]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/tcp_input.c
[TCP]: TCP Compound quad root function
[net-next-2.6.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
66#include <linux/config.h>
67#include <linux/mm.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
1a2449a8 74#include <net/netdma.h>
1da177e4
LT
75
76int sysctl_tcp_timestamps = 1;
77int sysctl_tcp_window_scaling = 1;
78int sysctl_tcp_sack = 1;
79int sysctl_tcp_fack = 1;
80int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
81int sysctl_tcp_ecn;
82int sysctl_tcp_dsack = 1;
83int sysctl_tcp_app_win = 31;
84int sysctl_tcp_adv_win_scale = 2;
85
86int sysctl_tcp_stdurg;
87int sysctl_tcp_rfc1337;
88int sysctl_tcp_max_orphans = NR_FILE;
89int sysctl_tcp_frto;
90int sysctl_tcp_nometrics_save;
1da177e4
LT
91
92int sysctl_tcp_moderate_rcvbuf = 1;
9772efb9 93int sysctl_tcp_abc = 1;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104
105#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
108#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
111#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
112#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
113
114#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115
116/* Adapt the MSS value used to make delayed ack decision to the
117 * real world.
118 */
40efc6fa
SH
119static void tcp_measure_rcv_mss(struct sock *sk,
120 const struct sk_buff *skb)
1da177e4 121{
463c84b9
ACM
122 struct inet_connection_sock *icsk = inet_csk(sk);
123 const unsigned int lss = icsk->icsk_ack.last_seg_size;
124 unsigned int len;
1da177e4 125
463c84b9 126 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
127
128 /* skb->len may jitter because of SACKs, even if peer
129 * sends good full-sized frames.
130 */
131 len = skb->len;
463c84b9
ACM
132 if (len >= icsk->icsk_ack.rcv_mss) {
133 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
134 } else {
135 /* Otherwise, we make more careful check taking into account,
136 * that SACKs block is variable.
137 *
138 * "len" is invariant segment length, including TCP header.
139 */
140 len += skb->data - skb->h.raw;
141 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
142 /* If PSH is not set, packet should be
143 * full sized, provided peer TCP is not badly broken.
144 * This observation (if it is correct 8)) allows
145 * to handle super-low mtu links fairly.
146 */
147 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
148 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
149 /* Subtract also invariant (if peer is RFC compliant),
150 * tcp header plus fixed timestamp option length.
151 * Resulting "len" is MSS free of SACK jitter.
152 */
463c84b9
ACM
153 len -= tcp_sk(sk)->tcp_header_len;
154 icsk->icsk_ack.last_seg_size = len;
1da177e4 155 if (len == lss) {
463c84b9 156 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
157 return;
158 }
159 }
463c84b9 160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
161 }
162}
163
463c84b9 164static void tcp_incr_quickack(struct sock *sk)
1da177e4 165{
463c84b9
ACM
166 struct inet_connection_sock *icsk = inet_csk(sk);
167 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
168
169 if (quickacks==0)
170 quickacks=2;
463c84b9
ACM
171 if (quickacks > icsk->icsk_ack.quick)
172 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
173}
174
463c84b9 175void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 176{
463c84b9
ACM
177 struct inet_connection_sock *icsk = inet_csk(sk);
178 tcp_incr_quickack(sk);
179 icsk->icsk_ack.pingpong = 0;
180 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
181}
182
183/* Send ACKs quickly, if "quick" count is not exhausted
184 * and the session is not interactive.
185 */
186
463c84b9 187static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 188{
463c84b9
ACM
189 const struct inet_connection_sock *icsk = inet_csk(sk);
190 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
191}
192
193/* Buffer size and advertised window tuning.
194 *
195 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
196 */
197
198static void tcp_fixup_sndbuf(struct sock *sk)
199{
200 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
201 sizeof(struct sk_buff);
202
203 if (sk->sk_sndbuf < 3 * sndmem)
204 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
205}
206
207/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
208 *
209 * All tcp_full_space() is split to two parts: "network" buffer, allocated
210 * forward and advertised in receiver window (tp->rcv_wnd) and
211 * "application buffer", required to isolate scheduling/application
212 * latencies from network.
213 * window_clamp is maximal advertised window. It can be less than
214 * tcp_full_space(), in this case tcp_full_space() - window_clamp
215 * is reserved for "application" buffer. The less window_clamp is
216 * the smoother our behaviour from viewpoint of network, but the lower
217 * throughput and the higher sensitivity of the connection to losses. 8)
218 *
219 * rcv_ssthresh is more strict window_clamp used at "slow start"
220 * phase to predict further behaviour of this connection.
221 * It is used for two goals:
222 * - to enforce header prediction at sender, even when application
223 * requires some significant "application buffer". It is check #1.
224 * - to prevent pruning of receive queue because of misprediction
225 * of receiver window. Check #2.
226 *
227 * The scheme does not work when sender sends good segments opening
caa20d9a 228 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
229 * in common situations. Otherwise, we have to rely on queue collapsing.
230 */
231
232/* Slow part of check#2. */
463c84b9
ACM
233static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
234 const struct sk_buff *skb)
1da177e4
LT
235{
236 /* Optimize this! */
237 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 238 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
239
240 while (tp->rcv_ssthresh <= window) {
241 if (truesize <= skb->len)
463c84b9 242 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
243
244 truesize >>= 1;
245 window >>= 1;
246 }
247 return 0;
248}
249
40efc6fa
SH
250static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
251 struct sk_buff *skb)
1da177e4
LT
252{
253 /* Check #1 */
254 if (tp->rcv_ssthresh < tp->window_clamp &&
255 (int)tp->rcv_ssthresh < tcp_space(sk) &&
256 !tcp_memory_pressure) {
257 int incr;
258
259 /* Check #2. Increase window, if skb with such overhead
260 * will fit to rcvbuf in future.
261 */
262 if (tcp_win_from_space(skb->truesize) <= skb->len)
263 incr = 2*tp->advmss;
264 else
265 incr = __tcp_grow_window(sk, tp, skb);
266
267 if (incr) {
268 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 269 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
270 }
271 }
272}
273
274/* 3. Tuning rcvbuf, when connection enters established state. */
275
276static void tcp_fixup_rcvbuf(struct sock *sk)
277{
278 struct tcp_sock *tp = tcp_sk(sk);
279 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
280
281 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 282 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
283 * (was 3; 4 is minimum to allow fast retransmit to work.)
284 */
285 while (tcp_win_from_space(rcvmem) < tp->advmss)
286 rcvmem += 128;
287 if (sk->sk_rcvbuf < 4 * rcvmem)
288 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
289}
290
caa20d9a 291/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
292 * established state.
293 */
294static void tcp_init_buffer_space(struct sock *sk)
295{
296 struct tcp_sock *tp = tcp_sk(sk);
297 int maxwin;
298
299 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
300 tcp_fixup_rcvbuf(sk);
301 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
302 tcp_fixup_sndbuf(sk);
303
304 tp->rcvq_space.space = tp->rcv_wnd;
305
306 maxwin = tcp_full_space(sk);
307
308 if (tp->window_clamp >= maxwin) {
309 tp->window_clamp = maxwin;
310
311 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
312 tp->window_clamp = max(maxwin -
313 (maxwin >> sysctl_tcp_app_win),
314 4 * tp->advmss);
315 }
316
317 /* Force reservation of one segment. */
318 if (sysctl_tcp_app_win &&
319 tp->window_clamp > 2 * tp->advmss &&
320 tp->window_clamp + tp->advmss > maxwin)
321 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
322
323 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
324 tp->snd_cwnd_stamp = tcp_time_stamp;
325}
326
1da177e4
LT
327/* 5. Recalculate window clamp after socket hit its memory bounds. */
328static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
329{
6687e988 330 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 331
6687e988 332 icsk->icsk_ack.quick = 0;
1da177e4 333
326f36e9
JH
334 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
335 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
336 !tcp_memory_pressure &&
337 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
338 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
339 sysctl_tcp_rmem[2]);
1da177e4 340 }
326f36e9 341 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 342 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
343}
344
40efc6fa
SH
345
346/* Initialize RCV_MSS value.
347 * RCV_MSS is an our guess about MSS used by the peer.
348 * We haven't any direct information about the MSS.
349 * It's better to underestimate the RCV_MSS rather than overestimate.
350 * Overestimations make us ACKing less frequently than needed.
351 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
352 */
353void tcp_initialize_rcv_mss(struct sock *sk)
354{
355 struct tcp_sock *tp = tcp_sk(sk);
356 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
357
358 hint = min(hint, tp->rcv_wnd/2);
359 hint = min(hint, TCP_MIN_RCVMSS);
360 hint = max(hint, TCP_MIN_MSS);
361
362 inet_csk(sk)->icsk_ack.rcv_mss = hint;
363}
364
1da177e4
LT
365/* Receiver "autotuning" code.
366 *
367 * The algorithm for RTT estimation w/o timestamps is based on
368 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
369 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
370 *
371 * More detail on this code can be found at
372 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
373 * though this reference is out of date. A new paper
374 * is pending.
375 */
376static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
377{
378 u32 new_sample = tp->rcv_rtt_est.rtt;
379 long m = sample;
380
381 if (m == 0)
382 m = 1;
383
384 if (new_sample != 0) {
385 /* If we sample in larger samples in the non-timestamp
386 * case, we could grossly overestimate the RTT especially
387 * with chatty applications or bulk transfer apps which
388 * are stalled on filesystem I/O.
389 *
390 * Also, since we are only going for a minimum in the
31f34269 391 * non-timestamp case, we do not smooth things out
caa20d9a 392 * else with timestamps disabled convergence takes too
1da177e4
LT
393 * long.
394 */
395 if (!win_dep) {
396 m -= (new_sample >> 3);
397 new_sample += m;
398 } else if (m < new_sample)
399 new_sample = m << 3;
400 } else {
caa20d9a 401 /* No previous measure. */
1da177e4
LT
402 new_sample = m << 3;
403 }
404
405 if (tp->rcv_rtt_est.rtt != new_sample)
406 tp->rcv_rtt_est.rtt = new_sample;
407}
408
409static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
410{
411 if (tp->rcv_rtt_est.time == 0)
412 goto new_measure;
413 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
414 return;
415 tcp_rcv_rtt_update(tp,
416 jiffies - tp->rcv_rtt_est.time,
417 1);
418
419new_measure:
420 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
421 tp->rcv_rtt_est.time = tcp_time_stamp;
422}
423
463c84b9 424static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 425{
463c84b9 426 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
427 if (tp->rx_opt.rcv_tsecr &&
428 (TCP_SKB_CB(skb)->end_seq -
463c84b9 429 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
430 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
431}
432
433/*
434 * This function should be called every time data is copied to user space.
435 * It calculates the appropriate TCP receive buffer space.
436 */
437void tcp_rcv_space_adjust(struct sock *sk)
438{
439 struct tcp_sock *tp = tcp_sk(sk);
440 int time;
441 int space;
442
443 if (tp->rcvq_space.time == 0)
444 goto new_measure;
445
446 time = tcp_time_stamp - tp->rcvq_space.time;
447 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
448 tp->rcv_rtt_est.rtt == 0)
449 return;
450
451 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
452
453 space = max(tp->rcvq_space.space, space);
454
455 if (tp->rcvq_space.space != space) {
456 int rcvmem;
457
458 tp->rcvq_space.space = space;
459
6fcf9412
JH
460 if (sysctl_tcp_moderate_rcvbuf &&
461 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
462 int new_clamp = space;
463
464 /* Receive space grows, normalize in order to
465 * take into account packet headers and sk_buff
466 * structure overhead.
