]> bbs.cooldavid.org Git - net-next-2.6.git/blame - security/selinux/ss/services.c
Security: Fix the comment of cap_file_mmap()
[net-next-2.6.git] / security / selinux / ss / services.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5d55a345 5 * James Morris <jmorris@redhat.com>
1da177e4
LT
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
376bd9cb 10 * Support for context based audit filters.
1da177e4
LT
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
5d55a345 14 * Added conditional policy language extensions
1da177e4 15 *
7420ed23
VY
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 * Added support for NetLabel
3bb56b25 19 * Added support for the policy capability bitmap
7420ed23 20 *
b94c7e67
CS
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
44c2d9bd
KK
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
0719aaf5
GT
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
44c2d9bd 33 * Copyright (C) 2008, 2009 NEC Corporation
3bb56b25 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
376bd9cb 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
b94c7e67 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
1da177e4
LT
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
5d55a345 39 * it under the terms of the GNU General Public License as published by
1da177e4
LT
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
9f2ad665 46#include <linux/rcupdate.h>
1da177e4
LT
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
bb003079 51#include <linux/mutex.h>
0e55a004 52#include <linux/selinux.h>
7420ed23 53#include <net/netlabel.h>
bb003079 54
1da177e4
LT
55#include "flask.h"
56#include "avc.h"
57#include "avc_ss.h"
58#include "security.h"
59#include "context.h"
60#include "policydb.h"
61#include "sidtab.h"
62#include "services.h"
63#include "conditional.h"
64#include "mls.h"
7420ed23 65#include "objsec.h"
c60475bf 66#include "netlabel.h"
3de4bab5 67#include "xfrm.h"
02752760 68#include "ebitmap.h"
9d57a7f9 69#include "audit.h"
1da177e4
LT
70
71extern void selnl_notify_policyload(u32 seqno);
1da177e4 72
3bb56b25 73int selinux_policycap_netpeer;
b0c636b9 74int selinux_policycap_openperm;
3bb56b25 75
1da177e4 76static DEFINE_RWLOCK(policy_rwlock);
1da177e4
LT
77
78static struct sidtab sidtab;
79struct policydb policydb;
5d55a345 80int ss_initialized;
1da177e4
LT
81
82/*
83 * The largest sequence number that has been used when
84 * providing an access decision to the access vector cache.
85 * The sequence number only changes when a policy change
86 * occurs.
87 */
5d55a345 88static u32 latest_granting;
1da177e4
LT
89
90/* Forward declaration. */
91static int context_struct_to_string(struct context *context, char **scontext,
92 u32 *scontext_len);
93
19439d05
SS
94static void context_struct_compute_av(struct context *scontext,
95 struct context *tcontext,
96 u16 tclass,
97 struct av_decision *avd);
c6d3aaa4
SS
98
99struct selinux_mapping {
100 u16 value; /* policy value */
101 unsigned num_perms;
102 u32 perms[sizeof(u32) * 8];
103};
104
105static struct selinux_mapping *current_mapping;
106static u16 current_mapping_size;
107
108static int selinux_set_mapping(struct policydb *pol,
109 struct security_class_mapping *map,
110 struct selinux_mapping **out_map_p,
111 u16 *out_map_size)
112{
113 struct selinux_mapping *out_map = NULL;
114 size_t size = sizeof(struct selinux_mapping);
115 u16 i, j;
116 unsigned k;
117 bool print_unknown_handle = false;
118
119 /* Find number of classes in the input mapping */
120 if (!map)
121 return -EINVAL;
122 i = 0;
123 while (map[i].name)
124 i++;
125
126 /* Allocate space for the class records, plus one for class zero */
127 out_map = kcalloc(++i, size, GFP_ATOMIC);
128 if (!out_map)
129 return -ENOMEM;
130
131 /* Store the raw class and permission values */
132 j = 0;
133 while (map[j].name) {
134 struct security_class_mapping *p_in = map + (j++);
135 struct selinux_mapping *p_out = out_map + j;
136
137 /* An empty class string skips ahead */
138 if (!strcmp(p_in->name, "")) {
139 p_out->num_perms = 0;
140 continue;
141 }
142
143 p_out->value = string_to_security_class(pol, p_in->name);
144 if (!p_out->value) {
145 printk(KERN_INFO
146 "SELinux: Class %s not defined in policy.\n",
147 p_in->name);
148 if (pol->reject_unknown)
149 goto err;
150 p_out->num_perms = 0;
151 print_unknown_handle = true;
152 continue;
153 }
154
155 k = 0;
156 while (p_in->perms && p_in->perms[k]) {
157 /* An empty permission string skips ahead */
158 if (!*p_in->perms[k]) {
159 k++;
160 continue;
161 }
162 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
163 p_in->perms[k]);
164 if (!p_out->perms[k]) {
165 printk(KERN_INFO
166 "SELinux: Permission %s in class %s not defined in policy.\n",
167 p_in->perms[k], p_in->name);
168 if (pol->reject_unknown)
169 goto err;
170 print_unknown_handle = true;
171 }
172
173 k++;
174 }
175 p_out->num_perms = k;
176 }
177
178 if (print_unknown_handle)
179 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
180 pol->allow_unknown ? "allowed" : "denied");
181
182 *out_map_p = out_map;
183 *out_map_size = i;
184 return 0;
185err:
186 kfree(out_map);
187 return -EINVAL;
188}
189
190/*
191 * Get real, policy values from mapped values
192 */
193
194static u16 unmap_class(u16 tclass)
195{
196 if (tclass < current_mapping_size)
197 return current_mapping[tclass].value;
198
199 return tclass;
200}
201
c6d3aaa4
SS
202static void map_decision(u16 tclass, struct av_decision *avd,
203 int allow_unknown)
204{
205 if (tclass < current_mapping_size) {
206 unsigned i, n = current_mapping[tclass].num_perms;
207 u32 result;
208
209 for (i = 0, result = 0; i < n; i++) {
210 if (avd->allowed & current_mapping[tclass].perms[i])
211 result |= 1<<i;
212 if (allow_unknown && !current_mapping[tclass].perms[i])
213 result |= 1<<i;
214 }
215 avd->allowed = result;
216
217 for (i = 0, result = 0; i < n; i++)
218 if (avd->auditallow & current_mapping[tclass].perms[i])
219 result |= 1<<i;
220 avd->auditallow = result;
221
222 for (i = 0, result = 0; i < n; i++) {
223 if (avd->auditdeny & current_mapping[tclass].perms[i])
224 result |= 1<<i;
225 if (!allow_unknown && !current_mapping[tclass].perms[i])
226 result |= 1<<i;
227 }
0bce9527
EP
228 /*
229 * In case the kernel has a bug and requests a permission
230 * between num_perms and the maximum permission number, we
231 * should audit that denial
232 */
233 for (; i < (sizeof(u32)*8); i++)
234 result |= 1<<i;
c6d3aaa4
SS
235 avd->auditdeny = result;
236 }
237}
238
0719aaf5
GT
239int security_mls_enabled(void)
240{
241 return policydb.mls_enabled;
242}
c6d3aaa4 243
1da177e4
LT
244/*
245 * Return the boolean value of a constraint expression
246 * when it is applied to the specified source and target
247 * security contexts.
248 *
249 * xcontext is a special beast... It is used by the validatetrans rules
250 * only. For these rules, scontext is the context before the transition,
251 * tcontext is the context after the transition, and xcontext is the context
252 * of the process performing the transition. All other callers of
253 * constraint_expr_eval should pass in NULL for xcontext.
254 */
255static int constraint_expr_eval(struct context *scontext,
256 struct context *tcontext,
257 struct context *xcontext,
258 struct constraint_expr *cexpr)
259{
260 u32 val1, val2;
261 struct context *c;
262 struct role_datum *r1, *r2;
263 struct mls_level *l1, *l2;
264 struct constraint_expr *e;
265 int s[CEXPR_MAXDEPTH];
266 int sp = -1;
267
268 for (e = cexpr; e; e = e->next) {
269 switch (e->expr_type) {
270 case CEXPR_NOT:
271 BUG_ON(sp < 0);
272 s[sp] = !s[sp];
273 break;
274 case CEXPR_AND:
275 BUG_ON(sp < 1);
276 sp--;
c1a7368a 277 s[sp] &= s[sp + 1];
1da177e4
LT
278 break;
279 case CEXPR_OR:
280 BUG_ON(sp < 1);
281 sp--;
c1a7368a 282 s[sp] |= s[sp + 1];
1da177e4
LT
283 break;
284 case CEXPR_ATTR:
c1a7368a 285 if (sp == (CEXPR_MAXDEPTH - 1))
1da177e4
LT
286 return 0;
287 switch (e->attr) {
288 case CEXPR_USER:
289 val1 = scontext->user;
290 val2 = tcontext->user;
291 break;
292 case CEXPR_TYPE:
293 val1 = scontext->type;
294 val2 = tcontext->type;
295 break;
296 case CEXPR_ROLE:
297 val1 = scontext->role;
298 val2 = tcontext->role;
299 r1 = policydb.role_val_to_struct[val1 - 1];
300 r2 = policydb.role_val_to_struct[val2 - 1];
301 switch (e->op) {
302 case CEXPR_DOM:
303 s[++sp] = ebitmap_get_bit(&r1->dominates,
304 val2 - 1);
305 continue;
306 case CEXPR_DOMBY:
307 s[++sp] = ebitmap_get_bit(&r2->dominates,
308 val1 - 1);
309 continue;
310 case CEXPR_INCOMP:
5d55a345
EP
311 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
312 val2 - 1) &&
313 !ebitmap_get_bit(&r2->dominates,
314 val1 - 1));
1da177e4
LT
315 continue;
316 default:
317 break;
318 }
319 break;
320 case CEXPR_L1L2:
321 l1 = &(scontext->range.level[0]);
322 l2 = &(tcontext->range.level[0]);
323 goto mls_ops;
324 case CEXPR_L1H2:
325 l1 = &(scontext->range.level[0]);
326 l2 = &(tcontext->range.level[1]);
327 goto mls_ops;
328 case CEXPR_H1L2:
329 l1 = &(scontext->range.level[1]);
330 l2 = &(tcontext->range.level[0]);
331 goto mls_ops;
332 case CEXPR_H1H2:
333 l1 = &(scontext->range.level[1]);
334 l2 = &(tcontext->range.level[1]);
335 goto mls_ops;
336 case CEXPR_L1H1:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(scontext->range.level[1]);
339 goto mls_ops;
340 case CEXPR_L2H2:
341 l1 = &(tcontext->range.level[0]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344mls_ops:
345 switch (e->op) {
346 case CEXPR_EQ:
347 s[++sp] = mls_level_eq(l1, l2);
348 continue;
349 case CEXPR_NEQ:
350 s[++sp] = !mls_level_eq(l1, l2);
351 continue;
352 case CEXPR_DOM:
353 s[++sp] = mls_level_dom(l1, l2);
354 continue;
355 case CEXPR_DOMBY:
356 s[++sp] = mls_level_dom(l2, l1);
357 continue;
358 case CEXPR_INCOMP:
359 s[++sp] = mls_level_incomp(l2, l1);
360 continue;
361 default:
362 BUG();
363 return 0;
364 }
365 break;
366 default:
367 BUG();
368 return 0;
369 }
370
371 switch (e->op) {
372 case CEXPR_EQ:
373 s[++sp] = (val1 == val2);
374 break;
375 case CEXPR_NEQ:
376 s[++sp] = (val1 != val2);
377 break;
378 default:
379 BUG();
380 return 0;
381 }
382 break;
383 case CEXPR_NAMES:
384 if (sp == (CEXPR_MAXDEPTH-1))
385 return 0;
386 c = scontext;
387 if (e->attr & CEXPR_TARGET)
388 c = tcontext;
389 else if (e->attr & CEXPR_XTARGET) {
390 c = xcontext;
391 if (!c) {
392 BUG();
393 return 0;
394 }
395 }
396 if (e->attr & CEXPR_USER)
397 val1 = c->user;
398 else if (e->attr & CEXPR_ROLE)
399 val1 = c->role;
400 else if (e->attr & CEXPR_TYPE)
401 val1 = c->type;
402 else {
403 BUG();
404 return 0;
405 }
406
407 switch (e->op) {
408 case CEXPR_EQ:
409 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
410 break;
411 case CEXPR_NEQ:
412 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
413 break;
414 default:
415 BUG();
416 return 0;
417 }
418 break;
419 default:
420 BUG();
421 return 0;
422 }
423 }
424
425 BUG_ON(sp != 0);
426 return s[0];
427}
428
44c2d9bd
KK
429/*
430 * security_dump_masked_av - dumps masked permissions during
431 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
432 */
433static int dump_masked_av_helper(void *k, void *d, void *args)
434{
435 struct perm_datum *pdatum = d;
436 char **permission_names = args;
437
438 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
439
440 permission_names[pdatum->value - 1] = (char *)k;
441
442 return 0;
443}
444
445static void security_dump_masked_av(struct context *scontext,
446 struct context *tcontext,
447 u16 tclass,
448 u32 permissions,
449 const char *reason)
450{
451 struct common_datum *common_dat;
452 struct class_datum *tclass_dat;
453 struct audit_buffer *ab;
454 char *tclass_name;
455 char *scontext_name = NULL;
456 char *tcontext_name = NULL;
457 char *permission_names[32];
2da5d31b
JM
458 int index;
459 u32 length;
44c2d9bd
KK
460 bool need_comma = false;
461
462 if (!permissions)
463 return;
464
465 tclass_name = policydb.p_class_val_to_name[tclass - 1];
466 tclass_dat = policydb.class_val_to_struct[tclass - 1];
467 common_dat = tclass_dat->comdatum;
468
469 /* init permission_names */
470 if (common_dat &&
471 hashtab_map(common_dat->permissions.table,
472 dump_masked_av_helper, permission_names) < 0)
473 goto out;
474
475 if (hashtab_map(tclass_dat->permissions.table,
476 dump_masked_av_helper, permission_names) < 0)
477 goto out;
478
479 /* get scontext/tcontext in text form */
480 if (context_struct_to_string(scontext,
481 &scontext_name, &length) < 0)
482 goto out;
483
484 if (context_struct_to_string(tcontext,
485 &tcontext_name, &length) < 0)
486 goto out;
487
488 /* audit a message */
489 ab = audit_log_start(current->audit_context,
490 GFP_ATOMIC, AUDIT_SELINUX_ERR);
491 if (!ab)
492 goto out;
493
494 audit_log_format(ab, "op=security_compute_av reason=%s "
495 "scontext=%s tcontext=%s tclass=%s perms=",
496 reason, scontext_name, tcontext_name, tclass_name);
497
498 for (index = 0; index < 32; index++) {
499 u32 mask = (1 << index);
500
501 if ((mask & permissions) == 0)
502 continue;
503
504 audit_log_format(ab, "%s%s",
505 need_comma ? "," : "",
506 permission_names[index]
507 ? permission_names[index] : "????");
508 need_comma = true;
509 }
510 audit_log_end(ab);
511out:
512 /* release scontext/tcontext */
513 kfree(tcontext_name);
514 kfree(scontext_name);
515
516 return;
517}
518
d9250dea
KK
519/*
520 * security_boundary_permission - drops violated permissions
521 * on boundary constraint.
