]> bbs.cooldavid.org Git - net-next-2.6.git/blame - security/selinux/ss/services.c
xps: Transmit Packet Steering
[net-next-2.6.git] / security / selinux / ss / services.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5d55a345 5 * James Morris <jmorris@redhat.com>
1da177e4
LT
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
376bd9cb 10 * Support for context based audit filters.
1da177e4
LT
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
5d55a345 14 * Added conditional policy language extensions
1da177e4 15 *
7420ed23
VY
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 * Added support for NetLabel
3bb56b25 19 * Added support for the policy capability bitmap
7420ed23 20 *
b94c7e67
CS
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
44c2d9bd
KK
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
0719aaf5
GT
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
44c2d9bd 33 * Copyright (C) 2008, 2009 NEC Corporation
3bb56b25 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
376bd9cb 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
b94c7e67 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
1da177e4
LT
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
5d55a345 39 * it under the terms of the GNU General Public License as published by
1da177e4
LT
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
9f2ad665 46#include <linux/rcupdate.h>
1da177e4
LT
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
bb003079 51#include <linux/mutex.h>
0e55a004 52#include <linux/selinux.h>
6371dcd3 53#include <linux/flex_array.h>
f0d3d989 54#include <linux/vmalloc.h>
7420ed23 55#include <net/netlabel.h>
bb003079 56
1da177e4
LT
57#include "flask.h"
58#include "avc.h"
59#include "avc_ss.h"
60#include "security.h"
61#include "context.h"
62#include "policydb.h"
63#include "sidtab.h"
64#include "services.h"
65#include "conditional.h"
66#include "mls.h"
7420ed23 67#include "objsec.h"
c60475bf 68#include "netlabel.h"
3de4bab5 69#include "xfrm.h"
02752760 70#include "ebitmap.h"
9d57a7f9 71#include "audit.h"
1da177e4
LT
72
73extern void selnl_notify_policyload(u32 seqno);
1da177e4 74
3bb56b25 75int selinux_policycap_netpeer;
b0c636b9 76int selinux_policycap_openperm;
3bb56b25 77
1da177e4 78static DEFINE_RWLOCK(policy_rwlock);
1da177e4
LT
79
80static struct sidtab sidtab;
81struct policydb policydb;
5d55a345 82int ss_initialized;
1da177e4
LT
83
84/*
85 * The largest sequence number that has been used when
86 * providing an access decision to the access vector cache.
87 * The sequence number only changes when a policy change
88 * occurs.
89 */
5d55a345 90static u32 latest_granting;
1da177e4
LT
91
92/* Forward declaration. */
93static int context_struct_to_string(struct context *context, char **scontext,
94 u32 *scontext_len);
95
19439d05
SS
96static void context_struct_compute_av(struct context *scontext,
97 struct context *tcontext,
98 u16 tclass,
99 struct av_decision *avd);
c6d3aaa4
SS
100
101struct selinux_mapping {
102 u16 value; /* policy value */
103 unsigned num_perms;
104 u32 perms[sizeof(u32) * 8];
105};
106
107static struct selinux_mapping *current_mapping;
108static u16 current_mapping_size;
109
110static int selinux_set_mapping(struct policydb *pol,
111 struct security_class_mapping *map,
112 struct selinux_mapping **out_map_p,
113 u16 *out_map_size)
114{
115 struct selinux_mapping *out_map = NULL;
116 size_t size = sizeof(struct selinux_mapping);
117 u16 i, j;
118 unsigned k;
119 bool print_unknown_handle = false;
120
121 /* Find number of classes in the input mapping */
122 if (!map)
123 return -EINVAL;
124 i = 0;
125 while (map[i].name)
126 i++;
127
128 /* Allocate space for the class records, plus one for class zero */
129 out_map = kcalloc(++i, size, GFP_ATOMIC);
130 if (!out_map)
131 return -ENOMEM;
132
133 /* Store the raw class and permission values */
134 j = 0;
135 while (map[j].name) {
136 struct security_class_mapping *p_in = map + (j++);
137 struct selinux_mapping *p_out = out_map + j;
138
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in->name, "")) {
141 p_out->num_perms = 0;
142 continue;
143 }
144
145 p_out->value = string_to_security_class(pol, p_in->name);
146 if (!p_out->value) {
147 printk(KERN_INFO
148 "SELinux: Class %s not defined in policy.\n",
149 p_in->name);
150 if (pol->reject_unknown)
151 goto err;
152 p_out->num_perms = 0;
153 print_unknown_handle = true;
154 continue;
155 }
156
157 k = 0;
158 while (p_in->perms && p_in->perms[k]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in->perms[k]) {
161 k++;
162 continue;
163 }
164 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165 p_in->perms[k]);
166 if (!p_out->perms[k]) {
167 printk(KERN_INFO
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in->perms[k], p_in->name);
170 if (pol->reject_unknown)
171 goto err;
172 print_unknown_handle = true;
173 }
174
175 k++;
176 }
177 p_out->num_perms = k;
178 }
179
180 if (print_unknown_handle)
181 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 pol->allow_unknown ? "allowed" : "denied");
183
184 *out_map_p = out_map;
185 *out_map_size = i;
186 return 0;
187err:
188 kfree(out_map);
189 return -EINVAL;
190}
191
192/*
193 * Get real, policy values from mapped values
194 */
195
196static u16 unmap_class(u16 tclass)
197{
198 if (tclass < current_mapping_size)
199 return current_mapping[tclass].value;
200
201 return tclass;
202}
203
c6d3aaa4
SS
204static void map_decision(u16 tclass, struct av_decision *avd,
205 int allow_unknown)
206{
207 if (tclass < current_mapping_size) {
208 unsigned i, n = current_mapping[tclass].num_perms;
209 u32 result;
210
211 for (i = 0, result = 0; i < n; i++) {
212 if (avd->allowed & current_mapping[tclass].perms[i])
213 result |= 1<<i;
214 if (allow_unknown && !current_mapping[tclass].perms[i])
215 result |= 1<<i;
216 }
217 avd->allowed = result;
218
219 for (i = 0, result = 0; i < n; i++)
220 if (avd->auditallow & current_mapping[tclass].perms[i])
221 result |= 1<<i;
222 avd->auditallow = result;
223
224 for (i = 0, result = 0; i < n; i++) {
225 if (avd->auditdeny & current_mapping[tclass].perms[i])
226 result |= 1<<i;
227 if (!allow_unknown && !current_mapping[tclass].perms[i])
228 result |= 1<<i;
229 }
0bce9527
EP
230 /*
231 * In case the kernel has a bug and requests a permission
232 * between num_perms and the maximum permission number, we
233 * should audit that denial
234 */
235 for (; i < (sizeof(u32)*8); i++)
236 result |= 1<<i;
c6d3aaa4
SS
237 avd->auditdeny = result;
238 }
239}
240
0719aaf5
GT
241int security_mls_enabled(void)
242{
243 return policydb.mls_enabled;
244}
c6d3aaa4 245
1da177e4
LT
246/*
247 * Return the boolean value of a constraint expression
248 * when it is applied to the specified source and target
249 * security contexts.
250 *
251 * xcontext is a special beast... It is used by the validatetrans rules
252 * only. For these rules, scontext is the context before the transition,
253 * tcontext is the context after the transition, and xcontext is the context
254 * of the process performing the transition. All other callers of
255 * constraint_expr_eval should pass in NULL for xcontext.
256 */
257static int constraint_expr_eval(struct context *scontext,
258 struct context *tcontext,
259 struct context *xcontext,
260 struct constraint_expr *cexpr)
261{
262 u32 val1, val2;
263 struct context *c;
264 struct role_datum *r1, *r2;
265 struct mls_level *l1, *l2;
266 struct constraint_expr *e;
267 int s[CEXPR_MAXDEPTH];
268 int sp = -1;
269
270 for (e = cexpr; e; e = e->next) {
271 switch (e->expr_type) {
272 case CEXPR_NOT:
273 BUG_ON(sp < 0);
274 s[sp] = !s[sp];
275 break;
276 case CEXPR_AND:
277 BUG_ON(sp < 1);
278 sp--;
c1a7368a 279 s[sp] &= s[sp + 1];
1da177e4
LT
280 break;
281 case CEXPR_OR:
282 BUG_ON(sp < 1);
283 sp--;
c1a7368a 284 s[sp] |= s[sp + 1];
1da177e4
LT
285 break;
286 case CEXPR_ATTR:
c1a7368a 287 if (sp == (CEXPR_MAXDEPTH - 1))
1da177e4
LT
288 return 0;
289 switch (e->attr) {
290 case CEXPR_USER:
291 val1 = scontext->user;
292 val2 = tcontext->user;
293 break;
294 case CEXPR_TYPE:
295 val1 = scontext->type;
296 val2 = tcontext->type;
297 break;
298 case CEXPR_ROLE:
299 val1 = scontext->role;
300 val2 = tcontext->role;
301 r1 = policydb.role_val_to_struct[val1 - 1];
302 r2 = policydb.role_val_to_struct[val2 - 1];
303 switch (e->op) {
304 case CEXPR_DOM:
305 s[++sp] = ebitmap_get_bit(&r1->dominates,
306 val2 - 1);
307 continue;
308 case CEXPR_DOMBY:
309 s[++sp] = ebitmap_get_bit(&r2->dominates,
310 val1 - 1);
311 continue;
312 case CEXPR_INCOMP:
5d55a345
EP
313 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
314 val2 - 1) &&
315 !ebitmap_get_bit(&r2->dominates,
316 val1 - 1));
1da177e4
LT
317 continue;
318 default:
319 break;
320 }
321 break;
322 case CEXPR_L1L2:
323 l1 = &(scontext->range.level[0]);
324 l2 = &(tcontext->range.level[0]);
325 goto mls_ops;
326 case CEXPR_L1H2:
327 l1 = &(scontext->range.level[0]);
328 l2 = &(tcontext->range.level[1]);
329 goto mls_ops;
330 case CEXPR_H1L2:
331 l1 = &(scontext->range.level[1]);
332 l2 = &(tcontext->range.level[0]);
333 goto mls_ops;
334 case CEXPR_H1H2:
335 l1 = &(scontext->range.level[1]);
336 l2 = &(tcontext->range.level[1]);
337 goto mls_ops;
338 case CEXPR_L1H1:
339 l1 = &(scontext->range.level[0]);
340 l2 = &(scontext->range.level[1]);
341 goto mls_ops;
342 case CEXPR_L2H2:
343 l1 = &(tcontext->range.level[0]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346mls_ops:
347 switch (e->op) {
348 case CEXPR_EQ:
349 s[++sp] = mls_level_eq(l1, l2);
350 continue;
351 case CEXPR_NEQ:
352 s[++sp] = !mls_level_eq(l1, l2);
353 continue;
354 case CEXPR_DOM:
355 s[++sp] = mls_level_dom(l1, l2);
356 continue;
357 case CEXPR_DOMBY:
358 s[++sp] = mls_level_dom(l2, l1);
359 continue;
360 case CEXPR_INCOMP:
361 s[++sp] = mls_level_incomp(l2, l1);
362 continue;
363 default:
364 BUG();
365 return 0;
366 }
367 break;
368 default:
369 BUG();
370 return 0;
371 }
372
373 switch (e->op) {
374 case CEXPR_EQ:
375 s[++sp] = (val1 == val2);
376 break;
377 case CEXPR_NEQ:
378 s[++sp] = (val1 != val2);
379 break;
380 default:
381 BUG();
382 return 0;
383 }
384 break;
385 case CEXPR_NAMES:
386 if (sp == (CEXPR_MAXDEPTH-1))
387 return 0;
388 c = scontext;
389 if (e->attr & CEXPR_TARGET)
390 c = tcontext;
391 else if (e->attr & CEXPR_XTARGET) {
392 c = xcontext;
393 if (!c) {
394 BUG();
395 return 0;
396 }
397 }
398 if (e->attr & CEXPR_USER)
399 val1 = c->user;
400 else if (e->attr & CEXPR_ROLE)
401 val1 = c->role;
402 else if (e->attr & CEXPR_TYPE)
403 val1 = c->type;
404 else {
405 BUG();
406 return 0;
407 }
408
409 switch (e->op) {
410 case CEXPR_EQ:
411 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
412 break;
413 case CEXPR_NEQ:
414 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
415 break;
416 default:
417 BUG();
418 return 0;
419 }
420 break;
421 default:
422 BUG();
423 return 0;
424 }
425 }
426
427 BUG_ON(sp != 0);
428 return s[0];
429}
430
44c2d9bd
KK
431/*
432 * security_dump_masked_av - dumps masked permissions during
433 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
434 */
435static int dump_masked_av_helper(void *k, void *d, void *args)
436{
437 struct perm_datum *pdatum = d;
438 char **permission_names = args;
439
440 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
441
442 permission_names[pdatum->value - 1] = (char *)k;
443
444 return 0;
445}
446
447static void security_dump_masked_av(struct context *scontext,
448 struct context *tcontext,
449 u16 tclass,
450 u32 permissions,
451 const char *reason)
452{
453 struct common_datum *common_dat;
454 struct class_datum *tclass_dat;
455 struct audit_buffer *ab;
456 char *tclass_name;
457 char *scontext_name = NULL;
458 char *tcontext_name = NULL;
459 char *permission_names[32];
2da5d31b
JM
460 int index;
461 u32 length;
44c2d9bd
KK
462 bool need_comma = false;
463
464 if (!permissions)
465 return;
466
467 tclass_name = policydb.p_class_val_to_name[tclass - 1];
468 tclass_dat = policydb.class_val_to_struct[tclass - 1];
469 common_dat = tclass_dat->comdatum;
470
471 /* init permission_names */
472 if (common_dat &&
473 hashtab_map(common_dat->permissions.table,
474 dump_masked_av_helper, permission_names) < 0)
475 goto out;
476
477 if (hashtab_map(tclass_dat->permissions.table,
478 dump_masked_av_helper, permission_names) < 0)
479 goto out;
480
481 /* get scontext/tcontext in text form */
482 if (context_struct_to_string(scontext,
483 &scontext_name, &length) < 0)
484 goto out;
485
486 if (context_struct_to_string(tcontext,
487 &tcontext_name, &length) < 0)
488 goto out;
489
490 /* audit a message */
491 ab = audit_log_start(current->audit_context,
492 GFP_ATOMIC, AUDIT_SELINUX_ERR);
493 if (!ab)
494 goto out;
495
496 audit_log_format(ab, "op=security_compute_av reason=%s "
497 "scontext=%s tcontext=%s tclass=%s perms=",
498 reason, scontext_name, tcontext_name, tclass_name);
499
500 for (index = 0; index < 32; index++) {
501 u32 mask = (1 << index);
502
503 if ((mask & permissions) == 0)
504 continue;
505
506 audit_log_format(ab, "%s%s",
507 need_comma ? "," : "",
508 permission_names[index]
509 ? permission_names[index] : "????");
510 need_comma = true;
511 }
512 audit_log_end(ab);
513out:
514 /* release scontext/tcontext */
515 kfree(tcontext_name);
516 kfree(scontext_name);
517
518 return;
519}
520
d9250dea
KK
521/*
522 * security_boundary_permission - drops violated permissions
523 * on boundary constraint.
