]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/wireless/reg.c
iwmc3200wifi: fix NULL pointer dereference in pmkid update
[net-next-2.6.git] / net / wireless / reg.c
CommitLineData
8318d78a
JB
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
b2e1b302 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
8318d78a
JB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
b2e1b302
LR
12/**
13 * DOC: Wireless regulatory infrastructure
8318d78a
JB
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
b2e1b302
LR
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
8318d78a
JB
34 */
35#include <linux/kernel.h>
b2e1b302
LR
36#include <linux/list.h>
37#include <linux/random.h>
38#include <linux/nl80211.h>
39#include <linux/platform_device.h>
b2e1b302 40#include <net/cfg80211.h>
8318d78a 41#include "core.h"
b2e1b302 42#include "reg.h"
73d54c9e 43#include "nl80211.h"
8318d78a 44
5166ccd2 45/* Receipt of information from last regulatory request */
f6037d09 46static struct regulatory_request *last_request;
734366de 47
b2e1b302
LR
48/* To trigger userspace events */
49static struct platform_device *reg_pdev;
8318d78a 50
fb1fc7ad
LR
51/*
52 * Central wireless core regulatory domains, we only need two,
734366de 53 * the current one and a world regulatory domain in case we have no
fb1fc7ad
LR
54 * information to give us an alpha2
55 */
f130347c 56const struct ieee80211_regdomain *cfg80211_regdomain;
734366de 57
fb1fc7ad
LR
58/*
59 * We use this as a place for the rd structure built from the
3f2355cb 60 * last parsed country IE to rest until CRDA gets back to us with
fb1fc7ad
LR
61 * what it thinks should apply for the same country
62 */
3f2355cb
LR
63static const struct ieee80211_regdomain *country_ie_regdomain;
64
abc7381b
LR
65/*
66 * Protects static reg.c components:
67 * - cfg80211_world_regdom
68 * - cfg80211_regdom
69 * - country_ie_regdomain
70 * - last_request
71 */
72DEFINE_MUTEX(reg_mutex);
73#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74
e38f8a7a 75/* Used to queue up regulatory hints */
fe33eb39
LR
76static LIST_HEAD(reg_requests_list);
77static spinlock_t reg_requests_lock;
78
e38f8a7a
LR
79/* Used to queue up beacon hints for review */
80static LIST_HEAD(reg_pending_beacons);
81static spinlock_t reg_pending_beacons_lock;
82
83/* Used to keep track of processed beacon hints */
84static LIST_HEAD(reg_beacon_list);
85
86struct reg_beacon {
87 struct list_head list;
88 struct ieee80211_channel chan;
89};
90
734366de
JB
91/* We keep a static world regulatory domain in case of the absence of CRDA */
92static const struct ieee80211_regdomain world_regdom = {
611b6a82 93 .n_reg_rules = 5,
734366de
JB
94 .alpha2 = "00",
95 .reg_rules = {
68798a62
LR
96 /* IEEE 802.11b/g, channels 1..11 */
97 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
611b6a82
LR
98 /* IEEE 802.11b/g, channels 12..13. No HT40
99 * channel fits here. */
100 REG_RULE(2467-10, 2472+10, 20, 6, 20,
3fc71f77
LR
101 NL80211_RRF_PASSIVE_SCAN |
102 NL80211_RRF_NO_IBSS),
611b6a82
LR
103 /* IEEE 802.11 channel 14 - Only JP enables
104 * this and for 802.11b only */
105 REG_RULE(2484-10, 2484+10, 20, 6, 20,
106 NL80211_RRF_PASSIVE_SCAN |
107 NL80211_RRF_NO_IBSS |
108 NL80211_RRF_NO_OFDM),
109 /* IEEE 802.11a, channel 36..48 */
ec329ace 110 REG_RULE(5180-10, 5240+10, 40, 6, 20,
611b6a82
LR
111 NL80211_RRF_PASSIVE_SCAN |
112 NL80211_RRF_NO_IBSS),
3fc71f77
LR
113
114 /* NB: 5260 MHz - 5700 MHz requies DFS */
115
116 /* IEEE 802.11a, channel 149..165 */
ec329ace 117 REG_RULE(5745-10, 5825+10, 40, 6, 20,
3fc71f77
LR
118 NL80211_RRF_PASSIVE_SCAN |
119 NL80211_RRF_NO_IBSS),
734366de
JB
120 }
121};
122
a3d2eaf0
JB
123static const struct ieee80211_regdomain *cfg80211_world_regdom =
124 &world_regdom;
734366de 125
6ee7d330 126static char *ieee80211_regdom = "00";
6ee7d330 127
734366de
JB
128module_param(ieee80211_regdom, charp, 0444);
129MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
6ee7d330 131#ifdef CONFIG_WIRELESS_OLD_REGULATORY
fb1fc7ad
LR
132/*
133 * We assume 40 MHz bandwidth for the old regulatory work.
734366de 134 * We make emphasis we are using the exact same frequencies
fb1fc7ad
LR
135 * as before
136 */
734366de
JB
137
138static const struct ieee80211_regdomain us_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "US",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144 /* IEEE 802.11a, channel 36 */
145 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channel 40 */
147 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148 /* IEEE 802.11a, channel 44 */
149 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150 /* IEEE 802.11a, channels 48..64 */
151 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152 /* IEEE 802.11a, channels 149..165, outdoor */
153 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154 }
155};
156
157static const struct ieee80211_regdomain jp_regdom = {
158 .n_reg_rules = 3,
159 .alpha2 = "JP",
160 .reg_rules = {
161 /* IEEE 802.11b/g, channels 1..14 */
162 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163 /* IEEE 802.11a, channels 34..48 */
164 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165 NL80211_RRF_PASSIVE_SCAN),
166 /* IEEE 802.11a, channels 52..64 */
167 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168 NL80211_RRF_NO_IBSS |
169 NL80211_RRF_DFS),
170 }
171};
172
173static const struct ieee80211_regdomain eu_regdom = {
174 .n_reg_rules = 6,
fb1fc7ad
LR
175 /*
176 * This alpha2 is bogus, we leave it here just for stupid
177 * backward compatibility
178 */
734366de
JB
179 .alpha2 = "EU",
180 .reg_rules = {
181 /* IEEE 802.11b/g, channels 1..13 */
182 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183 /* IEEE 802.11a, channel 36 */
184 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185 NL80211_RRF_PASSIVE_SCAN),
186 /* IEEE 802.11a, channel 40 */
187 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188 NL80211_RRF_PASSIVE_SCAN),
189 /* IEEE 802.11a, channel 44 */
190 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191 NL80211_RRF_PASSIVE_SCAN),
192 /* IEEE 802.11a, channels 48..64 */
193 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194 NL80211_RRF_NO_IBSS |
195 NL80211_RRF_DFS),
196 /* IEEE 802.11a, channels 100..140 */
197 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198 NL80211_RRF_NO_IBSS |
199 NL80211_RRF_DFS),
200 }
201};
202
203static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204{
205 if (alpha2[0] == 'U' && alpha2[1] == 'S')
206 return &us_regdom;
207 if (alpha2[0] == 'J' && alpha2[1] == 'P')
208 return &jp_regdom;
209 if (alpha2[0] == 'E' && alpha2[1] == 'U')
210 return &eu_regdom;
211 /* Default, as per the old rules */
212 return &us_regdom;
213}
214
a3d2eaf0 215static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
734366de
JB
216{
217 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218 return true;
219 return false;
220}
942b25cf
JB
221#else
222static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
734366de 223{
942b25cf 224 return false;
734366de 225}
942b25cf
JB
226#endif
227
734366de
JB
228static void reset_regdomains(void)
229{
942b25cf
JB
230 /* avoid freeing static information or freeing something twice */
231 if (cfg80211_regdomain == cfg80211_world_regdom)
232 cfg80211_regdomain = NULL;
233 if (cfg80211_world_regdom == &world_regdom)
234 cfg80211_world_regdom = NULL;
235 if (cfg80211_regdomain == &world_regdom)
236 cfg80211_regdomain = NULL;
237 if (is_old_static_regdom(cfg80211_regdomain))
238 cfg80211_regdomain = NULL;
239
240 kfree(cfg80211_regdomain);
241 kfree(cfg80211_world_regdom);
734366de 242
a3d2eaf0 243 cfg80211_world_regdom = &world_regdom;
734366de
JB
244 cfg80211_regdomain = NULL;
245}
246
fb1fc7ad
LR
247/*
248 * Dynamic world regulatory domain requested by the wireless
249 * core upon initialization
250 */
a3d2eaf0 251static void update_world_regdomain(const struct ieee80211_regdomain *rd)
734366de 252{
f6037d09 253 BUG_ON(!last_request);
734366de
JB
254
255 reset_regdomains();
256
257 cfg80211_world_regdom = rd;
258 cfg80211_regdomain = rd;
259}
734366de 260
a3d2eaf0 261bool is_world_regdom(const char *alpha2)
b2e1b302
LR
262{
263 if (!alpha2)
264 return false;
265 if (alpha2[0] == '0' && alpha2[1] == '0')
266 return true;
267 return false;
268}
8318d78a 269
a3d2eaf0 270static bool is_alpha2_set(const char *alpha2)
b2e1b302
LR
271{
272 if (!alpha2)
273 return false;
274 if (alpha2[0] != 0 && alpha2[1] != 0)
275 return true;
276 return false;
277}
8318d78a 278
b2e1b302
LR
279static bool is_alpha_upper(char letter)
280{
281 /* ASCII A - Z */
282 if (letter >= 65 && letter <= 90)
283 return true;
284 return false;
285}
8318d78a 286
a3d2eaf0 287static bool is_unknown_alpha2(const char *alpha2)
b2e1b302
LR
288{
289 if (!alpha2)
290 return false;
fb1fc7ad
LR
291 /*
292 * Special case where regulatory domain was built by driver
293 * but a specific alpha2 cannot be determined
294 */
b2e1b302
LR
295 if (alpha2[0] == '9' && alpha2[1] == '9')
296 return true;
297 return false;
298}
8318d78a 299
3f2355cb
LR
300static bool is_intersected_alpha2(const char *alpha2)
301{
302 if (!alpha2)
303 return false;
fb1fc7ad
LR
304 /*
305 * Special case where regulatory domain is the
3f2355cb 306 * result of an intersection between two regulatory domain
fb1fc7ad
LR
307 * structures
308 */
3f2355cb
LR
309 if (alpha2[0] == '9' && alpha2[1] == '8')
310 return true;
311 return false;
312}
313
a3d2eaf0 314static bool is_an_alpha2(const char *alpha2)
b2e1b302
LR
315{
316 if (!alpha2)
317 return false;
318 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319 return true;
320 return false;
321}
8318d78a 322
a3d2eaf0 323static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
b2e1b302
LR
324{
325 if (!alpha2_x || !alpha2_y)
326 return false;
327 if (alpha2_x[0] == alpha2_y[0] &&
328 alpha2_x[1] == alpha2_y[1])
329 return true;
330 return false;
331}
332
69b1572b 333static bool regdom_changes(const char *alpha2)
b2e1b302 334{
761cf7ec
LR
335 assert_cfg80211_lock();
336
b2e1b302
LR
337 if (!cfg80211_regdomain)
338 return true;
339 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340 return false;
341 return true;
342}
343
3f2355cb
LR
344/**
345 * country_ie_integrity_changes - tells us if the country IE has changed
346 * @checksum: checksum of country IE of fields we are interested in
347 *
348 * If the country IE has not changed you can ignore it safely. This is
349 * useful to determine if two devices are seeing two different country IEs
350 * even on the same alpha2. Note that this will return false if no IE has
351 * been set on the wireless core yet.