522 */
523static void type_attribute_bounds_av(struct context *scontext,
524 struct context *tcontext,
525 u16 tclass,
d9250dea
KK
526 struct av_decision *avd)
527{
2ae3ba39
KK
528 struct context lo_scontext;
529 struct context lo_tcontext;
530 struct av_decision lo_avd;
d9250dea
KK
531 struct type_datum *source
532 = policydb.type_val_to_struct[scontext->type - 1];
2ae3ba39
KK
533 struct type_datum *target
534 = policydb.type_val_to_struct[tcontext->type - 1];
535 u32 masked = 0;
d9250dea
KK
536
537 if (source->bounds) {
538 memset(&lo_avd, 0, sizeof(lo_avd));
539
540 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
541 lo_scontext.type = source->bounds;
542
543 context_struct_compute_av(&lo_scontext,
544 tcontext,
545 tclass,
d9250dea
KK
546 &lo_avd);
547 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
548 return; /* no masked permission */
549 masked = ~lo_avd.allowed & avd->allowed;
2ae3ba39
KK
550 }
551
552 if (target->bounds) {
553 memset(&lo_avd, 0, sizeof(lo_avd));
554
555 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
556 lo_tcontext.type = target->bounds;
557
558 context_struct_compute_av(scontext,
559 &lo_tcontext,
560 tclass,
561 &lo_avd);
562 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
563 return; /* no masked permission */
564 masked = ~lo_avd.allowed & avd->allowed;
565 }
566
567 if (source->bounds && target->bounds) {
568 memset(&lo_avd, 0, sizeof(lo_avd));
569 /*
570 * lo_scontext and lo_tcontext are already
571 * set up.
572 */
573
574 context_struct_compute_av(&lo_scontext,
575 &lo_tcontext,
576 tclass,
577 &lo_avd);
578 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
579 return; /* no masked permission */
580 masked = ~lo_avd.allowed & avd->allowed;
581 }
d9250dea 582
2ae3ba39 583 if (masked) {
d9250dea
KK
584 /* mask violated permissions */
585 avd->allowed &= ~masked;
586
44c2d9bd
KK
587 /* audit masked permissions */
588 security_dump_masked_av(scontext, tcontext,
589 tclass, masked, "bounds");
d9250dea
KK
590 }
591}
592
1da177e4
LT
593/*
594 * Compute access vectors based on a context structure pair for
595 * the permissions in a particular class.
596 */
19439d05
SS
597static void context_struct_compute_av(struct context *scontext,
598 struct context *tcontext,
599 u16 tclass,
600 struct av_decision *avd)
1da177e4
LT
601{
602 struct constraint_node *constraint;
603 struct role_allow *ra;
604 struct avtab_key avkey;
782ebb99 605 struct avtab_node *node;
1da177e4 606 struct class_datum *tclass_datum;
782ebb99
SS
607 struct ebitmap *sattr, *tattr;
608 struct ebitmap_node *snode, *tnode;
609 unsigned int i, j;
1da177e4 610
1da177e4 611 avd->allowed = 0;
1da177e4
LT
612 avd->auditallow = 0;
613 avd->auditdeny = 0xffffffff;
1da177e4 614
c6d3aaa4
SS
615 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
616 if (printk_ratelimit())
617 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
19439d05 618 return;
c6d3aaa4 619 }
3f12070e
EP
620
621 tclass_datum = policydb.class_val_to_struct[tclass - 1];
622
1da177e4
LT
623 /*
624 * If a specific type enforcement rule was defined for
625 * this permission check, then use it.
626 */
1da177e4 627 avkey.target_class = tclass;
782ebb99
SS
628 avkey.specified = AVTAB_AV;
629 sattr = &policydb.type_attr_map[scontext->type - 1];
630 tattr = &policydb.type_attr_map[tcontext->type - 1];
9fe79ad1
KK
631 ebitmap_for_each_positive_bit(sattr, snode, i) {
632 ebitmap_for_each_positive_bit(tattr, tnode, j) {
782ebb99
SS
633 avkey.source_type = i + 1;
634 avkey.target_type = j + 1;
635 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
dbc74c65 636 node;
782ebb99
SS
637 node = avtab_search_node_next(node, avkey.specified)) {
638 if (node->key.specified == AVTAB_ALLOWED)
639 avd->allowed |= node->datum.data;
640 else if (node->key.specified == AVTAB_AUDITALLOW)
641 avd->auditallow |= node->datum.data;
642 else if (node->key.specified == AVTAB_AUDITDENY)
643 avd->auditdeny &= node->datum.data;
644 }
1da177e4 645
782ebb99
SS
646 /* Check conditional av table for additional permissions */
647 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
648
649 }
650 }
1da177e4
LT
651
652 /*
653 * Remove any permissions prohibited by a constraint (this includes
654 * the MLS policy).
655 */
656 constraint = tclass_datum->constraints;
657 while (constraint) {
658 if ((constraint->permissions & (avd->allowed)) &&
659 !constraint_expr_eval(scontext, tcontext, NULL,
660 constraint->expr)) {
caabbdc0 661 avd->allowed &= ~(constraint->permissions);
1da177e4
LT
662 }
663 constraint = constraint->next;
664 }
665
666 /*
667 * If checking process transition permission and the
668 * role is changing, then check the (current_role, new_role)
669 * pair.
670 */
c6d3aaa4
SS
671 if (tclass == policydb.process_class &&
672 (avd->allowed & policydb.process_trans_perms) &&
1da177e4
LT
673 scontext->role != tcontext->role) {
674 for (ra = policydb.role_allow; ra; ra = ra->next) {
675 if (scontext->role == ra->role &&
676 tcontext->role == ra->new_role)
677 break;
678 }
679 if (!ra)
c6d3aaa4 680 avd->allowed &= ~policydb.process_trans_perms;
1da177e4
LT
681 }
682
d9250dea
KK
683 /*
684 * If the given source and target types have boundary
685 * constraint, lazy checks have to mask any violated
686 * permission and notice it to userspace via audit.
687 */
688 type_attribute_bounds_av(scontext, tcontext,
19439d05 689 tclass, avd);
1da177e4
LT
690}
691
692static int security_validtrans_handle_fail(struct context *ocontext,
5d55a345
EP
693 struct context *ncontext,
694 struct context *tcontext,
695 u16 tclass)
1da177e4
LT
696{
697 char *o = NULL, *n = NULL, *t = NULL;
698 u32 olen, nlen, tlen;
699
700 if (context_struct_to_string(ocontext, &o, &olen) < 0)
701 goto out;
702 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
703 goto out;
704 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
705 goto out;
9ad9ad38 706 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
707 "security_validate_transition: denied for"
708 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
709 o, n, t, policydb.p_class_val_to_name[tclass-1]);
1da177e4
LT
710out:
711 kfree(o);
712 kfree(n);
713 kfree(t);
714
715 if (!selinux_enforcing)
716 return 0;
717 return -EPERM;
718}
719
720int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
c6d3aaa4 721 u16 orig_tclass)
1da177e4
LT
722{
723 struct context *ocontext;
724 struct context *ncontext;
725 struct context *tcontext;
726 struct class_datum *tclass_datum;
727 struct constraint_node *constraint;
c6d3aaa4 728 u16 tclass;
1da177e4
LT
729 int rc = 0;
730
731 if (!ss_initialized)
732 return 0;
733
0804d113 734 read_lock(&policy_rwlock);
1da177e4 735
c6d3aaa4
SS
736 tclass = unmap_class(orig_tclass);
737
1da177e4 738 if (!tclass || tclass > policydb.p_classes.nprim) {
744ba35e
EP
739 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
740 __func__, tclass);
1da177e4
LT
741 rc = -EINVAL;
742 goto out;
743 }
744 tclass_datum = policydb.class_val_to_struct[tclass - 1];
745
746 ocontext = sidtab_search(&sidtab, oldsid);
747 if (!ocontext) {
744ba35e
EP
748 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
749 __func__, oldsid);
1da177e4
LT
750 rc = -EINVAL;
751 goto out;
752 }
753
754 ncontext = sidtab_search(&sidtab, newsid);
755 if (!ncontext) {
744ba35e
EP
756 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
757 __func__, newsid);
1da177e4
LT
758 rc = -EINVAL;
759 goto out;
760 }
761
762 tcontext = sidtab_search(&sidtab, tasksid);
763 if (!tcontext) {
744ba35e
EP
764 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
765 __func__, tasksid);
1da177e4
LT
766 rc = -EINVAL;
767 goto out;
768 }
769
770 constraint = tclass_datum->validatetrans;
771 while (constraint) {
772 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
5d55a345 773 constraint->expr)) {
1da177e4 774 rc = security_validtrans_handle_fail(ocontext, ncontext,
5d55a345 775 tcontext, tclass);
1da177e4
LT
776 goto out;
777 }
778 constraint = constraint->next;
779 }
780
781out:
0804d113 782 read_unlock(&policy_rwlock);
1da177e4
LT
783 return rc;
784}
785
d9250dea
KK
786/*
787 * security_bounded_transition - check whether the given
788 * transition is directed to bounded, or not.
789 * It returns 0, if @newsid is bounded by @oldsid.
790 * Otherwise, it returns error code.
791 *
792 * @oldsid : current security identifier
793 * @newsid : destinated security identifier
794 */
795int security_bounded_transition(u32 old_sid, u32 new_sid)
796{
797 struct context *old_context, *new_context;
798 struct type_datum *type;
799 int index;
800 int rc = -EINVAL;
801
802 read_lock(&policy_rwlock);
803
804 old_context = sidtab_search(&sidtab, old_sid);
805 if (!old_context) {
806 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
807 __func__, old_sid);
808 goto out;
809 }
810
811 new_context = sidtab_search(&sidtab, new_sid);
812 if (!new_context) {
813 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
814 __func__, new_sid);
815 goto out;
816 }
817
af901ca1 818 /* type/domain unchanged */
d9250dea
KK
819 if (old_context->type == new_context->type) {
820 rc = 0;
821 goto out;
822 }
823
824 index = new_context->type;
825 while (true) {
826 type = policydb.type_val_to_struct[index - 1];
827 BUG_ON(!type);
828
829 /* not bounded anymore */
830 if (!type->bounds) {
831 rc = -EPERM;
832 break;
833 }
834
835 /* @newsid is bounded by @oldsid */
836 if (type->bounds == old_context->type) {
837 rc = 0;
838 break;
839 }
840 index = type->bounds;
841 }
44c2d9bd
KK
842
843 if (rc) {
844 char *old_name = NULL;
845 char *new_name = NULL;
2da5d31b 846 u32 length;
44c2d9bd
KK
847
848 if (!context_struct_to_string(old_context,
849 &old_name, &length) &&
850 !context_struct_to_string(new_context,
851 &new_name, &length)) {
852 audit_log(current->audit_context,
853 GFP_ATOMIC, AUDIT_SELINUX_ERR,
854 "op=security_bounded_transition "
855 "result=denied "
856 "oldcontext=%s newcontext=%s",
857 old_name, new_name);
858 }
859 kfree(new_name);
860 kfree(old_name);
861 }
d9250dea
KK
862out:
863 read_unlock(&policy_rwlock);
864
865 return rc;
866}
867
19439d05 868static void avd_init(struct av_decision *avd)
c6d3aaa4 869{
19439d05
SS
870 avd->allowed = 0;
871 avd->auditallow = 0;
872 avd->auditdeny = 0xffffffff;
873 avd->seqno = latest_granting;
874 avd->flags = 0;
c6d3aaa4
SS
875}
876
19439d05 877
1da177e4
LT
878/**
879 * security_compute_av - Compute access vector decisions.