524 */
525static void type_attribute_bounds_av(struct context *scontext,
526 struct context *tcontext,
527 u16 tclass,
d9250dea
KK
528 struct av_decision *avd)
529{
2ae3ba39
KK
530 struct context lo_scontext;
531 struct context lo_tcontext;
532 struct av_decision lo_avd;
d9250dea
KK
533 struct type_datum *source
534 = policydb.type_val_to_struct[scontext->type - 1];
2ae3ba39
KK
535 struct type_datum *target
536 = policydb.type_val_to_struct[tcontext->type - 1];
537 u32 masked = 0;
d9250dea
KK
538
539 if (source->bounds) {
540 memset(&lo_avd, 0, sizeof(lo_avd));
541
542 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
543 lo_scontext.type = source->bounds;
544
545 context_struct_compute_av(&lo_scontext,
546 tcontext,
547 tclass,
d9250dea
KK
548 &lo_avd);
549 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
550 return; /* no masked permission */
551 masked = ~lo_avd.allowed & avd->allowed;
2ae3ba39
KK
552 }
553
554 if (target->bounds) {
555 memset(&lo_avd, 0, sizeof(lo_avd));
556
557 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
558 lo_tcontext.type = target->bounds;
559
560 context_struct_compute_av(scontext,
561 &lo_tcontext,
562 tclass,
563 &lo_avd);
564 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
565 return; /* no masked permission */
566 masked = ~lo_avd.allowed & avd->allowed;
567 }
568
569 if (source->bounds && target->bounds) {
570 memset(&lo_avd, 0, sizeof(lo_avd));
571 /*
572 * lo_scontext and lo_tcontext are already
573 * set up.
574 */
575
576 context_struct_compute_av(&lo_scontext,
577 &lo_tcontext,
578 tclass,
579 &lo_avd);
580 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
581 return; /* no masked permission */
582 masked = ~lo_avd.allowed & avd->allowed;
583 }
d9250dea 584
2ae3ba39 585 if (masked) {
d9250dea
KK
586 /* mask violated permissions */
587 avd->allowed &= ~masked;
588
44c2d9bd
KK
589 /* audit masked permissions */
590 security_dump_masked_av(scontext, tcontext,
591 tclass, masked, "bounds");
d9250dea
KK
592 }
593}
594
1da177e4
LT
595/*
596 * Compute access vectors based on a context structure pair for
597 * the permissions in a particular class.
598 */
19439d05
SS
599static void context_struct_compute_av(struct context *scontext,
600 struct context *tcontext,
601 u16 tclass,
602 struct av_decision *avd)
1da177e4
LT
603{
604 struct constraint_node *constraint;
605 struct role_allow *ra;
606 struct avtab_key avkey;
782ebb99 607 struct avtab_node *node;
1da177e4 608 struct class_datum *tclass_datum;
782ebb99
SS
609 struct ebitmap *sattr, *tattr;
610 struct ebitmap_node *snode, *tnode;
611 unsigned int i, j;
1da177e4 612
1da177e4 613 avd->allowed = 0;
1da177e4
LT
614 avd->auditallow = 0;
615 avd->auditdeny = 0xffffffff;
1da177e4 616
c6d3aaa4
SS
617 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
618 if (printk_ratelimit())
619 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
19439d05 620 return;
c6d3aaa4 621 }
3f12070e
EP
622
623 tclass_datum = policydb.class_val_to_struct[tclass - 1];
624
1da177e4
LT
625 /*
626 * If a specific type enforcement rule was defined for
627 * this permission check, then use it.
628 */
1da177e4 629 avkey.target_class = tclass;
782ebb99 630 avkey.specified = AVTAB_AV;
6371dcd3
EP
631 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
632 BUG_ON(!sattr);
633 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
634 BUG_ON(!tattr);
9fe79ad1
KK
635 ebitmap_for_each_positive_bit(sattr, snode, i) {
636 ebitmap_for_each_positive_bit(tattr, tnode, j) {
782ebb99
SS
637 avkey.source_type = i + 1;
638 avkey.target_type = j + 1;
639 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
dbc74c65 640 node;
782ebb99
SS
641 node = avtab_search_node_next(node, avkey.specified)) {
642 if (node->key.specified == AVTAB_ALLOWED)
643 avd->allowed |= node->datum.data;
644 else if (node->key.specified == AVTAB_AUDITALLOW)
645 avd->auditallow |= node->datum.data;
646 else if (node->key.specified == AVTAB_AUDITDENY)
647 avd->auditdeny &= node->datum.data;
648 }
1da177e4 649
782ebb99
SS
650 /* Check conditional av table for additional permissions */
651 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
652
653 }
654 }
1da177e4
LT
655
656 /*
657 * Remove any permissions prohibited by a constraint (this includes
658 * the MLS policy).
659 */
660 constraint = tclass_datum->constraints;
661 while (constraint) {
662 if ((constraint->permissions & (avd->allowed)) &&
663 !constraint_expr_eval(scontext, tcontext, NULL,
664 constraint->expr)) {
caabbdc0 665 avd->allowed &= ~(constraint->permissions);
1da177e4
LT
666 }
667 constraint = constraint->next;
668 }
669
670 /*
671 * If checking process transition permission and the
672 * role is changing, then check the (current_role, new_role)
673 * pair.
674 */
c6d3aaa4
SS
675 if (tclass == policydb.process_class &&
676 (avd->allowed & policydb.process_trans_perms) &&
1da177e4
LT
677 scontext->role != tcontext->role) {
678 for (ra = policydb.role_allow; ra; ra = ra->next) {
679 if (scontext->role == ra->role &&
680 tcontext->role == ra->new_role)
681 break;
682 }
683 if (!ra)
c6d3aaa4 684 avd->allowed &= ~policydb.process_trans_perms;
1da177e4
LT
685 }
686
d9250dea
KK
687 /*
688 * If the given source and target types have boundary
689 * constraint, lazy checks have to mask any violated
690 * permission and notice it to userspace via audit.
691 */
692 type_attribute_bounds_av(scontext, tcontext,
19439d05 693 tclass, avd);
1da177e4
LT
694}
695
696static int security_validtrans_handle_fail(struct context *ocontext,
5d55a345
EP
697 struct context *ncontext,
698 struct context *tcontext,
699 u16 tclass)
1da177e4
LT
700{
701 char *o = NULL, *n = NULL, *t = NULL;
702 u32 olen, nlen, tlen;
703
704 if (context_struct_to_string(ocontext, &o, &olen) < 0)
705 goto out;
706 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
707 goto out;
708 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
709 goto out;
9ad9ad38 710 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
711 "security_validate_transition: denied for"
712 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
713 o, n, t, policydb.p_class_val_to_name[tclass-1]);
1da177e4
LT
714out:
715 kfree(o);
716 kfree(n);
717 kfree(t);
718
719 if (!selinux_enforcing)
720 return 0;
721 return -EPERM;
722}
723
724int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
c6d3aaa4 725 u16 orig_tclass)
1da177e4
LT
726{
727 struct context *ocontext;
728 struct context *ncontext;
729 struct context *tcontext;
730 struct class_datum *tclass_datum;
731 struct constraint_node *constraint;
c6d3aaa4 732 u16 tclass;
1da177e4
LT
733 int rc = 0;
734
735 if (!ss_initialized)
736 return 0;
737
0804d113 738 read_lock(&policy_rwlock);
1da177e4 739
c6d3aaa4
SS
740 tclass = unmap_class(orig_tclass);
741
1da177e4 742 if (!tclass || tclass > policydb.p_classes.nprim) {
744ba35e
EP
743 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
744 __func__, tclass);
1da177e4
LT
745 rc = -EINVAL;
746 goto out;
747 }
748 tclass_datum = policydb.class_val_to_struct[tclass - 1];
749
750 ocontext = sidtab_search(&sidtab, oldsid);
751 if (!ocontext) {
744ba35e
EP
752 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
753 __func__, oldsid);
1da177e4
LT
754 rc = -EINVAL;
755 goto out;
756 }
757
758 ncontext = sidtab_search(&sidtab, newsid);
759 if (!ncontext) {
744ba35e
EP
760 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
761 __func__, newsid);
1da177e4
LT
762 rc = -EINVAL;
763 goto out;
764 }
765
766 tcontext = sidtab_search(&sidtab, tasksid);
767 if (!tcontext) {
744ba35e
EP
768 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
769 __func__, tasksid);
1da177e4
LT
770 rc = -EINVAL;
771 goto out;
772 }
773
774 constraint = tclass_datum->validatetrans;
775 while (constraint) {
776 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
5d55a345 777 constraint->expr)) {
1da177e4 778 rc = security_validtrans_handle_fail(ocontext, ncontext,
5d55a345 779 tcontext, tclass);
1da177e4
LT
780 goto out;
781 }
782 constraint = constraint->next;
783 }
784
785out:
0804d113 786 read_unlock(&policy_rwlock);
1da177e4
LT
787 return rc;
788}
789
d9250dea
KK
790/*
791 * security_bounded_transition - check whether the given
792 * transition is directed to bounded, or not.
793 * It returns 0, if @newsid is bounded by @oldsid.
794 * Otherwise, it returns error code.
795 *
796 * @oldsid : current security identifier
797 * @newsid : destinated security identifier
798 */
799int security_bounded_transition(u32 old_sid, u32 new_sid)
800{
801 struct context *old_context, *new_context;
802 struct type_datum *type;
803 int index;
804 int rc = -EINVAL;
805
806 read_lock(&policy_rwlock);
807
808 old_context = sidtab_search(&sidtab, old_sid);
809 if (!old_context) {
810 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
811 __func__, old_sid);
812 goto out;
813 }
814
815 new_context = sidtab_search(&sidtab, new_sid);
816 if (!new_context) {
817 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
818 __func__, new_sid);
819 goto out;
820 }
821
af901ca1 822 /* type/domain unchanged */
d9250dea
KK
823 if (old_context->type == new_context->type) {
824 rc = 0;
825 goto out;
826 }
827
828 index = new_context->type;
829 while (true) {
830 type = policydb.type_val_to_struct[index - 1];
831 BUG_ON(!type);
832
833 /* not bounded anymore */
834 if (!type->bounds) {
835 rc = -EPERM;
836 break;
837 }
838
839 /* @newsid is bounded by @oldsid */
840 if (type->bounds == old_context->type) {
841 rc = 0;
842 break;
843 }
844 index = type->bounds;
845 }
44c2d9bd
KK
846
847 if (rc) {
848 char *old_name = NULL;
849 char *new_name = NULL;
2da5d31b 850 u32 length;
44c2d9bd
KK
851
852 if (!context_struct_to_string(old_context,
853 &old_name, &length) &&
854 !context_struct_to_string(new_context,
855 &new_name, &length)) {
856 audit_log(current->audit_context,
857 GFP_ATOMIC, AUDIT_SELINUX_ERR,
858 "op=security_bounded_transition "
859 "result=denied "
860 "oldcontext=%s newcontext=%s",
861 old_name, new_name);
862 }
863 kfree(new_name);
864 kfree(old_name);
865 }
d9250dea
KK
866out:
867 read_unlock(&policy_rwlock);
868
869 return rc;
870}
871
19439d05 872static void avd_init(struct av_decision *avd)
c6d3aaa4 873{
19439d05
SS
874 avd->allowed = 0;
875 avd->auditallow = 0;
876 avd->auditdeny = 0xffffffff;
877 avd->seqno = latest_granting;
878 avd->flags = 0;
c6d3aaa4
SS
879}
880
19439d05 881
1da177e4
LT
882/**
883 * security_compute_av - Compute access vector decisions.