467 */
468 space /= tp->advmss;
469 if (!space)
470 space = 1;
471 rcvmem = (tp->advmss + MAX_TCP_HEADER +
472 16 + sizeof(struct sk_buff));
473 while (tcp_win_from_space(rcvmem) < tp->advmss)
474 rcvmem += 128;
475 space *= rcvmem;
476 space = min(space, sysctl_tcp_rmem[2]);
477 if (space > sk->sk_rcvbuf) {
478 sk->sk_rcvbuf = space;
479
480 /* Make the window clamp follow along. */
481 tp->window_clamp = new_clamp;
482 }
483 }
484 }
485
486new_measure:
487 tp->rcvq_space.seq = tp->copied_seq;
488 tp->rcvq_space.time = tcp_time_stamp;
489}
490
491/* There is something which you must keep in mind when you analyze the
492 * behavior of the tp->ato delayed ack timeout interval. When a
493 * connection starts up, we want to ack as quickly as possible. The
494 * problem is that "good" TCP's do slow start at the beginning of data
495 * transmission. The means that until we send the first few ACK's the
496 * sender will sit on his end and only queue most of his data, because
497 * he can only send snd_cwnd unacked packets at any given time. For
498 * each ACK we send, he increments snd_cwnd and transmits more of his
499 * queue. -DaveM
500 */
501static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
502{
463c84b9 503 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
504 u32 now;
505
463c84b9 506 inet_csk_schedule_ack(sk);
1da177e4 507
463c84b9 508 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
509
510 tcp_rcv_rtt_measure(tp);
511
512 now = tcp_time_stamp;
513
463c84b9 514 if (!icsk->icsk_ack.ato) {
1da177e4
LT
515 /* The _first_ data packet received, initialize
516 * delayed ACK engine.
517 */
463c84b9
ACM
518 tcp_incr_quickack(sk);
519 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 520 } else {
463c84b9 521 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
522
523 if (m <= TCP_ATO_MIN/2) {
524 /* The fastest case is the first. */
463c84b9
ACM
525 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
526 } else if (m < icsk->icsk_ack.ato) {
527 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
528 if (icsk->icsk_ack.ato > icsk->icsk_rto)
529 icsk->icsk_ack.ato = icsk->icsk_rto;
530 } else if (m > icsk->icsk_rto) {
caa20d9a 531 /* Too long gap. Apparently sender failed to
1da177e4
LT
532 * restart window, so that we send ACKs quickly.
533 */
463c84b9 534 tcp_incr_quickack(sk);
1da177e4
LT
535 sk_stream_mem_reclaim(sk);
536 }
537 }
463c84b9 538 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
539
540 TCP_ECN_check_ce(tp, skb);
541
542 if (skb->len >= 128)
543 tcp_grow_window(sk, tp, skb);
544}
545
1da177e4
LT
546/* Called to compute a smoothed rtt estimate. The data fed to this
547 * routine either comes from timestamps, or from segments that were
548 * known _not_ to have been retransmitted [see Karn/Partridge
549 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
550 * piece by Van Jacobson.
551 * NOTE: the next three routines used to be one big routine.
552 * To save cycles in the RFC 1323 implementation it was better to break
553 * it up into three procedures. -- erics
554 */
2d2abbab 555static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 556{
6687e988 557 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
558 long m = mrtt; /* RTT */
559
1da177e4
LT
560 /* The following amusing code comes from Jacobson's
561 * article in SIGCOMM '88. Note that rtt and mdev
562 * are scaled versions of rtt and mean deviation.
563 * This is designed to be as fast as possible
564 * m stands for "measurement".
565 *
566 * On a 1990 paper the rto value is changed to:
567 * RTO = rtt + 4 * mdev
568 *
569 * Funny. This algorithm seems to be very broken.
570 * These formulae increase RTO, when it should be decreased, increase
31f34269 571 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
572 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
573 * does not matter how to _calculate_ it. Seems, it was trap
574 * that VJ failed to avoid. 8)
575 */
576 if(m == 0)
577 m = 1;
578 if (tp->srtt != 0) {
579 m -= (tp->srtt >> 3); /* m is now error in rtt est */
580 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
581 if (m < 0) {
582 m = -m; /* m is now abs(error) */
583 m -= (tp->mdev >> 2); /* similar update on mdev */
584 /* This is similar to one of Eifel findings.
585 * Eifel blocks mdev updates when rtt decreases.
586 * This solution is a bit different: we use finer gain
587 * for mdev in this case (alpha*beta).
588 * Like Eifel it also prevents growth of rto,
589 * but also it limits too fast rto decreases,
590 * happening in pure Eifel.
591 */
592 if (m > 0)
593 m >>= 3;
594 } else {
595 m -= (tp->mdev >> 2); /* similar update on mdev */
596 }
597 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
598 if (tp->mdev > tp->mdev_max) {
599 tp->mdev_max = tp->mdev;
600 if (tp->mdev_max > tp->rttvar)
601 tp->rttvar = tp->mdev_max;
602 }
603 if (after(tp->snd_una, tp->rtt_seq)) {
604 if (tp->mdev_max < tp->rttvar)
605 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
606 tp->rtt_seq = tp->snd_nxt;
607 tp->mdev_max = TCP_RTO_MIN;
608 }
609 } else {
610 /* no previous measure. */
611 tp->srtt = m<<3; /* take the measured time to be rtt */
612 tp->mdev = m<<1; /* make sure rto = 3*rtt */
613 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
614 tp->rtt_seq = tp->snd_nxt;
615 }
1da177e4
LT
616}
617
618/* Calculate rto without backoff. This is the second half of Van Jacobson's
619 * routine referred to above.
620 */
463c84b9 621static inline void tcp_set_rto(struct sock *sk)
1da177e4 622{
463c84b9 623 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
624 /* Old crap is replaced with new one. 8)
625 *
626 * More seriously:
627 * 1. If rtt variance happened to be less 50msec, it is hallucination.
628 * It cannot be less due to utterly erratic ACK generation made
629 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
630 * to do with delayed acks, because at cwnd>2 true delack timeout
631 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 632 * ACKs in some circumstances.
1da177e4 633 */
463c84b9 634 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
635
636 /* 2. Fixups made earlier cannot be right.
637 * If we do not estimate RTO correctly without them,
638 * all the algo is pure shit and should be replaced
caa20d9a 639 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
640 */
641}
642
643/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
644 * guarantees that rto is higher.
645 */
463c84b9 646static inline void tcp_bound_rto(struct sock *sk)
1da177e4 647{
463c84b9
ACM
648 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
649 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
650}
651
652/* Save metrics learned by this TCP session.
653 This function is called only, when TCP finishes successfully
654 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
655 */
656void tcp_update_metrics(struct sock *sk)
657{
658 struct tcp_sock *tp = tcp_sk(sk);
659 struct dst_entry *dst = __sk_dst_get(sk);
660
661 if (sysctl_tcp_nometrics_save)
662 return;
663
664 dst_confirm(dst);
665
666 if (dst && (dst->flags&DST_HOST)) {
6687e988 667 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
668 int m;
669
6687e988 670 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
671 /* This session failed to estimate rtt. Why?
672 * Probably, no packets returned in time.
673 * Reset our results.
674 */
675 if (!(dst_metric_locked(dst, RTAX_RTT)))
676 dst->metrics[RTAX_RTT-1] = 0;
677 return;
678 }
679
680 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
681
682 /* If newly calculated rtt larger than stored one,
683 * store new one. Otherwise, use EWMA. Remember,
684 * rtt overestimation is always better than underestimation.
685 */
686 if (!(dst_metric_locked(dst, RTAX_RTT))) {
687 if (m <= 0)
688 dst->metrics[RTAX_RTT-1] = tp->srtt;
689 else
690 dst->metrics[RTAX_RTT-1] -= (m>>3);
691 }
692
693 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
694 if (m < 0)
695 m = -m;
696
697 /* Scale deviation to rttvar fixed point */
698 m >>= 1;
699 if (m < tp->mdev)
700 m = tp->mdev;
701
702 if (m >= dst_metric(dst, RTAX_RTTVAR))
703 dst->metrics[RTAX_RTTVAR-1] = m;
704 else
705 dst->metrics[RTAX_RTTVAR-1] -=
706 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
707 }
708
709 if (tp->snd_ssthresh >= 0xFFFF) {
710 /* Slow start still did not finish. */
711 if (dst_metric(dst, RTAX_SSTHRESH) &&
712 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
713 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
714 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
715 if (!dst_metric_locked(dst, RTAX_CWND) &&
716 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
717 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
718 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 719 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
720 /* Cong. avoidance phase, cwnd is reliable. */
721 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
722 dst->metrics[RTAX_SSTHRESH-1] =
723 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
724 if (!dst_metric_locked(dst, RTAX_CWND))
725 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
726 } else {
727 /* Else slow start did not finish, cwnd is non-sense,
728 ssthresh may be also invalid.
729 */
730 if (!dst_metric_locked(dst, RTAX_CWND))
731 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
732 if (dst->metrics[RTAX_SSTHRESH-1] &&
733 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
734 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
735 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
736 }
737
738 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
739 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
740 tp->reordering != sysctl_tcp_reordering)
741 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
742 }
743 }
744}
745
746/* Numbers are taken from RFC2414. */
747__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
748{
749 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
750
751 if (!cwnd) {
c1b4a7e6 752 if (tp->mss_cache > 1460)
1da177e4
LT
753 cwnd = 2;
754 else
c1b4a7e6 755 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
756 }
757 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
758}
759
40efc6fa
SH
760/* Set slow start threshold and cwnd not falling to slow start */
761void tcp_enter_cwr(struct sock *sk)
762{
763 struct tcp_sock *tp = tcp_sk(sk);
764
765 tp->prior_ssthresh = 0;
766 tp->bytes_acked = 0;
767 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
768 tp->undo_marker = 0;
769 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
770 tp->snd_cwnd = min(tp->snd_cwnd,
771 tcp_packets_in_flight(tp) + 1U);
772 tp->snd_cwnd_cnt = 0;
773 tp->high_seq = tp->snd_nxt;
774 tp->snd_cwnd_stamp = tcp_time_stamp;
775 TCP_ECN_queue_cwr(tp);
776
777 tcp_set_ca_state(sk, TCP_CA_CWR);
778 }
779}
780
1da177e4
LT
781/* Initialize metrics on socket. */
782
783static void tcp_init_metrics(struct sock *sk)
784{
785 struct tcp_sock *tp = tcp_sk(sk);
786 struct dst_entry *dst = __sk_dst_get(sk);
787
788 if (dst == NULL)
789 goto reset;
790
791 dst_confirm(dst);
792
793 if (dst_metric_locked(dst, RTAX_CWND))
794 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
795 if (dst_metric(dst, RTAX_SSTHRESH)) {
796 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
797 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
798 tp->snd_ssthresh = tp->snd_cwnd_clamp;
799 }
800 if (dst_metric(dst, RTAX_REORDERING) &&
801 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
802 tp->rx_opt.sack_ok &= ~2;
803 tp->reordering = dst_metric(dst, RTAX_REORDERING);
804 }
805
806 if (dst_metric(dst, RTAX_RTT) == 0)
807 goto reset;
808
809 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
810 goto reset;
811
812 /* Initial rtt is determined from SYN,SYN-ACK.
813 * The segment is small and rtt may appear much
814 * less than real one. Use per-dst memory
815 * to make it more realistic.
816 *
817 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 818 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
819 * packets force peer to delay ACKs and calculation is correct too.
820 * The algorithm is adaptive and, provided we follow specs, it
821 * NEVER underestimate RTT. BUT! If peer tries to make some clever
822 * tricks sort of "quick acks" for time long enough to decrease RTT
823 * to low value, and then abruptly stops to do it and starts to delay
824 * ACKs, wait for troubles.
825 */
826 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
827 tp->srtt = dst_metric(dst, RTAX_RTT);
828 tp->rtt_seq = tp->snd_nxt;
829 }
830 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
831 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
832 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
833 }
463c84b9
ACM
834 tcp_set_rto(sk);
835 tcp_bound_rto(sk);
836 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
837 goto reset;
838 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
839 tp->snd_cwnd_stamp = tcp_time_stamp;
840 return;
841
842reset:
843 /* Play conservative. If timestamps are not
844 * supported, TCP will fail to recalculate correct
845 * rtt, if initial rto is too small. FORGET ALL AND RESET!
846 */
847 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
848 tp->srtt = 0;
849 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 850 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
851 }
852}
853
6687e988
ACM
854static void tcp_update_reordering(struct sock *sk, const int metric,
855 const int ts)
1da177e4 856{
6687e988 857 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
858 if (metric > tp->reordering) {
859 tp->reordering = min(TCP_MAX_REORDERING, metric);
860
861 /* This exciting event is worth to be remembered. 8) */
862 if (ts)
863 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
864 else if (IsReno(tp))
865 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
866 else if (IsFack(tp))
867 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
868 else
869 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
870#if FASTRETRANS_DEBUG > 1
871 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 872 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
873 tp->reordering,
874 tp->fackets_out,
875 tp->sacked_out,
876 tp->undo_marker ? tp->undo_retrans : 0);
877#endif
878 /* Disable FACK yet. */
879 tp->rx_opt.sack_ok &= ~2;
880 }
881}
882
883/* This procedure tags the retransmission queue when SACKs arrive.