880 * @ssid: source security identifier
881 * @tsid: target security identifier
882 * @tclass: target security class
1da177e4
LT
883 * @avd: access vector decisions
884 *
885 * Compute a set of access vector decisions based on the
886 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1da177e4 887 */
19439d05
SS
888void security_compute_av(u32 ssid,
889 u32 tsid,
890 u16 orig_tclass,
891 struct av_decision *avd)
1da177e4 892{
c6d3aaa4 893 u16 tclass;
19439d05 894 struct context *scontext = NULL, *tcontext = NULL;
c6d3aaa4 895
b7f3008a 896 read_lock(&policy_rwlock);
19439d05 897 avd_init(avd);
c6d3aaa4
SS
898 if (!ss_initialized)
899 goto allow;
900
19439d05
SS
901 scontext = sidtab_search(&sidtab, ssid);
902 if (!scontext) {
903 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
904 __func__, ssid);
905 goto out;
906 }
907
908 /* permissive domain? */
909 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
910 avd->flags |= AVD_FLAGS_PERMISSIVE;
911
912 tcontext = sidtab_search(&sidtab, tsid);
913 if (!tcontext) {
914 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
915 __func__, tsid);
916 goto out;
917 }
918
c6d3aaa4
SS
919 tclass = unmap_class(orig_tclass);
920 if (unlikely(orig_tclass && !tclass)) {
921 if (policydb.allow_unknown)
922 goto allow;
b7f3008a 923 goto out;
c6d3aaa4 924 }
19439d05 925 context_struct_compute_av(scontext, tcontext, tclass, avd);
c6d3aaa4 926 map_decision(orig_tclass, avd, policydb.allow_unknown);
b7f3008a 927out:
c6d3aaa4 928 read_unlock(&policy_rwlock);
19439d05 929 return;
c6d3aaa4
SS
930allow:
931 avd->allowed = 0xffffffff;
b7f3008a 932 goto out;
c6d3aaa4
SS
933}
934
19439d05
SS
935void security_compute_av_user(u32 ssid,
936 u32 tsid,
937 u16 tclass,
938 struct av_decision *avd)
c6d3aaa4 939{
19439d05 940 struct context *scontext = NULL, *tcontext = NULL;
1da177e4 941
19439d05
SS
942 read_lock(&policy_rwlock);
943 avd_init(avd);
944 if (!ss_initialized)
945 goto allow;
946
947 scontext = sidtab_search(&sidtab, ssid);
948 if (!scontext) {
949 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
950 __func__, ssid);
951 goto out;
1da177e4
LT
952 }
953
19439d05
SS
954 /* permissive domain? */
955 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
956 avd->flags |= AVD_FLAGS_PERMISSIVE;
957
958 tcontext = sidtab_search(&sidtab, tsid);
959 if (!tcontext) {
960 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
961 __func__, tsid);
962 goto out;
963 }
964
965 if (unlikely(!tclass)) {
966 if (policydb.allow_unknown)
967 goto allow;
968 goto out;
969 }
970
971 context_struct_compute_av(scontext, tcontext, tclass, avd);
972 out:
0804d113 973 read_unlock(&policy_rwlock);
19439d05
SS
974 return;
975allow:
976 avd->allowed = 0xffffffff;
977 goto out;
1da177e4
LT
978}
979
980/*
981 * Write the security context string representation of
982 * the context structure `context' into a dynamically
983 * allocated string of the correct size. Set `*scontext'
984 * to point to this string and set `*scontext_len' to
985 * the length of the string.
986 */
987static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
988{
989 char *scontextp;
990
991 *scontext = NULL;
992 *scontext_len = 0;
993
12b29f34
SS
994 if (context->len) {
995 *scontext_len = context->len;
996 *scontext = kstrdup(context->str, GFP_ATOMIC);
997 if (!(*scontext))
998 return -ENOMEM;
999 return 0;
1000 }
1001
1da177e4
LT
1002 /* Compute the size of the context. */
1003 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
1004 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
1005 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
1006 *scontext_len += mls_compute_context_len(context);
1007
1008 /* Allocate space for the context; caller must free this space. */
1009 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
5d55a345 1010 if (!scontextp)
1da177e4 1011 return -ENOMEM;
1da177e4
LT
1012 *scontext = scontextp;
1013
1014 /*
1015 * Copy the user name, role name and type name into the context.
1016 */
1017 sprintf(scontextp, "%s:%s:%s",
1018 policydb.p_user_val_to_name[context->user - 1],
1019 policydb.p_role_val_to_name[context->role - 1],
1020 policydb.p_type_val_to_name[context->type - 1]);
1021 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
5d55a345
EP
1022 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1023 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1da177e4
LT
1024
1025 mls_sid_to_context(context, &scontextp);
1026
1027 *scontextp = 0;
1028
1029 return 0;
1030}
1031
1032#include "initial_sid_to_string.h"
1033
f0ee2e46
JC
1034const char *security_get_initial_sid_context(u32 sid)
1035{
1036 if (unlikely(sid > SECINITSID_NUM))
1037 return NULL;
1038 return initial_sid_to_string[sid];
1039}
1040
12b29f34
SS
1041static int security_sid_to_context_core(u32 sid, char **scontext,
1042 u32 *scontext_len, int force)
1da177e4
LT
1043{
1044 struct context *context;
1045 int rc = 0;
1046
4f4acf3a
SS
1047 *scontext = NULL;
1048 *scontext_len = 0;
1049
1da177e4
LT
1050 if (!ss_initialized) {
1051 if (sid <= SECINITSID_NUM) {
1052 char *scontextp;
1053
1054 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
5d55a345 1055 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
0cccca06
SH
1056 if (!scontextp) {
1057 rc = -ENOMEM;
1058 goto out;
1059 }
1da177e4
LT
1060 strcpy(scontextp, initial_sid_to_string[sid]);
1061 *scontext = scontextp;
1062 goto out;
1063 }
744ba35e
EP
1064 printk(KERN_ERR "SELinux: %s: called before initial "
1065 "load_policy on unknown SID %d\n", __func__, sid);
1da177e4
LT
1066 rc = -EINVAL;
1067 goto out;
1068 }
0804d113 1069 read_lock(&policy_rwlock);
12b29f34
SS
1070 if (force)
1071 context = sidtab_search_force(&sidtab, sid);
1072 else
1073 context = sidtab_search(&sidtab, sid);
1da177e4 1074 if (!context) {
744ba35e
EP
1075 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1076 __func__, sid);
1da177e4
LT
1077 rc = -EINVAL;
1078 goto out_unlock;
1079 }
1080 rc = context_struct_to_string(context, scontext, scontext_len);
1081out_unlock:
0804d113 1082 read_unlock(&policy_rwlock);
1da177e4
LT
1083out:
1084 return rc;
1085
1086}
1087
12b29f34
SS
1088/**
1089 * security_sid_to_context - Obtain a context for a given SID.
1090 * @sid: security identifier, SID
1091 * @scontext: security context
1092 * @scontext_len: length in bytes
1093 *
1094 * Write the string representation of the context associated with @sid
1095 * into a dynamically allocated string of the correct size. Set @scontext
1096 * to point to this string and set @scontext_len to the length of the string.
1097 */
1098int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1da177e4 1099{
12b29f34
SS
1100 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1101}
1102
1103int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1104{
1105 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1106}
1107
9a59daa0
SS
1108/*
1109 * Caveat: Mutates scontext.
1110 */
12b29f34
SS
1111static int string_to_context_struct(struct policydb *pol,
1112 struct sidtab *sidtabp,
9a59daa0 1113 char *scontext,
12b29f34
SS
1114 u32 scontext_len,
1115 struct context *ctx,
9a59daa0 1116 u32 def_sid)
12b29f34 1117{
1da177e4
LT
1118 struct role_datum *role;
1119 struct type_datum *typdatum;
1120 struct user_datum *usrdatum;
1121 char *scontextp, *p, oldc;
1122 int rc = 0;
1123
12b29f34 1124 context_init(ctx);
1da177e4 1125
1da177e4
LT
1126 /* Parse the security context. */
1127
1128 rc = -EINVAL;
9a59daa0 1129 scontextp = (char *) scontext;
1da177e4
LT
1130
1131 /* Extract the user. */
1132 p = scontextp;
1133 while (*p && *p != ':')
1134 p++;
1135
1136 if (*p == 0)
12b29f34 1137 goto out;
1da177e4
LT
1138
1139 *p++ = 0;
1140
12b29f34 1141 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1da177e4 1142 if (!usrdatum)
12b29f34 1143 goto out;
1da177e4 1144
12b29f34 1145 ctx->user = usrdatum->value;
1da177e4
LT
1146
1147 /* Extract role. */
1148 scontextp = p;
1149 while (*p && *p != ':')
1150 p++;
1151
1152 if (*p == 0)
12b29f34 1153 goto out;
1da177e4
LT
1154
1155 *p++ = 0;
1156
12b29f34 1157 role = hashtab_search(pol->p_roles.table, scontextp);
1da177e4 1158 if (!role)
12b29f34
SS
1159 goto out;
1160 ctx->role = role->value;
1da177e4
LT
1161
1162 /* Extract type. */
1163 scontextp = p;
1164 while (*p && *p != ':')
1165 p++;
1166 oldc = *p;
1167 *p++ = 0;
1168
12b29f34 1169 typdatum = hashtab_search(pol->p_types.table, scontextp);
d9250dea 1170 if (!typdatum || typdatum->attribute)
12b29f34 1171 goto out;
1da177e4 1172
12b29f34 1173 ctx->type = typdatum->value;
1da177e4 1174
12b29f34 1175 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1da177e4 1176 if (rc)
12b29f34 1177 goto out;
1da177e4 1178
9a59daa0 1179 if ((p - scontext) < scontext_len) {
1da177e4 1180 rc = -EINVAL;
12b29f34 1181 goto out;
1da177e4
LT
1182 }
1183
1184 /* Check the validity of the new context. */
12b29f34 1185 if (!policydb_context_isvalid(pol, ctx)) {
1da177e4 1186 rc = -EINVAL;
12b29f34 1187 goto out;
1da177e4 1188 }
12b29f34
SS
1189 rc = 0;
1190out:
8e531af9
EP
1191 if (rc)
1192 context_destroy(ctx);
12b29f34
SS
1193 return rc;
1194}
1195
1196static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1197 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1198 int force)
1199{
9a59daa0 1200 char *scontext2, *str = NULL;
12b29f34
SS
1201 struct context context;
1202 int rc = 0;
1203
1204 if (!ss_initialized) {
1205 int i;
1206
1207 for (i = 1; i < SECINITSID_NUM; i++) {
1208 if (!strcmp(initial_sid_to_string[i], scontext)) {
1209 *sid = i;
9a59daa0 1210 return 0;
12b29f34
SS
1211 }
1212 }
1213 *sid = SECINITSID_KERNEL;
9a59daa0 1214 return 0;
12b29f34
SS
1215 }
1216 *sid = SECSID_NULL;
1217
9a59daa0 1218 /* Copy the string so that we can modify the copy as we parse it. */
c1a7368a 1219 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
9a59daa0
SS
1220 if (!scontext2)
1221 return -ENOMEM;
1222 memcpy(scontext2, scontext, scontext_len);
1223 scontext2[scontext_len] = 0;
1224
1225 if (force) {
1226 /* Save another copy for storing in uninterpreted form */
1227 str = kstrdup(scontext2, gfp_flags);
1228 if (!str) {
1229 kfree(scontext2);
1230 return -ENOMEM;
1231 }
1232 }
1233
0804d113 1234 read_lock(&policy_rwlock);
12b29f34 1235 rc = string_to_context_struct(&policydb, &sidtab,
9a59daa0
SS
1236 scontext2, scontext_len,
1237 &context, def_sid);
12b29f34 1238 if (rc == -EINVAL && force) {
9a59daa0 1239 context.str = str;
12b29f34 1240 context.len = scontext_len;
9a59daa0 1241 str = NULL;
12b29f34
SS
1242 } else if (rc)
1243 goto out;
1244 rc = sidtab_context_to_sid(&sidtab, &context, sid);
8e531af9 1245 context_destroy(&context);
1da177e4 1246out:
0804d113 1247 read_unlock(&policy_rwlock);
9a59daa0
SS
1248 kfree(scontext2);
1249 kfree(str);
1da177e4
LT
1250 return rc;
1251}
1252
f5c1d5b2
JM
1253/**
1254 * security_context_to_sid - Obtain a SID for a given security context.