884 * @ssid: source security identifier
885 * @tsid: target security identifier
886 * @tclass: target security class
1da177e4
LT
887 * @avd: access vector decisions
888 *
889 * Compute a set of access vector decisions based on the
890 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1da177e4 891 */
19439d05
SS
892void security_compute_av(u32 ssid,
893 u32 tsid,
894 u16 orig_tclass,
895 struct av_decision *avd)
1da177e4 896{
c6d3aaa4 897 u16 tclass;
19439d05 898 struct context *scontext = NULL, *tcontext = NULL;
c6d3aaa4 899
b7f3008a 900 read_lock(&policy_rwlock);
19439d05 901 avd_init(avd);
c6d3aaa4
SS
902 if (!ss_initialized)
903 goto allow;
904
19439d05
SS
905 scontext = sidtab_search(&sidtab, ssid);
906 if (!scontext) {
907 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
908 __func__, ssid);
909 goto out;
910 }
911
912 /* permissive domain? */
913 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
914 avd->flags |= AVD_FLAGS_PERMISSIVE;
915
916 tcontext = sidtab_search(&sidtab, tsid);
917 if (!tcontext) {
918 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
919 __func__, tsid);
920 goto out;
921 }
922
c6d3aaa4
SS
923 tclass = unmap_class(orig_tclass);
924 if (unlikely(orig_tclass && !tclass)) {
925 if (policydb.allow_unknown)
926 goto allow;
b7f3008a 927 goto out;
c6d3aaa4 928 }
19439d05 929 context_struct_compute_av(scontext, tcontext, tclass, avd);
c6d3aaa4 930 map_decision(orig_tclass, avd, policydb.allow_unknown);
b7f3008a 931out:
c6d3aaa4 932 read_unlock(&policy_rwlock);
19439d05 933 return;
c6d3aaa4
SS
934allow:
935 avd->allowed = 0xffffffff;
b7f3008a 936 goto out;
c6d3aaa4
SS
937}
938
19439d05
SS
939void security_compute_av_user(u32 ssid,
940 u32 tsid,
941 u16 tclass,
942 struct av_decision *avd)
c6d3aaa4 943{
19439d05 944 struct context *scontext = NULL, *tcontext = NULL;
1da177e4 945
19439d05
SS
946 read_lock(&policy_rwlock);
947 avd_init(avd);
948 if (!ss_initialized)
949 goto allow;
950
951 scontext = sidtab_search(&sidtab, ssid);
952 if (!scontext) {
953 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
954 __func__, ssid);
955 goto out;
1da177e4
LT
956 }
957
19439d05
SS
958 /* permissive domain? */
959 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
960 avd->flags |= AVD_FLAGS_PERMISSIVE;
961
962 tcontext = sidtab_search(&sidtab, tsid);
963 if (!tcontext) {
964 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
965 __func__, tsid);
966 goto out;
967 }
968
969 if (unlikely(!tclass)) {
970 if (policydb.allow_unknown)
971 goto allow;
972 goto out;
973 }
974
975 context_struct_compute_av(scontext, tcontext, tclass, avd);
976 out:
0804d113 977 read_unlock(&policy_rwlock);
19439d05
SS
978 return;
979allow:
980 avd->allowed = 0xffffffff;
981 goto out;
1da177e4
LT
982}
983
984/*
985 * Write the security context string representation of
986 * the context structure `context' into a dynamically
987 * allocated string of the correct size. Set `*scontext'
988 * to point to this string and set `*scontext_len' to
989 * the length of the string.
990 */
991static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
992{
993 char *scontextp;
994
d5630b9d
EP
995 if (scontext)
996 *scontext = NULL;
1da177e4
LT
997 *scontext_len = 0;
998
12b29f34
SS
999 if (context->len) {
1000 *scontext_len = context->len;
1001 *scontext = kstrdup(context->str, GFP_ATOMIC);
1002 if (!(*scontext))
1003 return -ENOMEM;
1004 return 0;
1005 }
1006
1da177e4
LT
1007 /* Compute the size of the context. */
1008 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
1009 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
1010 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
1011 *scontext_len += mls_compute_context_len(context);
1012
d5630b9d
EP
1013 if (!scontext)
1014 return 0;
1015
1da177e4
LT
1016 /* Allocate space for the context; caller must free this space. */
1017 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
5d55a345 1018 if (!scontextp)
1da177e4 1019 return -ENOMEM;
1da177e4
LT
1020 *scontext = scontextp;
1021
1022 /*
1023 * Copy the user name, role name and type name into the context.
1024 */
1025 sprintf(scontextp, "%s:%s:%s",
1026 policydb.p_user_val_to_name[context->user - 1],
1027 policydb.p_role_val_to_name[context->role - 1],
1028 policydb.p_type_val_to_name[context->type - 1]);
1029 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
5d55a345
EP
1030 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1031 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1da177e4
LT
1032
1033 mls_sid_to_context(context, &scontextp);
1034
1035 *scontextp = 0;
1036
1037 return 0;
1038}
1039
1040#include "initial_sid_to_string.h"
1041
f0ee2e46
JC
1042const char *security_get_initial_sid_context(u32 sid)
1043{
1044 if (unlikely(sid > SECINITSID_NUM))
1045 return NULL;
1046 return initial_sid_to_string[sid];
1047}
1048
12b29f34
SS
1049static int security_sid_to_context_core(u32 sid, char **scontext,
1050 u32 *scontext_len, int force)
1da177e4
LT
1051{
1052 struct context *context;
1053 int rc = 0;
1054
d5630b9d
EP
1055 if (scontext)
1056 *scontext = NULL;
4f4acf3a
SS
1057 *scontext_len = 0;
1058
1da177e4
LT
1059 if (!ss_initialized) {
1060 if (sid <= SECINITSID_NUM) {
1061 char *scontextp;
1062
1063 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
d5630b9d
EP
1064 if (!scontext)
1065 goto out;
5d55a345 1066 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
0cccca06
SH
1067 if (!scontextp) {
1068 rc = -ENOMEM;
1069 goto out;
1070 }
1da177e4
LT
1071 strcpy(scontextp, initial_sid_to_string[sid]);
1072 *scontext = scontextp;
1073 goto out;
1074 }
744ba35e
EP
1075 printk(KERN_ERR "SELinux: %s: called before initial "
1076 "load_policy on unknown SID %d\n", __func__, sid);
1da177e4
LT
1077 rc = -EINVAL;
1078 goto out;
1079 }
0804d113 1080 read_lock(&policy_rwlock);
12b29f34
SS
1081 if (force)
1082 context = sidtab_search_force(&sidtab, sid);
1083 else
1084 context = sidtab_search(&sidtab, sid);
1da177e4 1085 if (!context) {
744ba35e
EP
1086 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1087 __func__, sid);
1da177e4
LT
1088 rc = -EINVAL;
1089 goto out_unlock;
1090 }
1091 rc = context_struct_to_string(context, scontext, scontext_len);
1092out_unlock:
0804d113 1093 read_unlock(&policy_rwlock);
1da177e4
LT
1094out:
1095 return rc;
1096
1097}
1098
12b29f34
SS
1099/**
1100 * security_sid_to_context - Obtain a context for a given SID.
1101 * @sid: security identifier, SID
1102 * @scontext: security context
1103 * @scontext_len: length in bytes
1104 *
1105 * Write the string representation of the context associated with @sid
1106 * into a dynamically allocated string of the correct size. Set @scontext
1107 * to point to this string and set @scontext_len to the length of the string.
1108 */
1109int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1da177e4 1110{
12b29f34
SS
1111 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1112}
1113
1114int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1115{
1116 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1117}
1118
9a59daa0
SS
1119/*
1120 * Caveat: Mutates scontext.
1121 */
12b29f34
SS
1122static int string_to_context_struct(struct policydb *pol,
1123 struct sidtab *sidtabp,
9a59daa0 1124 char *scontext,
12b29f34
SS
1125 u32 scontext_len,
1126 struct context *ctx,
9a59daa0 1127 u32 def_sid)
12b29f34 1128{
1da177e4
LT
1129 struct role_datum *role;
1130 struct type_datum *typdatum;
1131 struct user_datum *usrdatum;
1132 char *scontextp, *p, oldc;
1133 int rc = 0;
1134
12b29f34 1135 context_init(ctx);
1da177e4 1136
1da177e4
LT
1137 /* Parse the security context. */
1138
1139 rc = -EINVAL;
9a59daa0 1140 scontextp = (char *) scontext;
1da177e4
LT
1141
1142 /* Extract the user. */
1143 p = scontextp;
1144 while (*p && *p != ':')
1145 p++;
1146
1147 if (*p == 0)
12b29f34 1148 goto out;
1da177e4
LT
1149
1150 *p++ = 0;
1151
12b29f34 1152 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1da177e4 1153 if (!usrdatum)
12b29f34 1154 goto out;
1da177e4 1155
12b29f34 1156 ctx->user = usrdatum->value;
1da177e4
LT
1157
1158 /* Extract role. */
1159 scontextp = p;
1160 while (*p && *p != ':')
1161 p++;
1162
1163 if (*p == 0)
12b29f34 1164 goto out;
1da177e4
LT
1165
1166 *p++ = 0;
1167
12b29f34 1168 role = hashtab_search(pol->p_roles.table, scontextp);
1da177e4 1169 if (!role)
12b29f34
SS
1170 goto out;
1171 ctx->role = role->value;
1da177e4
LT
1172
1173 /* Extract type. */
1174 scontextp = p;
1175 while (*p && *p != ':')
1176 p++;
1177 oldc = *p;
1178 *p++ = 0;
1179
12b29f34 1180 typdatum = hashtab_search(pol->p_types.table, scontextp);
d9250dea 1181 if (!typdatum || typdatum->attribute)
12b29f34 1182 goto out;
1da177e4 1183
12b29f34 1184 ctx->type = typdatum->value;
1da177e4 1185
12b29f34 1186 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1da177e4 1187 if (rc)
12b29f34 1188 goto out;
1da177e4 1189
9a59daa0 1190 if ((p - scontext) < scontext_len) {
1da177e4 1191 rc = -EINVAL;
12b29f34 1192 goto out;
1da177e4
LT
1193 }
1194
1195 /* Check the validity of the new context. */
12b29f34 1196 if (!policydb_context_isvalid(pol, ctx)) {
1da177e4 1197 rc = -EINVAL;
12b29f34 1198 goto out;
1da177e4 1199 }
12b29f34
SS
1200 rc = 0;
1201out:
8e531af9
EP
1202 if (rc)
1203 context_destroy(ctx);
12b29f34
SS
1204 return rc;
1205}
1206
1207static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1208 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1209 int force)
1210{
9a59daa0 1211 char *scontext2, *str = NULL;
12b29f34
SS
1212 struct context context;
1213 int rc = 0;
1214
1215 if (!ss_initialized) {
1216 int i;
1217
1218 for (i = 1; i < SECINITSID_NUM; i++) {
1219 if (!strcmp(initial_sid_to_string[i], scontext)) {
1220 *sid = i;
9a59daa0 1221 return 0;
12b29f34
SS
1222 }
1223 }
1224 *sid = SECINITSID_KERNEL;
9a59daa0 1225 return 0;
12b29f34
SS
1226 }
1227 *sid = SECSID_NULL;
1228
9a59daa0 1229 /* Copy the string so that we can modify the copy as we parse it. */
c1a7368a 1230 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
9a59daa0
SS
1231 if (!scontext2)
1232 return -ENOMEM;
1233 memcpy(scontext2, scontext, scontext_len);
1234 scontext2[scontext_len] = 0;
1235
1236 if (force) {
1237 /* Save another copy for storing in uninterpreted form */
1238 str = kstrdup(scontext2, gfp_flags);
1239 if (!str) {
1240 kfree(scontext2);
1241 return -ENOMEM;
1242 }
1243 }
1244
0804d113 1245 read_lock(&policy_rwlock);
12b29f34 1246 rc = string_to_context_struct(&policydb, &sidtab,
9a59daa0
SS
1247 scontext2, scontext_len,
1248 &context, def_sid);
12b29f34 1249 if (rc == -EINVAL && force) {
9a59daa0 1250 context.str = str;
12b29f34 1251 context.len = scontext_len;
9a59daa0 1252 str = NULL;
12b29f34
SS
1253 } else if (rc)
1254 goto out;
1255 rc = sidtab_context_to_sid(&sidtab, &context, sid);
8e531af9 1256 context_destroy(&context);
1da177e4 1257out:
0804d113 1258 read_unlock(&policy_rwlock);
9a59daa0
SS
1259 kfree(scontext2);
1260 kfree(str);
1da177e4
LT
1261 return rc;
1262}
1263
f5c1d5b2
JM
1264/**
1265 * security_context_to_sid - Obtain a SID for a given security context.