352 */
353static bool country_ie_integrity_changes(u32 checksum)
354{
355 /* If no IE has been set then the checksum doesn't change */
356 if (unlikely(!last_request->country_ie_checksum))
357 return false;
358 if (unlikely(last_request->country_ie_checksum != checksum))
359 return true;
360 return false;
361}
362
fb1fc7ad
LR
363/*
364 * This lets us keep regulatory code which is updated on a regulatory
365 * basis in userspace.
366 */
b2e1b302
LR
367static int call_crda(const char *alpha2)
368{
369 char country_env[9 + 2] = "COUNTRY=";
370 char *envp[] = {
371 country_env,
372 NULL
373 };
374
375 if (!is_world_regdom((char *) alpha2))
376 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
b2e1b302
LR
379 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380 "regulatory domain\n");
b2e1b302
LR
381
382 country_env[8] = alpha2[0];
383 country_env[9] = alpha2[1];
384
385 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386}
387
b2e1b302 388/* Used by nl80211 before kmalloc'ing our regulatory domain */
a3d2eaf0 389bool reg_is_valid_request(const char *alpha2)
b2e1b302 390{
61405e97
LR
391 assert_cfg80211_lock();
392
f6037d09
JB
393 if (!last_request)
394 return false;
395
396 return alpha2_equal(last_request->alpha2, alpha2);
b2e1b302 397}
8318d78a 398
b2e1b302 399/* Sanity check on a regulatory rule */
a3d2eaf0 400static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
8318d78a 401{
a3d2eaf0 402 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
b2e1b302
LR
403 u32 freq_diff;
404
91e99004 405 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
b2e1b302
LR
406 return false;
407
408 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409 return false;
410
411 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
bd05f28e
RK
413 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414 freq_range->max_bandwidth_khz > freq_diff)
b2e1b302
LR
415 return false;
416
417 return true;
418}
419
a3d2eaf0 420static bool is_valid_rd(const struct ieee80211_regdomain *rd)
b2e1b302 421{
a3d2eaf0 422 const struct ieee80211_reg_rule *reg_rule = NULL;
b2e1b302 423 unsigned int i;
8318d78a 424
b2e1b302
LR
425 if (!rd->n_reg_rules)
426 return false;
8318d78a 427
88dc1c3f
LR
428 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429 return false;
430
b2e1b302
LR
431 for (i = 0; i < rd->n_reg_rules; i++) {
432 reg_rule = &rd->reg_rules[i];
433 if (!is_valid_reg_rule(reg_rule))
434 return false;
435 }
436
437 return true;
8318d78a
JB
438}
439
038659e7
LR
440static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441 u32 center_freq_khz,
442 u32 bw_khz)
b2e1b302 443{
038659e7
LR
444 u32 start_freq_khz, end_freq_khz;
445
446 start_freq_khz = center_freq_khz - (bw_khz/2);
447 end_freq_khz = center_freq_khz + (bw_khz/2);
448
449 if (start_freq_khz >= freq_range->start_freq_khz &&
450 end_freq_khz <= freq_range->end_freq_khz)
451 return true;
452
453 return false;
b2e1b302 454}
8318d78a 455
0c7dc45d
LR
456/**
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
460 *
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
468 **/
469static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 u32 freq_khz)
471{
472#define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 return false;
478#undef ONE_GHZ_IN_KHZ
479}
480
fb1fc7ad
LR
481/*
482 * Converts a country IE to a regulatory domain. A regulatory domain
3f2355cb
LR
483 * structure has a lot of information which the IE doesn't yet have,
484 * so for the other values we use upper max values as we will intersect
fb1fc7ad
LR
485 * with our userspace regulatory agent to get lower bounds.
486 */
3f2355cb
LR
487static struct ieee80211_regdomain *country_ie_2_rd(
488 u8 *country_ie,
489 u8 country_ie_len,
490 u32 *checksum)
491{
492 struct ieee80211_regdomain *rd = NULL;
493 unsigned int i = 0;
494 char alpha2[2];
495 u32 flags = 0;
496 u32 num_rules = 0, size_of_regd = 0;
497 u8 *triplets_start = NULL;
498 u8 len_at_triplet = 0;
499 /* the last channel we have registered in a subband (triplet) */
500 int last_sub_max_channel = 0;
501
502 *checksum = 0xDEADBEEF;
503
504 /* Country IE requirements */
505 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506 country_ie_len & 0x01);
507
508 alpha2[0] = country_ie[0];
509 alpha2[1] = country_ie[1];
510
511 /*
512 * Third octet can be:
513 * 'I' - Indoor
514 * 'O' - Outdoor
515 *
516 * anything else we assume is no restrictions
517 */
518 if (country_ie[2] == 'I')
519 flags = NL80211_RRF_NO_OUTDOOR;
520 else if (country_ie[2] == 'O')
521 flags = NL80211_RRF_NO_INDOOR;
522
523 country_ie += 3;
524 country_ie_len -= 3;
525
526 triplets_start = country_ie;
527 len_at_triplet = country_ie_len;
528
529 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
530
fb1fc7ad
LR
531 /*
532 * We need to build a reg rule for each triplet, but first we must
3f2355cb 533 * calculate the number of reg rules we will need. We will need one
fb1fc7ad
LR
534 * for each channel subband
535 */
3f2355cb 536 while (country_ie_len >= 3) {
615aab4b 537 int end_channel = 0;
3f2355cb
LR
538 struct ieee80211_country_ie_triplet *triplet =
539 (struct ieee80211_country_ie_triplet *) country_ie;
540 int cur_sub_max_channel = 0, cur_channel = 0;
541
542 if (triplet->ext.reg_extension_id >=
543 IEEE80211_COUNTRY_EXTENSION_ID) {
544 country_ie += 3;
545 country_ie_len -= 3;
546 continue;
547 }
548
615aab4b
LR
549 /* 2 GHz */
550 if (triplet->chans.first_channel <= 14)
551 end_channel = triplet->chans.first_channel +
552 triplet->chans.num_channels;
553 else
554 /*
555 * 5 GHz -- For example in country IEs if the first
556 * channel given is 36 and the number of channels is 4
557 * then the individual channel numbers defined for the
558 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559 * and not 36, 37, 38, 39.
560 *
561 * See: http://tinyurl.com/11d-clarification
562 */
563 end_channel = triplet->chans.first_channel +
564 (4 * (triplet->chans.num_channels - 1));
565
3f2355cb 566 cur_channel = triplet->chans.first_channel;
615aab4b 567 cur_sub_max_channel = end_channel;
3f2355cb
LR
568
569 /* Basic sanity check */
570 if (cur_sub_max_channel < cur_channel)
571 return NULL;
572
fb1fc7ad
LR
573 /*
574 * Do not allow overlapping channels. Also channels
3f2355cb 575 * passed in each subband must be monotonically
fb1fc7ad
LR
576 * increasing
577 */
3f2355cb
LR
578 if (last_sub_max_channel) {
579 if (cur_channel <= last_sub_max_channel)
580 return NULL;
581 if (cur_sub_max_channel <= last_sub_max_channel)
582 return NULL;
583 }
584
fb1fc7ad
LR
585 /*
586 * When dot11RegulatoryClassesRequired is supported
3f2355cb
LR
587 * we can throw ext triplets as part of this soup,
588 * for now we don't care when those change as we
fb1fc7ad
LR
589 * don't support them
590 */
3f2355cb
LR
591 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
594
595 last_sub_max_channel = cur_sub_max_channel;
596
597 country_ie += 3;
598 country_ie_len -= 3;
599 num_rules++;
600
fb1fc7ad
LR
601 /*
602 * Note: this is not a IEEE requirement but
603 * simply a memory requirement
604 */
3f2355cb
LR
605 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606 return NULL;
607 }
608
609 country_ie = triplets_start;
610 country_ie_len = len_at_triplet;
611
612 size_of_regd = sizeof(struct ieee80211_regdomain) +
613 (num_rules * sizeof(struct ieee80211_reg_rule));
614
615 rd = kzalloc(size_of_regd, GFP_KERNEL);
616 if (!rd)
617 return NULL;
618
619 rd->n_reg_rules = num_rules;
620 rd->alpha2[0] = alpha2[0];
621 rd->alpha2[1] = alpha2[1];
622
623 /* This time around we fill in the rd */
624 while (country_ie_len >= 3) {
02e68a3d 625 int end_channel = 0;
3f2355cb
LR
626 struct ieee80211_country_ie_triplet *triplet =
627 (struct ieee80211_country_ie_triplet *) country_ie;
628 struct ieee80211_reg_rule *reg_rule = NULL;
629 struct ieee80211_freq_range *freq_range = NULL;
630 struct ieee80211_power_rule *power_rule = NULL;
631
fb1fc7ad
LR
632 /*
633 * Must parse if dot11RegulatoryClassesRequired is true,
634 * we don't support this yet
635 */
3f2355cb
LR
636 if (triplet->ext.reg_extension_id >=
637 IEEE80211_COUNTRY_EXTENSION_ID) {
638 country_ie += 3;
639 country_ie_len -= 3;
640 continue;
641 }
642
643 reg_rule = &rd->reg_rules[i];
644 freq_range = &reg_rule->freq_range;
645 power_rule = &reg_rule->power_rule;
646
647 reg_rule->flags = flags;
648
02e68a3d
LR
649 /* 2 GHz */
650 if (triplet->chans.first_channel <= 14)
651 end_channel = triplet->chans.first_channel +
652 triplet->chans.num_channels;
653 else
02e68a3d
LR
654 end_channel = triplet->chans.first_channel +
655 (4 * (triplet->chans.num_channels - 1));
656
fb1fc7ad
LR
657 /*
658 * The +10 is since the regulatory domain expects
3f2355cb
LR
659 * the actual band edge, not the center of freq for
660 * its start and end freqs, assuming 20 MHz bandwidth on
fb1fc7ad
LR
661 * the channels passed
662 */
3f2355cb
LR
663 freq_range->start_freq_khz =
664 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665 triplet->chans.first_channel) - 10);
666 freq_range->end_freq_khz =
667 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
02e68a3d 668 end_channel) + 10);
3f2355cb 669
fb1fc7ad
LR
670 /*
671 * These are large arbitrary values we use to intersect later.