1255 * @scontext: security context
1256 * @scontext_len: length in bytes
1257 * @sid: security identifier, SID
1258 *
1259 * Obtains a SID associated with the security context that
1260 * has the string representation specified by @scontext.
1261 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1262 * memory is available, or 0 on success.
1263 */
8f0cfa52 1264int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
f5c1d5b2
JM
1265{
1266 return security_context_to_sid_core(scontext, scontext_len,
12b29f34 1267 sid, SECSID_NULL, GFP_KERNEL, 0);
f5c1d5b2
JM
1268}
1269
1270/**
1271 * security_context_to_sid_default - Obtain a SID for a given security context,
1272 * falling back to specified default if needed.
1273 *
1274 * @scontext: security context
1275 * @scontext_len: length in bytes
1276 * @sid: security identifier, SID
d133a960 1277 * @def_sid: default SID to assign on error
f5c1d5b2
JM
1278 *
1279 * Obtains a SID associated with the security context that
1280 * has the string representation specified by @scontext.
1281 * The default SID is passed to the MLS layer to be used to allow
1282 * kernel labeling of the MLS field if the MLS field is not present
1283 * (for upgrading to MLS without full relabel).
12b29f34 1284 * Implicitly forces adding of the context even if it cannot be mapped yet.
f5c1d5b2
JM
1285 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1286 * memory is available, or 0 on success.
1287 */
7bf570dc
DH
1288int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1289 u32 *sid, u32 def_sid, gfp_t gfp_flags)
f5c1d5b2
JM
1290{
1291 return security_context_to_sid_core(scontext, scontext_len,
12b29f34
SS
1292 sid, def_sid, gfp_flags, 1);
1293}
1294
1295int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1296 u32 *sid)
1297{
1298 return security_context_to_sid_core(scontext, scontext_len,
1299 sid, SECSID_NULL, GFP_KERNEL, 1);
f5c1d5b2
JM
1300}
1301
1da177e4
LT
1302static int compute_sid_handle_invalid_context(
1303 struct context *scontext,
1304 struct context *tcontext,
1305 u16 tclass,
1306 struct context *newcontext)
1307{
1308 char *s = NULL, *t = NULL, *n = NULL;
1309 u32 slen, tlen, nlen;
1310
1311 if (context_struct_to_string(scontext, &s, &slen) < 0)
1312 goto out;
1313 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1314 goto out;
1315 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1316 goto out;
9ad9ad38 1317 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
1318 "security_compute_sid: invalid context %s"
1319 " for scontext=%s"
1320 " tcontext=%s"
1321 " tclass=%s",
1322 n, s, t, policydb.p_class_val_to_name[tclass-1]);
1323out:
1324 kfree(s);
1325 kfree(t);
1326 kfree(n);
1327 if (!selinux_enforcing)
1328 return 0;
1329 return -EACCES;
1330}
1331
1332static int security_compute_sid(u32 ssid,
1333 u32 tsid,
c6d3aaa4 1334 u16 orig_tclass,
1da177e4 1335 u32 specified,
c6d3aaa4
SS
1336 u32 *out_sid,
1337 bool kern)
1da177e4
LT
1338{
1339 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1340 struct role_trans *roletr = NULL;
1341 struct avtab_key avkey;
1342 struct avtab_datum *avdatum;
1343 struct avtab_node *node;
c6d3aaa4 1344 u16 tclass;
1da177e4
LT
1345 int rc = 0;
1346
1347 if (!ss_initialized) {
c6d3aaa4
SS
1348 switch (orig_tclass) {
1349 case SECCLASS_PROCESS: /* kernel value */
1da177e4
LT
1350 *out_sid = ssid;
1351 break;
1352 default:
1353 *out_sid = tsid;
1354 break;
1355 }
1356 goto out;
1357 }
1358
851f8a69
VY
1359 context_init(&newcontext);
1360
0804d113 1361 read_lock(&policy_rwlock);
1da177e4 1362
c6d3aaa4
SS
1363 if (kern)
1364 tclass = unmap_class(orig_tclass);
1365 else
1366 tclass = orig_tclass;
1367
1da177e4
LT
1368 scontext = sidtab_search(&sidtab, ssid);
1369 if (!scontext) {
744ba35e
EP
1370 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1371 __func__, ssid);
1da177e4
LT
1372 rc = -EINVAL;
1373 goto out_unlock;
1374 }
1375 tcontext = sidtab_search(&sidtab, tsid);
1376 if (!tcontext) {
744ba35e
EP
1377 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1378 __func__, tsid);
1da177e4
LT
1379 rc = -EINVAL;
1380 goto out_unlock;
1381 }
1382
1da177e4
LT
1383 /* Set the user identity. */
1384 switch (specified) {
1385 case AVTAB_TRANSITION:
1386 case AVTAB_CHANGE:
1387 /* Use the process user identity. */
1388 newcontext.user = scontext->user;
1389 break;
1390 case AVTAB_MEMBER:
1391 /* Use the related object owner. */
1392 newcontext.user = tcontext->user;
1393 break;
1394 }
1395
1396 /* Set the role and type to default values. */
c6d3aaa4 1397 if (tclass == policydb.process_class) {
1da177e4
LT
1398 /* Use the current role and type of process. */
1399 newcontext.role = scontext->role;
1400 newcontext.type = scontext->type;
c6d3aaa4 1401 } else {
1da177e4
LT
1402 /* Use the well-defined object role. */
1403 newcontext.role = OBJECT_R_VAL;
1404 /* Use the type of the related object. */
1405 newcontext.type = tcontext->type;
1406 }
1407
1408 /* Look for a type transition/member/change rule. */
1409 avkey.source_type = scontext->type;
1410 avkey.target_type = tcontext->type;
1411 avkey.target_class = tclass;
782ebb99
SS
1412 avkey.specified = specified;
1413 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1da177e4
LT
1414
1415 /* If no permanent rule, also check for enabled conditional rules */
5d55a345 1416 if (!avdatum) {
782ebb99 1417 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
dbc74c65 1418 for (; node; node = avtab_search_node_next(node, specified)) {
782ebb99 1419 if (node->key.specified & AVTAB_ENABLED) {
1da177e4
LT
1420 avdatum = &node->datum;
1421 break;
1422 }
1423 }
1424 }
1425
782ebb99 1426 if (avdatum) {
1da177e4 1427 /* Use the type from the type transition/member/change rule. */
782ebb99 1428 newcontext.type = avdatum->data;
1da177e4
LT
1429 }
1430
1431 /* Check for class-specific changes. */
c6d3aaa4 1432 if (tclass == policydb.process_class) {
1da177e4
LT
1433 if (specified & AVTAB_TRANSITION) {
1434 /* Look for a role transition rule. */
1435 for (roletr = policydb.role_tr; roletr;
1436 roletr = roletr->next) {
1437 if (roletr->role == scontext->role &&
1438 roletr->type == tcontext->type) {
1439 /* Use the role transition rule. */
1440 newcontext.role = roletr->new_role;
1441 break;
1442 }
1443 }
1444 }
1da177e4
LT
1445 }
1446
1447 /* Set the MLS attributes.
1448 This is done last because it may allocate memory. */
1449 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1450 if (rc)
1451 goto out_unlock;
1452
1453 /* Check the validity of the context. */
1454 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1455 rc = compute_sid_handle_invalid_context(scontext,
1456 tcontext,
1457 tclass,
1458 &newcontext);
1459 if (rc)
1460 goto out_unlock;
1461 }
1462 /* Obtain the sid for the context. */
1463 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1464out_unlock:
0804d113 1465 read_unlock(&policy_rwlock);
1da177e4
LT
1466 context_destroy(&newcontext);
1467out:
1468 return rc;
1469}
1470
1471/**
1472 * security_transition_sid - Compute the SID for a new subject/object.
1473 * @ssid: source security identifier
1474 * @tsid: target security identifier
1475 * @tclass: target security class
1476 * @out_sid: security identifier for new subject/object
1477 *
1478 * Compute a SID to use for labeling a new subject or object in the
1479 * class @tclass based on a SID pair (@ssid, @tsid).
1480 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1481 * if insufficient memory is available, or %0 if the new SID was
1482 * computed successfully.
1483 */
1484int security_transition_sid(u32 ssid,
1485 u32 tsid,
1486 u16 tclass,
1487 u32 *out_sid)
1488{
c6d3aaa4
SS
1489 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1490 out_sid, true);
1491}
1492
1493int security_transition_sid_user(u32 ssid,
1494 u32 tsid,
1495 u16 tclass,
1496 u32 *out_sid)
1497{
1498 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1499 out_sid, false);
1da177e4
LT
1500}
1501
1502/**
1503 * security_member_sid - Compute the SID for member selection.
1504 * @ssid: source security identifier
1505 * @tsid: target security identifier
1506 * @tclass: target security class
1507 * @out_sid: security identifier for selected member
1508 *
1509 * Compute a SID to use when selecting a member of a polyinstantiated
1510 * object of class @tclass based on a SID pair (@ssid, @tsid).
1511 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1512 * if insufficient memory is available, or %0 if the SID was
1513 * computed successfully.
1514 */
1515int security_member_sid(u32 ssid,
1516 u32 tsid,
1517 u16 tclass,
1518 u32 *out_sid)
1519{
c6d3aaa4
SS
1520 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1521 false);
1da177e4
LT
1522}
1523
1524/**
1525 * security_change_sid - Compute the SID for object relabeling.
1526 * @ssid: source security identifier
1527 * @tsid: target security identifier
1528 * @tclass: target security class
1529 * @out_sid: security identifier for selected member
1530 *
1531 * Compute a SID to use for relabeling an object of class @tclass
1532 * based on a SID pair (@ssid, @tsid).
1533 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1534 * if insufficient memory is available, or %0 if the SID was
1535 * computed successfully.
1536 */
1537int security_change_sid(u32 ssid,
1538 u32 tsid,
1539 u16 tclass,
1540 u32 *out_sid)
1541{
c6d3aaa4
SS
1542 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1543 false);
b94c7e67
CS
1544}
1545
1da177e4
LT
1546/* Clone the SID into the new SID table. */
1547static int clone_sid(u32 sid,
1548 struct context *context,
1549 void *arg)
1550{
1551 struct sidtab *s = arg;
1552
42596eaf
GT
1553 if (sid > SECINITSID_NUM)
1554 return sidtab_insert(s, sid, context);
1555 else
1556 return 0;
1da177e4
LT
1557}
1558
1559static inline int convert_context_handle_invalid_context(struct context *context)
1560{
1561 int rc = 0;
1562
1563 if (selinux_enforcing) {
1564 rc = -EINVAL;
1565 } else {
1566 char *s;
1567 u32 len;
1568
12b29f34
SS
1569 if (!context_struct_to_string(context, &s, &len)) {
1570 printk(KERN_WARNING
1571 "SELinux: Context %s would be invalid if enforcing\n",
1572 s);
1573 kfree(s);
1574 }
1da177e4
LT
1575 }
1576 return rc;
1577}
1578
1579struct convert_context_args {
1580 struct policydb *oldp;
1581 struct policydb *newp;
1582};
1583
1584/*
1585 * Convert the values in the security context
1586 * structure `c' from the values specified
1587 * in the policy `p->oldp' to the values specified
1588 * in the policy `p->newp'. Verify that the
1589 * context is valid under the new policy.