1266 * @scontext: security context
1267 * @scontext_len: length in bytes
1268 * @sid: security identifier, SID
1269 *
1270 * Obtains a SID associated with the security context that
1271 * has the string representation specified by @scontext.
1272 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1273 * memory is available, or 0 on success.
1274 */
8f0cfa52 1275int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
f5c1d5b2
JM
1276{
1277 return security_context_to_sid_core(scontext, scontext_len,
12b29f34 1278 sid, SECSID_NULL, GFP_KERNEL, 0);
f5c1d5b2
JM
1279}
1280
1281/**
1282 * security_context_to_sid_default - Obtain a SID for a given security context,
1283 * falling back to specified default if needed.
1284 *
1285 * @scontext: security context
1286 * @scontext_len: length in bytes
1287 * @sid: security identifier, SID
d133a960 1288 * @def_sid: default SID to assign on error
f5c1d5b2
JM
1289 *
1290 * Obtains a SID associated with the security context that
1291 * has the string representation specified by @scontext.
1292 * The default SID is passed to the MLS layer to be used to allow
1293 * kernel labeling of the MLS field if the MLS field is not present
1294 * (for upgrading to MLS without full relabel).
12b29f34 1295 * Implicitly forces adding of the context even if it cannot be mapped yet.
f5c1d5b2
JM
1296 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1297 * memory is available, or 0 on success.
1298 */
7bf570dc
DH
1299int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1300 u32 *sid, u32 def_sid, gfp_t gfp_flags)
f5c1d5b2
JM
1301{
1302 return security_context_to_sid_core(scontext, scontext_len,
12b29f34
SS
1303 sid, def_sid, gfp_flags, 1);
1304}
1305
1306int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1307 u32 *sid)
1308{
1309 return security_context_to_sid_core(scontext, scontext_len,
1310 sid, SECSID_NULL, GFP_KERNEL, 1);
f5c1d5b2
JM
1311}
1312
1da177e4
LT
1313static int compute_sid_handle_invalid_context(
1314 struct context *scontext,
1315 struct context *tcontext,
1316 u16 tclass,
1317 struct context *newcontext)
1318{
1319 char *s = NULL, *t = NULL, *n = NULL;
1320 u32 slen, tlen, nlen;
1321
1322 if (context_struct_to_string(scontext, &s, &slen) < 0)
1323 goto out;
1324 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1325 goto out;
1326 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1327 goto out;
9ad9ad38 1328 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
1329 "security_compute_sid: invalid context %s"
1330 " for scontext=%s"
1331 " tcontext=%s"
1332 " tclass=%s",
1333 n, s, t, policydb.p_class_val_to_name[tclass-1]);
1334out:
1335 kfree(s);
1336 kfree(t);
1337 kfree(n);
1338 if (!selinux_enforcing)
1339 return 0;
1340 return -EACCES;
1341}
1342
1343static int security_compute_sid(u32 ssid,
1344 u32 tsid,
c6d3aaa4 1345 u16 orig_tclass,
1da177e4 1346 u32 specified,
c6d3aaa4
SS
1347 u32 *out_sid,
1348 bool kern)
1da177e4
LT
1349{
1350 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1351 struct role_trans *roletr = NULL;
1352 struct avtab_key avkey;
1353 struct avtab_datum *avdatum;
1354 struct avtab_node *node;
c6d3aaa4 1355 u16 tclass;
1da177e4
LT
1356 int rc = 0;
1357
1358 if (!ss_initialized) {
c6d3aaa4
SS
1359 switch (orig_tclass) {
1360 case SECCLASS_PROCESS: /* kernel value */
1da177e4
LT
1361 *out_sid = ssid;
1362 break;
1363 default:
1364 *out_sid = tsid;
1365 break;
1366 }
1367 goto out;
1368 }
1369
851f8a69
VY
1370 context_init(&newcontext);
1371
0804d113 1372 read_lock(&policy_rwlock);
1da177e4 1373
c6d3aaa4
SS
1374 if (kern)
1375 tclass = unmap_class(orig_tclass);
1376 else
1377 tclass = orig_tclass;
1378
1da177e4
LT
1379 scontext = sidtab_search(&sidtab, ssid);
1380 if (!scontext) {
744ba35e
EP
1381 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1382 __func__, ssid);
1da177e4
LT
1383 rc = -EINVAL;
1384 goto out_unlock;
1385 }
1386 tcontext = sidtab_search(&sidtab, tsid);
1387 if (!tcontext) {
744ba35e
EP
1388 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1389 __func__, tsid);
1da177e4
LT
1390 rc = -EINVAL;
1391 goto out_unlock;
1392 }
1393
1da177e4
LT
1394 /* Set the user identity. */
1395 switch (specified) {
1396 case AVTAB_TRANSITION:
1397 case AVTAB_CHANGE:
1398 /* Use the process user identity. */
1399 newcontext.user = scontext->user;
1400 break;
1401 case AVTAB_MEMBER:
1402 /* Use the related object owner. */
1403 newcontext.user = tcontext->user;
1404 break;
1405 }
1406
1407 /* Set the role and type to default values. */
c6d3aaa4 1408 if (tclass == policydb.process_class) {
1da177e4
LT
1409 /* Use the current role and type of process. */
1410 newcontext.role = scontext->role;
1411 newcontext.type = scontext->type;
c6d3aaa4 1412 } else {
1da177e4
LT
1413 /* Use the well-defined object role. */
1414 newcontext.role = OBJECT_R_VAL;
1415 /* Use the type of the related object. */
1416 newcontext.type = tcontext->type;
1417 }
1418
1419 /* Look for a type transition/member/change rule. */
1420 avkey.source_type = scontext->type;
1421 avkey.target_type = tcontext->type;
1422 avkey.target_class = tclass;
782ebb99
SS
1423 avkey.specified = specified;
1424 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1da177e4
LT
1425
1426 /* If no permanent rule, also check for enabled conditional rules */
5d55a345 1427 if (!avdatum) {
782ebb99 1428 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
dbc74c65 1429 for (; node; node = avtab_search_node_next(node, specified)) {
782ebb99 1430 if (node->key.specified & AVTAB_ENABLED) {
1da177e4
LT
1431 avdatum = &node->datum;
1432 break;
1433 }
1434 }
1435 }
1436
782ebb99 1437 if (avdatum) {
1da177e4 1438 /* Use the type from the type transition/member/change rule. */
782ebb99 1439 newcontext.type = avdatum->data;
1da177e4
LT
1440 }
1441
1442 /* Check for class-specific changes. */
c6d3aaa4 1443 if (tclass == policydb.process_class) {
1da177e4
LT
1444 if (specified & AVTAB_TRANSITION) {
1445 /* Look for a role transition rule. */
1446 for (roletr = policydb.role_tr; roletr;
1447 roletr = roletr->next) {
1448 if (roletr->role == scontext->role &&
1449 roletr->type == tcontext->type) {
1450 /* Use the role transition rule. */
1451 newcontext.role = roletr->new_role;
1452 break;
1453 }
1454 }
1455 }
1da177e4
LT
1456 }
1457
1458 /* Set the MLS attributes.
1459 This is done last because it may allocate memory. */
1460 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1461 if (rc)
1462 goto out_unlock;
1463
1464 /* Check the validity of the context. */
1465 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1466 rc = compute_sid_handle_invalid_context(scontext,
1467 tcontext,
1468 tclass,
1469 &newcontext);
1470 if (rc)
1471 goto out_unlock;
1472 }
1473 /* Obtain the sid for the context. */
1474 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1475out_unlock:
0804d113 1476 read_unlock(&policy_rwlock);
1da177e4
LT
1477 context_destroy(&newcontext);
1478out:
1479 return rc;
1480}
1481
1482/**
1483 * security_transition_sid - Compute the SID for a new subject/object.
1484 * @ssid: source security identifier
1485 * @tsid: target security identifier
1486 * @tclass: target security class
1487 * @out_sid: security identifier for new subject/object
1488 *
1489 * Compute a SID to use for labeling a new subject or object in the
1490 * class @tclass based on a SID pair (@ssid, @tsid).
1491 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1492 * if insufficient memory is available, or %0 if the new SID was
1493 * computed successfully.
1494 */
1495int security_transition_sid(u32 ssid,
1496 u32 tsid,
1497 u16 tclass,
1498 u32 *out_sid)
1499{
c6d3aaa4
SS
1500 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1501 out_sid, true);
1502}
1503
1504int security_transition_sid_user(u32 ssid,
1505 u32 tsid,
1506 u16 tclass,
1507 u32 *out_sid)
1508{
1509 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1510 out_sid, false);
1da177e4
LT
1511}
1512
1513/**
1514 * security_member_sid - Compute the SID for member selection.
1515 * @ssid: source security identifier
1516 * @tsid: target security identifier
1517 * @tclass: target security class
1518 * @out_sid: security identifier for selected member
1519 *
1520 * Compute a SID to use when selecting a member of a polyinstantiated
1521 * object of class @tclass based on a SID pair (@ssid, @tsid).
1522 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1523 * if insufficient memory is available, or %0 if the SID was
1524 * computed successfully.
1525 */
1526int security_member_sid(u32 ssid,
1527 u32 tsid,
1528 u16 tclass,
1529 u32 *out_sid)
1530{
c6d3aaa4
SS
1531 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1532 false);
1da177e4
LT
1533}
1534
1535/**
1536 * security_change_sid - Compute the SID for object relabeling.
1537 * @ssid: source security identifier
1538 * @tsid: target security identifier
1539 * @tclass: target security class
1540 * @out_sid: security identifier for selected member
1541 *
1542 * Compute a SID to use for relabeling an object of class @tclass
1543 * based on a SID pair (@ssid, @tsid).
1544 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1545 * if insufficient memory is available, or %0 if the SID was
1546 * computed successfully.
1547 */
1548int security_change_sid(u32 ssid,
1549 u32 tsid,
1550 u16 tclass,
1551 u32 *out_sid)
1552{
c6d3aaa4
SS
1553 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1554 false);
b94c7e67
CS
1555}
1556
1da177e4
LT
1557/* Clone the SID into the new SID table. */
1558static int clone_sid(u32 sid,
1559 struct context *context,
1560 void *arg)
1561{
1562 struct sidtab *s = arg;
1563
42596eaf
GT
1564 if (sid > SECINITSID_NUM)
1565 return sidtab_insert(s, sid, context);
1566 else
1567 return 0;
1da177e4
LT
1568}
1569
1570static inline int convert_context_handle_invalid_context(struct context *context)
1571{
1572 int rc = 0;
1573
1574 if (selinux_enforcing) {
1575 rc = -EINVAL;
1576 } else {
1577 char *s;
1578 u32 len;
1579
12b29f34
SS
1580 if (!context_struct_to_string(context, &s, &len)) {
1581 printk(KERN_WARNING
1582 "SELinux: Context %s would be invalid if enforcing\n",
1583 s);
1584 kfree(s);
1585 }
1da177e4
LT
1586 }
1587 return rc;
1588}
1589
1590struct convert_context_args {
1591 struct policydb *oldp;
1592 struct policydb *newp;
1593};
1594
1595/*
1596 * Convert the values in the security context
1597 * structure `c' from the values specified
1598 * in the policy `p->oldp' to the values specified
1599 * in the policy `p->newp'. Verify that the
1600 * context is valid under the new policy.