884 *
885 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
886 * Packets in queue with these bits set are counted in variables
887 * sacked_out, retrans_out and lost_out, correspondingly.
888 *
889 * Valid combinations are:
890 * Tag InFlight Description
891 * 0 1 - orig segment is in flight.
892 * S 0 - nothing flies, orig reached receiver.
893 * L 0 - nothing flies, orig lost by net.
894 * R 2 - both orig and retransmit are in flight.
895 * L|R 1 - orig is lost, retransmit is in flight.
896 * S|R 1 - orig reached receiver, retrans is still in flight.
897 * (L|S|R is logically valid, it could occur when L|R is sacked,
898 * but it is equivalent to plain S and code short-curcuits it to S.
899 * L|S is logically invalid, it would mean -1 packet in flight 8))
900 *
901 * These 6 states form finite state machine, controlled by the following events:
902 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
903 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
904 * 3. Loss detection event of one of three flavors:
905 * A. Scoreboard estimator decided the packet is lost.
906 * A'. Reno "three dupacks" marks head of queue lost.
907 * A''. Its FACK modfication, head until snd.fack is lost.
908 * B. SACK arrives sacking data transmitted after never retransmitted
909 * hole was sent out.
910 * C. SACK arrives sacking SND.NXT at the moment, when the
911 * segment was retransmitted.
912 * 4. D-SACK added new rule: D-SACK changes any tag to S.
913 *
914 * It is pleasant to note, that state diagram turns out to be commutative,
915 * so that we are allowed not to be bothered by order of our actions,
916 * when multiple events arrive simultaneously. (see the function below).
917 *
918 * Reordering detection.
919 * --------------------
920 * Reordering metric is maximal distance, which a packet can be displaced
921 * in packet stream. With SACKs we can estimate it:
922 *
923 * 1. SACK fills old hole and the corresponding segment was not
924 * ever retransmitted -> reordering. Alas, we cannot use it
925 * when segment was retransmitted.
926 * 2. The last flaw is solved with D-SACK. D-SACK arrives
927 * for retransmitted and already SACKed segment -> reordering..
928 * Both of these heuristics are not used in Loss state, when we cannot
929 * account for retransmits accurately.
930 */
931static int
932tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
933{
6687e988 934 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
935 struct tcp_sock *tp = tcp_sk(sk);
936 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
937 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
938 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
939 int reord = tp->packets_out;
940 int prior_fackets;
941 u32 lost_retrans = 0;
942 int flag = 0;
6a438bbe 943 int dup_sack = 0;
1da177e4
LT
944 int i;
945
1da177e4
LT
946 if (!tp->sacked_out)
947 tp->fackets_out = 0;
948 prior_fackets = tp->fackets_out;
949
6a438bbe
SH
950 /* SACK fastpath:
951 * if the only SACK change is the increase of the end_seq of
952 * the first block then only apply that SACK block
953 * and use retrans queue hinting otherwise slowpath */
954 flag = 1;
955 for (i = 0; i< num_sacks; i++) {
956 __u32 start_seq = ntohl(sp[i].start_seq);
957 __u32 end_seq = ntohl(sp[i].end_seq);
958
959 if (i == 0){
960 if (tp->recv_sack_cache[i].start_seq != start_seq)
961 flag = 0;
962 } else {
963 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
964 (tp->recv_sack_cache[i].end_seq != end_seq))
965 flag = 0;
966 }
967 tp->recv_sack_cache[i].start_seq = start_seq;
968 tp->recv_sack_cache[i].end_seq = end_seq;
1da177e4
LT
969
970 /* Check for D-SACK. */
971 if (i == 0) {
972 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
973
974 if (before(start_seq, ack)) {
975 dup_sack = 1;
976 tp->rx_opt.sack_ok |= 4;
977 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
978 } else if (num_sacks > 1 &&
979 !after(end_seq, ntohl(sp[1].end_seq)) &&
980 !before(start_seq, ntohl(sp[1].start_seq))) {
981 dup_sack = 1;
982 tp->rx_opt.sack_ok |= 4;
983 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
984 }
985
986 /* D-SACK for already forgotten data...
987 * Do dumb counting. */
988 if (dup_sack &&
989 !after(end_seq, prior_snd_una) &&
990 after(end_seq, tp->undo_marker))
991 tp->undo_retrans--;
992
993 /* Eliminate too old ACKs, but take into
994 * account more or less fresh ones, they can
995 * contain valid SACK info.
996 */
997 if (before(ack, prior_snd_una - tp->max_window))
998 return 0;
999 }
6a438bbe
SH
1000 }
1001
1002 if (flag)
1003 num_sacks = 1;
1004 else {
1005 int j;
1006 tp->fastpath_skb_hint = NULL;
1007
1008 /* order SACK blocks to allow in order walk of the retrans queue */
1009 for (i = num_sacks-1; i > 0; i--) {
1010 for (j = 0; j < i; j++){
1011 if (after(ntohl(sp[j].start_seq),
1012 ntohl(sp[j+1].start_seq))){
1013 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1014 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1015 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1016 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1017 }
1018
1019 }
1020 }
1021 }
1022
1023 /* clear flag as used for different purpose in following code */
1024 flag = 0;
1025
1026 for (i=0; i<num_sacks; i++, sp++) {
1027 struct sk_buff *skb;
1028 __u32 start_seq = ntohl(sp->start_seq);
1029 __u32 end_seq = ntohl(sp->end_seq);
1030 int fack_count;
1031
1032 /* Use SACK fastpath hint if valid */
1033 if (tp->fastpath_skb_hint) {
1034 skb = tp->fastpath_skb_hint;
1035 fack_count = tp->fastpath_cnt_hint;
1036 } else {
1037 skb = sk->sk_write_queue.next;
1038 fack_count = 0;
1039 }
1da177e4
LT
1040
1041 /* Event "B" in the comment above. */
1042 if (after(end_seq, tp->high_seq))
1043 flag |= FLAG_DATA_LOST;
1044
6a438bbe 1045 sk_stream_for_retrans_queue_from(skb, sk) {
6475be16
DM
1046 int in_sack, pcount;
1047 u8 sacked;
1da177e4 1048
6a438bbe
SH
1049 tp->fastpath_skb_hint = skb;
1050 tp->fastpath_cnt_hint = fack_count;
1051
1da177e4
LT
1052 /* The retransmission queue is always in order, so
1053 * we can short-circuit the walk early.
1054 */
6475be16 1055 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1056 break;
1057
3c05d92e
HX
1058 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1059 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1060
6475be16
DM
1061 pcount = tcp_skb_pcount(skb);
1062
3c05d92e
HX
1063 if (pcount > 1 && !in_sack &&
1064 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1065 unsigned int pkt_len;
1066
3c05d92e
HX
1067 in_sack = !after(start_seq,
1068 TCP_SKB_CB(skb)->seq);
1069
1070 if (!in_sack)
6475be16
DM
1071 pkt_len = (start_seq -
1072 TCP_SKB_CB(skb)->seq);
1073 else
1074 pkt_len = (end_seq -
1075 TCP_SKB_CB(skb)->seq);
1076 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1077 break;
1078 pcount = tcp_skb_pcount(skb);
1079 }
1080
1081 fack_count += pcount;
1da177e4 1082
6475be16
DM
1083 sacked = TCP_SKB_CB(skb)->sacked;
1084
1da177e4
LT
1085 /* Account D-SACK for retransmitted packet. */
1086 if ((dup_sack && in_sack) &&
1087 (sacked & TCPCB_RETRANS) &&
1088 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1089 tp->undo_retrans--;
1090
1091 /* The frame is ACKed. */
1092 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1093 if (sacked&TCPCB_RETRANS) {
1094 if ((dup_sack && in_sack) &&
1095 (sacked&TCPCB_SACKED_ACKED))
1096 reord = min(fack_count, reord);
1097 } else {
1098 /* If it was in a hole, we detected reordering. */
1099 if (fack_count < prior_fackets &&
1100 !(sacked&TCPCB_SACKED_ACKED))
1101 reord = min(fack_count, reord);
1102 }
1103
1104 /* Nothing to do; acked frame is about to be dropped. */
1105 continue;
1106 }
1107
1108 if ((sacked&TCPCB_SACKED_RETRANS) &&
1109 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1110 (!lost_retrans || after(end_seq, lost_retrans)))
1111 lost_retrans = end_seq;
1112
1113 if (!in_sack)
1114 continue;
1115
1116 if (!(sacked&TCPCB_SACKED_ACKED)) {
1117 if (sacked & TCPCB_SACKED_RETRANS) {
1118 /* If the segment is not tagged as lost,
1119 * we do not clear RETRANS, believing
1120 * that retransmission is still in flight.
1121 */
1122 if (sacked & TCPCB_LOST) {
1123 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1124 tp->lost_out -= tcp_skb_pcount(skb);
1125 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1126
1127 /* clear lost hint */
1128 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1129 }
1130 } else {
1131 /* New sack for not retransmitted frame,
1132 * which was in hole. It is reordering.
1133 */
1134 if (!(sacked & TCPCB_RETRANS) &&
1135 fack_count < prior_fackets)
1136 reord = min(fack_count, reord);
1137
1138 if (sacked & TCPCB_LOST) {
1139 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1140 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1141
1142 /* clear lost hint */
1143 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1144 }
1145 }
1146
1147 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1148 flag |= FLAG_DATA_SACKED;
1149 tp->sacked_out += tcp_skb_pcount(skb);
1150
1151 if (fack_count > tp->fackets_out)
1152 tp->fackets_out = fack_count;
1153 } else {
1154 if (dup_sack && (sacked&TCPCB_RETRANS))
1155 reord = min(fack_count, reord);
1156 }
1157
1158 /* D-SACK. We can detect redundant retransmission
1159 * in S|R and plain R frames and clear it.
1160 * undo_retrans is decreased above, L|R frames
1161 * are accounted above as well.
1162 */
1163 if (dup_sack &&
1164 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1165 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1166 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1167 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1168 }
1169 }
1170 }
1171
1172 /* Check for lost retransmit. This superb idea is
1173 * borrowed from "ratehalving". Event "C".
1174 * Later note: FACK people cheated me again 8),
1175 * we have to account for reordering! Ugly,
1176 * but should help.
1177 */
6687e988 1178 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1179 struct sk_buff *skb;
1180
1181 sk_stream_for_retrans_queue(skb, sk) {
1182 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1183 break;
1184 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1185 continue;
1186 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1187 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1188 (IsFack(tp) ||
1189 !before(lost_retrans,
1190 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1191 tp->mss_cache))) {
1da177e4
LT
1192 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1193 tp->retrans_out -= tcp_skb_pcount(skb);
1194
6a438bbe
SH
1195 /* clear lost hint */
1196 tp->retransmit_skb_hint = NULL;
1197
1da177e4
LT
1198 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1199 tp->lost_out += tcp_skb_pcount(skb);
1200 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1201 flag |= FLAG_DATA_SACKED;
1202 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1203 }
1204 }
1205 }
1206 }
1207
1208 tp->left_out = tp->sacked_out + tp->lost_out;
1209
6687e988
ACM
1210 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1211 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1212
1213#if FASTRETRANS_DEBUG > 0
1214 BUG_TRAP((int)tp->sacked_out >= 0);
1215 BUG_TRAP((int)tp->lost_out >= 0);
1216 BUG_TRAP((int)tp->retrans_out >= 0);
1217 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1218#endif
1219 return flag;
1220}
1221
1222/* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1223 * segments to see from the next ACKs whether any data was really missing.
1224 * If the RTO was spurious, new ACKs should arrive.
1225 */
1226void tcp_enter_frto(struct sock *sk)
1227{
6687e988 1228 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1229 struct tcp_sock *tp = tcp_sk(sk);
1230 struct sk_buff *skb;
1231
1232 tp->frto_counter = 1;
1233
6687e988 1234 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1da177e4 1235 tp->snd_una == tp->high_seq ||
6687e988
ACM
1236 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1237 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1238 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1239 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1240 }
1241
1242 /* Have to clear retransmission markers here to keep the bookkeeping
1243 * in shape, even though we are not yet in Loss state.
1244 * If something was really lost, it is eventually caught up
1245 * in tcp_enter_frto_loss.
