]> bbs.cooldavid.org Git - net-next-2.6.git/blame - security/selinux/ss/services.c
idr_remove_all: kill unused variable
[net-next-2.6.git] / security / selinux / ss / services.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
376bd9cb 10 * Support for context based audit filters.
1da177e4
LT
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
7420ed23
VY
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 * Added support for NetLabel
19 *
b94c7e67
CS
20 * Updated: Chad Sellers <csellers@tresys.com>
21 *
22 * Added validation of kernel classes and permissions
23 *
7420ed23 24 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
376bd9cb 25 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
b94c7e67 26 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
1da177e4
LT
27 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License as published by
30 * the Free Software Foundation, version 2.
31 */
32#include <linux/kernel.h>
33#include <linux/slab.h>
34#include <linux/string.h>
35#include <linux/spinlock.h>
9f2ad665 36#include <linux/rcupdate.h>
1da177e4
LT
37#include <linux/errno.h>
38#include <linux/in.h>
39#include <linux/sched.h>
40#include <linux/audit.h>
bb003079 41#include <linux/mutex.h>
7420ed23 42#include <net/netlabel.h>
bb003079 43
1da177e4
LT
44#include "flask.h"
45#include "avc.h"
46#include "avc_ss.h"
47#include "security.h"
48#include "context.h"
49#include "policydb.h"
50#include "sidtab.h"
51#include "services.h"
52#include "conditional.h"
53#include "mls.h"
7420ed23 54#include "objsec.h"
c60475bf 55#include "netlabel.h"
3de4bab5 56#include "xfrm.h"
02752760 57#include "ebitmap.h"
1da177e4
LT
58
59extern void selnl_notify_policyload(u32 seqno);
60unsigned int policydb_loaded_version;
61
b94c7e67
CS
62/*
63 * This is declared in avc.c
64 */
65extern const struct selinux_class_perm selinux_class_perm;
66
1da177e4
LT
67static DEFINE_RWLOCK(policy_rwlock);
68#define POLICY_RDLOCK read_lock(&policy_rwlock)
69#define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
70#define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
71#define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
72
bb003079
IM
73static DEFINE_MUTEX(load_mutex);
74#define LOAD_LOCK mutex_lock(&load_mutex)
75#define LOAD_UNLOCK mutex_unlock(&load_mutex)
1da177e4
LT
76
77static struct sidtab sidtab;
78struct policydb policydb;
79int ss_initialized = 0;
80
81/*
82 * The largest sequence number that has been used when
83 * providing an access decision to the access vector cache.
84 * The sequence number only changes when a policy change
85 * occurs.
86 */
87static u32 latest_granting = 0;
88
89/* Forward declaration. */
90static int context_struct_to_string(struct context *context, char **scontext,
91 u32 *scontext_len);
92
93/*
94 * Return the boolean value of a constraint expression
95 * when it is applied to the specified source and target
96 * security contexts.
97 *
98 * xcontext is a special beast... It is used by the validatetrans rules
99 * only. For these rules, scontext is the context before the transition,
100 * tcontext is the context after the transition, and xcontext is the context
101 * of the process performing the transition. All other callers of
102 * constraint_expr_eval should pass in NULL for xcontext.
103 */
104static int constraint_expr_eval(struct context *scontext,
105 struct context *tcontext,
106 struct context *xcontext,
107 struct constraint_expr *cexpr)
108{
109 u32 val1, val2;
110 struct context *c;
111 struct role_datum *r1, *r2;
112 struct mls_level *l1, *l2;
113 struct constraint_expr *e;
114 int s[CEXPR_MAXDEPTH];
115 int sp = -1;
116
117 for (e = cexpr; e; e = e->next) {
118 switch (e->expr_type) {
119 case CEXPR_NOT:
120 BUG_ON(sp < 0);
121 s[sp] = !s[sp];
122 break;
123 case CEXPR_AND:
124 BUG_ON(sp < 1);
125 sp--;
126 s[sp] &= s[sp+1];
127 break;
128 case CEXPR_OR:
129 BUG_ON(sp < 1);
130 sp--;
131 s[sp] |= s[sp+1];
132 break;
133 case CEXPR_ATTR:
134 if (sp == (CEXPR_MAXDEPTH-1))
135 return 0;
136 switch (e->attr) {
137 case CEXPR_USER:
138 val1 = scontext->user;
139 val2 = tcontext->user;
140 break;
141 case CEXPR_TYPE:
142 val1 = scontext->type;
143 val2 = tcontext->type;
144 break;
145 case CEXPR_ROLE:
146 val1 = scontext->role;
147 val2 = tcontext->role;
148 r1 = policydb.role_val_to_struct[val1 - 1];
149 r2 = policydb.role_val_to_struct[val2 - 1];
150 switch (e->op) {
151 case CEXPR_DOM:
152 s[++sp] = ebitmap_get_bit(&r1->dominates,
153 val2 - 1);
154 continue;
155 case CEXPR_DOMBY:
156 s[++sp] = ebitmap_get_bit(&r2->dominates,
157 val1 - 1);
158 continue;
159 case CEXPR_INCOMP:
160 s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
161 val2 - 1) &&
162 !ebitmap_get_bit(&r2->dominates,
163 val1 - 1) );
164 continue;
165 default:
166 break;
167 }
168 break;
169 case CEXPR_L1L2:
170 l1 = &(scontext->range.level[0]);
171 l2 = &(tcontext->range.level[0]);
172 goto mls_ops;
173 case CEXPR_L1H2:
174 l1 = &(scontext->range.level[0]);
175 l2 = &(tcontext->range.level[1]);
176 goto mls_ops;
177 case CEXPR_H1L2:
178 l1 = &(scontext->range.level[1]);
179 l2 = &(tcontext->range.level[0]);
180 goto mls_ops;
181 case CEXPR_H1H2:
182 l1 = &(scontext->range.level[1]);
183 l2 = &(tcontext->range.level[1]);
184 goto mls_ops;
185 case CEXPR_L1H1:
186 l1 = &(scontext->range.level[0]);
187 l2 = &(scontext->range.level[1]);
188 goto mls_ops;
189 case CEXPR_L2H2:
190 l1 = &(tcontext->range.level[0]);
191 l2 = &(tcontext->range.level[1]);
192 goto mls_ops;
193mls_ops:
194 switch (e->op) {
195 case CEXPR_EQ:
196 s[++sp] = mls_level_eq(l1, l2);
197 continue;
198 case CEXPR_NEQ:
199 s[++sp] = !mls_level_eq(l1, l2);
200 continue;
201 case CEXPR_DOM:
202 s[++sp] = mls_level_dom(l1, l2);
203 continue;
204 case CEXPR_DOMBY:
205 s[++sp] = mls_level_dom(l2, l1);
206 continue;
207 case CEXPR_INCOMP:
208 s[++sp] = mls_level_incomp(l2, l1);
209 continue;
210 default:
211 BUG();
212 return 0;
213 }
214 break;
215 default:
216 BUG();
217 return 0;
218 }
219
220 switch (e->op) {
221 case CEXPR_EQ:
222 s[++sp] = (val1 == val2);
223 break;
224 case CEXPR_NEQ:
225 s[++sp] = (val1 != val2);
226 break;
227 default:
228 BUG();
229 return 0;
230 }
231 break;
232 case CEXPR_NAMES:
233 if (sp == (CEXPR_MAXDEPTH-1))
234 return 0;
235 c = scontext;
236 if (e->attr & CEXPR_TARGET)
237 c = tcontext;
238 else if (e->attr & CEXPR_XTARGET) {
239 c = xcontext;
240 if (!c) {
241 BUG();
242 return 0;
243 }
244 }
245 if (e->attr & CEXPR_USER)
246 val1 = c->user;
247 else if (e->attr & CEXPR_ROLE)
248 val1 = c->role;
249 else if (e->attr & CEXPR_TYPE)
250 val1 = c->type;
251 else {
252 BUG();
253 return 0;
254 }
255
256 switch (e->op) {
257 case CEXPR_EQ:
258 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
259 break;
260 case CEXPR_NEQ:
261 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
262 break;
263 default:
264 BUG();
265 return 0;
266 }
267 break;
268 default:
269 BUG();
270 return 0;
271 }
272 }
273
274 BUG_ON(sp != 0);
275 return s[0];
276}
277
278/*
279 * Compute access vectors based on a context structure pair for
280 * the permissions in a particular class.
281 */
282static int context_struct_compute_av(struct context *scontext,
283 struct context *tcontext,
284 u16 tclass,
285 u32 requested,
286 struct av_decision *avd)
287{
288 struct constraint_node *constraint;
289 struct role_allow *ra;
290 struct avtab_key avkey;
782ebb99 291 struct avtab_node *node;
1da177e4 292 struct class_datum *tclass_datum;
782ebb99
SS
293 struct ebitmap *sattr, *tattr;
294 struct ebitmap_node *snode, *tnode;
295 unsigned int i, j;
1da177e4
LT
296
297 /*
298 * Remap extended Netlink classes for old policy versions.
299 * Do this here rather than socket_type_to_security_class()
300 * in case a newer policy version is loaded, allowing sockets
301 * to remain in the correct class.
302 */
303 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
304 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
305 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
306 tclass = SECCLASS_NETLINK_SOCKET;
307
308 if (!tclass || tclass > policydb.p_classes.nprim) {
309 printk(KERN_ERR "security_compute_av: unrecognized class %d\n",
310 tclass);
311 return -EINVAL;
312 }
313 tclass_datum = policydb.class_val_to_struct[tclass - 1];
314
315 /*
316 * Initialize the access vectors to the default values.
317 */
318 avd->allowed = 0;
319 avd->decided = 0xffffffff;
320 avd->auditallow = 0;
321 avd->auditdeny = 0xffffffff;
322 avd->seqno = latest_granting;
323
324 /*
325 * If a specific type enforcement rule was defined for
326 * this permission check, then use it.