1601 */
1602static int convert_context(u32 key,
1603 struct context *c,
1604 void *p)
1605{
1606 struct convert_context_args *args;
1607 struct context oldc;
0719aaf5
GT
1608 struct ocontext *oc;
1609 struct mls_range *range;
1da177e4
LT
1610 struct role_datum *role;
1611 struct type_datum *typdatum;
1612 struct user_datum *usrdatum;
1613 char *s;
1614 u32 len;
42596eaf
GT
1615 int rc = 0;
1616
1617 if (key <= SECINITSID_NUM)
1618 goto out;
1da177e4
LT
1619
1620 args = p;
1621
12b29f34
SS
1622 if (c->str) {
1623 struct context ctx;
9a59daa0
SS
1624 s = kstrdup(c->str, GFP_KERNEL);
1625 if (!s) {
1626 rc = -ENOMEM;
1627 goto out;
1628 }
1629 rc = string_to_context_struct(args->newp, NULL, s,
1630 c->len, &ctx, SECSID_NULL);
1631 kfree(s);
12b29f34
SS
1632 if (!rc) {
1633 printk(KERN_INFO
1634 "SELinux: Context %s became valid (mapped).\n",
1635 c->str);
1636 /* Replace string with mapped representation. */
1637 kfree(c->str);
1638 memcpy(c, &ctx, sizeof(*c));
1639 goto out;
1640 } else if (rc == -EINVAL) {
1641 /* Retain string representation for later mapping. */
1642 rc = 0;
1643 goto out;
1644 } else {
1645 /* Other error condition, e.g. ENOMEM. */
1646 printk(KERN_ERR
1647 "SELinux: Unable to map context %s, rc = %d.\n",
1648 c->str, -rc);
1649 goto out;
1650 }
1651 }
1652
1da177e4
LT
1653 rc = context_cpy(&oldc, c);
1654 if (rc)
1655 goto out;
1656
1657 rc = -EINVAL;
1658
1659 /* Convert the user. */
1660 usrdatum = hashtab_search(args->newp->p_users.table,
5d55a345
EP
1661 args->oldp->p_user_val_to_name[c->user - 1]);
1662 if (!usrdatum)
1da177e4 1663 goto bad;
1da177e4
LT
1664 c->user = usrdatum->value;
1665
1666 /* Convert the role. */
1667 role = hashtab_search(args->newp->p_roles.table,
5d55a345
EP
1668 args->oldp->p_role_val_to_name[c->role - 1]);
1669 if (!role)
1da177e4 1670 goto bad;
1da177e4
LT
1671 c->role = role->value;
1672
1673 /* Convert the type. */
1674 typdatum = hashtab_search(args->newp->p_types.table,
5d55a345
EP
1675 args->oldp->p_type_val_to_name[c->type - 1]);
1676 if (!typdatum)
1da177e4 1677 goto bad;
1da177e4
LT
1678 c->type = typdatum->value;
1679
0719aaf5
GT
1680 /* Convert the MLS fields if dealing with MLS policies */
1681 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1682 rc = mls_convert_context(args->oldp, args->newp, c);
1683 if (rc)
1684 goto bad;
1685 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1686 /*
1687 * Switching between MLS and non-MLS policy:
1688 * free any storage used by the MLS fields in the
1689 * context for all existing entries in the sidtab.
1690 */
1691 mls_context_destroy(c);
1692 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1693 /*
1694 * Switching between non-MLS and MLS policy:
1695 * ensure that the MLS fields of the context for all
1696 * existing entries in the sidtab are filled in with a
1697 * suitable default value, likely taken from one of the
1698 * initial SIDs.
1699 */
1700 oc = args->newp->ocontexts[OCON_ISID];
1701 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1702 oc = oc->next;
1703 if (!oc) {
1704 printk(KERN_ERR "SELinux: unable to look up"
1705 " the initial SIDs list\n");
1706 goto bad;
1707 }
1708 range = &oc->context[0].range;
1709 rc = mls_range_set(c, range);
1710 if (rc)
1711 goto bad;
1712 }
1da177e4
LT
1713
1714 /* Check the validity of the new context. */
1715 if (!policydb_context_isvalid(args->newp, c)) {
1716 rc = convert_context_handle_invalid_context(&oldc);
1717 if (rc)
1718 goto bad;
1719 }
1720
1721 context_destroy(&oldc);
12b29f34 1722 rc = 0;
1da177e4
LT
1723out:
1724 return rc;
1725bad:
12b29f34
SS
1726 /* Map old representation to string and save it. */
1727 if (context_struct_to_string(&oldc, &s, &len))
1728 return -ENOMEM;
1da177e4 1729 context_destroy(&oldc);
12b29f34
SS
1730 context_destroy(c);
1731 c->str = s;
1732 c->len = len;
1733 printk(KERN_INFO
1734 "SELinux: Context %s became invalid (unmapped).\n",
1735 c->str);
1736 rc = 0;
1da177e4
LT
1737 goto out;
1738}
1739
3bb56b25
PM
1740static void security_load_policycaps(void)
1741{
1742 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1743 POLICYDB_CAPABILITY_NETPEER);
b0c636b9
EP
1744 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1745 POLICYDB_CAPABILITY_OPENPERM);
3bb56b25
PM
1746}
1747
1da177e4 1748extern void selinux_complete_init(void);
e900a7d9 1749static int security_preserve_bools(struct policydb *p);
1da177e4
LT
1750
1751/**
1752 * security_load_policy - Load a security policy configuration.
1753 * @data: binary policy data
1754 * @len: length of data in bytes
1755 *
1756 * Load a new set of security policy configuration data,
1757 * validate it and convert the SID table as necessary.
1758 * This function will flush the access vector cache after
1759 * loading the new policy.
1760 */
1761int security_load_policy(void *data, size_t len)
1762{
1763 struct policydb oldpolicydb, newpolicydb;
1764 struct sidtab oldsidtab, newsidtab;
c6d3aaa4 1765 struct selinux_mapping *oldmap, *map = NULL;
1da177e4
LT
1766 struct convert_context_args args;
1767 u32 seqno;
c6d3aaa4 1768 u16 map_size;
1da177e4
LT
1769 int rc = 0;
1770 struct policy_file file = { data, len }, *fp = &file;
1771
1da177e4
LT
1772 if (!ss_initialized) {
1773 avtab_cache_init();
a2000050
EP
1774 rc = policydb_read(&policydb, fp);
1775 if (rc) {
1da177e4 1776 avtab_cache_destroy();
a2000050 1777 return rc;
1da177e4 1778 }
a2000050 1779
cee74f47 1780 policydb.len = len;
a2000050
EP
1781 rc = selinux_set_mapping(&policydb, secclass_map,
1782 &current_mapping,
1783 &current_mapping_size);
1784 if (rc) {
1da177e4
LT
1785 policydb_destroy(&policydb);
1786 avtab_cache_destroy();
a2000050 1787 return rc;
1da177e4 1788 }
a2000050
EP
1789
1790 rc = policydb_load_isids(&policydb, &sidtab);
1791 if (rc) {
b94c7e67
CS
1792 policydb_destroy(&policydb);
1793 avtab_cache_destroy();
a2000050 1794 return rc;
b94c7e67 1795 }
a2000050 1796
3bb56b25 1797 security_load_policycaps();
1da177e4 1798 ss_initialized = 1;
4c443d1b 1799 seqno = ++latest_granting;
1da177e4 1800 selinux_complete_init();
4c443d1b
SS
1801 avc_ss_reset(seqno);
1802 selnl_notify_policyload(seqno);
11904167 1803 selinux_status_update_policyload(seqno);
7420ed23 1804 selinux_netlbl_cache_invalidate();
342a0cff 1805 selinux_xfrm_notify_policyload();
1da177e4
LT
1806 return 0;
1807 }
1808
1809#if 0
1810 sidtab_hash_eval(&sidtab, "sids");
1811#endif
1812
a2000050
EP
1813 rc = policydb_read(&newpolicydb, fp);
1814 if (rc)
1815 return rc;
1da177e4 1816
cee74f47 1817 newpolicydb.len = len;
0719aaf5
GT
1818 /* If switching between different policy types, log MLS status */
1819 if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1820 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1821 else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1822 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1823
42596eaf
GT
1824 rc = policydb_load_isids(&newpolicydb, &newsidtab);
1825 if (rc) {
1826 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
12b29f34 1827 policydb_destroy(&newpolicydb);
42596eaf 1828 return rc;
12b29f34 1829 }
1da177e4 1830
a2000050
EP
1831 rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1832 if (rc)
b94c7e67 1833 goto err;
b94c7e67 1834
e900a7d9
SS
1835 rc = security_preserve_bools(&newpolicydb);
1836 if (rc) {
454d972c 1837 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
e900a7d9
SS
1838 goto err;
1839 }
1840
1da177e4
LT
1841 /* Clone the SID table. */
1842 sidtab_shutdown(&sidtab);
a2000050
EP
1843
1844 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1845 if (rc)
1da177e4 1846 goto err;
1da177e4 1847
12b29f34
SS
1848 /*
1849 * Convert the internal representations of contexts
1850 * in the new SID table.
1851 */
1da177e4
LT
1852 args.oldp = &policydb;
1853 args.newp = &newpolicydb;
12b29f34 1854 rc = sidtab_map(&newsidtab, convert_context, &args);
0719aaf5
GT
1855 if (rc) {
1856 printk(KERN_ERR "SELinux: unable to convert the internal"
1857 " representation of contexts in the new SID"
1858 " table\n");
12b29f34 1859 goto err;
0719aaf5 1860 }
1da177e4
LT
1861
1862 /* Save the old policydb and SID table to free later. */
1863 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1864 sidtab_set(&oldsidtab, &sidtab);
1865
1866 /* Install the new policydb and SID table. */
0804d113 1867 write_lock_irq(&policy_rwlock);
1da177e4
LT
1868 memcpy(&policydb, &newpolicydb, sizeof policydb);
1869 sidtab_set(&sidtab, &newsidtab);
3bb56b25 1870 security_load_policycaps();
c6d3aaa4
SS
1871 oldmap = current_mapping;
1872 current_mapping = map;
1873 current_mapping_size = map_size;
1da177e4 1874 seqno = ++latest_granting;
0804d113 1875 write_unlock_irq(&policy_rwlock);
1da177e4
LT
1876
1877 /* Free the old policydb and SID table. */
1878 policydb_destroy(&oldpolicydb);
1879 sidtab_destroy(&oldsidtab);
c6d3aaa4 1880 kfree(oldmap);
1da177e4
LT
1881
1882 avc_ss_reset(seqno);
1883 selnl_notify_policyload(seqno);
11904167 1884 selinux_status_update_policyload(seqno);
7420ed23 1885 selinux_netlbl_cache_invalidate();
342a0cff 1886 selinux_xfrm_notify_policyload();
1da177e4
LT
1887
1888 return 0;
1889
1890err:
c6d3aaa4 1891 kfree(map);
1da177e4
LT
1892 sidtab_destroy(&newsidtab);
1893 policydb_destroy(&newpolicydb);
1894 return rc;
1895
1896}
1897
cee74f47
EP
1898size_t security_policydb_len(void)
1899{
1900 size_t len;
1901
1902 read_lock(&policy_rwlock);
1903 len = policydb.len;
1904 read_unlock(&policy_rwlock);
1905
1906 return len;
1907}
1908
1da177e4
LT
1909/**
1910 * security_port_sid - Obtain the SID for a port.
1da177e4
LT
1911 * @protocol: protocol number
1912 * @port: port number
1913 * @out_sid: security identifier
1914 */
3e112172 1915int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1da177e4
LT
1916{
1917 struct ocontext *c;
1918 int rc = 0;
1919
0804d113 1920 read_lock(&policy_rwlock);
1da177e4
LT
1921
1922 c = policydb.ocontexts[OCON_PORT];
1923 while (c) {
1924 if (c->u.port.protocol == protocol &&
1925 c->u.port.low_port <= port &&
1926 c->u.port.high_port >= port)
1927 break;
1928 c = c->next;
1929 }
1930
1931 if (c) {
1932 if (!c->sid[0]) {
1933 rc = sidtab_context_to_sid(&sidtab,
1934 &c->context[0],
1935 &c->sid[0]);
1936 if (rc)
1937 goto out;
1938 }
1939 *out_sid = c->sid[0];
1940 } else {
1941 *out_sid = SECINITSID_PORT;
1942 }
1943
1944out:
0804d113 1945 read_unlock(&policy_rwlock);
1da177e4
LT
1946 return rc;
1947}
1948
1949/**
1950 * security_netif_sid - Obtain the SID for a network interface.
1951 * @name: interface name
1952 * @if_sid: interface SID
1da177e4 1953 */
e8bfdb9d 1954int security_netif_sid(char *name, u32 *if_sid)
1da177e4
LT
1955{
1956 int rc = 0;
1957 struct ocontext *c;
1958
0804d113 1959 read_lock(&policy_rwlock);
1da177e4
LT
1960
1961 c = policydb.ocontexts[OCON_NETIF];
1962 while (c) {
1963 if (strcmp(name, c->u.name) == 0)
1964 break;
1965 c = c->next;
1966 }
1967
1968 if (c) {
1969 if (!c->sid[0] || !c->sid[1]) {
1970 rc = sidtab_context_to_sid(&sidtab,
1971 &c->context[0],
1972 &c->sid[0]);
1973 if (rc)
1974 goto out;
1975 rc = sidtab_context_to_sid(&sidtab,
1976 &c->context[1],
1977 &c->sid[1]);
1978 if (rc)
1979 goto out;
1980 }
1981 *if_sid = c->sid[0];
e8bfdb9d 1982 } else
1da177e4 1983 *if_sid = SECINITSID_NETIF;
1da177e4
LT
1984
1985out:
0804d113 1986 read_unlock(&policy_rwlock);
1da177e4
LT
1987 return rc;
1988}
1989
1990static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1991{
1992 int i, fail = 0;
1993
5d55a345
EP
1994 for (i = 0; i < 4; i++)
1995 if (addr[i] != (input[i] & mask[i])) {
1da177e4
LT
1996 fail = 1;
1997 break;
1998 }
1999
2000 return !fail;
2001}
2002
2003/**
2004 * security_node_sid - Obtain the SID for a node (host).