1590 */
1591static int convert_context(u32 key,
1592 struct context *c,
1593 void *p)
1594{
1595 struct convert_context_args *args;
1596 struct context oldc;
0719aaf5
GT
1597 struct ocontext *oc;
1598 struct mls_range *range;
1da177e4
LT
1599 struct role_datum *role;
1600 struct type_datum *typdatum;
1601 struct user_datum *usrdatum;
1602 char *s;
1603 u32 len;
42596eaf
GT
1604 int rc = 0;
1605
1606 if (key <= SECINITSID_NUM)
1607 goto out;
1da177e4
LT
1608
1609 args = p;
1610
12b29f34
SS
1611 if (c->str) {
1612 struct context ctx;
9a59daa0
SS
1613 s = kstrdup(c->str, GFP_KERNEL);
1614 if (!s) {
1615 rc = -ENOMEM;
1616 goto out;
1617 }
1618 rc = string_to_context_struct(args->newp, NULL, s,
1619 c->len, &ctx, SECSID_NULL);
1620 kfree(s);
12b29f34
SS
1621 if (!rc) {
1622 printk(KERN_INFO
1623 "SELinux: Context %s became valid (mapped).\n",
1624 c->str);
1625 /* Replace string with mapped representation. */
1626 kfree(c->str);
1627 memcpy(c, &ctx, sizeof(*c));
1628 goto out;
1629 } else if (rc == -EINVAL) {
1630 /* Retain string representation for later mapping. */
1631 rc = 0;
1632 goto out;
1633 } else {
1634 /* Other error condition, e.g. ENOMEM. */
1635 printk(KERN_ERR
1636 "SELinux: Unable to map context %s, rc = %d.\n",
1637 c->str, -rc);
1638 goto out;
1639 }
1640 }
1641
1da177e4
LT
1642 rc = context_cpy(&oldc, c);
1643 if (rc)
1644 goto out;
1645
1646 rc = -EINVAL;
1647
1648 /* Convert the user. */
1649 usrdatum = hashtab_search(args->newp->p_users.table,
5d55a345
EP
1650 args->oldp->p_user_val_to_name[c->user - 1]);
1651 if (!usrdatum)
1da177e4 1652 goto bad;
1da177e4
LT
1653 c->user = usrdatum->value;
1654
1655 /* Convert the role. */
1656 role = hashtab_search(args->newp->p_roles.table,
5d55a345
EP
1657 args->oldp->p_role_val_to_name[c->role - 1]);
1658 if (!role)
1da177e4 1659 goto bad;
1da177e4
LT
1660 c->role = role->value;
1661
1662 /* Convert the type. */
1663 typdatum = hashtab_search(args->newp->p_types.table,
5d55a345
EP
1664 args->oldp->p_type_val_to_name[c->type - 1]);
1665 if (!typdatum)
1da177e4 1666 goto bad;
1da177e4
LT
1667 c->type = typdatum->value;
1668
0719aaf5
GT
1669 /* Convert the MLS fields if dealing with MLS policies */
1670 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1671 rc = mls_convert_context(args->oldp, args->newp, c);
1672 if (rc)
1673 goto bad;
1674 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1675 /*
1676 * Switching between MLS and non-MLS policy:
1677 * free any storage used by the MLS fields in the
1678 * context for all existing entries in the sidtab.
1679 */
1680 mls_context_destroy(c);
1681 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1682 /*
1683 * Switching between non-MLS and MLS policy:
1684 * ensure that the MLS fields of the context for all
1685 * existing entries in the sidtab are filled in with a
1686 * suitable default value, likely taken from one of the
1687 * initial SIDs.
1688 */
1689 oc = args->newp->ocontexts[OCON_ISID];
1690 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1691 oc = oc->next;
1692 if (!oc) {
1693 printk(KERN_ERR "SELinux: unable to look up"
1694 " the initial SIDs list\n");
1695 goto bad;
1696 }
1697 range = &oc->context[0].range;
1698 rc = mls_range_set(c, range);
1699 if (rc)
1700 goto bad;
1701 }
1da177e4
LT
1702
1703 /* Check the validity of the new context. */
1704 if (!policydb_context_isvalid(args->newp, c)) {
1705 rc = convert_context_handle_invalid_context(&oldc);
1706 if (rc)
1707 goto bad;
1708 }
1709
1710 context_destroy(&oldc);
12b29f34 1711 rc = 0;
1da177e4
LT
1712out:
1713 return rc;
1714bad:
12b29f34
SS
1715 /* Map old representation to string and save it. */
1716 if (context_struct_to_string(&oldc, &s, &len))
1717 return -ENOMEM;
1da177e4 1718 context_destroy(&oldc);
12b29f34
SS
1719 context_destroy(c);
1720 c->str = s;
1721 c->len = len;
1722 printk(KERN_INFO
1723 "SELinux: Context %s became invalid (unmapped).\n",
1724 c->str);
1725 rc = 0;
1da177e4
LT
1726 goto out;
1727}
1728
3bb56b25
PM
1729static void security_load_policycaps(void)
1730{
1731 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1732 POLICYDB_CAPABILITY_NETPEER);
b0c636b9
EP
1733 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1734 POLICYDB_CAPABILITY_OPENPERM);
3bb56b25
PM
1735}
1736
1da177e4 1737extern void selinux_complete_init(void);
e900a7d9 1738static int security_preserve_bools(struct policydb *p);
1da177e4
LT
1739
1740/**
1741 * security_load_policy - Load a security policy configuration.
1742 * @data: binary policy data
1743 * @len: length of data in bytes
1744 *
1745 * Load a new set of security policy configuration data,
1746 * validate it and convert the SID table as necessary.
1747 * This function will flush the access vector cache after
1748 * loading the new policy.
1749 */
1750int security_load_policy(void *data, size_t len)
1751{
1752 struct policydb oldpolicydb, newpolicydb;
1753 struct sidtab oldsidtab, newsidtab;
c6d3aaa4 1754 struct selinux_mapping *oldmap, *map = NULL;
1da177e4
LT
1755 struct convert_context_args args;
1756 u32 seqno;
c6d3aaa4 1757 u16 map_size;
1da177e4
LT
1758 int rc = 0;
1759 struct policy_file file = { data, len }, *fp = &file;
1760
1da177e4
LT
1761 if (!ss_initialized) {
1762 avtab_cache_init();
1763 if (policydb_read(&policydb, fp)) {
1da177e4
LT
1764 avtab_cache_destroy();
1765 return -EINVAL;
1766 }
c6d3aaa4
SS
1767 if (selinux_set_mapping(&policydb, secclass_map,
1768 &current_mapping,
1769 &current_mapping_size)) {
1da177e4
LT
1770 policydb_destroy(&policydb);
1771 avtab_cache_destroy();
1772 return -EINVAL;
1773 }
c6d3aaa4 1774 if (policydb_load_isids(&policydb, &sidtab)) {
b94c7e67
CS
1775 policydb_destroy(&policydb);
1776 avtab_cache_destroy();
1777 return -EINVAL;
1778 }
3bb56b25 1779 security_load_policycaps();
1da177e4 1780 ss_initialized = 1;
4c443d1b 1781 seqno = ++latest_granting;
1da177e4 1782 selinux_complete_init();
4c443d1b
SS
1783 avc_ss_reset(seqno);
1784 selnl_notify_policyload(seqno);
7420ed23 1785 selinux_netlbl_cache_invalidate();
342a0cff 1786 selinux_xfrm_notify_policyload();
1da177e4
LT
1787 return 0;
1788 }
1789
1790#if 0
1791 sidtab_hash_eval(&sidtab, "sids");
1792#endif
1793
89abd0ac 1794 if (policydb_read(&newpolicydb, fp))
1da177e4 1795 return -EINVAL;
1da177e4 1796
0719aaf5
GT
1797 /* If switching between different policy types, log MLS status */
1798 if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1799 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1800 else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1801 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1802
42596eaf
GT
1803 rc = policydb_load_isids(&newpolicydb, &newsidtab);
1804 if (rc) {
1805 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
12b29f34 1806 policydb_destroy(&newpolicydb);
42596eaf 1807 return rc;
12b29f34 1808 }
1da177e4 1809
c6d3aaa4
SS
1810 if (selinux_set_mapping(&newpolicydb, secclass_map,
1811 &map, &map_size))
b94c7e67 1812 goto err;
b94c7e67 1813
e900a7d9
SS
1814 rc = security_preserve_bools(&newpolicydb);
1815 if (rc) {
454d972c 1816 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
e900a7d9
SS
1817 goto err;
1818 }
1819
1da177e4
LT
1820 /* Clone the SID table. */
1821 sidtab_shutdown(&sidtab);
1822 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1823 rc = -ENOMEM;
1824 goto err;
1825 }
1826
12b29f34
SS
1827 /*
1828 * Convert the internal representations of contexts
1829 * in the new SID table.
1830 */
1da177e4
LT
1831 args.oldp = &policydb;
1832 args.newp = &newpolicydb;
12b29f34 1833 rc = sidtab_map(&newsidtab, convert_context, &args);
0719aaf5
GT
1834 if (rc) {
1835 printk(KERN_ERR "SELinux: unable to convert the internal"
1836 " representation of contexts in the new SID"
1837 " table\n");
12b29f34 1838 goto err;
0719aaf5 1839 }
1da177e4
LT
1840
1841 /* Save the old policydb and SID table to free later. */
1842 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1843 sidtab_set(&oldsidtab, &sidtab);
1844
1845 /* Install the new policydb and SID table. */
0804d113 1846 write_lock_irq(&policy_rwlock);
1da177e4
LT
1847 memcpy(&policydb, &newpolicydb, sizeof policydb);
1848 sidtab_set(&sidtab, &newsidtab);
3bb56b25 1849 security_load_policycaps();
c6d3aaa4
SS
1850 oldmap = current_mapping;
1851 current_mapping = map;
1852 current_mapping_size = map_size;
1da177e4 1853 seqno = ++latest_granting;
0804d113 1854 write_unlock_irq(&policy_rwlock);
1da177e4
LT
1855
1856 /* Free the old policydb and SID table. */
1857 policydb_destroy(&oldpolicydb);
1858 sidtab_destroy(&oldsidtab);
c6d3aaa4 1859 kfree(oldmap);
1da177e4
LT
1860
1861 avc_ss_reset(seqno);
1862 selnl_notify_policyload(seqno);
7420ed23 1863 selinux_netlbl_cache_invalidate();
342a0cff 1864 selinux_xfrm_notify_policyload();
1da177e4
LT
1865
1866 return 0;
1867
1868err:
c6d3aaa4 1869 kfree(map);
1da177e4
LT
1870 sidtab_destroy(&newsidtab);
1871 policydb_destroy(&newpolicydb);
1872 return rc;
1873
1874}
1875
1876/**
1877 * security_port_sid - Obtain the SID for a port.
1da177e4
LT
1878 * @protocol: protocol number
1879 * @port: port number
1880 * @out_sid: security identifier
1881 */
3e112172 1882int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1da177e4
LT
1883{
1884 struct ocontext *c;
1885 int rc = 0;
1886
0804d113 1887 read_lock(&policy_rwlock);
1da177e4
LT
1888
1889 c = policydb.ocontexts[OCON_PORT];
1890 while (c) {
1891 if (c->u.port.protocol == protocol &&
1892 c->u.port.low_port <= port &&
1893 c->u.port.high_port >= port)
1894 break;
1895 c = c->next;
1896 }
1897
1898 if (c) {
1899 if (!c->sid[0]) {
1900 rc = sidtab_context_to_sid(&sidtab,
1901 &c->context[0],
1902 &c->sid[0]);
1903 if (rc)
1904 goto out;
1905 }
1906 *out_sid = c->sid[0];
1907 } else {
1908 *out_sid = SECINITSID_PORT;
1909 }
1910
1911out:
0804d113 1912 read_unlock(&policy_rwlock);
1da177e4
LT
1913 return rc;
1914}
1915
1916/**
1917 * security_netif_sid - Obtain the SID for a network interface.
1918 * @name: interface name
1919 * @if_sid: interface SID
1da177e4 1920 */
e8bfdb9d 1921int security_netif_sid(char *name, u32 *if_sid)
1da177e4
LT
1922{
1923 int rc = 0;
1924 struct ocontext *c;
1925
0804d113 1926 read_lock(&policy_rwlock);
1da177e4
LT
1927
1928 c = policydb.ocontexts[OCON_NETIF];
1929 while (c) {
1930 if (strcmp(name, c->u.name) == 0)
1931 break;
1932 c = c->next;
1933 }
1934
1935 if (c) {
1936 if (!c->sid[0] || !c->sid[1]) {
1937 rc = sidtab_context_to_sid(&sidtab,
1938 &c->context[0],
1939 &c->sid[0]);
1940 if (rc)
1941 goto out;
1942 rc = sidtab_context_to_sid(&sidtab,
1943 &c->context[1],
1944 &c->sid[1]);
1945 if (rc)
1946 goto out;
1947 }
1948 *if_sid = c->sid[0];
e8bfdb9d 1949 } else
1da177e4 1950 *if_sid = SECINITSID_NETIF;
1da177e4
LT
1951
1952out:
0804d113 1953 read_unlock(&policy_rwlock);
1da177e4
LT
1954 return rc;
1955}
1956
1957static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1958{
1959 int i, fail = 0;
1960
5d55a345
EP
1961 for (i = 0; i < 4; i++)
1962 if (addr[i] != (input[i] & mask[i])) {
1da177e4
LT
1963 fail = 1;
1964 break;
1965 }
1966
1967 return !fail;
1968}
1969
1970/**
1971 * security_node_sid - Obtain the SID for a node (host).