327 */
1da177e4 328 avkey.target_class = tclass;
782ebb99
SS
329 avkey.specified = AVTAB_AV;
330 sattr = &policydb.type_attr_map[scontext->type - 1];
331 tattr = &policydb.type_attr_map[tcontext->type - 1];
332 ebitmap_for_each_bit(sattr, snode, i) {
333 if (!ebitmap_node_get_bit(snode, i))
334 continue;
335 ebitmap_for_each_bit(tattr, tnode, j) {
336 if (!ebitmap_node_get_bit(tnode, j))
337 continue;
338 avkey.source_type = i + 1;
339 avkey.target_type = j + 1;
340 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
341 node != NULL;
342 node = avtab_search_node_next(node, avkey.specified)) {
343 if (node->key.specified == AVTAB_ALLOWED)
344 avd->allowed |= node->datum.data;
345 else if (node->key.specified == AVTAB_AUDITALLOW)
346 avd->auditallow |= node->datum.data;
347 else if (node->key.specified == AVTAB_AUDITDENY)
348 avd->auditdeny &= node->datum.data;
349 }
1da177e4 350
782ebb99
SS
351 /* Check conditional av table for additional permissions */
352 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
353
354 }
355 }
1da177e4
LT
356
357 /*
358 * Remove any permissions prohibited by a constraint (this includes
359 * the MLS policy).
360 */
361 constraint = tclass_datum->constraints;
362 while (constraint) {
363 if ((constraint->permissions & (avd->allowed)) &&
364 !constraint_expr_eval(scontext, tcontext, NULL,
365 constraint->expr)) {
366 avd->allowed = (avd->allowed) & ~(constraint->permissions);
367 }
368 constraint = constraint->next;
369 }
370
371 /*
372 * If checking process transition permission and the
373 * role is changing, then check the (current_role, new_role)
374 * pair.
375 */
376 if (tclass == SECCLASS_PROCESS &&
377 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
378 scontext->role != tcontext->role) {
379 for (ra = policydb.role_allow; ra; ra = ra->next) {
380 if (scontext->role == ra->role &&
381 tcontext->role == ra->new_role)
382 break;
383 }
384 if (!ra)
385 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
386 PROCESS__DYNTRANSITION);
387 }
388
389 return 0;
390}
391
392static int security_validtrans_handle_fail(struct context *ocontext,
393 struct context *ncontext,
394 struct context *tcontext,
395 u16 tclass)
396{
397 char *o = NULL, *n = NULL, *t = NULL;
398 u32 olen, nlen, tlen;
399
400 if (context_struct_to_string(ocontext, &o, &olen) < 0)
401 goto out;
402 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
403 goto out;
404 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
405 goto out;
9ad9ad38 406 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
407 "security_validate_transition: denied for"
408 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
409 o, n, t, policydb.p_class_val_to_name[tclass-1]);
410out:
411 kfree(o);
412 kfree(n);
413 kfree(t);
414
415 if (!selinux_enforcing)
416 return 0;
417 return -EPERM;
418}
419
420int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
421 u16 tclass)
422{
423 struct context *ocontext;
424 struct context *ncontext;
425 struct context *tcontext;
426 struct class_datum *tclass_datum;
427 struct constraint_node *constraint;
428 int rc = 0;
429
430 if (!ss_initialized)
431 return 0;
432
433 POLICY_RDLOCK;
434
435 /*
436 * Remap extended Netlink classes for old policy versions.
437 * Do this here rather than socket_type_to_security_class()
438 * in case a newer policy version is loaded, allowing sockets
439 * to remain in the correct class.
440 */
441 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
442 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
443 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
444 tclass = SECCLASS_NETLINK_SOCKET;
445
446 if (!tclass || tclass > policydb.p_classes.nprim) {
447 printk(KERN_ERR "security_validate_transition: "
448 "unrecognized class %d\n", tclass);
449 rc = -EINVAL;
450 goto out;
451 }
452 tclass_datum = policydb.class_val_to_struct[tclass - 1];
453
454 ocontext = sidtab_search(&sidtab, oldsid);
455 if (!ocontext) {
456 printk(KERN_ERR "security_validate_transition: "
457 " unrecognized SID %d\n", oldsid);
458 rc = -EINVAL;
459 goto out;
460 }
461
462 ncontext = sidtab_search(&sidtab, newsid);
463 if (!ncontext) {
464 printk(KERN_ERR "security_validate_transition: "
465 " unrecognized SID %d\n", newsid);
466 rc = -EINVAL;
467 goto out;
468 }
469
470 tcontext = sidtab_search(&sidtab, tasksid);
471 if (!tcontext) {
472 printk(KERN_ERR "security_validate_transition: "
473 " unrecognized SID %d\n", tasksid);
474 rc = -EINVAL;
475 goto out;
476 }
477
478 constraint = tclass_datum->validatetrans;
479 while (constraint) {
480 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
481 constraint->expr)) {
482 rc = security_validtrans_handle_fail(ocontext, ncontext,
483 tcontext, tclass);
484 goto out;
485 }
486 constraint = constraint->next;
487 }
488
489out:
490 POLICY_RDUNLOCK;
491 return rc;
492}
493
494/**
495 * security_compute_av - Compute access vector decisions.
496 * @ssid: source security identifier
497 * @tsid: target security identifier
498 * @tclass: target security class
499 * @requested: requested permissions
500 * @avd: access vector decisions
501 *
502 * Compute a set of access vector decisions based on the
503 * SID pair (@ssid, @tsid) for the permissions in @tclass.
504 * Return -%EINVAL if any of the parameters are invalid or %0
505 * if the access vector decisions were computed successfully.
506 */
507int security_compute_av(u32 ssid,
508 u32 tsid,
509 u16 tclass,
510 u32 requested,
511 struct av_decision *avd)
512{
513 struct context *scontext = NULL, *tcontext = NULL;
514 int rc = 0;
515
516 if (!ss_initialized) {
4c443d1b
SS
517 avd->allowed = 0xffffffff;
518 avd->decided = 0xffffffff;
1da177e4
LT
519 avd->auditallow = 0;
520 avd->auditdeny = 0xffffffff;
521 avd->seqno = latest_granting;
522 return 0;
523 }
524
525 POLICY_RDLOCK;
526
527 scontext = sidtab_search(&sidtab, ssid);
528 if (!scontext) {
529 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
530 ssid);
531 rc = -EINVAL;
532 goto out;
533 }
534 tcontext = sidtab_search(&sidtab, tsid);
535 if (!tcontext) {
536 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
537 tsid);
538 rc = -EINVAL;
539 goto out;
540 }
541
542 rc = context_struct_compute_av(scontext, tcontext, tclass,
543 requested, avd);
544out:
545 POLICY_RDUNLOCK;
546 return rc;
547}
548
549/*
550 * Write the security context string representation of
551 * the context structure `context' into a dynamically
552 * allocated string of the correct size. Set `*scontext'
553 * to point to this string and set `*scontext_len' to
554 * the length of the string.
555 */
556static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
557{
558 char *scontextp;
559
560 *scontext = NULL;
561 *scontext_len = 0;
562
563 /* Compute the size of the context. */
564 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
565 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
566 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
567 *scontext_len += mls_compute_context_len(context);
568
569 /* Allocate space for the context; caller must free this space. */
570 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
571 if (!scontextp) {
572 return -ENOMEM;
573 }
574 *scontext = scontextp;
575
576 /*
577 * Copy the user name, role name and type name into the context.
578 */
579 sprintf(scontextp, "%s:%s:%s",
580 policydb.p_user_val_to_name[context->user - 1],
581 policydb.p_role_val_to_name[context->role - 1],
582 policydb.p_type_val_to_name[context->type - 1]);
583 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
584 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
585 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
586
587 mls_sid_to_context(context, &scontextp);
588
589 *scontextp = 0;
590
591 return 0;
592}
593
594#include "initial_sid_to_string.h"
595
f0ee2e46
JC
596const char *security_get_initial_sid_context(u32 sid)
597{
598 if (unlikely(sid > SECINITSID_NUM))
599 return NULL;
600 return initial_sid_to_string[sid];
601}
602
1da177e4
LT
603/**
604 * security_sid_to_context - Obtain a context for a given SID.
605 * @sid: security identifier, SID
606 * @scontext: security context
607 * @scontext_len: length in bytes
608 *
609 * Write the string representation of the context associated with @sid
610 * into a dynamically allocated string of the correct size. Set @scontext
611 * to point to this string and set @scontext_len to the length of the string.
612 */
613int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
614{
615 struct context *context;
616 int rc = 0;
617
4f4acf3a
SS
618 *scontext = NULL;
619 *scontext_len = 0;
620
1da177e4
LT
621 if (!ss_initialized) {
622 if (sid <= SECINITSID_NUM) {
623 char *scontextp;
624
625 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
626 scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
0cccca06
SH
627 if (!scontextp) {
628 rc = -ENOMEM;
629 goto out;
630 }
1da177e4
LT
631 strcpy(scontextp, initial_sid_to_string[sid]);
632 *scontext = scontextp;
633 goto out;
634 }
635 printk(KERN_ERR "security_sid_to_context: called before initial "
636 "load_policy on unknown SID %d\n", sid);
637 rc = -EINVAL;
638 goto out;
639 }
640 POLICY_RDLOCK;
641 context = sidtab_search(&sidtab, sid);
642 if (!context) {
643 printk(KERN_ERR "security_sid_to_context: unrecognized SID "
644 "%d\n", sid);
645 rc = -EINVAL;
646 goto out_unlock;
647 }
648 rc = context_struct_to_string(context, scontext, scontext_len);
649out_unlock:
650 POLICY_RDUNLOCK;
651out:
652 return rc;
653
654}
655
f5c1d5b2 656static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
1da177e4
LT
657{
658 char *scontext2;
659 struct context context;
660 struct role_datum *role;
661 struct type_datum *typdatum;
662 struct user_datum *usrdatum;
663 char *scontextp, *p, oldc;
664 int rc = 0;
665
666 if (!ss_initialized) {
667 int i;
668
669 for (i = 1; i < SECINITSID_NUM; i++) {
670 if (!strcmp(initial_sid_to_string[i], scontext)) {
671 *sid = i;
672 goto out;
673 }
674 }
675 *sid = SECINITSID_KERNEL;
676 goto out;
677 }
678 *sid = SECSID_NULL;
679
680 /* Copy the string so that we can modify the copy as we parse it.