2005 * @domain: communication domain aka address family
2006 * @addrp: address
2007 * @addrlen: address length in bytes
2008 * @out_sid: security identifier
2009 */
2010int security_node_sid(u16 domain,
2011 void *addrp,
2012 u32 addrlen,
2013 u32 *out_sid)
2014{
2015 int rc = 0;
2016 struct ocontext *c;
2017
0804d113 2018 read_lock(&policy_rwlock);
1da177e4
LT
2019
2020 switch (domain) {
2021 case AF_INET: {
2022 u32 addr;
2023
2024 if (addrlen != sizeof(u32)) {
2025 rc = -EINVAL;
2026 goto out;
2027 }
2028
2029 addr = *((u32 *)addrp);
2030
2031 c = policydb.ocontexts[OCON_NODE];
2032 while (c) {
2033 if (c->u.node.addr == (addr & c->u.node.mask))
2034 break;
2035 c = c->next;
2036 }
2037 break;
2038 }
2039
2040 case AF_INET6:
2041 if (addrlen != sizeof(u64) * 2) {
2042 rc = -EINVAL;
2043 goto out;
2044 }
2045 c = policydb.ocontexts[OCON_NODE6];
2046 while (c) {
2047 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2048 c->u.node6.mask))
2049 break;
2050 c = c->next;
2051 }
2052 break;
2053
2054 default:
2055 *out_sid = SECINITSID_NODE;
2056 goto out;
2057 }
2058
2059 if (c) {
2060 if (!c->sid[0]) {
2061 rc = sidtab_context_to_sid(&sidtab,
2062 &c->context[0],
2063 &c->sid[0]);
2064 if (rc)
2065 goto out;
2066 }
2067 *out_sid = c->sid[0];
2068 } else {
2069 *out_sid = SECINITSID_NODE;
2070 }
2071
2072out:
0804d113 2073 read_unlock(&policy_rwlock);
1da177e4
LT
2074 return rc;
2075}
2076
2077#define SIDS_NEL 25
2078
2079/**
2080 * security_get_user_sids - Obtain reachable SIDs for a user.
2081 * @fromsid: starting SID
2082 * @username: username
2083 * @sids: array of reachable SIDs for user
2084 * @nel: number of elements in @sids
2085 *
2086 * Generate the set of SIDs for legal security contexts
2087 * for a given user that can be reached by @fromsid.
2088 * Set *@sids to point to a dynamically allocated
2089 * array containing the set of SIDs. Set *@nel to the
2090 * number of elements in the array.
2091 */
2092
2093int security_get_user_sids(u32 fromsid,
5d55a345 2094 char *username,
1da177e4
LT
2095 u32 **sids,
2096 u32 *nel)
2097{
2098 struct context *fromcon, usercon;
2c3c05db 2099 u32 *mysids = NULL, *mysids2, sid;
1da177e4
LT
2100 u32 mynel = 0, maxnel = SIDS_NEL;
2101 struct user_datum *user;
2102 struct role_datum *role;
782ebb99 2103 struct ebitmap_node *rnode, *tnode;
1da177e4
LT
2104 int rc = 0, i, j;
2105
2c3c05db
SS
2106 *sids = NULL;
2107 *nel = 0;
2108
2109 if (!ss_initialized)
1da177e4 2110 goto out;
1da177e4 2111
0804d113 2112 read_lock(&policy_rwlock);
1da177e4 2113
12b29f34
SS
2114 context_init(&usercon);
2115
1da177e4
LT
2116 fromcon = sidtab_search(&sidtab, fromsid);
2117 if (!fromcon) {
2118 rc = -EINVAL;
2119 goto out_unlock;
2120 }
2121
2122 user = hashtab_search(policydb.p_users.table, username);
2123 if (!user) {
2124 rc = -EINVAL;
2125 goto out_unlock;
2126 }
2127 usercon.user = user->value;
2128
89d155ef 2129 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1da177e4
LT
2130 if (!mysids) {
2131 rc = -ENOMEM;
2132 goto out_unlock;
2133 }
1da177e4 2134
9fe79ad1 2135 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1da177e4 2136 role = policydb.role_val_to_struct[i];
c1a7368a 2137 usercon.role = i + 1;
9fe79ad1 2138 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
c1a7368a 2139 usercon.type = j + 1;
1da177e4
LT
2140
2141 if (mls_setup_user_range(fromcon, user, &usercon))
2142 continue;
2143
1da177e4 2144 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2c3c05db 2145 if (rc)
1da177e4 2146 goto out_unlock;
1da177e4
LT
2147 if (mynel < maxnel) {
2148 mysids[mynel++] = sid;
2149 } else {
2150 maxnel += SIDS_NEL;
89d155ef 2151 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1da177e4
LT
2152 if (!mysids2) {
2153 rc = -ENOMEM;
1da177e4
LT
2154 goto out_unlock;
2155 }
1da177e4
LT
2156 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2157 kfree(mysids);
2158 mysids = mysids2;
2159 mysids[mynel++] = sid;
2160 }
2161 }
2162 }
2163
1da177e4 2164out_unlock:
0804d113 2165 read_unlock(&policy_rwlock);
2c3c05db
SS
2166 if (rc || !mynel) {
2167 kfree(mysids);
2168 goto out;
2169 }
2170
2171 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2172 if (!mysids2) {
2173 rc = -ENOMEM;
2174 kfree(mysids);
2175 goto out;
2176 }
2177 for (i = 0, j = 0; i < mynel; i++) {
2178 rc = avc_has_perm_noaudit(fromsid, mysids[i],
c6d3aaa4 2179 SECCLASS_PROCESS, /* kernel value */
2c3c05db
SS
2180 PROCESS__TRANSITION, AVC_STRICT,
2181 NULL);
2182 if (!rc)
2183 mysids2[j++] = mysids[i];
2184 cond_resched();
2185 }
2186 rc = 0;
2187 kfree(mysids);
2188 *sids = mysids2;
2189 *nel = j;
1da177e4
LT
2190out:
2191 return rc;
2192}
2193
2194/**
2195 * security_genfs_sid - Obtain a SID for a file in a filesystem
2196 * @fstype: filesystem type
2197 * @path: path from root of mount
2198 * @sclass: file security class
2199 * @sid: SID for path
2200 *
2201 * Obtain a SID to use for a file in a filesystem that
2202 * cannot support xattr or use a fixed labeling behavior like
2203 * transition SIDs or task SIDs.
2204 */
2205int security_genfs_sid(const char *fstype,
5d55a345 2206 char *path,
c6d3aaa4 2207 u16 orig_sclass,
1da177e4
LT
2208 u32 *sid)
2209{
2210 int len;
c6d3aaa4 2211 u16 sclass;
1da177e4
LT
2212 struct genfs *genfs;
2213 struct ocontext *c;
2214 int rc = 0, cmp = 0;
2215
b1aa5301
SS
2216 while (path[0] == '/' && path[1] == '/')
2217 path++;
2218
0804d113 2219 read_lock(&policy_rwlock);
1da177e4 2220
c6d3aaa4
SS
2221 sclass = unmap_class(orig_sclass);
2222
1da177e4
LT
2223 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2224 cmp = strcmp(fstype, genfs->fstype);
2225 if (cmp <= 0)
2226 break;
2227 }
2228
2229 if (!genfs || cmp) {
2230 *sid = SECINITSID_UNLABELED;
2231 rc = -ENOENT;
2232 goto out;
2233 }
2234
2235 for (c = genfs->head; c; c = c->next) {
2236 len = strlen(c->u.name);
2237 if ((!c->v.sclass || sclass == c->v.sclass) &&
2238 (strncmp(c->u.name, path, len) == 0))
2239 break;
2240 }
2241
2242 if (!c) {
2243 *sid = SECINITSID_UNLABELED;
2244 rc = -ENOENT;
2245 goto out;
2246 }
2247
2248 if (!c->sid[0]) {
2249 rc = sidtab_context_to_sid(&sidtab,
2250 &c->context[0],
2251 &c->sid[0]);
2252 if (rc)
2253 goto out;
2254 }
2255
2256 *sid = c->sid[0];
2257out:
0804d113 2258 read_unlock(&policy_rwlock);
1da177e4
LT
2259 return rc;
2260}
2261
2262/**
2263 * security_fs_use - Determine how to handle labeling for a filesystem.
2264 * @fstype: filesystem type
2265 * @behavior: labeling behavior
2266 * @sid: SID for filesystem (superblock)
2267 */
2268int security_fs_use(
2269 const char *fstype,
2270 unsigned int *behavior,
089be43e 2271 u32 *sid)
1da177e4
LT
2272{
2273 int rc = 0;
2274 struct ocontext *c;
2275
0804d113 2276 read_lock(&policy_rwlock);
1da177e4
LT
2277
2278 c = policydb.ocontexts[OCON_FSUSE];
2279 while (c) {
2280 if (strcmp(fstype, c->u.name) == 0)
2281 break;
2282 c = c->next;
2283 }
2284
2285 if (c) {
2286 *behavior = c->v.behavior;
2287 if (!c->sid[0]) {
2288 rc = sidtab_context_to_sid(&sidtab,
2289 &c->context[0],
2290 &c->sid[0]);
2291 if (rc)
2292 goto out;
2293 }
2294 *sid = c->sid[0];
2295 } else {
089be43e
JM
2296 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2297 if (rc) {
2298 *behavior = SECURITY_FS_USE_NONE;
2299 rc = 0;
2300 } else {
2301 *behavior = SECURITY_FS_USE_GENFS;
2302 }
1da177e4
LT
2303 }
2304
2305out:
0804d113 2306 read_unlock(&policy_rwlock);
1da177e4
LT
2307 return rc;
2308}
2309
2310int security_get_bools(int *len, char ***names, int **values)
2311{
2312 int i, rc = -ENOMEM;
2313
0804d113 2314 read_lock(&policy_rwlock);
1da177e4
LT
2315 *names = NULL;
2316 *values = NULL;
2317
2318 *len = policydb.p_bools.nprim;
2319 if (!*len) {
2320 rc = 0;
2321 goto out;
2322 }
2323
5d55a345 2324 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
1da177e4
LT
2325 if (!*names)
2326 goto err;
1da177e4 2327
e0795cf4 2328 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1da177e4
LT
2329 if (!*values)
2330 goto err;
2331
2332 for (i = 0; i < *len; i++) {
2333 size_t name_len;
2334 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2335 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
5d55a345 2336 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1da177e4
LT
2337 if (!(*names)[i])
2338 goto err;
2339 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2340 (*names)[i][name_len - 1] = 0;
2341 }
2342 rc = 0;
2343out:
0804d113 2344 read_unlock(&policy_rwlock);
1da177e4
LT
2345 return rc;
2346err:
2347 if (*names) {
2348 for (i = 0; i < *len; i++)
9a5f04bf 2349 kfree((*names)[i]);
1da177e4 2350 }
9a5f04bf 2351 kfree(*values);
1da177e4
LT
2352 goto out;
2353}
2354
2355
2356int security_set_bools(int len, int *values)
2357{
2358 int i, rc = 0;
2359 int lenp, seqno = 0;
2360 struct cond_node *cur;
2361
0804d113 2362 write_lock_irq(&policy_rwlock);
1da177e4
LT
2363
2364 lenp = policydb.p_bools.nprim;
2365 if (len != lenp) {
2366 rc = -EFAULT;
2367 goto out;
2368 }
2369
1da177e4 2370 for (i = 0; i < len; i++) {
af601e46
SG
2371 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2372 audit_log(current->audit_context, GFP_ATOMIC,
2373 AUDIT_MAC_CONFIG_CHANGE,
4746ec5b 2374 "bool=%s val=%d old_val=%d auid=%u ses=%u",
af601e46
SG
2375 policydb.p_bool_val_to_name[i],
2376 !!values[i],
2377 policydb.bool_val_to_struct[i]->state,
4746ec5b
EP
2378 audit_get_loginuid(current),
2379 audit_get_sessionid(current));
af601e46 2380 }
5d55a345 2381 if (values[i])
1da177e4 2382 policydb.bool_val_to_struct[i]->state = 1;
5d55a345 2383 else
1da177e4 2384 policydb.bool_val_to_struct[i]->state = 0;
1da177e4 2385 }
1da177e4 2386
dbc74c65 2387 for (cur = policydb.cond_list; cur; cur = cur->next) {
1da177e4
LT
2388 rc = evaluate_cond_node(&policydb, cur);
2389 if (rc)
2390 goto out;
2391 }
2392
2393 seqno = ++latest_granting;
2394
2395out:
0804d113 2396 write_unlock_irq(&policy_rwlock);
1da177e4
LT
2397 if (!rc) {
2398 avc_ss_reset(seqno);
2399 selnl_notify_policyload(seqno);
11904167 2400 selinux_status_update_policyload(seqno);
342a0cff 2401 selinux_xfrm_notify_policyload();
1da177e4
LT
2402 }
2403 return rc;
2404}
2405
2406int security_get_bool_value(int bool)
2407{
2408 int rc = 0;
2409 int len;
2410
0804d113 2411 read_lock(&policy_rwlock);
1da177e4
LT
2412
2413 len = policydb.p_bools.nprim;
2414 if (bool >= len) {
2415 rc = -EFAULT;
2416 goto out;
2417 }
2418
2419 rc = policydb.bool_val_to_struct[bool]->state;
2420out:
0804d113 2421 read_unlock(&policy_rwlock);
1da177e4
LT
2422 return rc;
2423}
376bd9cb 2424
e900a7d9
SS
2425static int security_preserve_bools(struct policydb *p)
2426{
2427 int rc, nbools = 0, *bvalues = NULL, i;
2428 char **bnames = NULL;
2429 struct cond_bool_datum *booldatum;
2430 struct cond_node *cur;
2431
2432 rc = security_get_bools(&nbools, &bnames, &bvalues);
2433 if (rc)
2434 goto out;
2435 for (i = 0; i < nbools; i++) {
2436 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2437 if (booldatum)
2438 booldatum->state = bvalues[i];
2439 }
dbc74c65 2440 for (cur = p->cond_list; cur; cur = cur->next) {
e900a7d9
SS
2441 rc = evaluate_cond_node(p, cur);
2442 if (rc)
2443 goto out;
2444 }
2445
2446out:
2447 if (bnames) {
2448 for (i = 0; i < nbools; i++)
2449 kfree(bnames[i]);
2450 }
2451 kfree(bnames);
2452 kfree(bvalues);
2453 return rc;
2454}
2455
08554d6b
VY
2456/*
2457 * security_sid_mls_copy() - computes a new sid based on the given
2458 * sid and the mls portion of mls_sid.