672 * Increment this if we ever support >= 40 MHz channels
673 * in IEEE 802.11
674 */
3f2355cb
LR
675 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676 power_rule->max_antenna_gain = DBI_TO_MBI(100);
677 power_rule->max_eirp = DBM_TO_MBM(100);
678
679 country_ie += 3;
680 country_ie_len -= 3;
681 i++;
682
683 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
684 }
685
686 return rd;
687}
688
689
fb1fc7ad
LR
690/*
691 * Helper for regdom_intersect(), this does the real
692 * mathematical intersection fun
693 */
9c96477d
LR
694static int reg_rules_intersect(
695 const struct ieee80211_reg_rule *rule1,
696 const struct ieee80211_reg_rule *rule2,
697 struct ieee80211_reg_rule *intersected_rule)
698{
699 const struct ieee80211_freq_range *freq_range1, *freq_range2;
700 struct ieee80211_freq_range *freq_range;
701 const struct ieee80211_power_rule *power_rule1, *power_rule2;
702 struct ieee80211_power_rule *power_rule;
703 u32 freq_diff;
704
705 freq_range1 = &rule1->freq_range;
706 freq_range2 = &rule2->freq_range;
707 freq_range = &intersected_rule->freq_range;
708
709 power_rule1 = &rule1->power_rule;
710 power_rule2 = &rule2->power_rule;
711 power_rule = &intersected_rule->power_rule;
712
713 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714 freq_range2->start_freq_khz);
715 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716 freq_range2->end_freq_khz);
717 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718 freq_range2->max_bandwidth_khz);
719
720 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721 if (freq_range->max_bandwidth_khz > freq_diff)
722 freq_range->max_bandwidth_khz = freq_diff;
723
724 power_rule->max_eirp = min(power_rule1->max_eirp,
725 power_rule2->max_eirp);
726 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727 power_rule2->max_antenna_gain);
728
729 intersected_rule->flags = (rule1->flags | rule2->flags);
730
731 if (!is_valid_reg_rule(intersected_rule))
732 return -EINVAL;
733
734 return 0;
735}
736
737/**
738 * regdom_intersect - do the intersection between two regulatory domains
739 * @rd1: first regulatory domain
740 * @rd2: second regulatory domain
741 *
742 * Use this function to get the intersection between two regulatory domains.
743 * Once completed we will mark the alpha2 for the rd as intersected, "98",
744 * as no one single alpha2 can represent this regulatory domain.
745 *
746 * Returns a pointer to the regulatory domain structure which will hold the
747 * resulting intersection of rules between rd1 and rd2. We will
748 * kzalloc() this structure for you.
749 */
750static struct ieee80211_regdomain *regdom_intersect(
751 const struct ieee80211_regdomain *rd1,
752 const struct ieee80211_regdomain *rd2)
753{
754 int r, size_of_regd;
755 unsigned int x, y;
756 unsigned int num_rules = 0, rule_idx = 0;
757 const struct ieee80211_reg_rule *rule1, *rule2;
758 struct ieee80211_reg_rule *intersected_rule;
759 struct ieee80211_regdomain *rd;
760 /* This is just a dummy holder to help us count */
761 struct ieee80211_reg_rule irule;
762
763 /* Uses the stack temporarily for counter arithmetic */
764 intersected_rule = &irule;
765
766 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
767
768 if (!rd1 || !rd2)
769 return NULL;
770
fb1fc7ad
LR
771 /*
772 * First we get a count of the rules we'll need, then we actually
9c96477d
LR
773 * build them. This is to so we can malloc() and free() a
774 * regdomain once. The reason we use reg_rules_intersect() here
775 * is it will return -EINVAL if the rule computed makes no sense.
fb1fc7ad
LR
776 * All rules that do check out OK are valid.
777 */
9c96477d
LR
778
779 for (x = 0; x < rd1->n_reg_rules; x++) {
780 rule1 = &rd1->reg_rules[x];
781 for (y = 0; y < rd2->n_reg_rules; y++) {
782 rule2 = &rd2->reg_rules[y];
783 if (!reg_rules_intersect(rule1, rule2,
784 intersected_rule))
785 num_rules++;
786 memset(intersected_rule, 0,
787 sizeof(struct ieee80211_reg_rule));
788 }
789 }
790
791 if (!num_rules)
792 return NULL;
793
794 size_of_regd = sizeof(struct ieee80211_regdomain) +
795 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
796
797 rd = kzalloc(size_of_regd, GFP_KERNEL);
798 if (!rd)
799 return NULL;
800
801 for (x = 0; x < rd1->n_reg_rules; x++) {
802 rule1 = &rd1->reg_rules[x];
803 for (y = 0; y < rd2->n_reg_rules; y++) {
804 rule2 = &rd2->reg_rules[y];
fb1fc7ad
LR
805 /*
806 * This time around instead of using the stack lets
9c96477d 807 * write to the target rule directly saving ourselves
fb1fc7ad
LR
808 * a memcpy()
809 */
9c96477d
LR
810 intersected_rule = &rd->reg_rules[rule_idx];
811 r = reg_rules_intersect(rule1, rule2,
812 intersected_rule);
fb1fc7ad
LR
813 /*
814 * No need to memset here the intersected rule here as
815 * we're not using the stack anymore
816 */
9c96477d
LR
817 if (r)
818 continue;
819 rule_idx++;
820 }
821 }
822
823 if (rule_idx != num_rules) {
824 kfree(rd);
825 return NULL;
826 }
827
828 rd->n_reg_rules = num_rules;
829 rd->alpha2[0] = '9';
830 rd->alpha2[1] = '8';
831
832 return rd;
833}
834
fb1fc7ad
LR
835/*
836 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837 * want to just have the channel structure use these
838 */
b2e1b302
LR
839static u32 map_regdom_flags(u32 rd_flags)
840{
841 u32 channel_flags = 0;
842 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844 if (rd_flags & NL80211_RRF_NO_IBSS)
845 channel_flags |= IEEE80211_CHAN_NO_IBSS;
846 if (rd_flags & NL80211_RRF_DFS)
847 channel_flags |= IEEE80211_CHAN_RADAR;
848 return channel_flags;
849}
850
1fa25e41
LR
851static int freq_reg_info_regd(struct wiphy *wiphy,
852 u32 center_freq,
038659e7 853 u32 desired_bw_khz,
1fa25e41
LR
854 const struct ieee80211_reg_rule **reg_rule,
855 const struct ieee80211_regdomain *custom_regd)
8318d78a
JB
856{
857 int i;
0c7dc45d 858 bool band_rule_found = false;
3e0c3ff3 859 const struct ieee80211_regdomain *regd;
038659e7
LR
860 bool bw_fits = false;
861
862 if (!desired_bw_khz)
863 desired_bw_khz = MHZ_TO_KHZ(20);
8318d78a 864
1fa25e41 865 regd = custom_regd ? custom_regd : cfg80211_regdomain;
3e0c3ff3 866
fb1fc7ad
LR
867 /*
868 * Follow the driver's regulatory domain, if present, unless a country
869 * IE has been processed or a user wants to help complaince further
870 */
7db90f4a
LR
871 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
872 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
3e0c3ff3
LR
873 wiphy->regd)
874 regd = wiphy->regd;
875
876 if (!regd)
b2e1b302
LR
877 return -EINVAL;
878
3e0c3ff3 879 for (i = 0; i < regd->n_reg_rules; i++) {
b2e1b302
LR
880 const struct ieee80211_reg_rule *rr;
881 const struct ieee80211_freq_range *fr = NULL;
882 const struct ieee80211_power_rule *pr = NULL;
883
3e0c3ff3 884 rr = &regd->reg_rules[i];
b2e1b302
LR
885 fr = &rr->freq_range;
886 pr = &rr->power_rule;
0c7dc45d 887
fb1fc7ad
LR
888 /*
889 * We only need to know if one frequency rule was
0c7dc45d 890 * was in center_freq's band, that's enough, so lets
fb1fc7ad
LR
891 * not overwrite it once found
892 */
0c7dc45d
LR
893 if (!band_rule_found)
894 band_rule_found = freq_in_rule_band(fr, center_freq);
895
038659e7
LR
896 bw_fits = reg_does_bw_fit(fr,
897 center_freq,
898 desired_bw_khz);
0c7dc45d 899
038659e7 900 if (band_rule_found && bw_fits) {
b2e1b302 901 *reg_rule = rr;
038659e7 902 return 0;
8318d78a
JB
903 }
904 }
905
0c7dc45d
LR
906 if (!band_rule_found)
907 return -ERANGE;
908
038659e7 909 return -EINVAL;
b2e1b302 910}
34f57347 911EXPORT_SYMBOL(freq_reg_info);
b2e1b302 912
038659e7
LR
913int freq_reg_info(struct wiphy *wiphy,
914 u32 center_freq,
915 u32 desired_bw_khz,
916 const struct ieee80211_reg_rule **reg_rule)
1fa25e41 917{
ac46d48e 918 assert_cfg80211_lock();
038659e7
LR
919 return freq_reg_info_regd(wiphy,
920 center_freq,
921 desired_bw_khz,
922 reg_rule,
923 NULL);
1fa25e41 924}
b2e1b302 925
038659e7
LR
926/*
927 * Note that right now we assume the desired channel bandwidth
928 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
929 * per channel, the primary and the extension channel). To support
930 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
931 * new ieee80211_channel.target_bw and re run the regulatory check
932 * on the wiphy with the target_bw specified. Then we can simply use
933 * that below for the desired_bw_khz below.