681 The string should already by null terminated, but we append a
682 null suffix to the copy to avoid problems with the existing
683 attr package, which doesn't view the null terminator as part
684 of the attribute value. */
685 scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
686 if (!scontext2) {
687 rc = -ENOMEM;
688 goto out;
689 }
690 memcpy(scontext2, scontext, scontext_len);
691 scontext2[scontext_len] = 0;
692
693 context_init(&context);
694 *sid = SECSID_NULL;
695
696 POLICY_RDLOCK;
697
698 /* Parse the security context. */
699
700 rc = -EINVAL;
701 scontextp = (char *) scontext2;
702
703 /* Extract the user. */
704 p = scontextp;
705 while (*p && *p != ':')
706 p++;
707
708 if (*p == 0)
709 goto out_unlock;
710
711 *p++ = 0;
712
713 usrdatum = hashtab_search(policydb.p_users.table, scontextp);
714 if (!usrdatum)
715 goto out_unlock;
716
717 context.user = usrdatum->value;
718
719 /* Extract role. */
720 scontextp = p;
721 while (*p && *p != ':')
722 p++;
723
724 if (*p == 0)
725 goto out_unlock;
726
727 *p++ = 0;
728
729 role = hashtab_search(policydb.p_roles.table, scontextp);
730 if (!role)
731 goto out_unlock;
732 context.role = role->value;
733
734 /* Extract type. */
735 scontextp = p;
736 while (*p && *p != ':')
737 p++;
738 oldc = *p;
739 *p++ = 0;
740
741 typdatum = hashtab_search(policydb.p_types.table, scontextp);
742 if (!typdatum)
743 goto out_unlock;
744
745 context.type = typdatum->value;
746
f5c1d5b2 747 rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
1da177e4
LT
748 if (rc)
749 goto out_unlock;
750
751 if ((p - scontext2) < scontext_len) {
752 rc = -EINVAL;
753 goto out_unlock;
754 }
755
756 /* Check the validity of the new context. */
757 if (!policydb_context_isvalid(&policydb, &context)) {
758 rc = -EINVAL;
759 goto out_unlock;
760 }
761 /* Obtain the new sid. */
762 rc = sidtab_context_to_sid(&sidtab, &context, sid);
763out_unlock:
764 POLICY_RDUNLOCK;
765 context_destroy(&context);
766 kfree(scontext2);
767out:
768 return rc;
769}
770
f5c1d5b2
JM
771/**
772 * security_context_to_sid - Obtain a SID for a given security context.
773 * @scontext: security context
774 * @scontext_len: length in bytes
775 * @sid: security identifier, SID
776 *
777 * Obtains a SID associated with the security context that
778 * has the string representation specified by @scontext.
779 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
780 * memory is available, or 0 on success.
781 */
782int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
783{
784 return security_context_to_sid_core(scontext, scontext_len,
785 sid, SECSID_NULL);
786}
787
788/**
789 * security_context_to_sid_default - Obtain a SID for a given security context,
790 * falling back to specified default if needed.
791 *
792 * @scontext: security context
793 * @scontext_len: length in bytes
794 * @sid: security identifier, SID
795 * @def_sid: default SID to assign on errror
796 *
797 * Obtains a SID associated with the security context that
798 * has the string representation specified by @scontext.
799 * The default SID is passed to the MLS layer to be used to allow
800 * kernel labeling of the MLS field if the MLS field is not present
801 * (for upgrading to MLS without full relabel).
802 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
803 * memory is available, or 0 on success.
804 */
805int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
806{
807 return security_context_to_sid_core(scontext, scontext_len,
808 sid, def_sid);
809}
810
1da177e4
LT
811static int compute_sid_handle_invalid_context(
812 struct context *scontext,
813 struct context *tcontext,
814 u16 tclass,
815 struct context *newcontext)
816{
817 char *s = NULL, *t = NULL, *n = NULL;
818 u32 slen, tlen, nlen;
819
820 if (context_struct_to_string(scontext, &s, &slen) < 0)
821 goto out;
822 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
823 goto out;
824 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
825 goto out;
9ad9ad38 826 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
827 "security_compute_sid: invalid context %s"
828 " for scontext=%s"
829 " tcontext=%s"
830 " tclass=%s",
831 n, s, t, policydb.p_class_val_to_name[tclass-1]);
832out:
833 kfree(s);
834 kfree(t);
835 kfree(n);
836 if (!selinux_enforcing)
837 return 0;
838 return -EACCES;
839}
840
841static int security_compute_sid(u32 ssid,
842 u32 tsid,
843 u16 tclass,
844 u32 specified,
845 u32 *out_sid)
846{
847 struct context *scontext = NULL, *tcontext = NULL, newcontext;
848 struct role_trans *roletr = NULL;
849 struct avtab_key avkey;
850 struct avtab_datum *avdatum;
851 struct avtab_node *node;
1da177e4
LT
852 int rc = 0;
853
854 if (!ss_initialized) {
855 switch (tclass) {
856 case SECCLASS_PROCESS:
857 *out_sid = ssid;
858 break;
859 default:
860 *out_sid = tsid;
861 break;
862 }
863 goto out;
864 }
865
851f8a69
VY
866 context_init(&newcontext);
867
1da177e4
LT
868 POLICY_RDLOCK;
869
870 scontext = sidtab_search(&sidtab, ssid);
871 if (!scontext) {
872 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
873 ssid);
874 rc = -EINVAL;
875 goto out_unlock;
876 }
877 tcontext = sidtab_search(&sidtab, tsid);
878 if (!tcontext) {
879 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
880 tsid);
881 rc = -EINVAL;
882 goto out_unlock;
883 }
884
1da177e4
LT
885 /* Set the user identity. */
886 switch (specified) {
887 case AVTAB_TRANSITION:
888 case AVTAB_CHANGE:
889 /* Use the process user identity. */
890 newcontext.user = scontext->user;
891 break;
892 case AVTAB_MEMBER:
893 /* Use the related object owner. */
894 newcontext.user = tcontext->user;
895 break;
896 }
897
898 /* Set the role and type to default values. */
899 switch (tclass) {
900 case SECCLASS_PROCESS:
901 /* Use the current role and type of process. */
902 newcontext.role = scontext->role;
903 newcontext.type = scontext->type;
904 break;
905 default:
906 /* Use the well-defined object role. */
907 newcontext.role = OBJECT_R_VAL;
908 /* Use the type of the related object. */
909 newcontext.type = tcontext->type;
910 }
911
912 /* Look for a type transition/member/change rule. */
913 avkey.source_type = scontext->type;
914 avkey.target_type = tcontext->type;
915 avkey.target_class = tclass;
782ebb99
SS
916 avkey.specified = specified;
917 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1da177e4
LT
918
919 /* If no permanent rule, also check for enabled conditional rules */
920 if(!avdatum) {
782ebb99 921 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1da177e4 922 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
782ebb99 923 if (node->key.specified & AVTAB_ENABLED) {
1da177e4
LT
924 avdatum = &node->datum;
925 break;
926 }
927 }
928 }
929
782ebb99 930 if (avdatum) {
1da177e4 931 /* Use the type from the type transition/member/change rule. */
782ebb99 932 newcontext.type = avdatum->data;
1da177e4
LT
933 }
934
935 /* Check for class-specific changes. */
936 switch (tclass) {
937 case SECCLASS_PROCESS:
938 if (specified & AVTAB_TRANSITION) {
939 /* Look for a role transition rule. */
940 for (roletr = policydb.role_tr; roletr;
941 roletr = roletr->next) {
942 if (roletr->role == scontext->role &&
943 roletr->type == tcontext->type) {
944 /* Use the role transition rule. */
945 newcontext.role = roletr->new_role;
946 break;
947 }
948 }
949 }
950 break;
951 default:
952 break;
953 }
954
955 /* Set the MLS attributes.
956 This is done last because it may allocate memory. */
957 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
958 if (rc)
959 goto out_unlock;
960
961 /* Check the validity of the context. */
962 if (!policydb_context_isvalid(&policydb, &newcontext)) {
963 rc = compute_sid_handle_invalid_context(scontext,
964 tcontext,
965 tclass,
966 &newcontext);
967 if (rc)
968 goto out_unlock;
969 }
970 /* Obtain the sid for the context. */
971 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
972out_unlock:
973 POLICY_RDUNLOCK;
974 context_destroy(&newcontext);
975out:
976 return rc;
977}
978
979/**
980 * security_transition_sid - Compute the SID for a new subject/object.
981 * @ssid: source security identifier
982 * @tsid: target security identifier
983 * @tclass: target security class
984 * @out_sid: security identifier for new subject/object
985 *
986 * Compute a SID to use for labeling a new subject or object in the
987 * class @tclass based on a SID pair (@ssid, @tsid).
988 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
989 * if insufficient memory is available, or %0 if the new SID was
990 * computed successfully.
991 */
992int security_transition_sid(u32 ssid,
993 u32 tsid,
994 u16 tclass,
995 u32 *out_sid)
996{
997 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
998}
999
1000/**
1001 * security_member_sid - Compute the SID for member selection.
1002 * @ssid: source security identifier
1003 * @tsid: target security identifier
1004 * @tclass: target security class
1005 * @out_sid: security identifier for selected member
1006 *
1007 * Compute a SID to use when selecting a member of a polyinstantiated
1008 * object of class @tclass based on a SID pair (@ssid, @tsid).
1009 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1010 * if insufficient memory is available, or %0 if the SID was
1011 * computed successfully.
1012 */
1013int security_member_sid(u32 ssid,
1014 u32 tsid,
1015 u16 tclass,
1016 u32 *out_sid)
1017{
1018 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1019}
1020
1021/**
1022 * security_change_sid - Compute the SID for object relabeling.
1023 * @ssid: source security identifier
1024 * @tsid: target security identifier
1025 * @tclass: target security class
1026 * @out_sid: security identifier for selected member
1027 *
1028 * Compute a SID to use for relabeling an object of class @tclass
1029 * based on a SID pair (@ssid, @tsid).
1030 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1031 * if insufficient memory is available, or %0 if the SID was
1032 * computed successfully.