2459 */
2460int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2461{
2462 struct context *context1;
2463 struct context *context2;
2464 struct context newcon;
2465 char *s;
2466 u32 len;
2467 int rc = 0;
2468
0719aaf5 2469 if (!ss_initialized || !policydb.mls_enabled) {
08554d6b
VY
2470 *new_sid = sid;
2471 goto out;
2472 }
2473
2474 context_init(&newcon);
2475
0804d113 2476 read_lock(&policy_rwlock);
08554d6b
VY
2477 context1 = sidtab_search(&sidtab, sid);
2478 if (!context1) {
744ba35e
EP
2479 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2480 __func__, sid);
08554d6b
VY
2481 rc = -EINVAL;
2482 goto out_unlock;
2483 }
2484
2485 context2 = sidtab_search(&sidtab, mls_sid);
2486 if (!context2) {
744ba35e
EP
2487 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2488 __func__, mls_sid);
08554d6b
VY
2489 rc = -EINVAL;
2490 goto out_unlock;
2491 }
2492
2493 newcon.user = context1->user;
2494 newcon.role = context1->role;
2495 newcon.type = context1->type;
0efc61ea 2496 rc = mls_context_cpy(&newcon, context2);
08554d6b
VY
2497 if (rc)
2498 goto out_unlock;
2499
08554d6b
VY
2500 /* Check the validity of the new context. */
2501 if (!policydb_context_isvalid(&policydb, &newcon)) {
2502 rc = convert_context_handle_invalid_context(&newcon);
2503 if (rc)
2504 goto bad;
2505 }
2506
2507 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2508 goto out_unlock;
2509
2510bad:
2511 if (!context_struct_to_string(&newcon, &s, &len)) {
2512 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2513 "security_sid_mls_copy: invalid context %s", s);
2514 kfree(s);
2515 }
2516
2517out_unlock:
0804d113 2518 read_unlock(&policy_rwlock);
08554d6b
VY
2519 context_destroy(&newcon);
2520out:
2521 return rc;
2522}
2523
220deb96
PM
2524/**
2525 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2526 * @nlbl_sid: NetLabel SID
2527 * @nlbl_type: NetLabel labeling protocol type
2528 * @xfrm_sid: XFRM SID
2529 *
2530 * Description:
2531 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2532 * resolved into a single SID it is returned via @peer_sid and the function
2533 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2534 * returns a negative value. A table summarizing the behavior is below:
2535 *
2536 * | function return | @sid
2537 * ------------------------------+-----------------+-----------------
2538 * no peer labels | 0 | SECSID_NULL
2539 * single peer label | 0 | <peer_label>
2540 * multiple, consistent labels | 0 | <peer_label>
2541 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2542 *
2543 */
2544int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2545 u32 xfrm_sid,
2546 u32 *peer_sid)
2547{
2548 int rc;
2549 struct context *nlbl_ctx;
2550 struct context *xfrm_ctx;
2551
2552 /* handle the common (which also happens to be the set of easy) cases
2553 * right away, these two if statements catch everything involving a
2554 * single or absent peer SID/label */
2555 if (xfrm_sid == SECSID_NULL) {
2556 *peer_sid = nlbl_sid;
2557 return 0;
2558 }
2559 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2560 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2561 * is present */
2562 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2563 *peer_sid = xfrm_sid;
2564 return 0;
2565 }
2566
2567 /* we don't need to check ss_initialized here since the only way both
2568 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2569 * security server was initialized and ss_initialized was true */
0719aaf5 2570 if (!policydb.mls_enabled) {
220deb96
PM
2571 *peer_sid = SECSID_NULL;
2572 return 0;
2573 }
2574
0804d113 2575 read_lock(&policy_rwlock);
220deb96
PM
2576
2577 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2578 if (!nlbl_ctx) {
744ba35e
EP
2579 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2580 __func__, nlbl_sid);
220deb96
PM
2581 rc = -EINVAL;
2582 goto out_slowpath;
2583 }
2584 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2585 if (!xfrm_ctx) {
744ba35e
EP
2586 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2587 __func__, xfrm_sid);
220deb96
PM
2588 rc = -EINVAL;
2589 goto out_slowpath;
2590 }
2591 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2592
2593out_slowpath:
0804d113 2594 read_unlock(&policy_rwlock);
220deb96
PM
2595 if (rc == 0)
2596 /* at present NetLabel SIDs/labels really only carry MLS
2597 * information so if the MLS portion of the NetLabel SID
2598 * matches the MLS portion of the labeled XFRM SID/label
2599 * then pass along the XFRM SID as it is the most
2600 * expressive */
2601 *peer_sid = xfrm_sid;
2602 else
2603 *peer_sid = SECSID_NULL;
2604 return rc;
2605}
2606
55fcf09b
CP
2607static int get_classes_callback(void *k, void *d, void *args)
2608{
2609 struct class_datum *datum = d;
2610 char *name = k, **classes = args;
2611 int value = datum->value - 1;
2612
2613 classes[value] = kstrdup(name, GFP_ATOMIC);
2614 if (!classes[value])
2615 return -ENOMEM;
2616
2617 return 0;
2618}
2619
2620int security_get_classes(char ***classes, int *nclasses)
2621{
2622 int rc = -ENOMEM;
2623
0804d113 2624 read_lock(&policy_rwlock);
55fcf09b
CP
2625
2626 *nclasses = policydb.p_classes.nprim;
9f59f90b 2627 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
55fcf09b
CP
2628 if (!*classes)
2629 goto out;
2630
2631 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2632 *classes);
2633 if (rc < 0) {
2634 int i;
2635 for (i = 0; i < *nclasses; i++)
2636 kfree((*classes)[i]);
2637 kfree(*classes);
2638 }
2639
2640out:
0804d113 2641 read_unlock(&policy_rwlock);
55fcf09b
CP
2642 return rc;
2643}
2644
2645static int get_permissions_callback(void *k, void *d, void *args)
2646{
2647 struct perm_datum *datum = d;
2648 char *name = k, **perms = args;
2649 int value = datum->value - 1;
2650
2651 perms[value] = kstrdup(name, GFP_ATOMIC);
2652 if (!perms[value])
2653 return -ENOMEM;
2654
2655 return 0;
2656}
2657
2658int security_get_permissions(char *class, char ***perms, int *nperms)
2659{
2660 int rc = -ENOMEM, i;
2661 struct class_datum *match;
2662
0804d113 2663 read_lock(&policy_rwlock);
55fcf09b
CP
2664
2665 match = hashtab_search(policydb.p_classes.table, class);
2666 if (!match) {
744ba35e 2667 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
dd6f953a 2668 __func__, class);
55fcf09b
CP
2669 rc = -EINVAL;
2670 goto out;
2671 }
2672
2673 *nperms = match->permissions.nprim;
9f59f90b 2674 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
55fcf09b
CP
2675 if (!*perms)
2676 goto out;
2677
2678 if (match->comdatum) {
2679 rc = hashtab_map(match->comdatum->permissions.table,
2680 get_permissions_callback, *perms);
2681 if (rc < 0)
2682 goto err;
2683 }
2684
2685 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2686 *perms);
2687 if (rc < 0)
2688 goto err;
2689
2690out:
0804d113 2691 read_unlock(&policy_rwlock);
55fcf09b
CP
2692 return rc;
2693
2694err:
0804d113 2695 read_unlock(&policy_rwlock);
55fcf09b
CP
2696 for (i = 0; i < *nperms; i++)
2697 kfree((*perms)[i]);
2698 kfree(*perms);
2699 return rc;
2700}
2701
3f12070e
EP
2702int security_get_reject_unknown(void)
2703{
2704 return policydb.reject_unknown;
2705}
2706
2707int security_get_allow_unknown(void)
2708{
2709 return policydb.allow_unknown;
2710}
2711
3bb56b25
PM
2712/**
2713 * security_policycap_supported - Check for a specific policy capability
2714 * @req_cap: capability
2715 *
2716 * Description:
2717 * This function queries the currently loaded policy to see if it supports the
2718 * capability specified by @req_cap. Returns true (1) if the capability is
2719 * supported, false (0) if it isn't supported.
2720 *
2721 */
2722int security_policycap_supported(unsigned int req_cap)
2723{
2724 int rc;
2725
0804d113 2726 read_lock(&policy_rwlock);
3bb56b25 2727 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
0804d113 2728 read_unlock(&policy_rwlock);
3bb56b25
PM
2729
2730 return rc;
2731}
2732
376bd9cb
DG
2733struct selinux_audit_rule {
2734 u32 au_seqno;
2735 struct context au_ctxt;
2736};
2737
9d57a7f9 2738void selinux_audit_rule_free(void *vrule)
376bd9cb 2739{
9d57a7f9
AD
2740 struct selinux_audit_rule *rule = vrule;
2741
376bd9cb
DG
2742 if (rule) {
2743 context_destroy(&rule->au_ctxt);
2744 kfree(rule);
2745 }
2746}
2747
9d57a7f9 2748int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
376bd9cb
DG
2749{
2750 struct selinux_audit_rule *tmprule;
2751 struct role_datum *roledatum;
2752 struct type_datum *typedatum;
2753 struct user_datum *userdatum;
9d57a7f9 2754 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
376bd9cb
DG
2755 int rc = 0;
2756
2757 *rule = NULL;
2758
2759 if (!ss_initialized)
3ad40d64 2760 return -EOPNOTSUPP;
376bd9cb
DG
2761
2762 switch (field) {
3a6b9f85
DG
2763 case AUDIT_SUBJ_USER:
2764 case AUDIT_SUBJ_ROLE:
2765 case AUDIT_SUBJ_TYPE:
6e5a2d1d
DG
2766 case AUDIT_OBJ_USER:
2767 case AUDIT_OBJ_ROLE:
2768 case AUDIT_OBJ_TYPE:
376bd9cb 2769 /* only 'equals' and 'not equals' fit user, role, and type */
5af75d8d 2770 if (op != Audit_equal && op != Audit_not_equal)
376bd9cb
DG
2771 return -EINVAL;
2772 break;
3a6b9f85
DG
2773 case AUDIT_SUBJ_SEN:
2774 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2775 case AUDIT_OBJ_LEV_LOW:
2776 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2777 /* we do not allow a range, indicated by the presense of '-' */
2778 if (strchr(rulestr, '-'))
2779 return -EINVAL;
2780 break;
2781 default:
2782 /* only the above fields are valid */
2783 return -EINVAL;
2784 }
2785
2786 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2787 if (!tmprule)
2788 return -ENOMEM;
2789
2790 context_init(&tmprule->au_ctxt);
2791
0804d113 2792 read_lock(&policy_rwlock);
376bd9cb
DG
2793
2794 tmprule->au_seqno = latest_granting;
2795
2796 switch (field) {
3a6b9f85 2797 case AUDIT_SUBJ_USER:
6e5a2d1d 2798 case AUDIT_OBJ_USER:
376bd9cb
DG
2799 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2800 if (!userdatum)
2801 rc = -EINVAL;
2802 else
2803 tmprule->au_ctxt.user = userdatum->value;
2804 break;
3a6b9f85 2805 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2806 case AUDIT_OBJ_ROLE:
376bd9cb
DG
2807 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2808 if (!roledatum)
2809 rc = -EINVAL;
2810 else
2811 tmprule->au_ctxt.role = roledatum->value;
2812 break;
3a6b9f85 2813 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2814 case AUDIT_OBJ_TYPE:
376bd9cb
DG
2815 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2816 if (!typedatum)
2817 rc = -EINVAL;
2818 else
2819 tmprule->au_ctxt.type = typedatum->value;
2820 break;
3a6b9f85
DG
2821 case AUDIT_SUBJ_SEN:
2822 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2823 case AUDIT_OBJ_LEV_LOW:
2824 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2825 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2826 break;
2827 }
2828
0804d113 2829 read_unlock(&policy_rwlock);
376bd9cb
DG
2830
2831 if (rc) {
2832 selinux_audit_rule_free(tmprule);
2833 tmprule = NULL;
2834 }
2835
2836 *rule = tmprule;
2837
2838 return rc;
2839}
2840
9d57a7f9