1246 */
1247 tp->retrans_out = 0;
1248 tp->undo_marker = tp->snd_una;
1249 tp->undo_retrans = 0;
1250
1251 sk_stream_for_retrans_queue(skb, sk) {
1252 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1253 }
1254 tcp_sync_left_out(tp);
1255
6687e988 1256 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1257 tp->frto_highmark = tp->snd_nxt;
1258}
1259
1260/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1261 * which indicates that we should follow the traditional RTO recovery,
1262 * i.e. mark everything lost and do go-back-N retransmission.
1263 */
1264static void tcp_enter_frto_loss(struct sock *sk)
1265{
1266 struct tcp_sock *tp = tcp_sk(sk);
1267 struct sk_buff *skb;
1268 int cnt = 0;
1269
1270 tp->sacked_out = 0;
1271 tp->lost_out = 0;
1272 tp->fackets_out = 0;
1273
1274 sk_stream_for_retrans_queue(skb, sk) {
1275 cnt += tcp_skb_pcount(skb);
1276 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1277 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1278
1279 /* Do not mark those segments lost that were
1280 * forward transmitted after RTO
1281 */
1282 if (!after(TCP_SKB_CB(skb)->end_seq,
1283 tp->frto_highmark)) {
1284 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1285 tp->lost_out += tcp_skb_pcount(skb);
1286 }
1287 } else {
1288 tp->sacked_out += tcp_skb_pcount(skb);
1289 tp->fackets_out = cnt;
1290 }
1291 }
1292 tcp_sync_left_out(tp);
1293
1294 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1295 tp->snd_cwnd_cnt = 0;
1296 tp->snd_cwnd_stamp = tcp_time_stamp;
1297 tp->undo_marker = 0;
1298 tp->frto_counter = 0;
1299
1300 tp->reordering = min_t(unsigned int, tp->reordering,
1301 sysctl_tcp_reordering);
6687e988 1302 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1303 tp->high_seq = tp->frto_highmark;
1304 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1305
1306 clear_all_retrans_hints(tp);
1da177e4
LT
1307}
1308
1309void tcp_clear_retrans(struct tcp_sock *tp)
1310{
1311 tp->left_out = 0;
1312 tp->retrans_out = 0;
1313
1314 tp->fackets_out = 0;
1315 tp->sacked_out = 0;
1316 tp->lost_out = 0;
1317
1318 tp->undo_marker = 0;
1319 tp->undo_retrans = 0;
1320}
1321
1322/* Enter Loss state. If "how" is not zero, forget all SACK information
1323 * and reset tags completely, otherwise preserve SACKs. If receiver
1324 * dropped its ofo queue, we will know this due to reneging detection.
1325 */
1326void tcp_enter_loss(struct sock *sk, int how)
1327{
6687e988 1328 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 struct sk_buff *skb;
1331 int cnt = 0;
1332
1333 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1334 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1335 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1336 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1337 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1338 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1339 }
1340 tp->snd_cwnd = 1;
1341 tp->snd_cwnd_cnt = 0;
1342 tp->snd_cwnd_stamp = tcp_time_stamp;
1343
9772efb9 1344 tp->bytes_acked = 0;
1da177e4
LT
1345 tcp_clear_retrans(tp);
1346
1347 /* Push undo marker, if it was plain RTO and nothing
1348 * was retransmitted. */
1349 if (!how)
1350 tp->undo_marker = tp->snd_una;
1351
1352 sk_stream_for_retrans_queue(skb, sk) {
1353 cnt += tcp_skb_pcount(skb);
1354 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1355 tp->undo_marker = 0;
1356 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1357 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1358 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1359 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1360 tp->lost_out += tcp_skb_pcount(skb);
1361 } else {
1362 tp->sacked_out += tcp_skb_pcount(skb);
1363 tp->fackets_out = cnt;
1364 }
1365 }
1366 tcp_sync_left_out(tp);
1367
1368 tp->reordering = min_t(unsigned int, tp->reordering,
1369 sysctl_tcp_reordering);
6687e988 1370 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1371 tp->high_seq = tp->snd_nxt;
1372 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1373
1374 clear_all_retrans_hints(tp);
1da177e4
LT
1375}
1376
463c84b9 1377static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1378{
1379 struct sk_buff *skb;
1380
1381 /* If ACK arrived pointing to a remembered SACK,
1382 * it means that our remembered SACKs do not reflect
1383 * real state of receiver i.e.
1384 * receiver _host_ is heavily congested (or buggy).
1385 * Do processing similar to RTO timeout.
1386 */
1387 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1388 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1389 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1390 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1391
1392 tcp_enter_loss(sk, 1);
6687e988 1393 icsk->icsk_retransmits++;
1da177e4 1394 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
463c84b9 1395 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1396 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1397 return 1;
1398 }
1399 return 0;
1400}
1401
1402static inline int tcp_fackets_out(struct tcp_sock *tp)
1403{
1404 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1405}
1406
463c84b9 1407static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1408{
463c84b9 1409 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1410}
1411
1412static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1413{
1414 return tp->packets_out &&
463c84b9 1415 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1da177e4
LT
1416}
1417
1418/* Linux NewReno/SACK/FACK/ECN state machine.
1419 * --------------------------------------
1420 *
1421 * "Open" Normal state, no dubious events, fast path.
1422 * "Disorder" In all the respects it is "Open",
1423 * but requires a bit more attention. It is entered when
1424 * we see some SACKs or dupacks. It is split of "Open"
1425 * mainly to move some processing from fast path to slow one.
1426 * "CWR" CWND was reduced due to some Congestion Notification event.
1427 * It can be ECN, ICMP source quench, local device congestion.
1428 * "Recovery" CWND was reduced, we are fast-retransmitting.
1429 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1430 *
1431 * tcp_fastretrans_alert() is entered:
1432 * - each incoming ACK, if state is not "Open"
1433 * - when arrived ACK is unusual, namely:
1434 * * SACK
1435 * * Duplicate ACK.
1436 * * ECN ECE.
1437 *
1438 * Counting packets in flight is pretty simple.
1439 *
1440 * in_flight = packets_out - left_out + retrans_out
1441 *
1442 * packets_out is SND.NXT-SND.UNA counted in packets.
1443 *
1444 * retrans_out is number of retransmitted segments.
1445 *
1446 * left_out is number of segments left network, but not ACKed yet.
1447 *
1448 * left_out = sacked_out + lost_out
1449 *
1450 * sacked_out: Packets, which arrived to receiver out of order
1451 * and hence not ACKed. With SACKs this number is simply
1452 * amount of SACKed data. Even without SACKs
1453 * it is easy to give pretty reliable estimate of this number,
1454 * counting duplicate ACKs.
1455 *
1456 * lost_out: Packets lost by network. TCP has no explicit
1457 * "loss notification" feedback from network (for now).
1458 * It means that this number can be only _guessed_.
1459 * Actually, it is the heuristics to predict lossage that
1460 * distinguishes different algorithms.
1461 *
1462 * F.e. after RTO, when all the queue is considered as lost,
1463 * lost_out = packets_out and in_flight = retrans_out.
1464 *
1465 * Essentially, we have now two algorithms counting
1466 * lost packets.
1467 *
1468 * FACK: It is the simplest heuristics. As soon as we decided
1469 * that something is lost, we decide that _all_ not SACKed
1470 * packets until the most forward SACK are lost. I.e.
1471 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1472 * It is absolutely correct estimate, if network does not reorder
1473 * packets. And it loses any connection to reality when reordering
1474 * takes place. We use FACK by default until reordering
1475 * is suspected on the path to this destination.
1476 *
1477 * NewReno: when Recovery is entered, we assume that one segment
1478 * is lost (classic Reno). While we are in Recovery and
1479 * a partial ACK arrives, we assume that one more packet
1480 * is lost (NewReno). This heuristics are the same in NewReno
1481 * and SACK.
1482 *
1483 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1484 * deflation etc. CWND is real congestion window, never inflated, changes
1485 * only according to classic VJ rules.
1486 *
1487 * Really tricky (and requiring careful tuning) part of algorithm
1488 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1489 * The first determines the moment _when_ we should reduce CWND and,
1490 * hence, slow down forward transmission. In fact, it determines the moment
1491 * when we decide that hole is caused by loss, rather than by a reorder.
1492 *
1493 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1494 * holes, caused by lost packets.
1495 *
1496 * And the most logically complicated part of algorithm is undo
1497 * heuristics. We detect false retransmits due to both too early
1498 * fast retransmit (reordering) and underestimated RTO, analyzing
1499 * timestamps and D-SACKs. When we detect that some segments were
1500 * retransmitted by mistake and CWND reduction was wrong, we undo
1501 * window reduction and abort recovery phase. This logic is hidden
1502 * inside several functions named tcp_try_undo_<something>.
1503 */
1504
1505/* This function decides, when we should leave Disordered state
1506 * and enter Recovery phase, reducing congestion window.
1507 *
1508 * Main question: may we further continue forward transmission
1509 * with the same cwnd?
1510 */
1511static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1512{
1513 __u32 packets_out;
1514
1515 /* Trick#1: The loss is proven. */
1516 if (tp->lost_out)
1517 return 1;
1518
1519 /* Not-A-Trick#2 : Classic rule... */
1520 if (tcp_fackets_out(tp) > tp->reordering)
1521 return 1;
1522
1523 /* Trick#3 : when we use RFC2988 timer restart, fast
1524 * retransmit can be triggered by timeout of queue head.
1525 */
1526 if (tcp_head_timedout(sk, tp))
1527 return 1;
1528
1529 /* Trick#4: It is still not OK... But will it be useful to delay
1530 * recovery more?
1531 */
1532 packets_out = tp->packets_out;
1533 if (packets_out <= tp->reordering &&
1534 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1535 !tcp_may_send_now(sk, tp)) {
1536 /* We have nothing to send. This connection is limited
1537 * either by receiver window or by application.
1538 */
1539 return 1;
1540 }
1541
1542 return 0;
1543}
1544
1545/* If we receive more dupacks than we expected counting segments
1546 * in assumption of absent reordering, interpret this as reordering.
1547 * The only another reason could be bug in receiver TCP.
1548 */
6687e988 1549static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1da177e4 1550{
6687e988 1551 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1552 u32 holes;
1553
1554 holes = max(tp->lost_out, 1U);
1555 holes = min(holes, tp->packets_out);
1556
1557 if ((tp->sacked_out + holes) > tp->packets_out) {
1558 tp->sacked_out = tp->packets_out - holes;
6687e988 1559 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1da177e4
LT
1560 }
1561}
1562
1563/* Emulate SACKs for SACKless connection: account for a new dupack. */
1564
6687e988 1565static void tcp_add_reno_sack(struct sock *sk)
1da177e4 1566{
6687e988 1567 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1568 tp->sacked_out++;
6687e988 1569 tcp_check_reno_reordering(sk, 0);
1da177e4
LT
1570 tcp_sync_left_out(tp);
1571}
1572
1573/* Account for ACK, ACKing some data in Reno Recovery phase. */
1574
1575static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1576{
1577 if (acked > 0) {
1578 /* One ACK acked hole. The rest eat duplicate ACKs. */
1579 if (acked-1 >= tp->sacked_out)
1580 tp->sacked_out = 0;
1581 else
1582 tp->sacked_out -= acked-1;
1583 }
6687e988 1584 tcp_check_reno_reordering(sk, acked);
1da177e4
LT
1585 tcp_sync_left_out(tp);
1586}
1587
1588static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1589{
1590 tp->sacked_out = 0;
1591 tp->left_out = tp->lost_out;
1592}
1593
1594/* Mark head of queue up as lost. */
1595static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1596 int packets, u32 high_seq)
1597{
1598 struct sk_buff *skb;
6a438bbe 1599 int cnt;
1da177e4 1600
6a438bbe
SH
1601 BUG_TRAP(packets <= tp->packets_out);
1602 if (tp->lost_skb_hint) {
1603 skb = tp->lost_skb_hint;
1604 cnt = tp->lost_cnt_hint;
1605 } else {
1606 skb = sk->sk_write_queue.next;
1607 cnt = 0;
1608 }
1da177e4 1609
6a438bbe
SH
1610 sk_stream_for_retrans_queue_from(skb, sk) {
1611 /* TODO: do this better */
1612 /* this is not the most efficient way to do this... */
1613 tp->lost_skb_hint = skb;
1614 tp->lost_cnt_hint = cnt;
1615 cnt += tcp_skb_pcount(skb);
1616 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1617 break;
1618 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1619 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1620 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1621
1622 /* clear xmit_retransmit_queue hints
1623 * if this is beyond hint */
1624 if(tp->retransmit_skb_hint != NULL &&
1625 before(TCP_SKB_CB(skb)->seq,
1626 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1627
1628 tp->retransmit_skb_hint = NULL;
1629 }
1da177e4
LT
1630 }
1631 }
1632 tcp_sync_left_out(tp);
1633}
1634
1635/* Account newly detected lost packet(s) */
1636
1637static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1638{
1639 if (IsFack(tp)) {
1640 int lost = tp->fackets_out - tp->reordering;
1641 if (lost <= 0)
1642 lost = 1;
1643 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1644 } else {
1645 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1646 }
1647
1648 /* New heuristics: it is possible only after we switched
1649 * to restart timer each time when something is ACKed.