1033 */
1034int security_change_sid(u32 ssid,
1035 u32 tsid,
1036 u16 tclass,
1037 u32 *out_sid)
1038{
1039 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1040}
1041
b94c7e67
CS
1042/*
1043 * Verify that each kernel class that is defined in the
1044 * policy is correct
1045 */
1046static int validate_classes(struct policydb *p)
1047{
1048 int i, j;
1049 struct class_datum *cladatum;
1050 struct perm_datum *perdatum;
1051 u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1052 u16 class_val;
1053 const struct selinux_class_perm *kdefs = &selinux_class_perm;
1054 const char *def_class, *def_perm, *pol_class;
1055 struct symtab *perms;
1056
1057 for (i = 1; i < kdefs->cts_len; i++) {
1058 def_class = kdefs->class_to_string[i];
a764ae4b
SS
1059 if (!def_class)
1060 continue;
b94c7e67
CS
1061 if (i > p->p_classes.nprim) {
1062 printk(KERN_INFO
1063 "security: class %s not defined in policy\n",
1064 def_class);
1065 continue;
1066 }
1067 pol_class = p->p_class_val_to_name[i-1];
1068 if (strcmp(pol_class, def_class)) {
1069 printk(KERN_ERR
1070 "security: class %d is incorrect, found %s but should be %s\n",
1071 i, pol_class, def_class);
1072 return -EINVAL;
1073 }
1074 }
1075 for (i = 0; i < kdefs->av_pts_len; i++) {
1076 class_val = kdefs->av_perm_to_string[i].tclass;
1077 perm_val = kdefs->av_perm_to_string[i].value;
1078 def_perm = kdefs->av_perm_to_string[i].name;
1079 if (class_val > p->p_classes.nprim)
1080 continue;
1081 pol_class = p->p_class_val_to_name[class_val-1];
1082 cladatum = hashtab_search(p->p_classes.table, pol_class);
1083 BUG_ON(!cladatum);
1084 perms = &cladatum->permissions;
1085 nprim = 1 << (perms->nprim - 1);
1086 if (perm_val > nprim) {
1087 printk(KERN_INFO
1088 "security: permission %s in class %s not defined in policy\n",
1089 def_perm, pol_class);
1090 continue;
1091 }
1092 perdatum = hashtab_search(perms->table, def_perm);
1093 if (perdatum == NULL) {
1094 printk(KERN_ERR
1095 "security: permission %s in class %s not found in policy\n",
1096 def_perm, pol_class);
1097 return -EINVAL;
1098 }
1099 pol_val = 1 << (perdatum->value - 1);
1100 if (pol_val != perm_val) {
1101 printk(KERN_ERR
1102 "security: permission %s in class %s has incorrect value\n",
1103 def_perm, pol_class);
1104 return -EINVAL;
1105 }
1106 }
1107 for (i = 0; i < kdefs->av_inherit_len; i++) {
1108 class_val = kdefs->av_inherit[i].tclass;
1109 if (class_val > p->p_classes.nprim)
1110 continue;
1111 pol_class = p->p_class_val_to_name[class_val-1];
1112 cladatum = hashtab_search(p->p_classes.table, pol_class);
1113 BUG_ON(!cladatum);
1114 if (!cladatum->comdatum) {
1115 printk(KERN_ERR
1116 "security: class %s should have an inherits clause but does not\n",
1117 pol_class);
1118 return -EINVAL;
1119 }
1120 tmp = kdefs->av_inherit[i].common_base;
1121 common_pts_len = 0;
1122 while (!(tmp & 0x01)) {
1123 common_pts_len++;
1124 tmp >>= 1;
1125 }
1126 perms = &cladatum->comdatum->permissions;
1127 for (j = 0; j < common_pts_len; j++) {
1128 def_perm = kdefs->av_inherit[i].common_pts[j];
1129 if (j >= perms->nprim) {
1130 printk(KERN_INFO
1131 "security: permission %s in class %s not defined in policy\n",
1132 def_perm, pol_class);
1133 continue;
1134 }
1135 perdatum = hashtab_search(perms->table, def_perm);
1136 if (perdatum == NULL) {
1137 printk(KERN_ERR
1138 "security: permission %s in class %s not found in policy\n",
1139 def_perm, pol_class);
1140 return -EINVAL;
1141 }
1142 if (perdatum->value != j + 1) {
1143 printk(KERN_ERR
1144 "security: permission %s in class %s has incorrect value\n",
1145 def_perm, pol_class);
1146 return -EINVAL;
1147 }
1148 }
1149 }
1150 return 0;
1151}
1152
1da177e4
LT
1153/* Clone the SID into the new SID table. */
1154static int clone_sid(u32 sid,
1155 struct context *context,
1156 void *arg)
1157{
1158 struct sidtab *s = arg;
1159
1160 return sidtab_insert(s, sid, context);
1161}
1162
1163static inline int convert_context_handle_invalid_context(struct context *context)
1164{
1165 int rc = 0;
1166
1167 if (selinux_enforcing) {
1168 rc = -EINVAL;
1169 } else {
1170 char *s;
1171 u32 len;
1172
1173 context_struct_to_string(context, &s, &len);
1174 printk(KERN_ERR "security: context %s is invalid\n", s);
1175 kfree(s);
1176 }
1177 return rc;
1178}
1179
1180struct convert_context_args {
1181 struct policydb *oldp;
1182 struct policydb *newp;
1183};
1184
1185/*
1186 * Convert the values in the security context
1187 * structure `c' from the values specified
1188 * in the policy `p->oldp' to the values specified
1189 * in the policy `p->newp'. Verify that the
1190 * context is valid under the new policy.
1191 */
1192static int convert_context(u32 key,
1193 struct context *c,
1194 void *p)
1195{
1196 struct convert_context_args *args;
1197 struct context oldc;
1198 struct role_datum *role;
1199 struct type_datum *typdatum;
1200 struct user_datum *usrdatum;
1201 char *s;
1202 u32 len;
1203 int rc;
1204
1205 args = p;
1206
1207 rc = context_cpy(&oldc, c);
1208 if (rc)
1209 goto out;
1210
1211 rc = -EINVAL;
1212
1213 /* Convert the user. */
1214 usrdatum = hashtab_search(args->newp->p_users.table,
1215 args->oldp->p_user_val_to_name[c->user - 1]);
1216 if (!usrdatum) {
1217 goto bad;
1218 }
1219 c->user = usrdatum->value;
1220
1221 /* Convert the role. */
1222 role = hashtab_search(args->newp->p_roles.table,
1223 args->oldp->p_role_val_to_name[c->role - 1]);
1224 if (!role) {
1225 goto bad;
1226 }
1227 c->role = role->value;
1228
1229 /* Convert the type. */
1230 typdatum = hashtab_search(args->newp->p_types.table,
1231 args->oldp->p_type_val_to_name[c->type - 1]);
1232 if (!typdatum) {
1233 goto bad;
1234 }
1235 c->type = typdatum->value;
1236
1237 rc = mls_convert_context(args->oldp, args->newp, c);
1238 if (rc)
1239 goto bad;
1240
1241 /* Check the validity of the new context. */
1242 if (!policydb_context_isvalid(args->newp, c)) {
1243 rc = convert_context_handle_invalid_context(&oldc);
1244 if (rc)
1245 goto bad;
1246 }
1247
1248 context_destroy(&oldc);
1249out:
1250 return rc;
1251bad:
1252 context_struct_to_string(&oldc, &s, &len);
1253 context_destroy(&oldc);
1254 printk(KERN_ERR "security: invalidating context %s\n", s);
1255 kfree(s);
1256 goto out;
1257}
1258
1259extern void selinux_complete_init(void);
e900a7d9 1260static int security_preserve_bools(struct policydb *p);
1da177e4
LT
1261
1262/**
1263 * security_load_policy - Load a security policy configuration.
1264 * @data: binary policy data
1265 * @len: length of data in bytes
1266 *
1267 * Load a new set of security policy configuration data,
1268 * validate it and convert the SID table as necessary.
1269 * This function will flush the access vector cache after
1270 * loading the new policy.