1972 * @domain: communication domain aka address family
1973 * @addrp: address
1974 * @addrlen: address length in bytes
1975 * @out_sid: security identifier
1976 */
1977int security_node_sid(u16 domain,
1978 void *addrp,
1979 u32 addrlen,
1980 u32 *out_sid)
1981{
1982 int rc = 0;
1983 struct ocontext *c;
1984
0804d113 1985 read_lock(&policy_rwlock);
1da177e4
LT
1986
1987 switch (domain) {
1988 case AF_INET: {
1989 u32 addr;
1990
1991 if (addrlen != sizeof(u32)) {
1992 rc = -EINVAL;
1993 goto out;
1994 }
1995
1996 addr = *((u32 *)addrp);
1997
1998 c = policydb.ocontexts[OCON_NODE];
1999 while (c) {
2000 if (c->u.node.addr == (addr & c->u.node.mask))
2001 break;
2002 c = c->next;
2003 }
2004 break;
2005 }
2006
2007 case AF_INET6:
2008 if (addrlen != sizeof(u64) * 2) {
2009 rc = -EINVAL;
2010 goto out;
2011 }
2012 c = policydb.ocontexts[OCON_NODE6];
2013 while (c) {
2014 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2015 c->u.node6.mask))
2016 break;
2017 c = c->next;
2018 }
2019 break;
2020
2021 default:
2022 *out_sid = SECINITSID_NODE;
2023 goto out;
2024 }
2025
2026 if (c) {
2027 if (!c->sid[0]) {
2028 rc = sidtab_context_to_sid(&sidtab,
2029 &c->context[0],
2030 &c->sid[0]);
2031 if (rc)
2032 goto out;
2033 }
2034 *out_sid = c->sid[0];
2035 } else {
2036 *out_sid = SECINITSID_NODE;
2037 }
2038
2039out:
0804d113 2040 read_unlock(&policy_rwlock);
1da177e4
LT
2041 return rc;
2042}
2043
2044#define SIDS_NEL 25
2045
2046/**
2047 * security_get_user_sids - Obtain reachable SIDs for a user.
2048 * @fromsid: starting SID
2049 * @username: username
2050 * @sids: array of reachable SIDs for user
2051 * @nel: number of elements in @sids
2052 *
2053 * Generate the set of SIDs for legal security contexts
2054 * for a given user that can be reached by @fromsid.
2055 * Set *@sids to point to a dynamically allocated
2056 * array containing the set of SIDs. Set *@nel to the
2057 * number of elements in the array.
2058 */
2059
2060int security_get_user_sids(u32 fromsid,
5d55a345 2061 char *username,
1da177e4
LT
2062 u32 **sids,
2063 u32 *nel)
2064{
2065 struct context *fromcon, usercon;
2c3c05db 2066 u32 *mysids = NULL, *mysids2, sid;
1da177e4
LT
2067 u32 mynel = 0, maxnel = SIDS_NEL;
2068 struct user_datum *user;
2069 struct role_datum *role;
782ebb99 2070 struct ebitmap_node *rnode, *tnode;
1da177e4
LT
2071 int rc = 0, i, j;
2072
2c3c05db
SS
2073 *sids = NULL;
2074 *nel = 0;
2075
2076 if (!ss_initialized)
1da177e4 2077 goto out;
1da177e4 2078
0804d113 2079 read_lock(&policy_rwlock);
1da177e4 2080
12b29f34
SS
2081 context_init(&usercon);
2082
1da177e4
LT
2083 fromcon = sidtab_search(&sidtab, fromsid);
2084 if (!fromcon) {
2085 rc = -EINVAL;
2086 goto out_unlock;
2087 }
2088
2089 user = hashtab_search(policydb.p_users.table, username);
2090 if (!user) {
2091 rc = -EINVAL;
2092 goto out_unlock;
2093 }
2094 usercon.user = user->value;
2095
89d155ef 2096 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1da177e4
LT
2097 if (!mysids) {
2098 rc = -ENOMEM;
2099 goto out_unlock;
2100 }
1da177e4 2101
9fe79ad1 2102 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1da177e4 2103 role = policydb.role_val_to_struct[i];
c1a7368a 2104 usercon.role = i + 1;
9fe79ad1 2105 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
c1a7368a 2106 usercon.type = j + 1;
1da177e4
LT
2107
2108 if (mls_setup_user_range(fromcon, user, &usercon))
2109 continue;
2110
1da177e4 2111 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2c3c05db 2112 if (rc)
1da177e4 2113 goto out_unlock;
1da177e4
LT
2114 if (mynel < maxnel) {
2115 mysids[mynel++] = sid;
2116 } else {
2117 maxnel += SIDS_NEL;
89d155ef 2118 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1da177e4
LT
2119 if (!mysids2) {
2120 rc = -ENOMEM;
1da177e4
LT
2121 goto out_unlock;
2122 }
1da177e4
LT
2123 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2124 kfree(mysids);
2125 mysids = mysids2;
2126 mysids[mynel++] = sid;
2127 }
2128 }
2129 }
2130
1da177e4 2131out_unlock:
0804d113 2132 read_unlock(&policy_rwlock);
2c3c05db
SS
2133 if (rc || !mynel) {
2134 kfree(mysids);
2135 goto out;
2136 }
2137
2138 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2139 if (!mysids2) {
2140 rc = -ENOMEM;
2141 kfree(mysids);
2142 goto out;
2143 }
2144 for (i = 0, j = 0; i < mynel; i++) {
2145 rc = avc_has_perm_noaudit(fromsid, mysids[i],
c6d3aaa4 2146 SECCLASS_PROCESS, /* kernel value */
2c3c05db
SS
2147 PROCESS__TRANSITION, AVC_STRICT,
2148 NULL);
2149 if (!rc)
2150 mysids2[j++] = mysids[i];
2151 cond_resched();
2152 }
2153 rc = 0;
2154 kfree(mysids);
2155 *sids = mysids2;
2156 *nel = j;
1da177e4
LT
2157out:
2158 return rc;
2159}
2160
2161/**
2162 * security_genfs_sid - Obtain a SID for a file in a filesystem
2163 * @fstype: filesystem type
2164 * @path: path from root of mount
2165 * @sclass: file security class
2166 * @sid: SID for path
2167 *
2168 * Obtain a SID to use for a file in a filesystem that
2169 * cannot support xattr or use a fixed labeling behavior like
2170 * transition SIDs or task SIDs.
2171 */
2172int security_genfs_sid(const char *fstype,
5d55a345 2173 char *path,
c6d3aaa4 2174 u16 orig_sclass,
1da177e4
LT
2175 u32 *sid)
2176{
2177 int len;
c6d3aaa4 2178 u16 sclass;
1da177e4
LT
2179 struct genfs *genfs;
2180 struct ocontext *c;
2181 int rc = 0, cmp = 0;
2182
b1aa5301
SS
2183 while (path[0] == '/' && path[1] == '/')
2184 path++;
2185
0804d113 2186 read_lock(&policy_rwlock);
1da177e4 2187
c6d3aaa4
SS
2188 sclass = unmap_class(orig_sclass);
2189
1da177e4
LT
2190 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2191 cmp = strcmp(fstype, genfs->fstype);
2192 if (cmp <= 0)
2193 break;
2194 }
2195
2196 if (!genfs || cmp) {
2197 *sid = SECINITSID_UNLABELED;
2198 rc = -ENOENT;
2199 goto out;
2200 }
2201
2202 for (c = genfs->head; c; c = c->next) {
2203 len = strlen(c->u.name);
2204 if ((!c->v.sclass || sclass == c->v.sclass) &&
2205 (strncmp(c->u.name, path, len) == 0))
2206 break;
2207 }
2208
2209 if (!c) {
2210 *sid = SECINITSID_UNLABELED;
2211 rc = -ENOENT;
2212 goto out;
2213 }
2214
2215 if (!c->sid[0]) {
2216 rc = sidtab_context_to_sid(&sidtab,
2217 &c->context[0],
2218 &c->sid[0]);
2219 if (rc)
2220 goto out;
2221 }
2222
2223 *sid = c->sid[0];
2224out:
0804d113 2225 read_unlock(&policy_rwlock);
1da177e4
LT
2226 return rc;
2227}
2228
2229/**
2230 * security_fs_use - Determine how to handle labeling for a filesystem.
2231 * @fstype: filesystem type
2232 * @behavior: labeling behavior
2233 * @sid: SID for filesystem (superblock)
2234 */
2235int security_fs_use(
2236 const char *fstype,
2237 unsigned int *behavior,
089be43e 2238 u32 *sid)
1da177e4
LT
2239{
2240 int rc = 0;
2241 struct ocontext *c;
2242
0804d113 2243 read_lock(&policy_rwlock);
1da177e4
LT
2244
2245 c = policydb.ocontexts[OCON_FSUSE];
2246 while (c) {
2247 if (strcmp(fstype, c->u.name) == 0)
2248 break;
2249 c = c->next;
2250 }
2251
2252 if (c) {
2253 *behavior = c->v.behavior;
2254 if (!c->sid[0]) {
2255 rc = sidtab_context_to_sid(&sidtab,
2256 &c->context[0],
2257 &c->sid[0]);
2258 if (rc)
2259 goto out;
2260 }
2261 *sid = c->sid[0];
2262 } else {
089be43e
JM
2263 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2264 if (rc) {
2265 *behavior = SECURITY_FS_USE_NONE;
2266 rc = 0;
2267 } else {
2268 *behavior = SECURITY_FS_USE_GENFS;
2269 }
1da177e4
LT
2270 }
2271
2272out:
0804d113 2273 read_unlock(&policy_rwlock);
1da177e4
LT
2274 return rc;
2275}
2276
2277int security_get_bools(int *len, char ***names, int **values)
2278{
2279 int i, rc = -ENOMEM;
2280
0804d113 2281 read_lock(&policy_rwlock);
1da177e4
LT
2282 *names = NULL;
2283 *values = NULL;
2284
2285 *len = policydb.p_bools.nprim;
2286 if (!*len) {
2287 rc = 0;
2288 goto out;
2289 }
2290
5d55a345 2291 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
1da177e4
LT
2292 if (!*names)
2293 goto err;
1da177e4 2294
e0795cf4 2295 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1da177e4
LT
2296 if (!*values)
2297 goto err;
2298
2299 for (i = 0; i < *len; i++) {
2300 size_t name_len;
2301 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2302 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
5d55a345 2303 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1da177e4
LT
2304 if (!(*names)[i])
2305 goto err;
2306 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2307 (*names)[i][name_len - 1] = 0;
2308 }
2309 rc = 0;
2310out:
0804d113 2311 read_unlock(&policy_rwlock);
1da177e4
LT
2312 return rc;
2313err:
2314 if (*names) {
2315 for (i = 0; i < *len; i++)
9a5f04bf 2316 kfree((*names)[i]);
1da177e4 2317 }
9a5f04bf 2318 kfree(*values);
1da177e4
LT
2319 goto out;
2320}
2321
2322
2323int security_set_bools(int len, int *values)
2324{
2325 int i, rc = 0;
2326 int lenp, seqno = 0;
2327 struct cond_node *cur;
2328
0804d113 2329 write_lock_irq(&policy_rwlock);
1da177e4
LT
2330
2331 lenp = policydb.p_bools.nprim;
2332 if (len != lenp) {
2333 rc = -EFAULT;
2334 goto out;
2335 }
2336
1da177e4 2337 for (i = 0; i < len; i++) {
af601e46
SG
2338 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2339 audit_log(current->audit_context, GFP_ATOMIC,
2340 AUDIT_MAC_CONFIG_CHANGE,
4746ec5b 2341 "bool=%s val=%d old_val=%d auid=%u ses=%u",
af601e46
SG
2342 policydb.p_bool_val_to_name[i],
2343 !!values[i],
2344 policydb.bool_val_to_struct[i]->state,
4746ec5b
EP
2345 audit_get_loginuid(current),
2346 audit_get_sessionid(current));
af601e46 2347 }
5d55a345 2348 if (values[i])
1da177e4 2349 policydb.bool_val_to_struct[i]->state = 1;
5d55a345 2350 else
1da177e4 2351 policydb.bool_val_to_struct[i]->state = 0;
1da177e4 2352 }
1da177e4 2353
dbc74c65 2354 for (cur = policydb.cond_list; cur; cur = cur->next) {
1da177e4
LT
2355 rc = evaluate_cond_node(&policydb, cur);
2356 if (rc)
2357 goto out;
2358 }
2359
2360 seqno = ++latest_granting;
2361
2362out:
0804d113 2363 write_unlock_irq(&policy_rwlock);
1da177e4
LT
2364 if (!rc) {
2365 avc_ss_reset(seqno);
2366 selnl_notify_policyload(seqno);
342a0cff 2367 selinux_xfrm_notify_policyload();
1da177e4
LT
2368 }
2369 return rc;
2370}
2371
2372int security_get_bool_value(int bool)
2373{
2374 int rc = 0;
2375 int len;
2376
0804d113 2377 read_lock(&policy_rwlock);
1da177e4
LT
2378
2379 len = policydb.p_bools.nprim;
2380 if (bool >= len) {
2381 rc = -EFAULT;
2382 goto out;
2383 }
2384
2385 rc = policydb.bool_val_to_struct[bool]->state;
2386out:
0804d113 2387 read_unlock(&policy_rwlock);
1da177e4
LT
2388 return rc;
2389}
376bd9cb 2390
e900a7d9
SS
2391static int security_preserve_bools(struct policydb *p)
2392{
2393 int rc, nbools = 0, *bvalues = NULL, i;
2394 char **bnames = NULL;
2395 struct cond_bool_datum *booldatum;
2396 struct cond_node *cur;
2397
2398 rc = security_get_bools(&nbools, &bnames, &bvalues);
2399 if (rc)
2400 goto out;
2401 for (i = 0; i < nbools; i++) {
2402 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2403 if (booldatum)
2404 booldatum->state = bvalues[i];
2405 }
dbc74c65 2406 for (cur = p->cond_list; cur; cur = cur->next) {
e900a7d9
SS
2407 rc = evaluate_cond_node(p, cur);
2408 if (rc)
2409 goto out;
2410 }
2411
2412out:
2413 if (bnames) {
2414 for (i = 0; i < nbools; i++)
2415 kfree(bnames[i]);
2416 }
2417 kfree(bnames);
2418 kfree(bvalues);
2419 return rc;
2420}
2421
08554d6b
VY
2422/*
2423 * security_sid_mls_copy() - computes a new sid based on the given
2424 * sid and the mls portion of mls_sid.