1650 * Hence, we can detect timed out packets during fast
1651 * retransmit without falling to slow start.
1652 */
79320d7e 1653 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1da177e4
LT
1654 struct sk_buff *skb;
1655
6a438bbe
SH
1656 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1657 : sk->sk_write_queue.next;
1658
1659 sk_stream_for_retrans_queue_from(skb, sk) {
1660 if (!tcp_skb_timedout(sk, skb))
1661 break;
1662
1663 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1664 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1665 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1666
1667 /* clear xmit_retrans hint */
1668 if (tp->retransmit_skb_hint &&
1669 before(TCP_SKB_CB(skb)->seq,
1670 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1671
1672 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1673 }
1674 }
6a438bbe
SH
1675
1676 tp->scoreboard_skb_hint = skb;
1677
1da177e4
LT
1678 tcp_sync_left_out(tp);
1679 }
1680}
1681
1682/* CWND moderation, preventing bursts due to too big ACKs
1683 * in dubious situations.
1684 */
1685static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1686{
1687 tp->snd_cwnd = min(tp->snd_cwnd,
1688 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1689 tp->snd_cwnd_stamp = tcp_time_stamp;
1690}
1691
1692/* Decrease cwnd each second ack. */
6687e988 1693static void tcp_cwnd_down(struct sock *sk)
1da177e4 1694{
6687e988
ACM
1695 const struct inet_connection_sock *icsk = inet_csk(sk);
1696 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1697 int decr = tp->snd_cwnd_cnt + 1;
1da177e4
LT
1698
1699 tp->snd_cwnd_cnt = decr&1;
1700 decr >>= 1;
1701
6687e988 1702 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1da177e4
LT
1703 tp->snd_cwnd -= decr;
1704
1705 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1706 tp->snd_cwnd_stamp = tcp_time_stamp;
1707}
1708
1709/* Nothing was retransmitted or returned timestamp is less
1710 * than timestamp of the first retransmission.
1711 */
1712static inline int tcp_packet_delayed(struct tcp_sock *tp)
1713{
1714 return !tp->retrans_stamp ||
1715 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1716 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1717}
1718
1719/* Undo procedures. */
1720
1721#if FASTRETRANS_DEBUG > 1
1722static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1723{
1724 struct inet_sock *inet = inet_sk(sk);
1725 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1726 msg,
1727 NIPQUAD(inet->daddr), ntohs(inet->dport),
1728 tp->snd_cwnd, tp->left_out,
1729 tp->snd_ssthresh, tp->prior_ssthresh,
1730 tp->packets_out);
1731}
1732#else
1733#define DBGUNDO(x...) do { } while (0)
1734#endif
1735
6687e988 1736static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1737{
6687e988
ACM
1738 struct tcp_sock *tp = tcp_sk(sk);
1739
1da177e4 1740 if (tp->prior_ssthresh) {
6687e988
ACM
1741 const struct inet_connection_sock *icsk = inet_csk(sk);
1742
1743 if (icsk->icsk_ca_ops->undo_cwnd)
1744 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
1745 else
1746 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1747
1748 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1749 tp->snd_ssthresh = tp->prior_ssthresh;
1750 TCP_ECN_withdraw_cwr(tp);
1751 }
1752 } else {
1753 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1754 }
1755 tcp_moderate_cwnd(tp);
1756 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
1757
1758 /* There is something screwy going on with the retrans hints after
1759 an undo */
1760 clear_all_retrans_hints(tp);
1da177e4
LT
1761}
1762
1763static inline int tcp_may_undo(struct tcp_sock *tp)
1764{
1765 return tp->undo_marker &&
1766 (!tp->undo_retrans || tcp_packet_delayed(tp));
1767}
1768
1769/* People celebrate: "We love our President!" */
1770static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1771{
1772 if (tcp_may_undo(tp)) {
1773 /* Happy end! We did not retransmit anything
1774 * or our original transmission succeeded.
1775 */
6687e988
ACM
1776 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1777 tcp_undo_cwr(sk, 1);
1778 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
1779 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1780 else
1781 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1782 tp->undo_marker = 0;
1783 }
1784 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1785 /* Hold old state until something *above* high_seq
1786 * is ACKed. For Reno it is MUST to prevent false
1787 * fast retransmits (RFC2582). SACK TCP is safe. */
1788 tcp_moderate_cwnd(tp);
1789 return 1;
1790 }
6687e988 1791 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1792 return 0;
1793}
1794
1795/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1796static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1797{
1798 if (tp->undo_marker && !tp->undo_retrans) {
1799 DBGUNDO(sk, tp, "D-SACK");
6687e988 1800 tcp_undo_cwr(sk, 1);
1da177e4
LT
1801 tp->undo_marker = 0;
1802 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1803 }
1804}
1805
1806/* Undo during fast recovery after partial ACK. */
1807
1808static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1809 int acked)
1810{
1811 /* Partial ACK arrived. Force Hoe's retransmit. */
1812 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1813
1814 if (tcp_may_undo(tp)) {
1815 /* Plain luck! Hole if filled with delayed
1816 * packet, rather than with a retransmit.
1817 */
1818 if (tp->retrans_out == 0)
1819 tp->retrans_stamp = 0;
1820
6687e988 1821 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4
LT
1822
1823 DBGUNDO(sk, tp, "Hoe");
6687e988 1824 tcp_undo_cwr(sk, 0);
1da177e4
LT
1825 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1826
1827 /* So... Do not make Hoe's retransmit yet.
1828 * If the first packet was delayed, the rest
1829 * ones are most probably delayed as well.
1830 */
1831 failed = 0;
1832 }
1833 return failed;
1834}
1835
1836/* Undo during loss recovery after partial ACK. */
1837static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1838{
1839 if (tcp_may_undo(tp)) {
1840 struct sk_buff *skb;
1841 sk_stream_for_retrans_queue(skb, sk) {
1842 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1843 }
6a438bbe
SH
1844
1845 clear_all_retrans_hints(tp);
1846
1da177e4
LT
1847 DBGUNDO(sk, tp, "partial loss");
1848 tp->lost_out = 0;
1849 tp->left_out = tp->sacked_out;
6687e988 1850 tcp_undo_cwr(sk, 1);
1da177e4 1851 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 1852 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
1853 tp->undo_marker = 0;
1854 if (!IsReno(tp))
6687e988 1855 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1856 return 1;
1857 }
1858 return 0;
1859}
1860
6687e988 1861static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 1862{
6687e988 1863 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 1864 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 1865 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 1866 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
1867}
1868
1869static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1870{
1871 tp->left_out = tp->sacked_out;
1872
1873 if (tp->retrans_out == 0)
1874 tp->retrans_stamp = 0;
1875
1876 if (flag&FLAG_ECE)
6687e988 1877 tcp_enter_cwr(sk);
1da177e4 1878
6687e988 1879 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
1880 int state = TCP_CA_Open;
1881
1882 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1883 state = TCP_CA_Disorder;
1884
6687e988
ACM
1885 if (inet_csk(sk)->icsk_ca_state != state) {
1886 tcp_set_ca_state(sk, state);
1da177e4
LT
1887 tp->high_seq = tp->snd_nxt;
1888 }
1889 tcp_moderate_cwnd(tp);
1890 } else {
6687e988 1891 tcp_cwnd_down(sk);
1da177e4
LT
1892 }
1893}
1894
5d424d5a
JH
1895static void tcp_mtup_probe_failed(struct sock *sk)
1896{
1897 struct inet_connection_sock *icsk = inet_csk(sk);
1898
1899 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1900 icsk->icsk_mtup.probe_size = 0;
1901}
1902
1903static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1904{
1905 struct tcp_sock *tp = tcp_sk(sk);
1906 struct inet_connection_sock *icsk = inet_csk(sk);
1907
1908 /* FIXME: breaks with very large cwnd */
1909 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1910 tp->snd_cwnd = tp->snd_cwnd *
1911 tcp_mss_to_mtu(sk, tp->mss_cache) /
1912 icsk->icsk_mtup.probe_size;
1913 tp->snd_cwnd_cnt = 0;
1914 tp->snd_cwnd_stamp = tcp_time_stamp;
1915 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1916
1917 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1918 icsk->icsk_mtup.probe_size = 0;
1919 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1920}
1921
1922
1da177e4
LT
1923/* Process an event, which can update packets-in-flight not trivially.
1924 * Main goal of this function is to calculate new estimate for left_out,
1925 * taking into account both packets sitting in receiver's buffer and
1926 * packets lost by network.
1927 *
1928 * Besides that it does CWND reduction, when packet loss is detected
1929 * and changes state of machine.
1930 *
1931 * It does _not_ decide what to send, it is made in function
1932 * tcp_xmit_retransmit_queue().
1933 */
1934static void
1935tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1936 int prior_packets, int flag)
1937{
6687e988 1938 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1939 struct tcp_sock *tp = tcp_sk(sk);
1940 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1941
1942 /* Some technical things:
1943 * 1. Reno does not count dupacks (sacked_out) automatically. */
1944 if (!tp->packets_out)
1945 tp->sacked_out = 0;
1946 /* 2. SACK counts snd_fack in packets inaccurately. */
1947 if (tp->sacked_out == 0)
1948 tp->fackets_out = 0;
1949
1950 /* Now state machine starts.
