart();
1183}