1271 */
1272int security_load_policy(void *data, size_t len)
1273{
1274 struct policydb oldpolicydb, newpolicydb;
1275 struct sidtab oldsidtab, newsidtab;
1276 struct convert_context_args args;
1277 u32 seqno;
1278 int rc = 0;
1279 struct policy_file file = { data, len }, *fp = &file;
1280
1281 LOAD_LOCK;
1282
1283 if (!ss_initialized) {
1284 avtab_cache_init();
1285 if (policydb_read(&policydb, fp)) {
1286 LOAD_UNLOCK;
1287 avtab_cache_destroy();
1288 return -EINVAL;
1289 }
1290 if (policydb_load_isids(&policydb, &sidtab)) {
1291 LOAD_UNLOCK;
1292 policydb_destroy(&policydb);
1293 avtab_cache_destroy();
1294 return -EINVAL;
1295 }
b94c7e67
CS
1296 /* Verify that the kernel defined classes are correct. */
1297 if (validate_classes(&policydb)) {
1298 printk(KERN_ERR
1299 "security: the definition of a class is incorrect\n");
1300 LOAD_UNLOCK;
1301 sidtab_destroy(&sidtab);
1302 policydb_destroy(&policydb);
1303 avtab_cache_destroy();
1304 return -EINVAL;
1305 }
1da177e4
LT
1306 policydb_loaded_version = policydb.policyvers;
1307 ss_initialized = 1;
4c443d1b 1308 seqno = ++latest_granting;
1da177e4
LT
1309 LOAD_UNLOCK;
1310 selinux_complete_init();
4c443d1b
SS
1311 avc_ss_reset(seqno);
1312 selnl_notify_policyload(seqno);
7420ed23 1313 selinux_netlbl_cache_invalidate();
342a0cff 1314 selinux_xfrm_notify_policyload();
1da177e4
LT
1315 return 0;
1316 }
1317
1318#if 0
1319 sidtab_hash_eval(&sidtab, "sids");
1320#endif
1321
1322 if (policydb_read(&newpolicydb, fp)) {
1323 LOAD_UNLOCK;
1324 return -EINVAL;
1325 }
1326
1327 sidtab_init(&newsidtab);
1328
b94c7e67
CS
1329 /* Verify that the kernel defined classes are correct. */
1330 if (validate_classes(&newpolicydb)) {
1331 printk(KERN_ERR
1332 "security: the definition of a class is incorrect\n");
1333 rc = -EINVAL;
1334 goto err;
1335 }
1336
e900a7d9
SS
1337 rc = security_preserve_bools(&newpolicydb);
1338 if (rc) {
1339 printk(KERN_ERR "security: unable to preserve booleans\n");
1340 goto err;
1341 }
1342
1da177e4
LT
1343 /* Clone the SID table. */
1344 sidtab_shutdown(&sidtab);
1345 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1346 rc = -ENOMEM;
1347 goto err;
1348 }
1349
1350 /* Convert the internal representations of contexts
1351 in the new SID table and remove invalid SIDs. */
1352 args.oldp = &policydb;
1353 args.newp = &newpolicydb;
1354 sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1355
1356 /* Save the old policydb and SID table to free later. */
1357 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1358 sidtab_set(&oldsidtab, &sidtab);
1359
1360 /* Install the new policydb and SID table. */
1361 POLICY_WRLOCK;
1362 memcpy(&policydb, &newpolicydb, sizeof policydb);
1363 sidtab_set(&sidtab, &newsidtab);
1364 seqno = ++latest_granting;
1365 policydb_loaded_version = policydb.policyvers;
1366 POLICY_WRUNLOCK;
1367 LOAD_UNLOCK;
1368
1369 /* Free the old policydb and SID table. */
1370 policydb_destroy(&oldpolicydb);
1371 sidtab_destroy(&oldsidtab);
1372
1373 avc_ss_reset(seqno);
1374 selnl_notify_policyload(seqno);
7420ed23 1375 selinux_netlbl_cache_invalidate();
342a0cff 1376 selinux_xfrm_notify_policyload();
1da177e4
LT
1377
1378 return 0;
1379
1380err:
1381 LOAD_UNLOCK;
1382 sidtab_destroy(&newsidtab);
1383 policydb_destroy(&newpolicydb);
1384 return rc;
1385
1386}
1387
1388/**
1389 * security_port_sid - Obtain the SID for a port.
1390 * @domain: communication domain aka address family
1391 * @type: socket type
1392 * @protocol: protocol number
1393 * @port: port number
1394 * @out_sid: security identifier
1395 */
1396int security_port_sid(u16 domain,
1397 u16 type,
1398 u8 protocol,
1399 u16 port,
1400 u32 *out_sid)
1401{
1402 struct ocontext *c;
1403 int rc = 0;
1404
1405 POLICY_RDLOCK;
1406
1407 c = policydb.ocontexts[OCON_PORT];
1408 while (c) {
1409 if (c->u.port.protocol == protocol &&
1410 c->u.port.low_port <= port &&
1411 c->u.port.high_port >= port)
1412 break;
1413 c = c->next;
1414 }
1415
1416 if (c) {
1417 if (!c->sid[0]) {
1418 rc = sidtab_context_to_sid(&sidtab,
1419 &c->context[0],
1420 &c->sid[0]);
1421 if (rc)
1422 goto out;
1423 }
1424 *out_sid = c->sid[0];
1425 } else {
1426 *out_sid = SECINITSID_PORT;
1427 }
1428
1429out:
1430 POLICY_RDUNLOCK;
1431 return rc;
1432}
1433
1434/**
1435 * security_netif_sid - Obtain the SID for a network interface.
1436 * @name: interface name
1437 * @if_sid: interface SID
1438 * @msg_sid: default SID for received packets
1439 */
1440int security_netif_sid(char *name,
1441 u32 *if_sid,
1442 u32 *msg_sid)
1443{
1444 int rc = 0;
1445 struct ocontext *c;
1446
1447 POLICY_RDLOCK;
1448
1449 c = policydb.ocontexts[OCON_NETIF];
1450 while (c) {
1451 if (strcmp(name, c->u.name) == 0)
1452 break;
1453 c = c->next;
1454 }
1455
1456 if (c) {
1457 if (!c->sid[0] || !c->sid[1]) {
1458 rc = sidtab_context_to_sid(&sidtab,
1459 &c->context[0],
1460 &c->sid[0]);
1461 if (rc)
1462 goto out;
1463 rc = sidtab_context_to_sid(&sidtab,
1464 &c->context[1],
1465 &c->sid[1]);
1466 if (rc)
1467 goto out;
1468 }
1469 *if_sid = c->sid[0];
1470 *msg_sid = c->sid[1];
1471 } else {
1472 *if_sid = SECINITSID_NETIF;
1473 *msg_sid = SECINITSID_NETMSG;
1474 }
1475
1476out:
1477 POLICY_RDUNLOCK;
1478 return rc;
1479}
1480
1481static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1482{
1483 int i, fail = 0;
1484
1485 for(i = 0; i < 4; i++)
1486 if(addr[i] != (input[i] & mask[i])) {
1487 fail = 1;
1488 break;
1489 }
1490
1491 return !fail;
1492}
1493
1494/**
1495 * security_node_sid - Obtain the SID for a node (host).
1496 * @domain: communication domain aka address family
1497 * @addrp: address
1498 * @addrlen: address length in bytes
1499 * @out_sid: security identifier
1500 */
1501int security_node_sid(u16 domain,
1502 void *addrp,
1503 u32 addrlen,
1504 u32 *out_sid)
1505{
1506 int rc = 0;
1507 struct ocontext *c;
1508
1509 POLICY_RDLOCK;
1510
1511 switch (domain) {
1512 case AF_INET: {
1513 u32 addr;
1514
1515 if (addrlen != sizeof(u32)) {
1516 rc = -EINVAL;
1517 goto out;
1518 }
1519
1520 addr = *((u32 *)addrp);
1521
1522 c = policydb.ocontexts[OCON_NODE];
1523 while (c) {
1524 if (c->u.node.addr == (addr & c->u.node.mask))
1525 break;
1526 c = c->next;
1527 }
1528 break;
1529 }
1530
1531 case AF_INET6:
1532 if (addrlen != sizeof(u64) * 2) {
1533 rc = -EINVAL;
1534 goto out;
1535 }
1536 c = policydb.ocontexts[OCON_NODE6];
1537 while (c) {
1538 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1539 c->u.node6.mask))
1540 break;
1541 c = c->next;
1542 }
1543 break;
1544
1545 default:
1546 *out_sid = SECINITSID_NODE;
1547 goto out;
1548 }
1549
1550 if (c) {
1551 if (!c->sid[0]) {
1552 rc = sidtab_context_to_sid(&sidtab,
1553 &c->context[0],
1554 &c->sid[0]);
1555 if (rc)
1556 goto out;
1557 }
1558 *out_sid = c->sid[0];
1559 } else {
1560 *out_sid = SECINITSID_NODE;
1561 }
1562
1563out:
1564 POLICY_RDUNLOCK;
1565 return rc;
1566}
1567
1568#define SIDS_NEL 25
1569
1570/**
1571 * security_get_user_sids - Obtain reachable SIDs for a user.
1572 * @fromsid: starting SID
1573 * @username: username
1574 * @sids: array of reachable SIDs for user
1575 * @nel: number of elements in @sids
1576 *
1577 * Generate the set of SIDs for legal security contexts
1578 * for a given user that can be reached by @fromsid.
1579 * Set *@sids to point to a dynamically allocated
1580 * array containing the set of SIDs. Set *@nel to the
1581 * number of elements in the array.
1582 */
1583
1584int security_get_user_sids(u32 fromsid,
1585 char *username,
1586 u32 **sids,
1587 u32 *nel)
1588{
1589 struct context *fromcon, usercon;
2c3c05db 1590 u32 *mysids = NULL, *mysids2, sid;
1da177e4
LT
1591 u32 mynel = 0, maxnel = SIDS_NEL;
1592 struct user_datum *user;
1593 struct role_datum *role;
782ebb99 1594 struct ebitmap_node *rnode, *tnode;
1da177e4
LT
1595 int rc = 0, i, j;
1596
2c3c05db
SS
1597 *sids = NULL;
1598 *nel = 0;
1599
1600 if (!ss_initialized)
1da177e4 1601 goto out;
1da177e4
LT
1602
1603 POLICY_RDLOCK;
1604
1605 fromcon = sidtab_search(&sidtab, fromsid);
1606 if (!fromcon) {
1607 rc = -EINVAL;
1608 goto out_unlock;
1609 }
1610
1611 user = hashtab_search(policydb.p_users.table, username);
1612 if (!user) {
1613 rc = -EINVAL;
1614 goto out_unlock;
1615 }
1616 usercon.user = user->value;
1617
89d155ef 1618 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1da177e4
LT
1619 if (!mysids) {
1620 rc = -ENOMEM;
1621 goto out_unlock;
1622 }
1da177e4 1623
782ebb99
SS
1624 ebitmap_for_each_bit(&user->roles, rnode, i) {
1625 if (!ebitmap_node_get_bit(rnode, i))
1da177e4
LT
1626 continue;
1627 role = policydb.role_val_to_struct[i];
1628 usercon.role = i+1;
782ebb99
SS
1629 ebitmap_for_each_bit(&role->types, tnode, j) {
1630 if (!ebitmap_node_get_bit(tnode, j))
1da177e4
LT
1631 continue;
1632 usercon.type = j+1;
1633
1634 if (mls_setup_user_range(fromcon, user, &usercon))
1635 continue;
1636
1da177e4 1637 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2c3c05db 1638 if (rc)
1da177e4 1639 goto out_unlock;
1da177e4
LT
1640 if (mynel < maxnel) {
1641 mysids[mynel++] = sid;
1642 } else {
1643 maxnel += SIDS_NEL;
89d155ef 1644 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1da177e4
LT
1645 if (!mysids2) {
1646 rc = -ENOMEM;
1da177e4
LT
1647 goto out_unlock;
1648 }
1da177e4
LT
1649 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1650 kfree(mysids);
1651 mysids = mysids2;
1652 mysids[mynel++] = sid;
1653 }
1654 }
1655 }
1656
1da177e4
LT
1657out_unlock:
1658 POLICY_RDUNLOCK;
2c3c05db
SS
1659 if (rc || !mynel) {
1660 kfree(mysids);
1661 goto out;
1662 }
1663
1664 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
1665 if (!mysids2) {
1666 rc = -ENOMEM;
1667 kfree(mysids);
1668 goto out;
1669 }
1670 for (i = 0, j = 0; i < mynel; i++) {
1671 rc = avc_has_perm_noaudit(fromsid, mysids[i],
1672 SECCLASS_PROCESS,
1673 PROCESS__TRANSITION, AVC_STRICT,
1674 NULL);
1675 if (!rc)
1676 mysids2[j++] = mysids[i];
1677 cond_resched();
1678 }
1679 rc = 0;
1680 kfree(mysids);
1681 *sids = mysids2;
1682 *nel = j;
1da177e4
LT
1683out:
1684 return rc;
1685}
1686
1687/**
1688 * security_genfs_sid - Obtain a SID for a file in a filesystem
1689 * @fstype: filesystem type
1690 * @path: path from root of mount
1691 * @sclass: file security class
1692 * @sid: SID for path
1693 *
1694 * Obtain a SID to use for a file in a filesystem that
1695 * cannot support xattr or use a fixed labeling behavior like
1696 * transition SIDs or task SIDs.