934 */
a92a3ce7
LR
935static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
936 unsigned int chan_idx)
b2e1b302
LR
937{
938 int r;
038659e7
LR
939 u32 flags, bw_flags = 0;
940 u32 desired_bw_khz = MHZ_TO_KHZ(20);
b2e1b302
LR
941 const struct ieee80211_reg_rule *reg_rule = NULL;
942 const struct ieee80211_power_rule *power_rule = NULL;
038659e7 943 const struct ieee80211_freq_range *freq_range = NULL;
a92a3ce7
LR
944 struct ieee80211_supported_band *sband;
945 struct ieee80211_channel *chan;
fe33eb39 946 struct wiphy *request_wiphy = NULL;
a92a3ce7 947
761cf7ec
LR
948 assert_cfg80211_lock();
949
806a9e39
LR
950 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
951
a92a3ce7
LR
952 sband = wiphy->bands[band];
953 BUG_ON(chan_idx >= sband->n_channels);
954 chan = &sband->channels[chan_idx];
955
956 flags = chan->orig_flags;
b2e1b302 957
038659e7
LR
958 r = freq_reg_info(wiphy,
959 MHZ_TO_KHZ(chan->center_freq),
960 desired_bw_khz,
961 &reg_rule);
b2e1b302
LR
962
963 if (r) {
fb1fc7ad
LR
964 /*
965 * This means no regulatory rule was found in the country IE
0c7dc45d
LR
966 * with a frequency range on the center_freq's band, since
967 * IEEE-802.11 allows for a country IE to have a subset of the
968 * regulatory information provided in a country we ignore
969 * disabling the channel unless at least one reg rule was
970 * found on the center_freq's band. For details see this
971 * clarification:
972 *
973 * http://tinyurl.com/11d-clarification
974 */
975 if (r == -ERANGE &&
7db90f4a
LR
976 last_request->initiator ==
977 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
0c7dc45d
LR
978#ifdef CONFIG_CFG80211_REG_DEBUG
979 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
980 "intact on %s - no rule found in band on "
981 "Country IE\n",
982 chan->center_freq, wiphy_name(wiphy));
983#endif
984 } else {
fb1fc7ad
LR
985 /*
986 * In this case we know the country IE has at least one reg rule
987 * for the band so we respect its band definitions
988 */
0c7dc45d 989#ifdef CONFIG_CFG80211_REG_DEBUG
7db90f4a
LR
990 if (last_request->initiator ==
991 NL80211_REGDOM_SET_BY_COUNTRY_IE)
0c7dc45d
LR
992 printk(KERN_DEBUG "cfg80211: Disabling "
993 "channel %d MHz on %s due to "
994 "Country IE\n",
995 chan->center_freq, wiphy_name(wiphy));
996#endif
997 flags |= IEEE80211_CHAN_DISABLED;
998 chan->flags = flags;
999 }
8318d78a
JB
1000 return;
1001 }
1002
b2e1b302 1003 power_rule = &reg_rule->power_rule;
038659e7
LR
1004 freq_range = &reg_rule->freq_range;
1005
1006 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007 bw_flags = IEEE80211_CHAN_NO_HT40;
b2e1b302 1008
7db90f4a 1009 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
806a9e39 1010 request_wiphy && request_wiphy == wiphy &&
5be83de5 1011 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
fb1fc7ad
LR
1012 /*
1013 * This gaurantees the driver's requested regulatory domain
f976376d 1014 * will always be used as a base for further regulatory
fb1fc7ad
LR
1015 * settings
1016 */
f976376d 1017 chan->flags = chan->orig_flags =
038659e7 1018 map_regdom_flags(reg_rule->flags) | bw_flags;
f976376d
LR
1019 chan->max_antenna_gain = chan->orig_mag =
1020 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
f976376d
LR
1021 chan->max_power = chan->orig_mpwr =
1022 (int) MBM_TO_DBM(power_rule->max_eirp);
1023 return;
1024 }
1025
038659e7 1026 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
8318d78a 1027 chan->max_antenna_gain = min(chan->orig_mag,
b2e1b302 1028 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
253898c4 1029 if (chan->orig_mpwr)
b2e1b302
LR
1030 chan->max_power = min(chan->orig_mpwr,
1031 (int) MBM_TO_DBM(power_rule->max_eirp));
253898c4 1032 else
b2e1b302 1033 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
8318d78a
JB
1034}
1035
a92a3ce7 1036static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
8318d78a 1037{
a92a3ce7
LR
1038 unsigned int i;
1039 struct ieee80211_supported_band *sband;
1040
1041 BUG_ON(!wiphy->bands[band]);
1042 sband = wiphy->bands[band];
8318d78a
JB
1043
1044 for (i = 0; i < sband->n_channels; i++)
a92a3ce7 1045 handle_channel(wiphy, band, i);
8318d78a
JB
1046}
1047
7db90f4a
LR
1048static bool ignore_reg_update(struct wiphy *wiphy,
1049 enum nl80211_reg_initiator initiator)
14b9815a
LR
1050{
1051 if (!last_request)
1052 return true;
7db90f4a 1053 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
5be83de5 1054 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
14b9815a 1055 return true;
fb1fc7ad
LR
1056 /*
1057 * wiphy->regd will be set once the device has its own
1058 * desired regulatory domain set
1059 */
5be83de5 1060 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
f976376d 1061 !is_world_regdom(last_request->alpha2))
14b9815a
LR
1062 return true;
1063 return false;
1064}
1065
7db90f4a 1066static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
8318d78a 1067{
79c97e97 1068 struct cfg80211_registered_device *rdev;
8318d78a 1069
79c97e97
JB
1070 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1071 wiphy_update_regulatory(&rdev->wiphy, initiator);
b2e1b302
LR
1072}
1073
e38f8a7a
LR
1074static void handle_reg_beacon(struct wiphy *wiphy,
1075 unsigned int chan_idx,
1076 struct reg_beacon *reg_beacon)
1077{
e38f8a7a
LR
1078 struct ieee80211_supported_band *sband;
1079 struct ieee80211_channel *chan;
6bad8766
LR
1080 bool channel_changed = false;
1081 struct ieee80211_channel chan_before;
e38f8a7a
LR
1082
1083 assert_cfg80211_lock();
1084
1085 sband = wiphy->bands[reg_beacon->chan.band];
1086 chan = &sband->channels[chan_idx];
1087
1088 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1089 return;
1090
6bad8766
LR
1091 if (chan->beacon_found)
1092 return;
1093
1094 chan->beacon_found = true;
1095
5be83de5 1096 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
37184244
LR
1097 return;
1098
6bad8766
LR
1099 chan_before.center_freq = chan->center_freq;
1100 chan_before.flags = chan->flags;
1101
37184244 1102 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
e38f8a7a 1103 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
6bad8766 1104 channel_changed = true;
e38f8a7a
LR
1105 }
1106
37184244 1107 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
e38f8a7a 1108 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
6bad8766 1109 channel_changed = true;
e38f8a7a
LR
1110 }
1111
6bad8766
LR
1112 if (channel_changed)
1113 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
e38f8a7a
LR
1114}
1115
1116/*
1117 * Called when a scan on a wiphy finds a beacon on
1118 * new channel
1119 */
1120static void wiphy_update_new_beacon(struct wiphy *wiphy,
1121 struct reg_beacon *reg_beacon)
1122{
1123 unsigned int i;
1124 struct ieee80211_supported_band *sband;
1125
1126 assert_cfg80211_lock();
1127
1128 if (!wiphy->bands[reg_beacon->chan.band])
1129 return;
1130
1131 sband = wiphy->bands[reg_beacon->chan.band];
1132
1133 for (i = 0; i < sband->n_channels; i++)
1134 handle_reg_beacon(wiphy, i, reg_beacon);
1135}
1136
1137/*
1138 * Called upon reg changes or a new wiphy is added
1139 */
1140static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1141{
1142 unsigned int i;
1143 struct ieee80211_supported_band *sband;
1144 struct reg_beacon *reg_beacon;
1145
1146 assert_cfg80211_lock();
1147
1148 if (list_empty(&reg_beacon_list))
1149 return;
1150
1151 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1152 if (!wiphy->bands[reg_beacon->chan.band])
1153 continue;
1154 sband = wiphy->bands[reg_beacon->chan.band];
1155 for (i = 0; i < sband->n_channels; i++)
1156 handle_reg_beacon(wiphy, i, reg_beacon);
1157 }
1158}
1159
1160static bool reg_is_world_roaming(struct wiphy *wiphy)
1161{
1162 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1163 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1164 return true;
b1ed8ddd
LR
1165 if (last_request &&
1166 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
5be83de5 1167 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
e38f8a7a
LR
1168 return true;
1169 return false;
1170}
1171
1172/* Reap the advantages of previously found beacons */
1173static void reg_process_beacons(struct wiphy *wiphy)
1174{
b1ed8ddd
LR
1175 /*
1176 * Means we are just firing up cfg80211, so no beacons would
1177 * have been processed yet.
1178 */
1179 if (!last_request)
1180 return;
e38f8a7a
LR
1181 if (!reg_is_world_roaming(wiphy))
1182 return;
1183 wiphy_update_beacon_reg(wiphy);
1184}
1185
038659e7
LR
1186static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1187{
1188 if (!chan)
1189 return true;
1190 if (chan->flags & IEEE80211_CHAN_DISABLED)
1191 return true;
1192 /* This would happen when regulatory rules disallow HT40 completely */
1193 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1194 return true;
1195 return false;
1196}
1197
1198static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1199 enum ieee80211_band band,
1200 unsigned int chan_idx)
1201{
1202 struct ieee80211_supported_band *sband;
1203 struct ieee80211_channel *channel;
1204 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1205 unsigned int i;
1206
1207 assert_cfg80211_lock();
1208
1209 sband = wiphy->bands[band];
1210 BUG_ON(chan_idx >= sband->n_channels);
1211 channel = &sband->channels[chan_idx];
1212
1213 if (is_ht40_not_allowed(channel)) {
1214 channel->flags |= IEEE80211_CHAN_NO_HT40;
1215 return;
1216 }
1217
1218 /*
1219 * We need to ensure the extension channels exist to
1220 * be able to use HT40- or HT40+, this finds them (or not)
1221 */
1222 for (i = 0; i < sband->n_channels; i++) {
1223 struct ieee80211_channel *c = &sband->channels[i];
1224 if (c->center_freq == (channel->center_freq - 20))
1225 channel_before = c;
1226 if (c->center_freq == (channel->center_freq + 20))
1227 channel_after = c;
1228 }
1229
1230 /*
1231 * Please note that this assumes target bandwidth is 20 MHz,
1232 * if that ever changes we also need to change the below logic
1233 * to include that as well.