2425 */
2426int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2427{
2428 struct context *context1;
2429 struct context *context2;
2430 struct context newcon;
2431 char *s;
2432 u32 len;
2433 int rc = 0;
2434
0719aaf5 2435 if (!ss_initialized || !policydb.mls_enabled) {
08554d6b
VY
2436 *new_sid = sid;
2437 goto out;
2438 }
2439
2440 context_init(&newcon);
2441
0804d113 2442 read_lock(&policy_rwlock);
08554d6b
VY
2443 context1 = sidtab_search(&sidtab, sid);
2444 if (!context1) {
744ba35e
EP
2445 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2446 __func__, sid);
08554d6b
VY
2447 rc = -EINVAL;
2448 goto out_unlock;
2449 }
2450
2451 context2 = sidtab_search(&sidtab, mls_sid);
2452 if (!context2) {
744ba35e
EP
2453 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2454 __func__, mls_sid);
08554d6b
VY
2455 rc = -EINVAL;
2456 goto out_unlock;
2457 }
2458
2459 newcon.user = context1->user;
2460 newcon.role = context1->role;
2461 newcon.type = context1->type;
0efc61ea 2462 rc = mls_context_cpy(&newcon, context2);
08554d6b
VY
2463 if (rc)
2464 goto out_unlock;
2465
08554d6b
VY
2466 /* Check the validity of the new context. */
2467 if (!policydb_context_isvalid(&policydb, &newcon)) {
2468 rc = convert_context_handle_invalid_context(&newcon);
2469 if (rc)
2470 goto bad;
2471 }
2472
2473 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2474 goto out_unlock;
2475
2476bad:
2477 if (!context_struct_to_string(&newcon, &s, &len)) {
2478 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2479 "security_sid_mls_copy: invalid context %s", s);
2480 kfree(s);
2481 }
2482
2483out_unlock:
0804d113 2484 read_unlock(&policy_rwlock);
08554d6b
VY
2485 context_destroy(&newcon);
2486out:
2487 return rc;
2488}
2489
220deb96
PM
2490/**
2491 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2492 * @nlbl_sid: NetLabel SID
2493 * @nlbl_type: NetLabel labeling protocol type
2494 * @xfrm_sid: XFRM SID
2495 *
2496 * Description:
2497 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2498 * resolved into a single SID it is returned via @peer_sid and the function
2499 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2500 * returns a negative value. A table summarizing the behavior is below:
2501 *
2502 * | function return | @sid
2503 * ------------------------------+-----------------+-----------------
2504 * no peer labels | 0 | SECSID_NULL
2505 * single peer label | 0 | <peer_label>
2506 * multiple, consistent labels | 0 | <peer_label>
2507 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2508 *
2509 */
2510int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2511 u32 xfrm_sid,
2512 u32 *peer_sid)
2513{
2514 int rc;
2515 struct context *nlbl_ctx;
2516 struct context *xfrm_ctx;
2517
2518 /* handle the common (which also happens to be the set of easy) cases
2519 * right away, these two if statements catch everything involving a
2520 * single or absent peer SID/label */
2521 if (xfrm_sid == SECSID_NULL) {
2522 *peer_sid = nlbl_sid;
2523 return 0;
2524 }
2525 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2526 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2527 * is present */
2528 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2529 *peer_sid = xfrm_sid;
2530 return 0;
2531 }
2532
2533 /* we don't need to check ss_initialized here since the only way both
2534 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2535 * security server was initialized and ss_initialized was true */
0719aaf5 2536 if (!policydb.mls_enabled) {
220deb96
PM
2537 *peer_sid = SECSID_NULL;
2538 return 0;
2539 }
2540
0804d113 2541 read_lock(&policy_rwlock);
220deb96
PM
2542
2543 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2544 if (!nlbl_ctx) {
744ba35e
EP
2545 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2546 __func__, nlbl_sid);
220deb96
PM
2547 rc = -EINVAL;
2548 goto out_slowpath;
2549 }
2550 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2551 if (!xfrm_ctx) {
744ba35e
EP
2552 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2553 __func__, xfrm_sid);
220deb96
PM
2554 rc = -EINVAL;
2555 goto out_slowpath;
2556 }
2557 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2558
2559out_slowpath:
0804d113 2560 read_unlock(&policy_rwlock);
220deb96
PM
2561 if (rc == 0)
2562 /* at present NetLabel SIDs/labels really only carry MLS
2563 * information so if the MLS portion of the NetLabel SID
2564 * matches the MLS portion of the labeled XFRM SID/label
2565 * then pass along the XFRM SID as it is the most
2566 * expressive */
2567 *peer_sid = xfrm_sid;
2568 else
2569 *peer_sid = SECSID_NULL;
2570 return rc;
2571}
2572
55fcf09b
CP
2573static int get_classes_callback(void *k, void *d, void *args)
2574{
2575 struct class_datum *datum = d;
2576 char *name = k, **classes = args;
2577 int value = datum->value - 1;
2578
2579 classes[value] = kstrdup(name, GFP_ATOMIC);
2580 if (!classes[value])
2581 return -ENOMEM;
2582
2583 return 0;
2584}
2585
2586int security_get_classes(char ***classes, int *nclasses)
2587{
2588 int rc = -ENOMEM;
2589
0804d113 2590 read_lock(&policy_rwlock);
55fcf09b
CP
2591
2592 *nclasses = policydb.p_classes.nprim;
9f59f90b 2593 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
55fcf09b
CP
2594 if (!*classes)
2595 goto out;
2596
2597 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2598 *classes);
2599 if (rc < 0) {
2600 int i;
2601 for (i = 0; i < *nclasses; i++)
2602 kfree((*classes)[i]);
2603 kfree(*classes);
2604 }
2605
2606out:
0804d113 2607 read_unlock(&policy_rwlock);
55fcf09b
CP
2608 return rc;
2609}
2610
2611static int get_permissions_callback(void *k, void *d, void *args)
2612{
2613 struct perm_datum *datum = d;
2614 char *name = k, **perms = args;
2615 int value = datum->value - 1;
2616
2617 perms[value] = kstrdup(name, GFP_ATOMIC);
2618 if (!perms[value])
2619 return -ENOMEM;
2620
2621 return 0;
2622}
2623
2624int security_get_permissions(char *class, char ***perms, int *nperms)
2625{
2626 int rc = -ENOMEM, i;
2627 struct class_datum *match;
2628
0804d113 2629 read_lock(&policy_rwlock);
55fcf09b
CP
2630
2631 match = hashtab_search(policydb.p_classes.table, class);
2632 if (!match) {
744ba35e 2633 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
dd6f953a 2634 __func__, class);
55fcf09b
CP
2635 rc = -EINVAL;
2636 goto out;
2637 }
2638
2639 *nperms = match->permissions.nprim;
9f59f90b 2640 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
55fcf09b
CP
2641 if (!*perms)
2642 goto out;
2643
2644 if (match->comdatum) {
2645 rc = hashtab_map(match->comdatum->permissions.table,
2646 get_permissions_callback, *perms);
2647 if (rc < 0)
2648 goto err;
2649 }
2650
2651 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2652 *perms);
2653 if (rc < 0)
2654 goto err;
2655
2656out:
0804d113 2657 read_unlock(&policy_rwlock);
55fcf09b
CP
2658 return rc;
2659
2660err:
0804d113 2661 read_unlock(&policy_rwlock);
55fcf09b
CP
2662 for (i = 0; i < *nperms; i++)
2663 kfree((*perms)[i]);
2664 kfree(*perms);
2665 return rc;
2666}
2667
3f12070e
EP
2668int security_get_reject_unknown(void)
2669{
2670 return policydb.reject_unknown;
2671}
2672
2673int security_get_allow_unknown(void)
2674{
2675 return policydb.allow_unknown;
2676}
2677
3bb56b25
PM
2678/**
2679 * security_policycap_supported - Check for a specific policy capability
2680 * @req_cap: capability
2681 *
2682 * Description:
2683 * This function queries the currently loaded policy to see if it supports the
2684 * capability specified by @req_cap. Returns true (1) if the capability is
2685 * supported, false (0) if it isn't supported.