AD
2841/* Check to see if the rule contains any selinux fields */
2842int selinux_audit_rule_known(struct audit_krule *rule)
2843{
2844 int i;
2845
2846 for (i = 0; i < rule->field_count; i++) {
2847 struct audit_field *f = &rule->fields[i];
2848 switch (f->type) {
2849 case AUDIT_SUBJ_USER:
2850 case AUDIT_SUBJ_ROLE:
2851 case AUDIT_SUBJ_TYPE:
2852 case AUDIT_SUBJ_SEN:
2853 case AUDIT_SUBJ_CLR:
2854 case AUDIT_OBJ_USER:
2855 case AUDIT_OBJ_ROLE:
2856 case AUDIT_OBJ_TYPE:
2857 case AUDIT_OBJ_LEV_LOW:
2858 case AUDIT_OBJ_LEV_HIGH:
2859 return 1;
2860 }
2861 }
2862
2863 return 0;
2864}
2865
2866int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
f5269710 2867 struct audit_context *actx)
376bd9cb
DG
2868{
2869 struct context *ctxt;
2870 struct mls_level *level;
9d57a7f9 2871 struct selinux_audit_rule *rule = vrule;
376bd9cb
DG
2872 int match = 0;
2873
2874 if (!rule) {
2875 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2876 "selinux_audit_rule_match: missing rule\n");
376bd9cb
DG
2877 return -ENOENT;
2878 }
2879
0804d113 2880 read_lock(&policy_rwlock);
376bd9cb
DG
2881
2882 if (rule->au_seqno < latest_granting) {
2883 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2884 "selinux_audit_rule_match: stale rule\n");
376bd9cb
DG
2885 match = -ESTALE;
2886 goto out;
2887 }
2888
9a2f44f0 2889 ctxt = sidtab_search(&sidtab, sid);
376bd9cb
DG
2890 if (!ctxt) {
2891 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
2892 "selinux_audit_rule_match: unrecognized SID %d\n",
2893 sid);
376bd9cb
DG
2894 match = -ENOENT;
2895 goto out;
2896 }
2897
2898 /* a field/op pair that is not caught here will simply fall through
2899 without a match */
2900 switch (field) {
3a6b9f85 2901 case AUDIT_SUBJ_USER:
6e5a2d1d 2902 case AUDIT_OBJ_USER:
376bd9cb 2903 switch (op) {
5af75d8d 2904 case Audit_equal:
376bd9cb
DG
2905 match = (ctxt->user == rule->au_ctxt.user);
2906 break;
5af75d8d 2907 case Audit_not_equal:
376bd9cb
DG
2908 match = (ctxt->user != rule->au_ctxt.user);
2909 break;
2910 }
2911 break;
3a6b9f85 2912 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2913 case AUDIT_OBJ_ROLE:
376bd9cb 2914 switch (op) {
5af75d8d 2915 case Audit_equal:
376bd9cb
DG
2916 match = (ctxt->role == rule->au_ctxt.role);
2917 break;
5af75d8d 2918 case Audit_not_equal:
376bd9cb
DG
2919 match = (ctxt->role != rule->au_ctxt.role);
2920 break;
2921 }
2922 break;
3a6b9f85 2923 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2924 case AUDIT_OBJ_TYPE:
376bd9cb 2925 switch (op) {
5af75d8d 2926 case Audit_equal:
376bd9cb
DG
2927 match = (ctxt->type == rule->au_ctxt.type);
2928 break;
5af75d8d 2929 case Audit_not_equal:
376bd9cb
DG
2930 match = (ctxt->type != rule->au_ctxt.type);
2931 break;
2932 }
2933 break;
3a6b9f85
DG
2934 case AUDIT_SUBJ_SEN:
2935 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2936 case AUDIT_OBJ_LEV_LOW:
2937 case AUDIT_OBJ_LEV_HIGH:
2938 level = ((field == AUDIT_SUBJ_SEN ||
5d55a345
EP
2939 field == AUDIT_OBJ_LEV_LOW) ?
2940 &ctxt->range.level[0] : &ctxt->range.level[1]);
376bd9cb 2941 switch (op) {
5af75d8d 2942 case Audit_equal:
376bd9cb 2943 match = mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 2944 level);
376bd9cb 2945 break;
5af75d8d 2946 case Audit_not_equal:
376bd9cb 2947 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 2948 level);
376bd9cb 2949 break;
5af75d8d 2950 case Audit_lt:
376bd9cb 2951 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345
EP
2952 level) &&
2953 !mls_level_eq(&rule->au_ctxt.range.level[0],
2954 level));
376bd9cb 2955 break;
5af75d8d 2956 case Audit_le:
376bd9cb 2957 match = mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345 2958 level);
376bd9cb 2959 break;
5af75d8d 2960 case Audit_gt:
376bd9cb 2961 match = (mls_level_dom(level,
5d55a345
EP
2962 &rule->au_ctxt.range.level[0]) &&
2963 !mls_level_eq(level,
2964 &rule->au_ctxt.range.level[0]));
376bd9cb 2965 break;
5af75d8d 2966 case Audit_ge:
376bd9cb 2967 match = mls_level_dom(level,
5d55a345 2968 &rule->au_ctxt.range.level[0]);
376bd9cb
DG
2969 break;
2970 }
2971 }
2972
2973out:
0804d113 2974 read_unlock(&policy_rwlock);
376bd9cb
DG
2975 return match;
2976}
2977
9d57a7f9 2978static int (*aurule_callback)(void) = audit_update_lsm_rules;
376bd9cb
DG
2979
2980static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
f5269710 2981 u16 class, u32 perms, u32 *retained)
376bd9cb
DG
2982{
2983 int err = 0;
2984
2985 if (event == AVC_CALLBACK_RESET && aurule_callback)
2986 err = aurule_callback();
2987 return err;
2988}
2989
2990static int __init aurule_init(void)
2991{
2992 int err;
2993
2994 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
5d55a345 2995 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
376bd9cb
DG
2996 if (err)
2997 panic("avc_add_callback() failed, error %d\n", err);
2998
2999 return err;
3000}
3001__initcall(aurule_init);
3002
7420ed23 3003#ifdef CONFIG_NETLABEL
7420ed23 3004/**
5778eabd
PM
3005 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3006 * @secattr: the NetLabel packet security attributes
5dbe1eb0 3007 * @sid: the SELinux SID
7420ed23
VY
3008 *
3009 * Description:
3010 * Attempt to cache the context in @ctx, which was derived from the packet in
5778eabd
PM
3011 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3012 * already been initialized.
7420ed23
VY
3013 *
3014 */
5778eabd 3015static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
5dbe1eb0 3016 u32 sid)
7420ed23 3017{
5dbe1eb0 3018 u32 *sid_cache;
7420ed23 3019
5dbe1eb0
PM
3020 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3021 if (sid_cache == NULL)
5778eabd 3022 return;
5dbe1eb0
PM
3023 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3024 if (secattr->cache == NULL) {
3025 kfree(sid_cache);
5778eabd 3026 return;
0ec8abd7 3027 }
7420ed23 3028
5dbe1eb0
PM
3029 *sid_cache = sid;
3030 secattr->cache->free = kfree;
3031 secattr->cache->data = sid_cache;
5778eabd 3032 secattr->flags |= NETLBL_SECATTR_CACHE;
7420ed23
VY
3033}
3034
3035/**
5778eabd 3036 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
7420ed23 3037 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3038 * @sid: the SELinux SID
3039 *
3040 * Description:
5778eabd 3041 * Convert the given NetLabel security attributes in @secattr into a
7420ed23 3042 * SELinux SID. If the @secattr field does not contain a full SELinux
5dbe1eb0
PM
3043 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
3044 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3045 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3046 * conversion for future lookups. Returns zero on success, negative values on
3047 * failure.
7420ed23
VY
3048 *
3049 */
5778eabd 3050int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
5778eabd 3051 u32 *sid)
7420ed23
VY
3052{
3053 int rc = -EIDRM;
3054 struct context *ctx;
3055 struct context ctx_new;
5778eabd
PM
3056
3057 if (!ss_initialized) {
3058 *sid = SECSID_NULL;
3059 return 0;
3060 }
7420ed23 3061
0804d113 3062 read_lock(&policy_rwlock);
7420ed23 3063
701a90ba 3064 if (secattr->flags & NETLBL_SECATTR_CACHE) {
5dbe1eb0
PM
3065 *sid = *(u32 *)secattr->cache->data;
3066 rc = 0;
16efd454
PM
3067 } else if (secattr->flags & NETLBL_SECATTR_SECID) {
3068 *sid = secattr->attr.secid;
3069 rc = 0;
701a90ba 3070 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
5dbe1eb0 3071 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
7420ed23
VY
3072 if (ctx == NULL)
3073 goto netlbl_secattr_to_sid_return;
3074
81990fbd 3075 context_init(&ctx_new);
7420ed23
VY
3076 ctx_new.user = ctx->user;
3077 ctx_new.role = ctx->role;
3078 ctx_new.type = ctx->type;
02752760 3079 mls_import_netlbl_lvl(&ctx_new, secattr);
701a90ba 3080 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
02752760 3081 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
16efd454 3082 secattr->attr.mls.cat) != 0)
7420ed23 3083 goto netlbl_secattr_to_sid_return;
81990fbd
PM
3084 memcpy(&ctx_new.range.level[1].cat,
3085 &ctx_new.range.level[0].cat,
3086 sizeof(ctx_new.range.level[0].cat));
7420ed23
VY
3087 }
3088 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3089 goto netlbl_secattr_to_sid_return_cleanup;
3090
3091 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3092 if (rc != 0)
3093 goto netlbl_secattr_to_sid_return_cleanup;
3094
5dbe1eb0 3095 security_netlbl_cache_add(secattr, *sid);
5778eabd 3096
7420ed23
VY
3097 ebitmap_destroy(&ctx_new.range.level[0].cat);
3098 } else {
388b2405 3099 *sid = SECSID_NULL;
7420ed23
VY
3100 rc = 0;
3101 }
3102
3103netlbl_secattr_to_sid_return:
0804d113 3104 read_unlock(&policy_rwlock);
7420ed23
VY
3105 return rc;
3106netlbl_secattr_to_sid_return_cleanup:
3107 ebitmap_destroy(&ctx_new.range.level[0].cat);
3108 goto netlbl_secattr_to_sid_return;
3109}
3110
3111/**
5778eabd
PM
3112 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3113 * @sid: the SELinux SID
3114 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3115 *
3116 * Description:
5778eabd
PM
3117 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3118 * Returns zero on success, negative values on failure.
7420ed23
VY
3119 *
3120 */
5778eabd 3121int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
7420ed23 3122{
99d854d2 3123 int rc;
7420ed23
VY
3124 struct context *ctx;
3125
3126 if (!ss_initialized)
3127 return 0;
3128
0804d113 3129 read_lock(&policy_rwlock);
7420ed23 3130 ctx = sidtab_search(&sidtab, sid);
99d854d2
PM
3131 if (ctx == NULL) {
3132 rc = -ENOENT;
5778eabd 3133 goto netlbl_sid_to_secattr_failure;
99d854d2 3134 }
5778eabd
PM
3135 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3136 GFP_ATOMIC);
99d854d2
PM
3137 if (secattr->domain == NULL) {
3138 rc = -ENOMEM;
3139 goto netlbl_sid_to_secattr_failure;
3140 }
8d75899d
PM
3141 secattr->attr.secid = sid;
3142 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
5778eabd
PM
3143 mls_export_netlbl_lvl(ctx, secattr);
3144 rc = mls_export_netlbl_cat(ctx, secattr);
bf0edf39 3145 if (rc != 0)
5778eabd 3146 goto netlbl_sid_to_secattr_failure;
0804d113 3147 read_unlock(&policy_rwlock);
99f59ed0 3148
5778eabd 3149 return 0;
f8687afe 3150
5778eabd 3151netlbl_sid_to_secattr_failure:
0804d113 3152 read_unlock(&policy_rwlock);
f8687afe
PM
3153 return rc;
3154}
7420ed23 3155#endif /* CONFIG_NETLABEL */
cee74f47
EP
3156
3157/**
3158 * security_read_policy - read the policy.
3159 * @data: binary policy data
3160 * @len: length of data in bytes
3161 *
3162 */
3163int security_read_policy(void **data, ssize_t *len)
3164{
3165 int rc;
3166 struct policy_file fp;
3167
3168 if (!ss_initialized)
3169 return -EINVAL;
3170
3171 *len = security_policydb_len();
3172
845ca30f 3173 *data = vmalloc_user(*len);
cee74f47
EP
3174 if (!*data)
3175 return -ENOMEM;
3176
3177 fp.data = *data;
3178 fp.len = *len;
3179
3180 read_lock(&policy_rwlock);
3181 rc = policydb_write(&policydb, &fp);
3182 read_unlock(&policy_rwlock);
3183
3184 if (rc)
3185 return rc;
3186
3187 *len = (unsigned long)fp.data - (unsigned long)*data;
3188 return 0;
3189
3190}