1234 */
1235 if (is_ht40_not_allowed(channel_before))
689da1b3 1236 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
038659e7 1237 else
689da1b3 1238 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
038659e7
LR
1239
1240 if (is_ht40_not_allowed(channel_after))
689da1b3 1241 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
038659e7 1242 else
689da1b3 1243 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
038659e7
LR
1244}
1245
1246static void reg_process_ht_flags_band(struct wiphy *wiphy,
1247 enum ieee80211_band band)
1248{
1249 unsigned int i;
1250 struct ieee80211_supported_band *sband;
1251
1252 BUG_ON(!wiphy->bands[band]);
1253 sband = wiphy->bands[band];
1254
1255 for (i = 0; i < sband->n_channels; i++)
1256 reg_process_ht_flags_channel(wiphy, band, i);
1257}
1258
1259static void reg_process_ht_flags(struct wiphy *wiphy)
1260{
1261 enum ieee80211_band band;
1262
1263 if (!wiphy)
1264 return;
1265
1266 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1267 if (wiphy->bands[band])
1268 reg_process_ht_flags_band(wiphy, band);
1269 }
1270
1271}
1272
7db90f4a
LR
1273void wiphy_update_regulatory(struct wiphy *wiphy,
1274 enum nl80211_reg_initiator initiator)
b2e1b302
LR
1275{
1276 enum ieee80211_band band;
d46e5b1d 1277
7db90f4a 1278 if (ignore_reg_update(wiphy, initiator))
e38f8a7a 1279 goto out;
b2e1b302 1280 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
8318d78a 1281 if (wiphy->bands[band])
a92a3ce7 1282 handle_band(wiphy, band);
b2e1b302 1283 }
e38f8a7a
LR
1284out:
1285 reg_process_beacons(wiphy);
038659e7 1286 reg_process_ht_flags(wiphy);
560e28e1 1287 if (wiphy->reg_notifier)
716f9392 1288 wiphy->reg_notifier(wiphy, last_request);
b2e1b302
LR
1289}
1290
1fa25e41
LR
1291static void handle_channel_custom(struct wiphy *wiphy,
1292 enum ieee80211_band band,
1293 unsigned int chan_idx,
1294 const struct ieee80211_regdomain *regd)
1295{
1296 int r;
038659e7
LR
1297 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1298 u32 bw_flags = 0;
1fa25e41
LR
1299 const struct ieee80211_reg_rule *reg_rule = NULL;
1300 const struct ieee80211_power_rule *power_rule = NULL;
038659e7 1301 const struct ieee80211_freq_range *freq_range = NULL;
1fa25e41
LR
1302 struct ieee80211_supported_band *sband;
1303 struct ieee80211_channel *chan;
1304
abc7381b 1305 assert_reg_lock();
ac46d48e 1306
1fa25e41
LR
1307 sband = wiphy->bands[band];
1308 BUG_ON(chan_idx >= sband->n_channels);
1309 chan = &sband->channels[chan_idx];
1310
038659e7
LR
1311 r = freq_reg_info_regd(wiphy,
1312 MHZ_TO_KHZ(chan->center_freq),
1313 desired_bw_khz,
1314 &reg_rule,
1315 regd);
1fa25e41
LR
1316
1317 if (r) {
1318 chan->flags = IEEE80211_CHAN_DISABLED;
1319 return;
1320 }
1321
1322 power_rule = &reg_rule->power_rule;
038659e7
LR
1323 freq_range = &reg_rule->freq_range;
1324
1325 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1326 bw_flags = IEEE80211_CHAN_NO_HT40;
1fa25e41 1327
038659e7 1328 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1fa25e41 1329 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1fa25e41
LR
1330 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1331}
1332
1333static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1334 const struct ieee80211_regdomain *regd)
1335{
1336 unsigned int i;
1337 struct ieee80211_supported_band *sband;
1338
1339 BUG_ON(!wiphy->bands[band]);
1340 sband = wiphy->bands[band];
1341
1342 for (i = 0; i < sband->n_channels; i++)
1343 handle_channel_custom(wiphy, band, i, regd);
1344}
1345
1346/* Used by drivers prior to wiphy registration */
1347void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1348 const struct ieee80211_regdomain *regd)
1349{
1350 enum ieee80211_band band;
bbcf3f02 1351 unsigned int bands_set = 0;
ac46d48e 1352
abc7381b 1353 mutex_lock(&reg_mutex);
1fa25e41 1354 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
bbcf3f02
LR
1355 if (!wiphy->bands[band])
1356 continue;
1357 handle_band_custom(wiphy, band, regd);
1358 bands_set++;
b2e1b302 1359 }
abc7381b 1360 mutex_unlock(&reg_mutex);
bbcf3f02
LR
1361
1362 /*
1363 * no point in calling this if it won't have any effect
1364 * on your device's supportd bands.
1365 */
1366 WARN_ON(!bands_set);
b2e1b302 1367}
1fa25e41
LR
1368EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1369
3e0c3ff3
LR
1370static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1371 const struct ieee80211_regdomain *src_regd)
1372{
1373 struct ieee80211_regdomain *regd;
1374 int size_of_regd = 0;
1375 unsigned int i;
1376
1377 size_of_regd = sizeof(struct ieee80211_regdomain) +
1378 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1379
1380 regd = kzalloc(size_of_regd, GFP_KERNEL);
1381 if (!regd)
1382 return -ENOMEM;
1383
1384 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1385
1386 for (i = 0; i < src_regd->n_reg_rules; i++)
1387 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1388 sizeof(struct ieee80211_reg_rule));
1389
1390 *dst_regd = regd;
1391 return 0;
1392}
b2e1b302 1393
fb1fc7ad
LR
1394/*
1395 * Return value which can be used by ignore_request() to indicate
1396 * it has been determined we should intersect two regulatory domains
1397 */
9c96477d
LR
1398#define REG_INTERSECT 1
1399
84fa4f43
JB
1400/* This has the logic which determines when a new request
1401 * should be ignored. */
2f92cd2e
LR
1402static int ignore_request(struct wiphy *wiphy,
1403 struct regulatory_request *pending_request)
84fa4f43 1404{
806a9e39 1405 struct wiphy *last_wiphy = NULL;
761cf7ec
LR
1406
1407 assert_cfg80211_lock();
1408
84fa4f43
JB
1409 /* All initial requests are respected */
1410 if (!last_request)
1411 return 0;
1412
2f92cd2e 1413 switch (pending_request->initiator) {
7db90f4a 1414 case NL80211_REGDOM_SET_BY_CORE:
ba25c141 1415 return -EINVAL;
7db90f4a 1416 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
806a9e39
LR
1417
1418 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1419
2f92cd2e 1420 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
84fa4f43 1421 return -EINVAL;
7db90f4a
LR
1422 if (last_request->initiator ==
1423 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
806a9e39 1424 if (last_wiphy != wiphy) {
84fa4f43
JB
1425 /*
1426 * Two cards with two APs claiming different
1fe90b03 1427 * Country IE alpha2s. We could
84fa4f43
JB
1428 * intersect them, but that seems unlikely
1429 * to be correct. Reject second one for now.
1430 */
2f92cd2e 1431 if (regdom_changes(pending_request->alpha2))
84fa4f43
JB
1432 return -EOPNOTSUPP;
1433 return -EALREADY;
1434 }
fb1fc7ad
LR
1435 /*
1436 * Two consecutive Country IE hints on the same wiphy.
1437 * This should be picked up early by the driver/stack
1438 */
2f92cd2e 1439 if (WARN_ON(regdom_changes(pending_request->alpha2)))
84fa4f43
JB
1440 return 0;
1441 return -EALREADY;
1442 }
3f2355cb 1443 return REG_INTERSECT;
7db90f4a
LR
1444 case NL80211_REGDOM_SET_BY_DRIVER:
1445 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
e74b1e7f
LR
1446 if (is_old_static_regdom(cfg80211_regdomain))
1447 return 0;
2f92cd2e 1448 if (regdom_changes(pending_request->alpha2))
e74b1e7f 1449 return 0;
84fa4f43 1450 return -EALREADY;
e74b1e7f 1451 }
fff32c04
LR
1452
1453 /*
1454 * This would happen if you unplug and plug your card
1455 * back in or if you add a new device for which the previously
1456 * loaded card also agrees on the regulatory domain.
1457 */
7db90f4a 1458 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2f92cd2e 1459 !regdom_changes(pending_request->alpha2))
fff32c04
LR
1460 return -EALREADY;
1461
3e0c3ff3 1462 return REG_INTERSECT;
7db90f4a
LR
1463 case NL80211_REGDOM_SET_BY_USER:
1464 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
9c96477d 1465 return REG_INTERSECT;
fb1fc7ad
LR
1466 /*
1467 * If the user knows better the user should set the regdom
1468 * to their country before the IE is picked up
1469 */
7db90f4a 1470 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
3f2355cb
LR
1471 last_request->intersect)
1472 return -EOPNOTSUPP;
fb1fc7ad
LR
1473 /*
1474 * Process user requests only after previous user/driver/core
1475 * requests have been processed
1476 */
7db90f4a
LR
1477 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1478 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1479 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
69b1572b 1480 if (regdom_changes(last_request->alpha2))
5eebade6
LR
1481 return -EAGAIN;
1482 }
1483
e74b1e7f 1484 if (!is_old_static_regdom(cfg80211_regdomain) &&
2f92cd2e 1485 !regdom_changes(pending_request->alpha2))
e74b1e7f
LR
1486 return -EALREADY;
1487
84fa4f43
JB
1488 return 0;
1489 }
1490
1491 return -EINVAL;
1492}
1493
d1c96a9a
LR
1494/**
1495 * __regulatory_hint - hint to the wireless core a regulatory domain
1496 * @wiphy: if the hint comes from country information from an AP, this
1497 * is required to be set to the wiphy that received the information
28da32d7 1498 * @pending_request: the regulatory request currently being processed
d1c96a9a
LR
1499 *
1500 * The Wireless subsystem can use this function to hint to the wireless core
28da32d7 1501 * what it believes should be the current regulatory domain.
d1c96a9a
LR
1502 *
1503 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1504 * already been set or other standard error codes.