2686 *
2687 */
2688int security_policycap_supported(unsigned int req_cap)
2689{
2690 int rc;
2691
0804d113 2692 read_lock(&policy_rwlock);
3bb56b25 2693 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
0804d113 2694 read_unlock(&policy_rwlock);
3bb56b25
PM
2695
2696 return rc;
2697}
2698
376bd9cb
DG
2699struct selinux_audit_rule {
2700 u32 au_seqno;
2701 struct context au_ctxt;
2702};
2703
9d57a7f9 2704void selinux_audit_rule_free(void *vrule)
376bd9cb 2705{
9d57a7f9
AD
2706 struct selinux_audit_rule *rule = vrule;
2707
376bd9cb
DG
2708 if (rule) {
2709 context_destroy(&rule->au_ctxt);
2710 kfree(rule);
2711 }
2712}
2713
9d57a7f9 2714int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
376bd9cb
DG
2715{
2716 struct selinux_audit_rule *tmprule;
2717 struct role_datum *roledatum;
2718 struct type_datum *typedatum;
2719 struct user_datum *userdatum;
9d57a7f9 2720 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
376bd9cb
DG
2721 int rc = 0;
2722
2723 *rule = NULL;
2724
2725 if (!ss_initialized)
3ad40d64 2726 return -EOPNOTSUPP;
376bd9cb
DG
2727
2728 switch (field) {
3a6b9f85
DG
2729 case AUDIT_SUBJ_USER:
2730 case AUDIT_SUBJ_ROLE:
2731 case AUDIT_SUBJ_TYPE:
6e5a2d1d
DG
2732 case AUDIT_OBJ_USER:
2733 case AUDIT_OBJ_ROLE:
2734 case AUDIT_OBJ_TYPE:
376bd9cb 2735 /* only 'equals' and 'not equals' fit user, role, and type */
5af75d8d 2736 if (op != Audit_equal && op != Audit_not_equal)
376bd9cb
DG
2737 return -EINVAL;
2738 break;
3a6b9f85
DG
2739 case AUDIT_SUBJ_SEN:
2740 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2741 case AUDIT_OBJ_LEV_LOW:
2742 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2743 /* we do not allow a range, indicated by the presense of '-' */
2744 if (strchr(rulestr, '-'))
2745 return -EINVAL;
2746 break;
2747 default:
2748 /* only the above fields are valid */
2749 return -EINVAL;
2750 }
2751
2752 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2753 if (!tmprule)
2754 return -ENOMEM;
2755
2756 context_init(&tmprule->au_ctxt);
2757
0804d113 2758 read_lock(&policy_rwlock);
376bd9cb
DG
2759
2760 tmprule->au_seqno = latest_granting;
2761
2762 switch (field) {
3a6b9f85 2763 case AUDIT_SUBJ_USER:
6e5a2d1d 2764 case AUDIT_OBJ_USER:
376bd9cb
DG
2765 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2766 if (!userdatum)
2767 rc = -EINVAL;
2768 else
2769 tmprule->au_ctxt.user = userdatum->value;
2770 break;
3a6b9f85 2771 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2772 case AUDIT_OBJ_ROLE:
376bd9cb
DG
2773 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2774 if (!roledatum)
2775 rc = -EINVAL;
2776 else
2777 tmprule->au_ctxt.role = roledatum->value;
2778 break;
3a6b9f85 2779 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2780 case AUDIT_OBJ_TYPE:
376bd9cb
DG
2781 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2782 if (!typedatum)
2783 rc = -EINVAL;
2784 else
2785 tmprule->au_ctxt.type = typedatum->value;
2786 break;
3a6b9f85
DG
2787 case AUDIT_SUBJ_SEN:
2788 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2789 case AUDIT_OBJ_LEV_LOW:
2790 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2791 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2792 break;
2793 }
2794
0804d113 2795 read_unlock(&policy_rwlock);
376bd9cb
DG
2796
2797 if (rc) {
2798 selinux_audit_rule_free(tmprule);
2799 tmprule = NULL;
2800 }
2801
2802 *rule = tmprule;
2803
2804 return rc;
2805}
2806
9d57a7f9
AD
2807/* Check to see if the rule contains any selinux fields */
2808int selinux_audit_rule_known(struct audit_krule *rule)
2809{
2810 int i;
2811
2812 for (i = 0; i < rule->field_count; i++) {
2813 struct audit_field *f = &rule->fields[i];
2814 switch (f->type) {
2815 case AUDIT_SUBJ_USER:
2816 case AUDIT_SUBJ_ROLE:
2817 case AUDIT_SUBJ_TYPE:
2818 case AUDIT_SUBJ_SEN:
2819 case AUDIT_SUBJ_CLR:
2820 case AUDIT_OBJ_USER:
2821 case AUDIT_OBJ_ROLE:
2822 case AUDIT_OBJ_TYPE:
2823 case AUDIT_OBJ_LEV_LOW:
2824 case AUDIT_OBJ_LEV_HIGH:
2825 return 1;
2826 }
2827 }
2828
2829 return 0;
2830}
2831
2832int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
f5269710 2833 struct audit_context *actx)
376bd9cb
DG
2834{
2835 struct context *ctxt;
2836 struct mls_level *level;
9d57a7f9 2837 struct selinux_audit_rule *rule = vrule;
376bd9cb
DG
2838 int match = 0;
2839
2840 if (!rule) {
2841 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2842 "selinux_audit_rule_match: missing rule\n");
376bd9cb
DG
2843 return -ENOENT;
2844 }
2845
0804d113 2846 read_lock(&policy_rwlock);
376bd9cb
DG
2847
2848 if (rule->au_seqno < latest_granting) {
2849 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2850 "selinux_audit_rule_match: stale rule\n");
376bd9cb
DG
2851 match = -ESTALE;
2852 goto out;
2853 }
2854
9a2f44f0 2855 ctxt = sidtab_search(&sidtab, sid);
376bd9cb
DG
2856 if (!ctxt) {
2857 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
2858 "selinux_audit_rule_match: unrecognized SID %d\n",
2859 sid);
376bd9cb
DG
2860 match = -ENOENT;
2861 goto out;
2862 }
2863
2864 /* a field/op pair that is not caught here will simply fall through
2865 without a match */
2866 switch (field) {
3a6b9f85 2867 case AUDIT_SUBJ_USER:
6e5a2d1d 2868 case AUDIT_OBJ_USER:
376bd9cb 2869 switch (op) {
5af75d8d 2870 case Audit_equal:
376bd9cb
DG
2871 match = (ctxt->user == rule->au_ctxt.user);
2872 break;
5af75d8d 2873 case Audit_not_equal:
376bd9cb
DG
2874 match = (ctxt->user != rule->au_ctxt.user);
2875 break;
2876 }
2877 break;
3a6b9f85 2878 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2879 case AUDIT_OBJ_ROLE:
376bd9cb 2880 switch (op) {
5af75d8d 2881 case Audit_equal:
376bd9cb
DG
2882 match = (ctxt->role == rule->au_ctxt.role);
2883 break;
5af75d8d 2884 case Audit_not_equal:
376bd9cb
DG
2885 match = (ctxt->role != rule->au_ctxt.role);
2886 break;
2887 }
2888 break;
3a6b9f85 2889 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2890 case AUDIT_OBJ_TYPE:
376bd9cb 2891 switch (op) {
5af75d8d 2892 case Audit_equal:
376bd9cb
DG
2893 match = (ctxt->type == rule->au_ctxt.type);
2894 break;
5af75d8d 2895 case Audit_not_equal:
376bd9cb
DG
2896 match = (ctxt->type != rule->au_ctxt.type);
2897 break;
2898 }
2899 break;
3a6b9f85
DG
2900 case AUDIT_SUBJ_SEN:
2901 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2902 case AUDIT_OBJ_LEV_LOW:
2903 case AUDIT_OBJ_LEV_HIGH:
2904 level = ((field == AUDIT_SUBJ_SEN ||
5d55a345
EP
2905 field == AUDIT_OBJ_LEV_LOW) ?
2906 &ctxt->range.level[0] : &ctxt->range.level[1]);
376bd9cb 2907 switch (op) {
5af75d8d 2908 case Audit_equal:
376bd9cb 2909 match = mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 2910 level);
376bd9cb 2911 break;
5af75d8d 2912 case Audit_not_equal:
376bd9cb 2913 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 2914 level);
376bd9cb 2915 break;
5af75d8d 2916 case Audit_lt:
376bd9cb 2917 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345
EP
2918 level) &&
2919 !mls_level_eq(&rule->au_ctxt.range.level[0],
2920 level));
376bd9cb 2921 break;
5af75d8d 2922 case Audit_le:
376bd9cb 2923 match = mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345 2924 level);
376bd9cb 2925 break;
5af75d8d 2926 case Audit_gt:
376bd9cb 2927 match = (mls_level_dom(level,
5d55a345
EP
2928 &rule->au_ctxt.range.level[0]) &&
2929 !mls_level_eq(level,
2930 &rule->au_ctxt.range.level[0]));
376bd9cb 2931 break;
5af75d8d 2932 case Audit_ge:
376bd9cb 2933 match = mls_level_dom(level,
5d55a345 2934 &rule->au_ctxt.range.level[0]);
376bd9cb
DG
2935 break;
2936 }
2937 }
2938
2939out:
0804d113 2940 read_unlock(&policy_rwlock);
376bd9cb
DG
2941 return match;
2942}
2943
9d57a7f9 2944static int (*aurule_callback)(void) = audit_update_lsm_rules;
376bd9cb
DG
2945
2946static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
f5269710 2947 u16 class, u32 perms, u32 *retained)
376bd9cb
DG
2948{
2949 int err = 0;
2950
2951 if (event == AVC_CALLBACK_RESET && aurule_callback)
2952 err = aurule_callback();
2953 return err;
2954}
2955
2956static int __init aurule_init(void)
2957{
2958 int err;
2959
2960 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
5d55a345 2961 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
376bd9cb
DG
2962 if (err)
2963 panic("avc_add_callback() failed, error %d\n", err);
2964
2965 return err;
2966}
2967__initcall(aurule_init);
2968
7420ed23 2969#ifdef CONFIG_NETLABEL
7420ed23 2970/**
5778eabd
PM
2971 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2972 * @secattr: the NetLabel packet security attributes
5dbe1eb0 2973 * @sid: the SELinux SID
7420ed23
VY
2974 *
2975 * Description:
2976 * Attempt to cache the context in @ctx, which was derived from the packet in
5778eabd
PM
2977 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2978 * already been initialized.
7420ed23
VY
2979 *
2980 */
5778eabd 2981static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
5dbe1eb0 2982 u32 sid)
7420ed23 2983{
5dbe1eb0 2984 u32 *sid_cache;
7420ed23 2985
5dbe1eb0
PM
2986 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2987 if (sid_cache == NULL)
5778eabd 2988 return;
5dbe1eb0
PM
2989 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2990 if (secattr->cache == NULL) {
2991 kfree(sid_cache);
5778eabd 2992 return;
0ec8abd7 2993 }
7420ed23 2994
5dbe1eb0
PM
2995 *sid_cache = sid;
2996 secattr->cache->free = kfree;
2997 secattr->cache->data = sid_cache;
5778eabd 2998 secattr->flags |= NETLBL_SECATTR_CACHE;
7420ed23
VY
2999}
3000
3001/**
5778eabd 3002 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
7420ed23 3003 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3004 * @sid: the SELinux SID
3005 *
3006 * Description:
5778eabd 3007 * Convert the given NetLabel security attributes in @secattr into a
7420ed23 3008 * SELinux SID. If the @secattr field does not contain a full SELinux
5dbe1eb0
PM
3009 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
3010 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3011 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3012 * conversion for future lookups. Returns zero on success, negative values on
3013 * failure.
7420ed23
VY
3014 *
3015 */
5778eabd 3016int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
5778eabd 3017 u32 *sid)
7420ed23
VY
3018{
3019 int rc = -EIDRM;
3020 struct context *ctx;
3021 struct context ctx_new;
5778eabd
PM
3022
3023 if (!ss_initialized) {
3024 *sid = SECSID_NULL;
3025 return 0;
3026 }
7420ed23 3027
0804d113 3028 read_lock(&policy_rwlock);
7420ed23 3029
701a90ba 3030 if (secattr->flags & NETLBL_SECATTR_CACHE) {
5dbe1eb0
PM
3031 *sid = *(u32 *)secattr->cache->data;
3032 rc = 0;
16efd454
PM
3033 } else if (secattr->flags & NETLBL_SECATTR_SECID) {
3034 *sid = secattr->attr.secid;
3035 rc = 0;
701a90ba 3036 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
5dbe1eb0 3037 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
7420ed23
VY
3038 if (ctx == NULL)
3039 goto netlbl_secattr_to_sid_return;
3040
81990fbd 3041 context_init(&ctx_new);
7420ed23
VY
3042 ctx_new.user = ctx->user;
3043 ctx_new.role = ctx->role;
3044 ctx_new.type = ctx->type;
02752760 3045 mls_import_netlbl_lvl(&ctx_new, secattr);
701a90ba 3046 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
02752760 3047 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
16efd454 3048 secattr->attr.mls.cat) != 0)
7420ed23 3049 goto netlbl_secattr_to_sid_return;
81990fbd
PM
3050 memcpy(&ctx_new.range.level[1].cat,
3051 &ctx_new.range.level[0].cat,
3052 sizeof(ctx_new.range.level[0].cat));
7420ed23
VY
3053 }
3054 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3055 goto netlbl_secattr_to_sid_return_cleanup;
3056
3057 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3058 if (rc != 0)
3059 goto netlbl_secattr_to_sid_return_cleanup;
3060
5dbe1eb0 3061 security_netlbl_cache_add(secattr, *sid);
5778eabd 3062
7420ed23
VY
3063 ebitmap_destroy(&ctx_new.range.level[0].cat);
3064 } else {
388b2405 3065 *sid = SECSID_NULL;
7420ed23
VY
3066 rc = 0;
3067 }
3068
3069netlbl_secattr_to_sid_return:
0804d113 3070 read_unlock(&policy_rwlock);
7420ed23
VY
3071 return rc;
3072netlbl_secattr_to_sid_return_cleanup:
3073 ebitmap_destroy(&ctx_new.range.level[0].cat);
3074 goto netlbl_secattr_to_sid_return;
3075}
3076
3077/**
5778eabd
PM
3078 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3079 * @sid: the SELinux SID
3080 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3081 *
3082 * Description:
5778eabd
PM
3083 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3084 * Returns zero on success, negative values on failure.
7420ed23
VY
3085 *
3086 */
5778eabd 3087int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
7420ed23 3088{
99d854d2 3089 int rc;
7420ed23
VY
3090 struct context *ctx;
3091
3092 if (!ss_initialized)
3093 return 0;
3094
0804d113 3095 read_lock(&policy_rwlock);
7420ed23 3096 ctx = sidtab_search(&sidtab, sid);
99d854d2
PM
3097 if (ctx == NULL) {
3098 rc = -ENOENT;
5778eabd 3099 goto netlbl_sid_to_secattr_failure;
99d854d2 3100 }
5778eabd
PM
3101 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3102 GFP_ATOMIC);
99d854d2
PM
3103 if (secattr->domain == NULL) {
3104 rc = -ENOMEM;
3105 goto netlbl_sid_to_secattr_failure;
3106 }
8d75899d
PM
3107 secattr->attr.secid = sid;
3108 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
5778eabd
PM
3109 mls_export_netlbl_lvl(ctx, secattr);
3110 rc = mls_export_netlbl_cat(ctx, secattr);
bf0edf39 3111 if (rc != 0)
5778eabd 3112 goto netlbl_sid_to_secattr_failure;
0804d113 3113 read_unlock(&policy_rwlock);
99f59ed0 3114
5778eabd 3115 return 0;
f8687afe 3116
5778eabd 3117netlbl_sid_to_secattr_failure:
0804d113 3118 read_unlock(&policy_rwlock);
f8687afe
PM
3119 return rc;
3120}
7420ed23 3121#endif /* CONFIG_NETLABEL */