1697 */
1698int security_genfs_sid(const char *fstype,
1699 char *path,
1700 u16 sclass,
1701 u32 *sid)
1702{
1703 int len;
1704 struct genfs *genfs;
1705 struct ocontext *c;
1706 int rc = 0, cmp = 0;
1707
1708 POLICY_RDLOCK;
1709
1710 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1711 cmp = strcmp(fstype, genfs->fstype);
1712 if (cmp <= 0)
1713 break;
1714 }
1715
1716 if (!genfs || cmp) {
1717 *sid = SECINITSID_UNLABELED;
1718 rc = -ENOENT;
1719 goto out;
1720 }
1721
1722 for (c = genfs->head; c; c = c->next) {
1723 len = strlen(c->u.name);
1724 if ((!c->v.sclass || sclass == c->v.sclass) &&
1725 (strncmp(c->u.name, path, len) == 0))
1726 break;
1727 }
1728
1729 if (!c) {
1730 *sid = SECINITSID_UNLABELED;
1731 rc = -ENOENT;
1732 goto out;
1733 }
1734
1735 if (!c->sid[0]) {
1736 rc = sidtab_context_to_sid(&sidtab,
1737 &c->context[0],
1738 &c->sid[0]);
1739 if (rc)
1740 goto out;
1741 }
1742
1743 *sid = c->sid[0];
1744out:
1745 POLICY_RDUNLOCK;
1746 return rc;
1747}
1748
1749/**
1750 * security_fs_use - Determine how to handle labeling for a filesystem.
1751 * @fstype: filesystem type
1752 * @behavior: labeling behavior
1753 * @sid: SID for filesystem (superblock)
1754 */
1755int security_fs_use(
1756 const char *fstype,
1757 unsigned int *behavior,
1758 u32 *sid)
1759{
1760 int rc = 0;
1761 struct ocontext *c;
1762
1763 POLICY_RDLOCK;
1764
1765 c = policydb.ocontexts[OCON_FSUSE];
1766 while (c) {
1767 if (strcmp(fstype, c->u.name) == 0)
1768 break;
1769 c = c->next;
1770 }
1771
1772 if (c) {
1773 *behavior = c->v.behavior;
1774 if (!c->sid[0]) {
1775 rc = sidtab_context_to_sid(&sidtab,
1776 &c->context[0],
1777 &c->sid[0]);
1778 if (rc)
1779 goto out;
1780 }
1781 *sid = c->sid[0];
1782 } else {
1783 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1784 if (rc) {
1785 *behavior = SECURITY_FS_USE_NONE;
1786 rc = 0;
1787 } else {
1788 *behavior = SECURITY_FS_USE_GENFS;
1789 }
1790 }
1791
1792out:
1793 POLICY_RDUNLOCK;
1794 return rc;
1795}
1796
1797int security_get_bools(int *len, char ***names, int **values)
1798{
1799 int i, rc = -ENOMEM;
1800
1801 POLICY_RDLOCK;
1802 *names = NULL;
1803 *values = NULL;
1804
1805 *len = policydb.p_bools.nprim;
1806 if (!*len) {
1807 rc = 0;
1808 goto out;
1809 }
1810
e0795cf4 1811 *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1da177e4
LT
1812 if (!*names)
1813 goto err;
1da177e4 1814
e0795cf4 1815 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1da177e4
LT
1816 if (!*values)
1817 goto err;
1818
1819 for (i = 0; i < *len; i++) {
1820 size_t name_len;
1821 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1822 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
e0795cf4 1823 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1da177e4
LT
1824 if (!(*names)[i])
1825 goto err;
1826 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1827 (*names)[i][name_len - 1] = 0;
1828 }
1829 rc = 0;
1830out:
1831 POLICY_RDUNLOCK;
1832 return rc;
1833err:
1834 if (*names) {
1835 for (i = 0; i < *len; i++)
9a5f04bf 1836 kfree((*names)[i]);
1da177e4 1837 }
9a5f04bf 1838 kfree(*values);
1da177e4
LT
1839 goto out;
1840}
1841
1842
1843int security_set_bools(int len, int *values)
1844{
1845 int i, rc = 0;
1846 int lenp, seqno = 0;
1847 struct cond_node *cur;
1848
1849 POLICY_WRLOCK;
1850
1851 lenp = policydb.p_bools.nprim;
1852 if (len != lenp) {
1853 rc = -EFAULT;
1854 goto out;
1855 }
1856
1da177e4 1857 for (i = 0; i < len; i++) {
af601e46
SG
1858 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1859 audit_log(current->audit_context, GFP_ATOMIC,
1860 AUDIT_MAC_CONFIG_CHANGE,
1861 "bool=%s val=%d old_val=%d auid=%u",
1862 policydb.p_bool_val_to_name[i],
1863 !!values[i],
1864 policydb.bool_val_to_struct[i]->state,
1865 audit_get_loginuid(current->audit_context));
1866 }
1da177e4
LT
1867 if (values[i]) {
1868 policydb.bool_val_to_struct[i]->state = 1;
1869 } else {
1870 policydb.bool_val_to_struct[i]->state = 0;
1871 }
1da177e4 1872 }
1da177e4
LT
1873
1874 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1875 rc = evaluate_cond_node(&policydb, cur);
1876 if (rc)
1877 goto out;
1878 }
1879
1880 seqno = ++latest_granting;
1881
1882out:
1883 POLICY_WRUNLOCK;
1884 if (!rc) {
1885 avc_ss_reset(seqno);
1886 selnl_notify_policyload(seqno);
342a0cff 1887 selinux_xfrm_notify_policyload();
1da177e4
LT
1888 }
1889 return rc;
1890}
1891
1892int security_get_bool_value(int bool)
1893{
1894 int rc = 0;
1895 int len;
1896
1897 POLICY_RDLOCK;
1898
1899 len = policydb.p_bools.nprim;
1900 if (bool >= len) {
1901 rc = -EFAULT;
1902 goto out;
1903 }
1904
1905 rc = policydb.bool_val_to_struct[bool]->state;
1906out:
1907 POLICY_RDUNLOCK;
1908 return rc;
1909}
376bd9cb 1910
e900a7d9
SS
1911static int security_preserve_bools(struct policydb *p)
1912{
1913 int rc, nbools = 0, *bvalues = NULL, i;
1914 char **bnames = NULL;
1915 struct cond_bool_datum *booldatum;
1916 struct cond_node *cur;
1917
1918 rc = security_get_bools(&nbools, &bnames, &bvalues);
1919 if (rc)
1920 goto out;
1921 for (i = 0; i < nbools; i++) {
1922 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
1923 if (booldatum)
1924 booldatum->state = bvalues[i];
1925 }
1926 for (cur = p->cond_list; cur != NULL; cur = cur->next) {
1927 rc = evaluate_cond_node(p, cur);
1928 if (rc)
1929 goto out;
1930 }
1931
1932out:
1933 if (bnames) {
1934 for (i = 0; i < nbools; i++)
1935 kfree(bnames[i]);
1936 }
1937 kfree(bnames);
1938 kfree(bvalues);
1939 return rc;
1940}
1941
08554d6b
VY
1942/*
1943 * security_sid_mls_copy() - computes a new sid based on the given
1944 * sid and the mls portion of mls_sid.