1505 *
abc7381b 1506 * Caller must hold &cfg80211_mutex and &reg_mutex
d1c96a9a 1507 */
28da32d7
LR
1508static int __regulatory_hint(struct wiphy *wiphy,
1509 struct regulatory_request *pending_request)
b2e1b302 1510{
9c96477d 1511 bool intersect = false;
b2e1b302
LR
1512 int r = 0;
1513
761cf7ec
LR
1514 assert_cfg80211_lock();
1515
2f92cd2e 1516 r = ignore_request(wiphy, pending_request);
9c96477d 1517
3e0c3ff3 1518 if (r == REG_INTERSECT) {
7db90f4a
LR
1519 if (pending_request->initiator ==
1520 NL80211_REGDOM_SET_BY_DRIVER) {
3e0c3ff3 1521 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
d951c1dd
LR
1522 if (r) {
1523 kfree(pending_request);
3e0c3ff3 1524 return r;
d951c1dd 1525 }
3e0c3ff3 1526 }
9c96477d 1527 intersect = true;
3e0c3ff3 1528 } else if (r) {
fb1fc7ad
LR
1529 /*
1530 * If the regulatory domain being requested by the
3e0c3ff3 1531 * driver has already been set just copy it to the
fb1fc7ad
LR
1532 * wiphy
1533 */
28da32d7 1534 if (r == -EALREADY &&
7db90f4a
LR
1535 pending_request->initiator ==
1536 NL80211_REGDOM_SET_BY_DRIVER) {
3e0c3ff3 1537 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
d951c1dd
LR
1538 if (r) {
1539 kfree(pending_request);
3e0c3ff3 1540 return r;
d951c1dd 1541 }
3e0c3ff3
LR
1542 r = -EALREADY;
1543 goto new_request;
1544 }
d951c1dd 1545 kfree(pending_request);
b2e1b302 1546 return r;
3e0c3ff3 1547 }
b2e1b302 1548
3e0c3ff3 1549new_request:
d951c1dd 1550 kfree(last_request);
5203cdb6 1551
d951c1dd
LR
1552 last_request = pending_request;
1553 last_request->intersect = intersect;
5203cdb6 1554
d951c1dd 1555 pending_request = NULL;
3e0c3ff3
LR
1556
1557 /* When r == REG_INTERSECT we do need to call CRDA */
73d54c9e
LR
1558 if (r < 0) {
1559 /*
1560 * Since CRDA will not be called in this case as we already
1561 * have applied the requested regulatory domain before we just
1562 * inform userspace we have processed the request
1563 */
1564 if (r == -EALREADY)
1565 nl80211_send_reg_change_event(last_request);
3e0c3ff3 1566 return r;
73d54c9e 1567 }
3e0c3ff3 1568
d951c1dd 1569 return call_crda(last_request->alpha2);
b2e1b302
LR
1570}
1571
30a548c7 1572/* This processes *all* regulatory hints */
d951c1dd 1573static void reg_process_hint(struct regulatory_request *reg_request)
fe33eb39
LR
1574{
1575 int r = 0;
1576 struct wiphy *wiphy = NULL;
1577
1578 BUG_ON(!reg_request->alpha2);
1579
1580 mutex_lock(&cfg80211_mutex);
abc7381b 1581 mutex_lock(&reg_mutex);
fe33eb39
LR
1582
1583 if (wiphy_idx_valid(reg_request->wiphy_idx))
1584 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1585
7db90f4a 1586 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
fe33eb39 1587 !wiphy) {
d951c1dd 1588 kfree(reg_request);
fe33eb39
LR
1589 goto out;
1590 }
1591
28da32d7 1592 r = __regulatory_hint(wiphy, reg_request);
fe33eb39 1593 /* This is required so that the orig_* parameters are saved */
5be83de5
JB
1594 if (r == -EALREADY && wiphy &&
1595 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
fe33eb39
LR
1596 wiphy_update_regulatory(wiphy, reg_request->initiator);
1597out:
abc7381b 1598 mutex_unlock(&reg_mutex);
fe33eb39 1599 mutex_unlock(&cfg80211_mutex);
fe33eb39
LR
1600}
1601
7db90f4a 1602/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
fe33eb39
LR
1603static void reg_process_pending_hints(void)
1604 {
1605 struct regulatory_request *reg_request;
fe33eb39
LR
1606
1607 spin_lock(&reg_requests_lock);
1608 while (!list_empty(&reg_requests_list)) {
1609 reg_request = list_first_entry(&reg_requests_list,
1610 struct regulatory_request,
1611 list);
1612 list_del_init(&reg_request->list);
fe33eb39 1613
d951c1dd
LR
1614 spin_unlock(&reg_requests_lock);
1615 reg_process_hint(reg_request);
fe33eb39
LR
1616 spin_lock(&reg_requests_lock);
1617 }
1618 spin_unlock(&reg_requests_lock);
1619}
1620
e38f8a7a
LR
1621/* Processes beacon hints -- this has nothing to do with country IEs */
1622static void reg_process_pending_beacon_hints(void)
1623{
79c97e97 1624 struct cfg80211_registered_device *rdev;
e38f8a7a
LR
1625 struct reg_beacon *pending_beacon, *tmp;
1626
abc7381b
LR
1627 /*
1628 * No need to hold the reg_mutex here as we just touch wiphys
1629 * and do not read or access regulatory variables.
1630 */
e38f8a7a
LR
1631 mutex_lock(&cfg80211_mutex);
1632
1633 /* This goes through the _pending_ beacon list */
1634 spin_lock_bh(&reg_pending_beacons_lock);
1635
1636 if (list_empty(&reg_pending_beacons)) {
1637 spin_unlock_bh(&reg_pending_beacons_lock);
1638 goto out;
1639 }
1640
1641 list_for_each_entry_safe(pending_beacon, tmp,
1642 &reg_pending_beacons, list) {
1643
1644 list_del_init(&pending_beacon->list);
1645
1646 /* Applies the beacon hint to current wiphys */
79c97e97
JB
1647 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1648 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
e38f8a7a
LR
1649
1650 /* Remembers the beacon hint for new wiphys or reg changes */
1651 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1652 }
1653
1654 spin_unlock_bh(&reg_pending_beacons_lock);
1655out:
1656 mutex_unlock(&cfg80211_mutex);
1657}
1658
fe33eb39
LR
1659static void reg_todo(struct work_struct *work)
1660{
1661 reg_process_pending_hints();
e38f8a7a 1662 reg_process_pending_beacon_hints();
fe33eb39
LR
1663}
1664
1665static DECLARE_WORK(reg_work, reg_todo);
1666
1667static void queue_regulatory_request(struct regulatory_request *request)
1668{
1669 spin_lock(&reg_requests_lock);
1670 list_add_tail(&request->list, &reg_requests_list);
1671 spin_unlock(&reg_requests_lock);
1672
1673 schedule_work(&reg_work);
1674}
1675
1676/* Core regulatory hint -- happens once during cfg80211_init() */
ba25c141
LR
1677static int regulatory_hint_core(const char *alpha2)
1678{
1679 struct regulatory_request *request;
1680
1681 BUG_ON(last_request);
1682
1683 request = kzalloc(sizeof(struct regulatory_request),
1684 GFP_KERNEL);
1685 if (!request)
1686 return -ENOMEM;
1687
1688 request->alpha2[0] = alpha2[0];
1689 request->alpha2[1] = alpha2[1];
7db90f4a 1690 request->initiator = NL80211_REGDOM_SET_BY_CORE;
ba25c141 1691
fe33eb39 1692 queue_regulatory_request(request);
ba25c141 1693
5078b2e3
LR
1694 /*
1695 * This ensures last_request is populated once modules
1696 * come swinging in and calling regulatory hints and
1697 * wiphy_apply_custom_regulatory().
1698 */
1699 flush_scheduled_work();
1700
fe33eb39 1701 return 0;
ba25c141
LR
1702}
1703
fe33eb39
LR
1704/* User hints */
1705int regulatory_hint_user(const char *alpha2)
b2e1b302 1706{
fe33eb39
LR
1707 struct regulatory_request *request;
1708
be3d4810 1709 BUG_ON(!alpha2);
b2e1b302 1710
fe33eb39
LR
1711 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1712 if (!request)
1713 return -ENOMEM;
1714
1715 request->wiphy_idx = WIPHY_IDX_STALE;
1716 request->alpha2[0] = alpha2[0];
1717 request->alpha2[1] = alpha2[1];
7db90f4a 1718 request->initiator = NL80211_REGDOM_SET_BY_USER,
fe33eb39
LR
1719
1720 queue_regulatory_request(request);
1721
1722 return 0;
1723}
1724
1725/* Driver hints */
1726int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1727{
1728 struct regulatory_request *request;
1729
1730 BUG_ON(!alpha2);
1731 BUG_ON(!wiphy);
1732
1733 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1734 if (!request)
1735 return -ENOMEM;
1736
1737 request->wiphy_idx = get_wiphy_idx(wiphy);
1738
1739 /* Must have registered wiphy first */
1740 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1741
1742 request->alpha2[0] = alpha2[0];
1743 request->alpha2[1] = alpha2[1];
7db90f4a 1744 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
fe33eb39
LR
1745
1746 queue_regulatory_request(request);
1747
1748 return 0;
b2e1b302
LR
1749}
1750EXPORT_SYMBOL(regulatory_hint);
1751
abc7381b 1752/* Caller must hold reg_mutex */
3f2355cb
LR
1753static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1754 u32 country_ie_checksum)
1755{
806a9e39
LR
1756 struct wiphy *request_wiphy;
1757
abc7381b 1758 assert_reg_lock();
761cf7ec 1759
cc0b6fe8
LR
1760 if (unlikely(last_request->initiator !=
1761 NL80211_REGDOM_SET_BY_COUNTRY_IE))
1762 return false;
1763
806a9e39
LR
1764 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1765
1766 if (!request_wiphy)
3f2355cb 1767 return false;
806a9e39
LR
1768
1769 if (likely(request_wiphy != wiphy))
3f2355cb 1770 return !country_ie_integrity_changes(country_ie_checksum);
fb1fc7ad
LR
1771 /*
1772 * We should not have let these through at this point, they
3f2355cb 1773 * should have been picked up earlier by the first alpha2 check
fb1fc7ad
LR
1774 * on the device
1775 */
3f2355cb
LR
1776 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1777 return true;
1778 return false;
1779}
1780
4b44c8bc
LR
1781/*
1782 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1783 * therefore cannot iterate over the rdev list here.
1784 */
3f2355cb
LR
1785void regulatory_hint_11d(struct wiphy *wiphy,
1786 u8 *country_ie,
1787 u8 country_ie_len)
1788{
1789 struct ieee80211_regdomain *rd = NULL;
1790 char alpha2[2];
1791 u32 checksum = 0;
1792 enum environment_cap env = ENVIRON_ANY;
fe33eb39 1793 struct regulatory_request *request;
3f2355cb 1794
abc7381b 1795 mutex_lock(&reg_mutex);
3f2355cb 1796
9828b017
LR
1797 if (unlikely(!last_request))
1798 goto out;
d335fe63 1799
3f2355cb
LR
1800 /* IE len must be evenly divisible by 2 */
1801 if (country_ie_len & 0x01)
1802 goto out;
1803
1804 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1805 goto out;
1806
fb1fc7ad
LR
1807 /*
1808 * Pending country IE processing, this can happen after we
3f2355cb 1809 * call CRDA and wait for a response if a beacon was received before
fb1fc7ad
LR
1810 * we were able to process the last regulatory_hint_11d() call
1811 */
3f2355cb
LR
1812 if (country_ie_regdomain)
1813 goto out;
1814
1815 alpha2[0] = country_ie[0];
1816 alpha2[1] = country_ie[1];
1817
1818 if (country_ie[2] == 'I')
1819 env = ENVIRON_INDOOR;
1820 else if (country_ie[2] == 'O')
1821 env = ENVIRON_OUTDOOR;
1822
fb1fc7ad 1823 /*
8b19e6ca 1824 * We will run this only upon a successful connection on cfg80211.