1951 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1952 if (flag&FLAG_ECE)
1953 tp->prior_ssthresh = 0;
1954
1955 /* B. In all the states check for reneging SACKs. */
463c84b9 1956 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
1957 return;
1958
1959 /* C. Process data loss notification, provided it is valid. */
1960 if ((flag&FLAG_DATA_LOST) &&
1961 before(tp->snd_una, tp->high_seq) &&
6687e988 1962 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4
LT
1963 tp->fackets_out > tp->reordering) {
1964 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1965 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1966 }
1967
1968 /* D. Synchronize left_out to current state. */
1969 tcp_sync_left_out(tp);
1970
1971 /* E. Check state exit conditions. State can be terminated
1972 * when high_seq is ACKed. */
6687e988 1973 if (icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
1974 if (!sysctl_tcp_frto)
1975 BUG_TRAP(tp->retrans_out == 0);
1976 tp->retrans_stamp = 0;
1977 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 1978 switch (icsk->icsk_ca_state) {
1da177e4 1979 case TCP_CA_Loss:
6687e988 1980 icsk->icsk_retransmits = 0;
1da177e4
LT
1981 if (tcp_try_undo_recovery(sk, tp))
1982 return;
1983 break;
1984
1985 case TCP_CA_CWR:
1986 /* CWR is to be held something *above* high_seq
1987 * is ACKed for CWR bit to reach receiver. */
1988 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
1989 tcp_complete_cwr(sk);
1990 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1991 }
1992 break;
1993
1994 case TCP_CA_Disorder:
1995 tcp_try_undo_dsack(sk, tp);
1996 if (!tp->undo_marker ||
1997 /* For SACK case do not Open to allow to undo
1998 * catching for all duplicate ACKs. */
1999 IsReno(tp) || tp->snd_una != tp->high_seq) {
2000 tp->undo_marker = 0;
6687e988 2001 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2002 }
2003 break;
2004
2005 case TCP_CA_Recovery:
2006 if (IsReno(tp))
2007 tcp_reset_reno_sack(tp);
2008 if (tcp_try_undo_recovery(sk, tp))
2009 return;
6687e988 2010 tcp_complete_cwr(sk);
1da177e4
LT
2011 break;
2012 }
2013 }
2014
2015 /* F. Process state. */
6687e988 2016 switch (icsk->icsk_ca_state) {
1da177e4
LT
2017 case TCP_CA_Recovery:
2018 if (prior_snd_una == tp->snd_una) {
2019 if (IsReno(tp) && is_dupack)
6687e988 2020 tcp_add_reno_sack(sk);
1da177e4
LT
2021 } else {
2022 int acked = prior_packets - tp->packets_out;
2023 if (IsReno(tp))
2024 tcp_remove_reno_sacks(sk, tp, acked);
2025 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2026 }
2027 break;
2028 case TCP_CA_Loss:
2029 if (flag&FLAG_DATA_ACKED)
6687e988 2030 icsk->icsk_retransmits = 0;
1da177e4
LT
2031 if (!tcp_try_undo_loss(sk, tp)) {
2032 tcp_moderate_cwnd(tp);
2033 tcp_xmit_retransmit_queue(sk);
2034 return;
2035 }
6687e988 2036 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2037 return;
2038 /* Loss is undone; fall through to processing in Open state. */
2039 default:
2040 if (IsReno(tp)) {
2041 if (tp->snd_una != prior_snd_una)
2042 tcp_reset_reno_sack(tp);
2043 if (is_dupack)
6687e988 2044 tcp_add_reno_sack(sk);
1da177e4
LT
2045 }
2046
6687e988 2047 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1da177e4
LT
2048 tcp_try_undo_dsack(sk, tp);
2049
2050 if (!tcp_time_to_recover(sk, tp)) {
2051 tcp_try_to_open(sk, tp, flag);
2052 return;
2053 }
2054
5d424d5a
JH
2055 /* MTU probe failure: don't reduce cwnd */
2056 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2057 icsk->icsk_mtup.probe_size &&
0e7b1368 2058 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2059 tcp_mtup_probe_failed(sk);
2060 /* Restores the reduction we did in tcp_mtup_probe() */
2061 tp->snd_cwnd++;
2062 tcp_simple_retransmit(sk);
2063 return;
2064 }
2065
1da177e4
LT
2066 /* Otherwise enter Recovery state */
2067
2068 if (IsReno(tp))
2069 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2070 else
2071 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2072
2073 tp->high_seq = tp->snd_nxt;
2074 tp->prior_ssthresh = 0;
2075 tp->undo_marker = tp->snd_una;
2076 tp->undo_retrans = tp->retrans_out;
2077
6687e988 2078 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2079 if (!(flag&FLAG_ECE))
6687e988
ACM
2080 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2082 TCP_ECN_queue_cwr(tp);
2083 }
2084
9772efb9 2085 tp->bytes_acked = 0;
1da177e4 2086 tp->snd_cwnd_cnt = 0;
6687e988 2087 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2088 }
2089
2090 if (is_dupack || tcp_head_timedout(sk, tp))
2091 tcp_update_scoreboard(sk, tp);
6687e988 2092 tcp_cwnd_down(sk);
1da177e4
LT
2093 tcp_xmit_retransmit_queue(sk);
2094}
2095
2096/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2097 * with this code. (Supersedes RFC1323)
1da177e4 2098 */
2d2abbab 2099static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2100{
1da177e4
LT
2101 /* RTTM Rule: A TSecr value received in a segment is used to
2102 * update the averaged RTT measurement only if the segment
2103 * acknowledges some new data, i.e., only if it advances the
2104 * left edge of the send window.
2105 *
2106 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2107 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2108 *
2109 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2110 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2111 * samples are accepted even from very old segments: f.e., when rtt=1
2112 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2113 * answer arrives rto becomes 120 seconds! If at least one of segments
2114 * in window is lost... Voila. --ANK (010210)
2115 */
463c84b9
ACM
2116 struct tcp_sock *tp = tcp_sk(sk);
2117 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2118 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2119 tcp_set_rto(sk);
2120 inet_csk(sk)->icsk_backoff = 0;
2121 tcp_bound_rto(sk);
1da177e4
LT
2122}
2123
2d2abbab 2124static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2125{
2126 /* We don't have a timestamp. Can only use
2127 * packets that are not retransmitted to determine
2128 * rtt estimates. Also, we must not reset the
2129 * backoff for rto until we get a non-retransmitted
2130 * packet. This allows us to deal with a situation
2131 * where the network delay has increased suddenly.
2132 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2133 */
2134
2135 if (flag & FLAG_RETRANS_DATA_ACKED)
2136 return;
2137
2d2abbab 2138 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2139 tcp_set_rto(sk);
2140 inet_csk(sk)->icsk_backoff = 0;
2141 tcp_bound_rto(sk);
1da177e4
LT
2142}
2143
463c84b9 2144static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2145 const s32 seq_rtt)
1da177e4 2146{
463c84b9 2147 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2148 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2149 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2150 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2151 else if (seq_rtt >= 0)
2d2abbab 2152 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2153}
2154
40efc6fa
SH
2155static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2156 u32 in_flight, int good)
1da177e4 2157{
6687e988
ACM
2158 const struct inet_connection_sock *icsk = inet_csk(sk);
2159 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2160 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2161}
2162
1da177e4
LT
2163/* Restart timer after forward progress on connection.
2164 * RFC2988 recommends to restart timer to now+rto.
2165 */
2166
40efc6fa 2167static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1da177e4
LT
2168{
2169 if (!tp->packets_out) {
463c84b9 2170 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2171 } else {
3f421baa 2172 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2173 }
2174}
2175
1da177e4
LT
2176static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2177 __u32 now, __s32 *seq_rtt)
2178{
2179 struct tcp_sock *tp = tcp_sk(sk);
2180 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2181 __u32 seq = tp->snd_una;
2182 __u32 packets_acked;
2183 int acked = 0;
2184
2185 /* If we get here, the whole TSO packet has not been
2186 * acked.
2187 */
2188 BUG_ON(!after(scb->end_seq, seq));
2189
2190 packets_acked = tcp_skb_pcount(skb);
2191 if (tcp_trim_head(sk, skb, seq - scb->seq))
2192 return 0;
2193 packets_acked -= tcp_skb_pcount(skb);
2194
2195 if (packets_acked) {
2196 __u8 sacked = scb->sacked;
2197
2198 acked |= FLAG_DATA_ACKED;
2199 if (sacked) {
2200 if (sacked & TCPCB_RETRANS) {
2201 if (sacked & TCPCB_SACKED_RETRANS)
2202 tp->retrans_out -= packets_acked;
2203 acked |= FLAG_RETRANS_DATA_ACKED;
2204 *seq_rtt = -1;
2205 } else if (*seq_rtt < 0)
2206 *seq_rtt = now - scb->when;
2207 if (sacked & TCPCB_SACKED_ACKED)
2208 tp->sacked_out -= packets_acked;
2209 if (sacked & TCPCB_LOST)
2210 tp->lost_out -= packets_acked;
2211 if (sacked & TCPCB_URG) {
2212 if (tp->urg_mode &&
2213 !before(seq, tp->snd_up))
2214 tp->urg_mode = 0;
2215 }
2216 } else if (*seq_rtt < 0)
2217 *seq_rtt = now - scb->when;
2218
2219 if (tp->fackets_out) {
2220 __u32 dval = min(tp->fackets_out, packets_acked);
2221 tp->fackets_out -= dval;
2222 }
2223 tp->packets_out -= packets_acked;
2224
2225 BUG_ON(tcp_skb_pcount(skb) == 0);
2226 BUG_ON(!before(scb->seq, scb->end_seq));
2227 }
2228
2229 return acked;
2230}
2231
40efc6fa 2232static u32 tcp_usrtt(const struct sk_buff *skb)
2d2abbab
SH
2233{
2234 struct timeval tv, now;
2235
2236 do_gettimeofday(&now);
2237 skb_get_timestamp(skb, &tv);
2238 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2239}
1da177e4
LT
2240
2241/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2242static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2243{
2244 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2245 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2246 struct sk_buff *skb;
2247 __u32 now = tcp_time_stamp;
2248 int acked = 0;
2249 __s32 seq_rtt = -1;
317a76f9 2250 u32 pkts_acked = 0;
2d2abbab
SH
2251 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2252 = icsk->icsk_ca_ops->rtt_sample;
1da177e4
LT
2253
2254 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2255 skb != sk->sk_send_head) {
2256 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2257 __u8 sacked = scb->sacked;
2258
2259 /* If our packet is before the ack sequence we can
2260 * discard it as it's confirmed to have arrived at
2261 * the other end.
2262 */
2263 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2264 if (tcp_skb_pcount(skb) > 1 &&
2265 after(tp->snd_una, scb->seq))
1da177e4
LT
2266 acked |= tcp_tso_acked(sk, skb,
2267 now, &seq_rtt);
2268 break;
2269 }
2270
2271 /* Initial outgoing SYN's get put onto the write_queue
2272 * just like anything else we transmit. It is not
2273 * true data, and if we misinform our callers that
2274 * this ACK acks real data, we will erroneously exit
2275 * connection startup slow start one packet too
2276 * quickly. This is severely frowned upon behavior.
2277 */
2278 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2279 acked |= FLAG_DATA_ACKED;
317a76f9 2280 ++pkts_acked;
1da177e4
LT
2281 } else {
2282 acked |= FLAG_SYN_ACKED;
2283 tp->retrans_stamp = 0;
2284 }
2285
5d424d5a
JH
2286 /* MTU probing checks */
2287 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2288 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2289 tcp_mtup_probe_success(sk, skb);
2290 }
2291 }
2292
1da177e4
LT
2293 if (sacked) {
2294 if (sacked & TCPCB_RETRANS) {
2295 if(sacked & TCPCB_SACKED_RETRANS)
2296 tp->retrans_out -= tcp_skb_pcount(skb);
2297 acked |= FLAG_RETRANS_DATA_ACKED;
2298 seq_rtt = -1;
2d2abbab 2299 } else if (seq_rtt < 0) {
1da177e4 2300 seq_rtt = now - scb->when;
2d2abbab
SH
2301 if (rtt_sample)
2302 (*rtt_sample)(sk, tcp_usrtt(skb));
a61bbcf2 2303 }
1da177e4
LT
2304 if (sacked & TCPCB_SACKED_ACKED)
2305 tp->sacked_out -= tcp_skb_pcount(skb);
2306 if (sacked & TCPCB_LOST)
2307 tp->lost_out -= tcp_skb_pcount(skb);
2308 if (sacked & TCPCB_URG) {
2309 if (tp->urg_mode &&
2310 !before(scb->end_seq, tp->snd_up))
2311 tp->urg_mode = 0;
2312 }
2d2abbab 2313 } else if (seq_rtt < 0) {
1da177e4 2314 seq_rtt = now - scb->when;
2d2abbab
SH
2315 if (rtt_sample)
2316 (*rtt_sample)(sk, tcp_usrtt(skb));
2317 }
1da177e4
LT
2318 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2319 tcp_packets_out_dec(tp, skb);
8728b834 2320 __skb_unlink(skb, &sk->sk_write_queue);
1da177e4 2321 sk_stream_free_skb(sk, skb);
6a438bbe 2322 clear_all_retrans_hints(tp);
1da177e4
LT
2323 }
2324
2325 if (acked&FLAG_ACKED) {
2d2abbab 2326 tcp_ack_update_rtt(sk, acked, seq_rtt);
1da177e4 2327 tcp_ack_packets_out(sk, tp);
317a76f9 2328
6687e988
ACM
2329 if (icsk->icsk_ca_ops->pkts_acked)
2330 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
1da177e4
LT
2331 }
2332
2333#if FASTRETRANS_DEBUG > 0
2334 BUG_TRAP((int)tp->sacked_out >= 0);
2335 BUG_TRAP((int)tp->lost_out >= 0);
2336 BUG_TRAP((int)tp->retrans_out >= 0);
2337 if (!tp->packets_out && tp->rx_opt.sack_ok) {
6687e988 2338 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2339 if (tp->lost_out) {
2340 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2341 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2342 tp->lost_out = 0;
2343 }
2344 if (tp->sacked_out) {
2345 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2346 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2347 tp->sacked_out = 0;
2348 }
2349 if (tp->retrans_out) {
2350 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2351 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2352 tp->retrans_out = 0;
2353 }
2354 }
2355#endif
2356 *seq_rtt_p = seq_rtt;
2357 return acked;
2358}
2359
2360static void tcp_ack_probe(struct sock *sk)
2361{
463c84b9
ACM
2362 const struct tcp_sock *tp = tcp_sk(sk);
2363 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2364
2365 /* Was it a usable window open? */
2366
2367 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2368 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2369 icsk->icsk_backoff = 0;
2370 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2371 /* Socket must be waked up by subsequent tcp_data_snd_check().
2372 * This function is not for random using!