1945 */
1946int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
1947{
1948 struct context *context1;
1949 struct context *context2;
1950 struct context newcon;
1951 char *s;
1952 u32 len;
1953 int rc = 0;
1954
4eb327b5 1955 if (!ss_initialized || !selinux_mls_enabled) {
08554d6b
VY
1956 *new_sid = sid;
1957 goto out;
1958 }
1959
1960 context_init(&newcon);
1961
1962 POLICY_RDLOCK;
1963 context1 = sidtab_search(&sidtab, sid);
1964 if (!context1) {
1965 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
1966 "%d\n", sid);
1967 rc = -EINVAL;
1968 goto out_unlock;
1969 }
1970
1971 context2 = sidtab_search(&sidtab, mls_sid);
1972 if (!context2) {
1973 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
1974 "%d\n", mls_sid);
1975 rc = -EINVAL;
1976 goto out_unlock;
1977 }
1978
1979 newcon.user = context1->user;
1980 newcon.role = context1->role;
1981 newcon.type = context1->type;
0efc61ea 1982 rc = mls_context_cpy(&newcon, context2);
08554d6b
VY
1983 if (rc)
1984 goto out_unlock;
1985
08554d6b
VY
1986 /* Check the validity of the new context. */
1987 if (!policydb_context_isvalid(&policydb, &newcon)) {
1988 rc = convert_context_handle_invalid_context(&newcon);
1989 if (rc)
1990 goto bad;
1991 }
1992
1993 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
1994 goto out_unlock;
1995
1996bad:
1997 if (!context_struct_to_string(&newcon, &s, &len)) {
1998 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1999 "security_sid_mls_copy: invalid context %s", s);
2000 kfree(s);
2001 }
2002
2003out_unlock:
2004 POLICY_RDUNLOCK;
2005 context_destroy(&newcon);
2006out:
2007 return rc;
2008}
2009
55fcf09b
CP
2010static int get_classes_callback(void *k, void *d, void *args)
2011{
2012 struct class_datum *datum = d;
2013 char *name = k, **classes = args;
2014 int value = datum->value - 1;
2015
2016 classes[value] = kstrdup(name, GFP_ATOMIC);
2017 if (!classes[value])
2018 return -ENOMEM;
2019
2020 return 0;
2021}
2022
2023int security_get_classes(char ***classes, int *nclasses)
2024{
2025 int rc = -ENOMEM;
2026
2027 POLICY_RDLOCK;
2028
2029 *nclasses = policydb.p_classes.nprim;
2030 *classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2031 if (!*classes)
2032 goto out;
2033
2034 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2035 *classes);
2036 if (rc < 0) {
2037 int i;
2038 for (i = 0; i < *nclasses; i++)
2039 kfree((*classes)[i]);
2040 kfree(*classes);
2041 }
2042
2043out:
2044 POLICY_RDUNLOCK;
2045 return rc;
2046}
2047
2048static int get_permissions_callback(void *k, void *d, void *args)
2049{
2050 struct perm_datum *datum = d;
2051 char *name = k, **perms = args;
2052 int value = datum->value - 1;
2053
2054 perms[value] = kstrdup(name, GFP_ATOMIC);
2055 if (!perms[value])
2056 return -ENOMEM;
2057
2058 return 0;
2059}
2060
2061int security_get_permissions(char *class, char ***perms, int *nperms)
2062{
2063 int rc = -ENOMEM, i;
2064 struct class_datum *match;
2065
2066 POLICY_RDLOCK;
2067
2068 match = hashtab_search(policydb.p_classes.table, class);
2069 if (!match) {
2070 printk(KERN_ERR "%s: unrecognized class %s\n",
2071 __FUNCTION__, class);
2072 rc = -EINVAL;
2073 goto out;
2074 }
2075
2076 *nperms = match->permissions.nprim;
2077 *perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2078 if (!*perms)
2079 goto out;
2080
2081 if (match->comdatum) {
2082 rc = hashtab_map(match->comdatum->permissions.table,
2083 get_permissions_callback, *perms);
2084 if (rc < 0)
2085 goto err;
2086 }
2087
2088 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2089 *perms);
2090 if (rc < 0)
2091 goto err;
2092
2093out:
2094 POLICY_RDUNLOCK;
2095 return rc;
2096
2097err:
2098 POLICY_RDUNLOCK;
2099 for (i = 0; i < *nperms; i++)
2100 kfree((*perms)[i]);
2101 kfree(*perms);
2102 return rc;
2103}
2104
376bd9cb
DG
2105struct selinux_audit_rule {
2106 u32 au_seqno;
2107 struct context au_ctxt;
2108};
2109
2110void selinux_audit_rule_free(struct selinux_audit_rule *rule)
2111{
2112 if (rule) {
2113 context_destroy(&rule->au_ctxt);
2114 kfree(rule);
2115 }
2116}
2117
2118int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
2119 struct selinux_audit_rule **rule)
2120{
2121 struct selinux_audit_rule *tmprule;
2122 struct role_datum *roledatum;
2123 struct type_datum *typedatum;
2124 struct user_datum *userdatum;
2125 int rc = 0;
2126
2127 *rule = NULL;
2128
2129 if (!ss_initialized)
2130 return -ENOTSUPP;
2131
2132 switch (field) {
3a6b9f85
DG
2133 case AUDIT_SUBJ_USER:
2134 case AUDIT_SUBJ_ROLE:
2135 case AUDIT_SUBJ_TYPE:
6e5a2d1d
DG
2136 case AUDIT_OBJ_USER:
2137 case AUDIT_OBJ_ROLE:
2138 case AUDIT_OBJ_TYPE:
376bd9cb
DG
2139 /* only 'equals' and 'not equals' fit user, role, and type */
2140 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2141 return -EINVAL;
2142 break;
3a6b9f85
DG
2143 case AUDIT_SUBJ_SEN:
2144 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2145 case AUDIT_OBJ_LEV_LOW:
2146 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2147 /* we do not allow a range, indicated by the presense of '-' */
2148 if (strchr(rulestr, '-'))
2149 return -EINVAL;
2150 break;
2151 default:
2152 /* only the above fields are valid */
2153 return -EINVAL;
2154 }
2155
2156 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2157 if (!tmprule)
2158 return -ENOMEM;
2159
2160 context_init(&tmprule->au_ctxt);
2161
2162 POLICY_RDLOCK;
2163
2164 tmprule->au_seqno = latest_granting;
2165
2166 switch (field) {
3a6b9f85 2167 case AUDIT_SUBJ_USER:
6e5a2d1d 2168 case AUDIT_OBJ_USER:
376bd9cb
DG
2169 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2170 if (!userdatum)
2171 rc = -EINVAL;
2172 else
2173 tmprule->au_ctxt.user = userdatum->value;
2174 break;
3a6b9f85 2175 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2176 case AUDIT_OBJ_ROLE:
376bd9cb
DG
2177 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2178 if (!roledatum)
2179 rc = -EINVAL;
2180 else
2181 tmprule->au_ctxt.role = roledatum->value;
2182 break;
3a6b9f85 2183 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2184 case AUDIT_OBJ_TYPE:
376bd9cb
DG
2185 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2186 if (!typedatum)
2187 rc = -EINVAL;
2188 else
2189 tmprule->au_ctxt.type = typedatum->value;
2190 break;
3a6b9f85
DG
2191 case AUDIT_SUBJ_SEN:
2192 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2193 case AUDIT_OBJ_LEV_LOW:
2194 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2195 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2196 break;
2197 }
2198
2199 POLICY_RDUNLOCK;
2200
2201 if (rc) {
2202 selinux_audit_rule_free(tmprule);
2203 tmprule = NULL;
2204 }
2205
2206 *rule = tmprule;
2207
2208 return rc;
2209}
2210
9a2f44f0 2211int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
376bd9cb
DG
2212 struct selinux_audit_rule *rule,
2213 struct audit_context *actx)
2214{
2215 struct context *ctxt;
2216 struct mls_level *level;
2217 int match = 0;
2218
2219 if (!rule) {
2220 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2221 "selinux_audit_rule_match: missing rule\n");
2222 return -ENOENT;
2223 }
2224
2225 POLICY_RDLOCK;
2226
2227 if (rule->au_seqno < latest_granting) {
2228 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2229 "selinux_audit_rule_match: stale rule\n");
2230 match = -ESTALE;
2231 goto out;
2232 }
2233
9a2f44f0 2234 ctxt = sidtab_search(&sidtab, sid);
376bd9cb
DG
2235 if (!ctxt) {
2236 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2237 "selinux_audit_rule_match: unrecognized SID %d\n",
9a2f44f0 2238 sid);
376bd9cb
DG
2239 match = -ENOENT;
2240 goto out;
2241 }
2242
2243 /* a field/op pair that is not caught here will simply fall through
2244 without a match */
2245 switch (field) {
3a6b9f85 2246 case AUDIT_SUBJ_USER:
6e5a2d1d 2247 case AUDIT_OBJ_USER:
376bd9cb
DG
2248 switch (op) {
2249 case AUDIT_EQUAL:
2250 match = (ctxt->user == rule->au_ctxt.user);
2251 break;
2252 case AUDIT_NOT_EQUAL:
2253 match = (ctxt->user != rule->au_ctxt.user);
2254 break;
2255 }
2256 break;
3a6b9f85 2257 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2258 case AUDIT_OBJ_ROLE:
376bd9cb
DG
2259 switch (op) {
2260 case AUDIT_EQUAL:
2261 match = (ctxt->role == rule->au_ctxt.role);
2262 break;
2263 case AUDIT_NOT_EQUAL:
2264 match = (ctxt->role != rule->au_ctxt.role);
2265 break;
2266 }
2267 break;
3a6b9f85 2268 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2269 case AUDIT_OBJ_TYPE:
376bd9cb
DG
2270 switch (op) {
2271 case AUDIT_EQUAL:
2272 match = (ctxt->type == rule->au_ctxt.type);
2273 break;
2274 case AUDIT_NOT_EQUAL:
2275 match = (ctxt->type != rule->au_ctxt.type);
2276 break;
2277 }
2278 break;
3a6b9f85
DG
2279 case AUDIT_SUBJ_SEN:
2280 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2281 case AUDIT_OBJ_LEV_LOW:
2282 case AUDIT_OBJ_LEV_HIGH:
2283 level = ((field == AUDIT_SUBJ_SEN ||
2284 field == AUDIT_OBJ_LEV_LOW) ?