4b44c8bc
LR
1825 * We leave conflict resolution to the workqueue, where can hold
1826 * cfg80211_mutex.
fb1fc7ad 1827 */
cc0b6fe8
LR
1828 if (likely(last_request->initiator ==
1829 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
4b44c8bc
LR
1830 wiphy_idx_valid(last_request->wiphy_idx)))
1831 goto out;
3f2355cb
LR
1832
1833 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1834 if (!rd)
1835 goto out;
1836
915278e0
LR
1837 /*
1838 * This will not happen right now but we leave it here for the
3f2355cb
LR
1839 * the future when we want to add suspend/resume support and having
1840 * the user move to another country after doing so, or having the user
915278e0
LR
1841 * move to another AP. Right now we just trust the first AP.
1842 *
1843 * If we hit this before we add this support we want to be informed of
1844 * it as it would indicate a mistake in the current design
1845 */
1846 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
0441d6ff 1847 goto free_rd_out;
3f2355cb 1848
fe33eb39
LR
1849 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1850 if (!request)
1851 goto free_rd_out;
1852
fb1fc7ad
LR
1853 /*
1854 * We keep this around for when CRDA comes back with a response so
1855 * we can intersect with that
1856 */
3f2355cb
LR
1857 country_ie_regdomain = rd;
1858
fe33eb39
LR
1859 request->wiphy_idx = get_wiphy_idx(wiphy);
1860 request->alpha2[0] = rd->alpha2[0];
1861 request->alpha2[1] = rd->alpha2[1];
7db90f4a 1862 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
fe33eb39
LR
1863 request->country_ie_checksum = checksum;
1864 request->country_ie_env = env;
1865
abc7381b 1866 mutex_unlock(&reg_mutex);
3f2355cb 1867
fe33eb39
LR
1868 queue_regulatory_request(request);
1869
1870 return;
0441d6ff
LR
1871
1872free_rd_out:
1873 kfree(rd);
3f2355cb 1874out:
abc7381b 1875 mutex_unlock(&reg_mutex);
3f2355cb 1876}
b2e1b302 1877
e38f8a7a
LR
1878static bool freq_is_chan_12_13_14(u16 freq)
1879{
1880 if (freq == ieee80211_channel_to_frequency(12) ||
1881 freq == ieee80211_channel_to_frequency(13) ||
1882 freq == ieee80211_channel_to_frequency(14))
1883 return true;
1884 return false;
1885}
1886
1887int regulatory_hint_found_beacon(struct wiphy *wiphy,
1888 struct ieee80211_channel *beacon_chan,
1889 gfp_t gfp)
1890{
1891 struct reg_beacon *reg_beacon;
1892
1893 if (likely((beacon_chan->beacon_found ||
1894 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1895 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1896 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1897 return 0;
1898
1899 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1900 if (!reg_beacon)
1901 return -ENOMEM;
1902
1903#ifdef CONFIG_CFG80211_REG_DEBUG
1904 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1905 "frequency: %d MHz (Ch %d) on %s\n",
1906 beacon_chan->center_freq,
1907 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1908 wiphy_name(wiphy));
1909#endif
1910 memcpy(&reg_beacon->chan, beacon_chan,
1911 sizeof(struct ieee80211_channel));
1912
1913
1914 /*
1915 * Since we can be called from BH or and non-BH context
1916 * we must use spin_lock_bh()
1917 */
1918 spin_lock_bh(&reg_pending_beacons_lock);
1919 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1920 spin_unlock_bh(&reg_pending_beacons_lock);
1921
1922 schedule_work(&reg_work);
1923
1924 return 0;
1925}
1926
a3d2eaf0 1927static void print_rd_rules(const struct ieee80211_regdomain *rd)
b2e1b302
LR
1928{
1929 unsigned int i;
a3d2eaf0
JB
1930 const struct ieee80211_reg_rule *reg_rule = NULL;
1931 const struct ieee80211_freq_range *freq_range = NULL;
1932 const struct ieee80211_power_rule *power_rule = NULL;
b2e1b302
LR
1933
1934 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1935 "(max_antenna_gain, max_eirp)\n");
1936
1937 for (i = 0; i < rd->n_reg_rules; i++) {
1938 reg_rule = &rd->reg_rules[i];
1939 freq_range = &reg_rule->freq_range;
1940 power_rule = &reg_rule->power_rule;
1941
fb1fc7ad
LR
1942 /*
1943 * There may not be documentation for max antenna gain
1944 * in certain regions
1945 */
b2e1b302
LR
1946 if (power_rule->max_antenna_gain)
1947 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1948 "(%d mBi, %d mBm)\n",
1949 freq_range->start_freq_khz,
1950 freq_range->end_freq_khz,
1951 freq_range->max_bandwidth_khz,
1952 power_rule->max_antenna_gain,
1953 power_rule->max_eirp);
1954 else
1955 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1956 "(N/A, %d mBm)\n",
1957 freq_range->start_freq_khz,
1958 freq_range->end_freq_khz,
1959 freq_range->max_bandwidth_khz,
1960 power_rule->max_eirp);
1961 }
1962}
1963
a3d2eaf0 1964static void print_regdomain(const struct ieee80211_regdomain *rd)
b2e1b302
LR
1965{
1966
3f2355cb 1967 if (is_intersected_alpha2(rd->alpha2)) {
3f2355cb 1968
7db90f4a
LR
1969 if (last_request->initiator ==
1970 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
79c97e97
JB
1971 struct cfg80211_registered_device *rdev;
1972 rdev = cfg80211_rdev_by_wiphy_idx(
806a9e39 1973 last_request->wiphy_idx);
79c97e97 1974 if (rdev) {
3f2355cb
LR
1975 printk(KERN_INFO "cfg80211: Current regulatory "
1976 "domain updated by AP to: %c%c\n",
79c97e97
JB
1977 rdev->country_ie_alpha2[0],
1978 rdev->country_ie_alpha2[1]);
3f2355cb
LR
1979 } else
1980 printk(KERN_INFO "cfg80211: Current regulatory "
1981 "domain intersected: \n");
1982 } else
1983 printk(KERN_INFO "cfg80211: Current regulatory "
039498c6 1984 "domain intersected: \n");
3f2355cb 1985 } else if (is_world_regdom(rd->alpha2))
b2e1b302
LR
1986 printk(KERN_INFO "cfg80211: World regulatory "
1987 "domain updated:\n");
1988 else {
1989 if (is_unknown_alpha2(rd->alpha2))
1990 printk(KERN_INFO "cfg80211: Regulatory domain "
1991 "changed to driver built-in settings "
1992 "(unknown country)\n");
1993 else
1994 printk(KERN_INFO "cfg80211: Regulatory domain "
1995 "changed to country: %c%c\n",
1996 rd->alpha2[0], rd->alpha2[1]);
1997 }
1998 print_rd_rules(rd);
1999}
2000
2df78167 2001static void print_regdomain_info(const struct ieee80211_regdomain *rd)
b2e1b302
LR
2002{
2003 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2004 rd->alpha2[0], rd->alpha2[1]);
2005 print_rd_rules(rd);
2006}
2007
3f2355cb
LR
2008#ifdef CONFIG_CFG80211_REG_DEBUG
2009static void reg_country_ie_process_debug(
2010 const struct ieee80211_regdomain *rd,
2011 const struct ieee80211_regdomain *country_ie_regdomain,
2012 const struct ieee80211_regdomain *intersected_rd)
2013{
2014 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2015 print_regdomain_info(country_ie_regdomain);
2016 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2017 print_regdomain_info(rd);
2018 if (intersected_rd) {
2019 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2020 "and get:\n");
667ecd01 2021 print_regdomain_info(intersected_rd);
3f2355cb
LR
2022 return;
2023 }
2024 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2025}
2026#else
2027static inline void reg_country_ie_process_debug(
2028 const struct ieee80211_regdomain *rd,
2029 const struct ieee80211_regdomain *country_ie_regdomain,
2030 const struct ieee80211_regdomain *intersected_rd)
2031{
2032}
2033#endif
2034
d2372b31 2035/* Takes ownership of rd only if it doesn't fail */
a3d2eaf0 2036static int __set_regdom(const struct ieee80211_regdomain *rd)
b2e1b302 2037{
9c96477d 2038 const struct ieee80211_regdomain *intersected_rd = NULL;
79c97e97 2039 struct cfg80211_registered_device *rdev = NULL;
806a9e39 2040 struct wiphy *request_wiphy;
b2e1b302
LR
2041 /* Some basic sanity checks first */
2042
b2e1b302 2043 if (is_world_regdom(rd->alpha2)) {
f6037d09 2044 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
b2e1b302
LR
2045 return -EINVAL;
2046 update_world_regdomain(rd);
2047 return 0;
2048 }
b2e1b302
LR
2049
2050 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2051 !is_unknown_alpha2(rd->alpha2))
2052 return -EINVAL;
2053
f6037d09 2054 if (!last_request)
b2e1b302
LR
2055 return -EINVAL;
2056
fb1fc7ad
LR
2057 /*
2058 * Lets only bother proceeding on the same alpha2 if the current
3f2355cb 2059 * rd is non static (it means CRDA was present and was used last)
fb1fc7ad
LR
2060 * and the pending request came in from a country IE
2061 */
7db90f4a 2062 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
fb1fc7ad
LR
2063 /*
2064 * If someone else asked us to change the rd lets only bother
2065 * checking if the alpha2 changes if CRDA was already called
2066 */
3f2355cb 2067 if (!is_old_static_regdom(cfg80211_regdomain) &&
69b1572b 2068 !regdom_changes(rd->alpha2))
3f2355cb
LR
2069 return -EINVAL;
2070 }
2071
fb1fc7ad
LR
2072 /*
2073 * Now lets set the regulatory domain, update all driver channels
b2e1b302
LR
2074 * and finally inform them of what we have done, in case they want
2075 * to review or adjust their own settings based on their own
fb1fc7ad
LR
2076 * internal EEPROM data
2077 */
b2e1b302 2078
f6037d09 2079 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
b2e1b302
LR
2080 return -EINVAL;
2081
8375af3b
LR
2082 if (!is_valid_rd(rd)) {
2083 printk(KERN_ERR "cfg80211: Invalid "
2084 "regulatory domain detected:\n");
2085 print_regdomain_info(rd);
2086 return -EINVAL;
b2e1b302
LR
2087 }
2088
806a9e39
LR
2089 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2090
b8295acd 2091 if (!last_request->intersect) {
3e0c3ff3
LR
2092 int r;
2093
7db90f4a 2094 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
3e0c3ff3
LR
2095 reset_regdomains();
2096 cfg80211_regdomain = rd;
2097 return 0;
2098 }
2099
fb1fc7ad
LR
2100 /*
2101 * For a driver hint, lets copy the regulatory domain the
2102 * driver wanted to the wiphy to deal with conflicts
2103 */
3e0c3ff3 2104
558f6d32
LR
2105 /*
2106 * Userspace could have sent two replies with only
2107 * one kernel request.