2373 */
2374 } else {
463c84b9 2375 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2376 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2377 TCP_RTO_MAX);
1da177e4
LT
2378 }
2379}
2380
6687e988 2381static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2382{
2383 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2384 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2385}
2386
6687e988 2387static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2388{
6687e988 2389 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2390 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2391 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2392}
2393
2394/* Check that window update is acceptable.
2395 * The function assumes that snd_una<=ack<=snd_next.
2396 */
463c84b9
ACM
2397static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2398 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2399{
2400 return (after(ack, tp->snd_una) ||
2401 after(ack_seq, tp->snd_wl1) ||
2402 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2403}
2404
2405/* Update our send window.
2406 *
2407 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2408 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2409 */
2410static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2411 struct sk_buff *skb, u32 ack, u32 ack_seq)
2412{
2413 int flag = 0;
2414 u32 nwin = ntohs(skb->h.th->window);
2415
2416 if (likely(!skb->h.th->syn))
2417 nwin <<= tp->rx_opt.snd_wscale;
2418
2419 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2420 flag |= FLAG_WIN_UPDATE;
2421 tcp_update_wl(tp, ack, ack_seq);
2422
2423 if (tp->snd_wnd != nwin) {
2424 tp->snd_wnd = nwin;
2425
2426 /* Note, it is the only place, where
2427 * fast path is recovered for sending TCP.
2428 */
2ad41065 2429 tp->pred_flags = 0;
1da177e4
LT
2430 tcp_fast_path_check(sk, tp);
2431
2432 if (nwin > tp->max_window) {
2433 tp->max_window = nwin;
d83d8461 2434 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2435 }
2436 }
2437 }
2438
2439 tp->snd_una = ack;
2440
2441 return flag;
2442}
2443
2444static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2445{
2446 struct tcp_sock *tp = tcp_sk(sk);
2447
2448 tcp_sync_left_out(tp);
2449
2450 if (tp->snd_una == prior_snd_una ||
2451 !before(tp->snd_una, tp->frto_highmark)) {
2452 /* RTO was caused by loss, start retransmitting in
2453 * go-back-N slow start
2454 */
2455 tcp_enter_frto_loss(sk);
2456 return;
2457 }
2458
2459 if (tp->frto_counter == 1) {
2460 /* First ACK after RTO advances the window: allow two new
2461 * segments out.
2462 */
2463 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2464 } else {
2465 /* Also the second ACK after RTO advances the window.
2466 * The RTO was likely spurious. Reduce cwnd and continue
2467 * in congestion avoidance
2468 */
2469 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2470 tcp_moderate_cwnd(tp);
2471 }
2472
2473 /* F-RTO affects on two new ACKs following RTO.
caa20d9a 2474 * At latest on third ACK the TCP behavior is back to normal.
1da177e4
LT
2475 */
2476 tp->frto_counter = (tp->frto_counter + 1) % 3;
2477}
2478
1da177e4
LT
2479/* This routine deals with incoming acks, but not outgoing ones. */
2480static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2481{
6687e988 2482 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 u32 prior_snd_una = tp->snd_una;
2485 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2486 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2487 u32 prior_in_flight;
2488 s32 seq_rtt;
2489 int prior_packets;
2490
2491 /* If the ack is newer than sent or older than previous acks
2492 * then we can probably ignore it.
2493 */
2494 if (after(ack, tp->snd_nxt))
2495 goto uninteresting_ack;
2496
2497 if (before(ack, prior_snd_una))
2498 goto old_ack;
2499
9772efb9
SH
2500 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2501 tp->bytes_acked += ack - prior_snd_una;
2502
1da177e4
LT
2503 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2504 /* Window is constant, pure forward advance.
2505 * No more checks are required.
2506 * Note, we use the fact that SND.UNA>=SND.WL2.
2507 */
2508 tcp_update_wl(tp, ack, ack_seq);
2509 tp->snd_una = ack;
1da177e4
LT
2510 flag |= FLAG_WIN_UPDATE;
2511
6687e988 2512 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2513
1da177e4
LT
2514 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2515 } else {
2516 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2517 flag |= FLAG_DATA;
2518 else
2519 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2520
2521 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2522
2523 if (TCP_SKB_CB(skb)->sacked)
2524 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2525
2526 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2527 flag |= FLAG_ECE;
2528
6687e988 2529 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2530 }
2531
2532 /* We passed data and got it acked, remove any soft error
2533 * log. Something worked...
2534 */
2535 sk->sk_err_soft = 0;
2536 tp->rcv_tstamp = tcp_time_stamp;
2537 prior_packets = tp->packets_out;
2538 if (!prior_packets)
2539 goto no_queue;
2540
2541 prior_in_flight = tcp_packets_in_flight(tp);
2542
2543 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2544 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2545
2546 if (tp->frto_counter)
2547 tcp_process_frto(sk, prior_snd_una);
2548
6687e988 2549 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2550 /* Advance CWND, if state allows this. */
6687e988
ACM
2551 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2552 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
1da177e4
LT
2553 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2554 } else {
317a76f9 2555 if ((flag & FLAG_DATA_ACKED))
6687e988 2556 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
1da177e4
LT
2557 }
2558
2559 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2560 dst_confirm(sk->sk_dst_cache);
2561
2562 return 1;
2563
2564no_queue:
6687e988 2565 icsk->icsk_probes_out = 0;
1da177e4
LT
2566
2567 /* If this ack opens up a zero window, clear backoff. It was
2568 * being used to time the probes, and is probably far higher than
2569 * it needs to be for normal retransmission.
2570 */
2571 if (sk->sk_send_head)
2572 tcp_ack_probe(sk);
2573 return 1;
2574
2575old_ack:
2576 if (TCP_SKB_CB(skb)->sacked)
2577 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2578
2579uninteresting_ack:
2580 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2581 return 0;
2582}
2583
2584
2585/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2586 * But, this can also be called on packets in the established flow when
2587 * the fast version below fails.
2588 */
2589void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2590{
2591 unsigned char *ptr;
2592 struct tcphdr *th = skb->h.th;
2593 int length=(th->doff*4)-sizeof(struct tcphdr);
2594
2595 ptr = (unsigned char *)(th + 1);
2596 opt_rx->saw_tstamp = 0;
2597
2598 while(length>0) {
2599 int opcode=*ptr++;
2600 int opsize;
2601
2602 switch (opcode) {
2603 case TCPOPT_EOL:
2604 return;
2605 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2606 length--;
2607 continue;
2608 default:
2609 opsize=*ptr++;
2610 if (opsize < 2) /* "silly options" */
2611 return;
2612 if (opsize > length)
2613 return; /* don't parse partial options */
2614 switch(opcode) {
2615 case TCPOPT_MSS:
2616 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2617 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2618 if (in_mss) {
2619 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2620 in_mss = opt_rx->user_mss;
2621 opt_rx->mss_clamp = in_mss;
2622 }
2623 }
2624 break;
2625 case TCPOPT_WINDOW:
2626 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2627 if (sysctl_tcp_window_scaling) {
2628 __u8 snd_wscale = *(__u8 *) ptr;
2629 opt_rx->wscale_ok = 1;
2630 if (snd_wscale > 14) {
2631 if(net_ratelimit())
2632 printk(KERN_INFO "tcp_parse_options: Illegal window "
2633 "scaling value %d >14 received.\n",
2634 snd_wscale);
2635 snd_wscale = 14;
2636 }
2637 opt_rx->snd_wscale = snd_wscale;
2638 }
2639 break;
2640 case TCPOPT_TIMESTAMP:
2641 if(opsize==TCPOLEN_TIMESTAMP) {
2642 if ((estab && opt_rx->tstamp_ok) ||
2643 (!estab && sysctl_tcp_timestamps)) {
2644 opt_rx->saw_tstamp = 1;
2645 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2646 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2647 }
2648 }
2649 break;
2650 case TCPOPT_SACK_PERM:
2651 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2652 if (sysctl_tcp_sack) {
2653 opt_rx->sack_ok = 1;
2654 tcp_sack_reset(opt_rx);
2655 }
2656 }
2657 break;
2658
2659 case TCPOPT_SACK:
2660 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2661 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2662 opt_rx->sack_ok) {
2663 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2664 }
2665 };
2666 ptr+=opsize-2;
2667 length-=opsize;
2668 };
2669 }
2670}
2671
2672/* Fast parse options. This hopes to only see timestamps.
2673 * If it is wrong it falls back on tcp_parse_options().
2674 */
40efc6fa
SH
2675static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2676 struct tcp_sock *tp)
1da177e4
LT
2677{
2678 if (th->doff == sizeof(struct tcphdr)>>2) {
2679 tp->rx_opt.saw_tstamp = 0;
2680 return 0;
2681 } else if (tp->rx_opt.tstamp_ok &&
2682 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2683 __u32 *ptr = (__u32 *)(th + 1);
2684 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2685 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2686 tp->rx_opt.saw_tstamp = 1;
2687 ++ptr;
2688 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2689 ++ptr;
2690 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2691 return 1;
2692 }
2693 }
2694 tcp_parse_options(skb, &tp->rx_opt, 1);
2695 return 1;
2696}
2697
2698static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2699{
2700 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2701 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2702}
2703
2704static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2705{
2706 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2707 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2708 * extra check below makes sure this can only happen
2709 * for pure ACK frames. -DaveM
2710 *
2711 * Not only, also it occurs for expired timestamps.
2712 */
2713
2714 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2715 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2716 tcp_store_ts_recent(tp);
2717 }
2718}
2719
2720/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2721 *
2722 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2723 * it can pass through stack. So, the following predicate verifies that
2724 * this segment is not used for anything but congestion avoidance or
2725 * fast retransmit. Moreover, we even are able to eliminate most of such
2726 * second order effects, if we apply some small "replay" window (~RTO)
2727 * to timestamp space.
2728 *
2729 * All these measures still do not guarantee that we reject wrapped ACKs
2730 * on networks with high bandwidth, when sequence space is recycled fastly,
2731 * but it guarantees that such events will be very rare and do not affect
2732 * connection seriously. This doesn't look nice, but alas, PAWS is really
2733 * buggy extension.
2734 *
2735 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2736 * states that events when retransmit arrives after original data are rare.
2737 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2738 * the biggest problem on large power networks even with minor reordering.
2739 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2740 * up to bandwidth of 18Gigabit/sec. 8) ]
2741 */
2742
463c84b9 2743static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2744{
463c84b9 2745 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2746 struct tcphdr *th = skb->h.th;
2747 u32 seq = TCP_SKB_CB(skb)->seq;
2748 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2749
2750 return (/* 1. Pure ACK with correct sequence number. */
2751 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2752
2753 /* 2. ... and duplicate ACK. */
2754 ack == tp->snd_una &&
2755
2756 /* 3. ... and does not update window. */
2757 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2758
2759 /* 4. ... and sits in replay window. */
463c84b9 2760 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
2761}
2762
463c84b9 2763static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2764{
463c84b9 2765 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2766 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2767 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 2768 !tcp_disordered_ack(sk, skb));
1da177e4
LT
2769}
2770
2771/* Check segment sequence number for validity.
2772 *
2773 * Segment controls are considered valid, if the segment
2774 * fits to the window after truncation to the window. Acceptability
2775 * of data (and SYN, FIN, of course) is checked separately.
2776 * See tcp_data_queue(), for example.
2777 *
2778 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2779 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2780 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2781 * (borrowed from freebsd)
2782 */
2783
2784static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2785{
2786 return !before(end_seq, tp->rcv_wup) &&
2787 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2788}
2789
2790/* When we get a reset we do this. */
2791static void tcp_reset(struct sock *sk)
2792{
2793 /* We want the right error as BSD sees it (and indeed as we do). */
2794 switch (sk->sk_state) {
2795 case TCP_SYN_SENT:
2796 sk->sk_err = ECONNREFUSED;
2797 break;
2798 case TCP_CLOSE_WAIT:
2799 sk->sk_err = EPIPE;
2800 break;
2801 case TCP_CLOSE:
2802 return;
2803 default:
2804 sk->sk_err = ECONNRESET;
2805 }
2806
2807 if (!sock_flag(sk, SOCK_DEAD))
2808 sk->sk_error_report(sk);
2809
2810 tcp_done(sk);
2811}
2812
2813/*
2814 * Process the FIN bit. This now behaves as it is supposed to work
2815 * and the FIN takes effect when it is validly part of sequence
2816 * space. Not before when we get holes.