376bd9cb
DG
2285 &ctxt->range.level[0] : &ctxt->range.level[1]);
2286 switch (op) {
2287 case AUDIT_EQUAL:
2288 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2289 level);
2290 break;
2291 case AUDIT_NOT_EQUAL:
2292 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2293 level);
2294 break;
2295 case AUDIT_LESS_THAN:
2296 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2297 level) &&
2298 !mls_level_eq(&rule->au_ctxt.range.level[0],
2299 level));
2300 break;
2301 case AUDIT_LESS_THAN_OR_EQUAL:
2302 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2303 level);
2304 break;
2305 case AUDIT_GREATER_THAN:
2306 match = (mls_level_dom(level,
2307 &rule->au_ctxt.range.level[0]) &&
2308 !mls_level_eq(level,
2309 &rule->au_ctxt.range.level[0]));
2310 break;
2311 case AUDIT_GREATER_THAN_OR_EQUAL:
2312 match = mls_level_dom(level,
2313 &rule->au_ctxt.range.level[0]);
2314 break;
2315 }
2316 }
2317
2318out:
2319 POLICY_RDUNLOCK;
2320 return match;
2321}
2322
2323static int (*aurule_callback)(void) = NULL;
2324
2325static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2326 u16 class, u32 perms, u32 *retained)
2327{
2328 int err = 0;
2329
2330 if (event == AVC_CALLBACK_RESET && aurule_callback)
2331 err = aurule_callback();
2332 return err;
2333}
2334
2335static int __init aurule_init(void)
2336{
2337 int err;
2338
2339 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2340 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2341 if (err)
2342 panic("avc_add_callback() failed, error %d\n", err);
2343
2344 return err;
2345}
2346__initcall(aurule_init);
2347
2348void selinux_audit_set_callback(int (*callback)(void))
2349{
2350 aurule_callback = callback;
2351}
7420ed23
VY
2352
2353#ifdef CONFIG_NETLABEL
2354/*
5778eabd 2355 * NetLabel cache structure
7420ed23 2356 */
5778eabd 2357#define NETLBL_CACHE(x) ((struct selinux_netlbl_cache *)(x))
7420ed23
VY
2358#define NETLBL_CACHE_T_NONE 0
2359#define NETLBL_CACHE_T_SID 1
2360#define NETLBL_CACHE_T_MLS 2
5778eabd 2361struct selinux_netlbl_cache {
7420ed23
VY
2362 u32 type;
2363 union {
2364 u32 sid;
2365 struct mls_range mls_label;
2366 } data;
2367};
2368
2369/**
5778eabd 2370 * security_netlbl_cache_free - Free the NetLabel cached data
7420ed23
VY
2371 * @data: the data to free
2372 *
2373 * Description:
2374 * This function is intended to be used as the free() callback inside the
2375 * netlbl_lsm_cache structure.
2376 *
2377 */
5778eabd 2378static void security_netlbl_cache_free(const void *data)
7420ed23 2379{
5778eabd 2380 struct selinux_netlbl_cache *cache;
ffb733c6 2381
2382 if (data == NULL)
2383 return;
2384
2385 cache = NETLBL_CACHE(data);
7420ed23
VY
2386 switch (cache->type) {
2387 case NETLBL_CACHE_T_MLS:
2388 ebitmap_destroy(&cache->data.mls_label.level[0].cat);
2389 break;
2390 }
2391 kfree(data);
2392}
2393
2394/**
5778eabd
PM
2395 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2396 * @secattr: the NetLabel packet security attributes
7420ed23
VY
2397 * @ctx: the SELinux context
2398 *
2399 * Description:
2400 * Attempt to cache the context in @ctx, which was derived from the packet in
5778eabd
PM
2401 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2402 * already been initialized.
7420ed23
VY
2403 *
2404 */
5778eabd
PM
2405static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2406 struct context *ctx)
7420ed23 2407{
5778eabd 2408 struct selinux_netlbl_cache *cache = NULL;
7420ed23 2409
5778eabd
PM
2410 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2411 if (secattr->cache == NULL)
2412 return;
7420ed23
VY
2413
2414 cache = kzalloc(sizeof(*cache), GFP_ATOMIC);
2415 if (cache == NULL)
5778eabd 2416 return;
7420ed23
VY
2417
2418 cache->type = NETLBL_CACHE_T_MLS;
2419 if (ebitmap_cpy(&cache->data.mls_label.level[0].cat,
0ec8abd7
JJ
2420 &ctx->range.level[0].cat) != 0) {
2421 kfree(cache);
5778eabd 2422 return;
0ec8abd7 2423 }
7420ed23
VY
2424 cache->data.mls_label.level[1].cat.highbit =
2425 cache->data.mls_label.level[0].cat.highbit;
2426 cache->data.mls_label.level[1].cat.node =
2427 cache->data.mls_label.level[0].cat.node;
2428 cache->data.mls_label.level[0].sens = ctx->range.level[0].sens;
2429 cache->data.mls_label.level[1].sens = ctx->range.level[0].sens;
2430
5778eabd
PM
2431 secattr->cache->free = security_netlbl_cache_free;
2432 secattr->cache->data = (void *)cache;
2433 secattr->flags |= NETLBL_SECATTR_CACHE;
7420ed23
VY
2434}
2435
2436/**
5778eabd 2437 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
7420ed23
VY
2438 * @secattr: the NetLabel packet security attributes
2439 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2440 * @sid: the SELinux SID
2441 *
2442 * Description:
5778eabd 2443 * Convert the given NetLabel security attributes in @secattr into a
7420ed23 2444 * SELinux SID. If the @secattr field does not contain a full SELinux
5778eabd
PM
2445 * SID/context then use the context in @base_sid as the foundation. If
2446 * possibile the 'cache' field of @secattr is set and the CACHE flag is set;
2447 * this is to allow the @secattr to be used by NetLabel to cache the secattr to
2448 * SID conversion for future lookups. Returns zero on success, negative
2449 * values on failure.
7420ed23
VY
2450 *
2451 */
5778eabd
PM
2452int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2453 u32 base_sid,
2454 u32 *sid)
7420ed23
VY
2455{
2456 int rc = -EIDRM;
2457 struct context *ctx;
2458 struct context ctx_new;
5778eabd
PM
2459 struct selinux_netlbl_cache *cache;
2460
2461 if (!ss_initialized) {
2462 *sid = SECSID_NULL;
2463 return 0;
2464 }
7420ed23
VY
2465
2466 POLICY_RDLOCK;
2467
701a90ba 2468 if (secattr->flags & NETLBL_SECATTR_CACHE) {
ffb733c6 2469 cache = NETLBL_CACHE(secattr->cache->data);
7420ed23
VY
2470 switch (cache->type) {
2471 case NETLBL_CACHE_T_SID:
2472 *sid = cache->data.sid;
2473 rc = 0;
2474 break;
2475 case NETLBL_CACHE_T_MLS:
2476 ctx = sidtab_search(&sidtab, base_sid);
2477 if (ctx == NULL)
2478 goto netlbl_secattr_to_sid_return;
2479
2480 ctx_new.user = ctx->user;
2481 ctx_new.role = ctx->role;
2482 ctx_new.type = ctx->type;
2483 ctx_new.range.level[0].sens =
2484 cache->data.mls_label.level[0].sens;
2485 ctx_new.range.level[0].cat.highbit =
2486 cache->data.mls_label.level[0].cat.highbit;
2487 ctx_new.range.level[0].cat.node =
2488 cache->data.mls_label.level[0].cat.node;
2489 ctx_new.range.level[1].sens =
2490 cache->data.mls_label.level[1].sens;
2491 ctx_new.range.level[1].cat.highbit =
2492 cache->data.mls_label.level[1].cat.highbit;
2493 ctx_new.range.level[1].cat.node =
2494 cache->data.mls_label.level[1].cat.node;
2495
2496 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2497 break;
2498 default:
2499 goto netlbl_secattr_to_sid_return;
2500 }
701a90ba 2501 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
7420ed23
VY
2502 ctx = sidtab_search(&sidtab, base_sid);
2503 if (ctx == NULL)
2504 goto netlbl_secattr_to_sid_return;
2505
2506 ctx_new.user = ctx->user;
2507 ctx_new.role = ctx->role;
2508 ctx_new.type = ctx->type;
02752760 2509 mls_import_netlbl_lvl(&ctx_new, secattr);
701a90ba 2510 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
02752760
PM
2511 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2512 secattr->mls_cat) != 0)
7420ed23
VY
2513 goto netlbl_secattr_to_sid_return;
2514 ctx_new.range.level[1].cat.highbit =
2515 ctx_new.range.level[0].cat.highbit;
2516 ctx_new.range.level[1].cat.node =
2517 ctx_new.range.level[0].cat.node;
2518 } else {
2519 ebitmap_init(&ctx_new.range.level[0].cat);
2520 ebitmap_init(&ctx_new.range.level[1].cat);
2521 }
2522 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2523 goto netlbl_secattr_to_sid_return_cleanup;
2524
2525 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2526 if (rc != 0)
2527 goto netlbl_secattr_to_sid_return_cleanup;
2528
5778eabd
PM
2529 security_netlbl_cache_add(secattr, &ctx_new);
2530
7420ed23
VY
2531 ebitmap_destroy(&ctx_new.range.level[0].cat);
2532 } else {
388b2405 2533 *sid = SECSID_NULL;
7420ed23
VY
2534 rc = 0;
2535 }
2536
2537netlbl_secattr_to_sid_return:
2538 POLICY_RDUNLOCK;
2539 return rc;
2540netlbl_secattr_to_sid_return_cleanup:
2541 ebitmap_destroy(&ctx_new.range.level[0].cat);
2542 goto netlbl_secattr_to_sid_return;
2543}
2544
2545/**
5778eabd
PM
2546 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2547 * @sid: the SELinux SID
2548 * @secattr: the NetLabel packet security attributes
7420ed23
VY
2549 *
2550 * Description:
5778eabd
PM
2551 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2552 * Returns zero on success, negative values on failure.
7420ed23
VY
2553 *
2554 */
5778eabd 2555int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
7420ed23
VY
2556{
2557 int rc = -ENOENT;
7420ed23
VY
2558 struct context *ctx;
2559
5778eabd
PM
2560 netlbl_secattr_init(secattr);
2561
7420ed23
VY
2562 if (!ss_initialized)
2563 return 0;
2564
2565 POLICY_RDLOCK;
7420ed23
VY
2566 ctx = sidtab_search(&sidtab, sid);
2567 if (ctx == NULL)
5778eabd
PM
2568 goto netlbl_sid_to_secattr_failure;
2569 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2570 GFP_ATOMIC);
2571 secattr->flags |= NETLBL_SECATTR_DOMAIN;
2572 mls_export_netlbl_lvl(ctx, secattr);
2573 rc = mls_export_netlbl_cat(ctx, secattr);
bf0edf39 2574 if (rc != 0)
5778eabd 2575 goto netlbl_sid_to_secattr_failure;
7420ed23 2576 POLICY_RDUNLOCK;
99f59ed0 2577
5778eabd 2578 return 0;
f8687afe 2579
5778eabd
PM
2580netlbl_sid_to_secattr_failure:
2581 POLICY_RDUNLOCK;
2582 netlbl_secattr_destroy(secattr);
f8687afe
PM
2583 return rc;
2584}
7420ed23 2585#endif /* CONFIG_NETLABEL */