2108 */
2109 if (request_wiphy->regd)
2110 return -EALREADY;
3e0c3ff3 2111
806a9e39 2112 r = reg_copy_regd(&request_wiphy->regd, rd);
3e0c3ff3
LR
2113 if (r)
2114 return r;
2115
b8295acd
LR
2116 reset_regdomains();
2117 cfg80211_regdomain = rd;
2118 return 0;
2119 }
2120
2121 /* Intersection requires a bit more work */
2122
7db90f4a 2123 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
b8295acd 2124
9c96477d
LR
2125 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2126 if (!intersected_rd)
2127 return -EINVAL;
b8295acd 2128
fb1fc7ad
LR
2129 /*
2130 * We can trash what CRDA provided now.
3e0c3ff3 2131 * However if a driver requested this specific regulatory
fb1fc7ad
LR
2132 * domain we keep it for its private use
2133 */
7db90f4a 2134 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
806a9e39 2135 request_wiphy->regd = rd;
3e0c3ff3
LR
2136 else
2137 kfree(rd);
2138
b8295acd
LR
2139 rd = NULL;
2140
2141 reset_regdomains();
2142 cfg80211_regdomain = intersected_rd;
2143
2144 return 0;
9c96477d
LR
2145 }
2146
3f2355cb
LR
2147 /*
2148 * Country IE requests are handled a bit differently, we intersect
2149 * the country IE rd with what CRDA believes that country should have
2150 */
2151
729e9c76
LR
2152 /*
2153 * Userspace could have sent two replies with only
2154 * one kernel request. By the second reply we would have
2155 * already processed and consumed the country_ie_regdomain.
2156 */
2157 if (!country_ie_regdomain)
2158 return -EALREADY;
86f04680 2159 BUG_ON(rd == country_ie_regdomain);
3f2355cb 2160
86f04680
LR
2161 /*
2162 * Intersect what CRDA returned and our what we
2163 * had built from the Country IE received
2164 */
3f2355cb 2165
86f04680 2166 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
3f2355cb 2167
86f04680
LR
2168 reg_country_ie_process_debug(rd,
2169 country_ie_regdomain,
2170 intersected_rd);
3f2355cb 2171
86f04680
LR
2172 kfree(country_ie_regdomain);
2173 country_ie_regdomain = NULL;
3f2355cb
LR
2174
2175 if (!intersected_rd)
2176 return -EINVAL;
2177
79c97e97 2178 rdev = wiphy_to_dev(request_wiphy);
3f2355cb 2179
79c97e97
JB
2180 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2181 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2182 rdev->env = last_request->country_ie_env;
3f2355cb
LR
2183
2184 BUG_ON(intersected_rd == rd);
2185
2186 kfree(rd);
2187 rd = NULL;
2188
b8295acd 2189 reset_regdomains();
3f2355cb 2190 cfg80211_regdomain = intersected_rd;
b2e1b302
LR
2191
2192 return 0;
2193}
2194
2195
fb1fc7ad
LR
2196/*
2197 * Use this call to set the current regulatory domain. Conflicts with
b2e1b302 2198 * multiple drivers can be ironed out later. Caller must've already
fb1fc7ad
LR
2199 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2200 */
a3d2eaf0 2201int set_regdom(const struct ieee80211_regdomain *rd)
b2e1b302 2202{
b2e1b302
LR
2203 int r;
2204
761cf7ec
LR
2205 assert_cfg80211_lock();
2206
abc7381b
LR
2207 mutex_lock(&reg_mutex);
2208
b2e1b302
LR
2209 /* Note that this doesn't update the wiphys, this is done below */
2210 r = __set_regdom(rd);
d2372b31
JB
2211 if (r) {
2212 kfree(rd);
abc7381b 2213 mutex_unlock(&reg_mutex);
b2e1b302 2214 return r;
d2372b31 2215 }
b2e1b302 2216
b2e1b302 2217 /* This would make this whole thing pointless */
a01ddafd
LR
2218 if (!last_request->intersect)
2219 BUG_ON(rd != cfg80211_regdomain);
b2e1b302
LR
2220
2221 /* update all wiphys now with the new established regulatory domain */
f6037d09 2222 update_all_wiphy_regulatory(last_request->initiator);
b2e1b302 2223
a01ddafd 2224 print_regdomain(cfg80211_regdomain);
b2e1b302 2225
73d54c9e
LR
2226 nl80211_send_reg_change_event(last_request);
2227
abc7381b
LR
2228 mutex_unlock(&reg_mutex);
2229
b2e1b302
LR
2230 return r;
2231}
2232
a1794390 2233/* Caller must hold cfg80211_mutex */
3f2355cb
LR
2234void reg_device_remove(struct wiphy *wiphy)
2235{
0ad8acaf 2236 struct wiphy *request_wiphy = NULL;
806a9e39 2237
761cf7ec
LR
2238 assert_cfg80211_lock();
2239
abc7381b
LR
2240 mutex_lock(&reg_mutex);
2241
0ef9ccdd
CW
2242 kfree(wiphy->regd);
2243
0ad8acaf
LR
2244 if (last_request)
2245 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
806a9e39 2246
0ef9ccdd 2247 if (!request_wiphy || request_wiphy != wiphy)
abc7381b 2248 goto out;
0ef9ccdd 2249
806a9e39 2250 last_request->wiphy_idx = WIPHY_IDX_STALE;
3f2355cb 2251 last_request->country_ie_env = ENVIRON_ANY;
abc7381b
LR
2252out:
2253 mutex_unlock(&reg_mutex);
3f2355cb
LR
2254}
2255
b2e1b302
LR
2256int regulatory_init(void)
2257{
bcf4f99b 2258 int err = 0;
734366de 2259
b2e1b302
LR
2260 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2261 if (IS_ERR(reg_pdev))
2262 return PTR_ERR(reg_pdev);
734366de 2263
fe33eb39 2264 spin_lock_init(&reg_requests_lock);
e38f8a7a 2265 spin_lock_init(&reg_pending_beacons_lock);
fe33eb39 2266
734366de 2267#ifdef CONFIG_WIRELESS_OLD_REGULATORY
a3d2eaf0 2268 cfg80211_regdomain = static_regdom(ieee80211_regdom);
734366de 2269
942b25cf 2270 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
734366de 2271 print_regdomain_info(cfg80211_regdomain);
734366de 2272#else
a3d2eaf0 2273 cfg80211_regdomain = cfg80211_world_regdom;
734366de 2274
bcf4f99b 2275#endif
ae9e4b0d
LR
2276 /* We always try to get an update for the static regdomain */
2277 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
ba25c141 2278 if (err) {
bcf4f99b
LR
2279 if (err == -ENOMEM)
2280 return err;
2281 /*
2282 * N.B. kobject_uevent_env() can fail mainly for when we're out
2283 * memory which is handled and propagated appropriately above
2284 * but it can also fail during a netlink_broadcast() or during
2285 * early boot for call_usermodehelper(). For now treat these
2286 * errors as non-fatal.
2287 */
2288 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2289 "to call CRDA during init");
2290#ifdef CONFIG_CFG80211_REG_DEBUG
2291 /* We want to find out exactly why when debugging */
2292 WARN_ON(err);
734366de 2293#endif
bcf4f99b 2294 }
734366de 2295
ae9e4b0d
LR
2296 /*
2297 * Finally, if the user set the module parameter treat it
2298 * as a user hint.
2299 */
2300 if (!is_world_regdom(ieee80211_regdom))
2301 regulatory_hint_user(ieee80211_regdom);
2302
b2e1b302
LR
2303 return 0;
2304}
2305
2306void regulatory_exit(void)
2307{
fe33eb39 2308 struct regulatory_request *reg_request, *tmp;
e38f8a7a 2309 struct reg_beacon *reg_beacon, *btmp;
fe33eb39
LR
2310
2311 cancel_work_sync(&reg_work);
2312
a1794390 2313 mutex_lock(&cfg80211_mutex);
abc7381b 2314 mutex_lock(&reg_mutex);
734366de 2315
b2e1b302 2316 reset_regdomains();
734366de 2317
3f2355cb
LR
2318 kfree(country_ie_regdomain);
2319 country_ie_regdomain = NULL;
2320
f6037d09
JB
2321 kfree(last_request);
2322
b2e1b302 2323 platform_device_unregister(reg_pdev);
734366de 2324
e38f8a7a
LR
2325 spin_lock_bh(&reg_pending_beacons_lock);
2326 if (!list_empty(&reg_pending_beacons)) {
2327 list_for_each_entry_safe(reg_beacon, btmp,
2328 &reg_pending_beacons, list) {
2329 list_del(&reg_beacon->list);
2330 kfree(reg_beacon);
2331 }
2332 }
2333 spin_unlock_bh(&reg_pending_beacons_lock);
2334
2335 if (!list_empty(&reg_beacon_list)) {
2336 list_for_each_entry_safe(reg_beacon, btmp,
2337 &reg_beacon_list, list) {
2338 list_del(&reg_beacon->list);
2339 kfree(reg_beacon);
2340 }
2341 }
2342
fe33eb39
LR
2343 spin_lock(&reg_requests_lock);
2344 if (!list_empty(&reg_requests_list)) {
2345 list_for_each_entry_safe(reg_request, tmp,
2346 &reg_requests_list, list) {
2347 list_del(&reg_request->list);
2348 kfree(reg_request);
2349 }
2350 }
2351 spin_unlock(&reg_requests_lock);
2352
abc7381b 2353 mutex_unlock(&reg_mutex);
a1794390 2354 mutex_unlock(&cfg80211_mutex);
8318d78a 2355}