2817 *
2818 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2819 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2820 * TIME-WAIT)
2821 *
2822 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2823 * close and we go into CLOSING (and later onto TIME-WAIT)
2824 *
2825 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2826 */
2827static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2828{
2829 struct tcp_sock *tp = tcp_sk(sk);
2830
463c84b9 2831 inet_csk_schedule_ack(sk);
1da177e4
LT
2832
2833 sk->sk_shutdown |= RCV_SHUTDOWN;
2834 sock_set_flag(sk, SOCK_DONE);
2835
2836 switch (sk->sk_state) {
2837 case TCP_SYN_RECV:
2838 case TCP_ESTABLISHED:
2839 /* Move to CLOSE_WAIT */
2840 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 2841 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
2842 break;
2843
2844 case TCP_CLOSE_WAIT:
2845 case TCP_CLOSING:
2846 /* Received a retransmission of the FIN, do
2847 * nothing.
2848 */
2849 break;
2850 case TCP_LAST_ACK:
2851 /* RFC793: Remain in the LAST-ACK state. */
2852 break;
2853
2854 case TCP_FIN_WAIT1:
2855 /* This case occurs when a simultaneous close
2856 * happens, we must ack the received FIN and
2857 * enter the CLOSING state.
2858 */
2859 tcp_send_ack(sk);
2860 tcp_set_state(sk, TCP_CLOSING);
2861 break;
2862 case TCP_FIN_WAIT2:
2863 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2864 tcp_send_ack(sk);
2865 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2866 break;
2867 default:
2868 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2869 * cases we should never reach this piece of code.
2870 */
2871 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2872 __FUNCTION__, sk->sk_state);
2873 break;
2874 };
2875
2876 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2877 * Probably, we should reset in this case. For now drop them.
2878 */
2879 __skb_queue_purge(&tp->out_of_order_queue);
2880 if (tp->rx_opt.sack_ok)
2881 tcp_sack_reset(&tp->rx_opt);
2882 sk_stream_mem_reclaim(sk);
2883
2884 if (!sock_flag(sk, SOCK_DEAD)) {
2885 sk->sk_state_change(sk);
2886
2887 /* Do not send POLL_HUP for half duplex close. */
2888 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2889 sk->sk_state == TCP_CLOSE)
2890 sk_wake_async(sk, 1, POLL_HUP);
2891 else
2892 sk_wake_async(sk, 1, POLL_IN);
2893 }
2894}
2895
40efc6fa 2896static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
2897{
2898 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2899 if (before(seq, sp->start_seq))
2900 sp->start_seq = seq;
2901 if (after(end_seq, sp->end_seq))
2902 sp->end_seq = end_seq;
2903 return 1;
2904 }
2905 return 0;
2906}
2907
40efc6fa 2908static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
2909{
2910 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2911 if (before(seq, tp->rcv_nxt))
2912 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2913 else
2914 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2915
2916 tp->rx_opt.dsack = 1;
2917 tp->duplicate_sack[0].start_seq = seq;
2918 tp->duplicate_sack[0].end_seq = end_seq;
2919 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2920 }
2921}
2922
40efc6fa 2923static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
2924{
2925 if (!tp->rx_opt.dsack)
2926 tcp_dsack_set(tp, seq, end_seq);
2927 else
2928 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2929}
2930
2931static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2932{
2933 struct tcp_sock *tp = tcp_sk(sk);
2934
2935 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2936 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2937 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 2938 tcp_enter_quickack_mode(sk);
1da177e4
LT
2939
2940 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2941 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2942
2943 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2944 end_seq = tp->rcv_nxt;
2945 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2946 }
2947 }
2948
2949 tcp_send_ack(sk);
2950}
2951
2952/* These routines update the SACK block as out-of-order packets arrive or
2953 * in-order packets close up the sequence space.
2954 */
2955static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2956{
2957 int this_sack;
2958 struct tcp_sack_block *sp = &tp->selective_acks[0];
2959 struct tcp_sack_block *swalk = sp+1;
2960
2961 /* See if the recent change to the first SACK eats into
2962 * or hits the sequence space of other SACK blocks, if so coalesce.
2963 */
2964 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2965 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2966 int i;
2967
2968 /* Zap SWALK, by moving every further SACK up by one slot.
2969 * Decrease num_sacks.
2970 */
2971 tp->rx_opt.num_sacks--;
2972 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2973 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2974 sp[i] = sp[i+1];
2975 continue;
2976 }
2977 this_sack++, swalk++;
2978 }
2979}
2980
40efc6fa 2981static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
2982{
2983 __u32 tmp;
2984
2985 tmp = sack1->start_seq;
2986 sack1->start_seq = sack2->start_seq;
2987 sack2->start_seq = tmp;
2988
2989 tmp = sack1->end_seq;
2990 sack1->end_seq = sack2->end_seq;
2991 sack2->end_seq = tmp;
2992}
2993
2994static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2995{
2996 struct tcp_sock *tp = tcp_sk(sk);
2997 struct tcp_sack_block *sp = &tp->selective_acks[0];
2998 int cur_sacks = tp->rx_opt.num_sacks;
2999 int this_sack;
3000
3001 if (!cur_sacks)
3002 goto new_sack;
3003
3004 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3005 if (tcp_sack_extend(sp, seq, end_seq)) {
3006 /* Rotate this_sack to the first one. */
3007 for (; this_sack>0; this_sack--, sp--)
3008 tcp_sack_swap(sp, sp-1);
3009 if (cur_sacks > 1)
3010 tcp_sack_maybe_coalesce(tp);
3011 return;
3012 }
3013 }
3014
3015 /* Could not find an adjacent existing SACK, build a new one,
3016 * put it at the front, and shift everyone else down. We
3017 * always know there is at least one SACK present already here.
3018 *
3019 * If the sack array is full, forget about the last one.
3020 */
3021 if (this_sack >= 4) {
3022 this_sack--;
3023 tp->rx_opt.num_sacks--;
3024 sp--;
3025 }
3026 for(; this_sack > 0; this_sack--, sp--)
3027 *sp = *(sp-1);
3028
3029new_sack:
3030 /* Build the new head SACK, and we're done. */
3031 sp->start_seq = seq;
3032 sp->end_seq = end_seq;
3033 tp->rx_opt.num_sacks++;
3034 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3035}
3036
3037/* RCV.NXT advances, some SACKs should be eaten. */
3038
3039static void tcp_sack_remove(struct tcp_sock *tp)
3040{
3041 struct tcp_sack_block *sp = &tp->selective_acks[0];
3042 int num_sacks = tp->rx_opt.num_sacks;
3043 int this_sack;
3044
3045 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3046 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3047 tp->rx_opt.num_sacks = 0;
3048 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3049 return;
3050 }
3051
3052 for(this_sack = 0; this_sack < num_sacks; ) {
3053 /* Check if the start of the sack is covered by RCV.NXT. */
3054 if (!before(tp->rcv_nxt, sp->start_seq)) {
3055 int i;
3056
3057 /* RCV.NXT must cover all the block! */
3058 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3059
3060 /* Zap this SACK, by moving forward any other SACKS. */
3061 for (i=this_sack+1; i < num_sacks; i++)
3062 tp->selective_acks[i-1] = tp->selective_acks[i];
3063 num_sacks--;
3064 continue;
3065 }
3066 this_sack++;
3067 sp++;
3068 }
3069 if (num_sacks != tp->rx_opt.num_sacks) {
3070 tp->rx_opt.num_sacks = num_sacks;
3071 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3072 }
3073}
3074
3075/* This one checks to see if we can put data from the
3076 * out_of_order queue into the receive_queue.
3077 */
3078static void tcp_ofo_queue(struct sock *sk)
3079{
3080 struct tcp_sock *tp = tcp_sk(sk);
3081 __u32 dsack_high = tp->rcv_nxt;
3082 struct sk_buff *skb;
3083
3084 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3085 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3086 break;
3087
3088 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3089 __u32 dsack = dsack_high;
3090 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3091 dsack_high = TCP_SKB_CB(skb)->end_seq;
3092 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3093 }
3094
3095 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3096 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3097 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3098 __kfree_skb(skb);
3099 continue;
3100 }
3101 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3102 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3103 TCP_SKB_CB(skb)->end_seq);
3104
8728b834 3105 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3106 __skb_queue_tail(&sk->sk_receive_queue, skb);
3107 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3108 if(skb->h.th->fin)
3109 tcp_fin(skb, sk, skb->h.th);
3110 }
3111}
3112
3113static int tcp_prune_queue(struct sock *sk);
3114
3115static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3116{
3117 struct tcphdr *th = skb->h.th;
3118 struct tcp_sock *tp = tcp_sk(sk);
3119 int eaten = -1;
3120
3121 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3122 goto drop;
3123
1da177e4
LT
3124 __skb_pull(skb, th->doff*4);
3125
3126 TCP_ECN_accept_cwr(tp, skb);
3127
3128 if (tp->rx_opt.dsack) {
3129 tp->rx_opt.dsack = 0;
3130 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3131 4 - tp->rx_opt.tstamp_ok);
3132 }
3133
3134 /* Queue data for delivery to the user.
3135 * Packets in sequence go to the receive queue.
3136 * Out of sequence packets to the out_of_order_queue.
3137 */
3138 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3139 if (tcp_receive_window(tp) == 0)
3140 goto out_of_window;
3141
3142 /* Ok. In sequence. In window. */
3143 if (tp->ucopy.task == current &&
3144 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3145 sock_owned_by_user(sk) && !tp->urg_data) {
3146 int chunk = min_t(unsigned int, skb->len,
3147 tp->ucopy.len);
3148
3149 __set_current_state(TASK_RUNNING);
3150
3151 local_bh_enable();
3152 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3153 tp->ucopy.len -= chunk;
3154 tp->copied_seq += chunk;
3155 eaten = (chunk == skb->len && !th->fin);
3156 tcp_rcv_space_adjust(sk);
3157 }
3158 local_bh_disable();
3159 }
3160
3161 if (eaten <= 0) {
3162queue_and_out:
3163 if (eaten < 0 &&
3164 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3165 !sk_stream_rmem_schedule(sk, skb))) {
3166 if (tcp_prune_queue(sk) < 0 ||
3167 !sk_stream_rmem_schedule(sk, skb))
3168 goto drop;
3169 }
3170 sk_stream_set_owner_r(skb, sk);
3171 __skb_queue_tail(&sk->sk_receive_queue, skb);
3172 }
3173 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3174 if(skb->len)
3175 tcp_event_data_recv(sk, tp, skb);
3176 if(th->fin)
3177 tcp_fin(skb, sk, th);
3178
b03efcfb 3179 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3180 tcp_ofo_queue(sk);
3181
3182 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3183 * gap in queue is filled.
3184 */
b03efcfb 3185 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3186 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3187 }
3188
3189 if (tp->rx_opt.num_sacks)
3190 tcp_sack_remove(tp);
3191
3192 tcp_fast_path_check(sk, tp);
3193
3194 if (eaten > 0)
3195 __kfree_skb(skb);
3196 else if (!sock_flag(sk, SOCK_DEAD))
3197 sk->sk_data_ready(sk, 0);
3198 return;
3199 }
3200
3201 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3202 /* A retransmit, 2nd most common case. Force an immediate ack. */
3203 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3204 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3205
3206out_of_window:
463c84b9
ACM
3207 tcp_enter_quickack_mode(sk);
3208 inet_csk_schedule_ack(sk);
1da177e4
LT
3209drop:
3210 __kfree_skb(skb);
3211 return;
3212 }
3213
3214 /* Out of window. F.e. zero window probe. */
3215 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3216 goto out_of_window;
3217
463c84b9 3218 tcp_enter_quickack_mode(sk);
1da177e4
LT
3219
3220 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3221 /* Partial packet, seq < rcv_next < end_seq */
3222 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3223 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3224 TCP_SKB_CB(skb)->end_seq);
3225
3226 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3227
3228 /* If window is closed, drop tail of packet. But after
3229 * remembering D-SACK for its head made in previous line.
3230 */
3231 if (!tcp_receive_window(tp))
3232 goto out_of_window;
3233 goto queue_and_out;
3234 }
3235
3236 TCP_ECN_check_ce(tp, skb);
3237
3238 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3239 !sk_stream_rmem_schedule(sk, skb)) {
3240 if (tcp_prune_queue(sk) < 0 ||
3241 !sk_stream_rmem_schedule(sk, skb))
3242 goto drop;
3243 }
3244
3245 /* Disable header prediction. */
3246 tp->pred_flags = 0;
463c84b9 3247 inet_csk_schedule_ack(sk);
1da177e4
LT
3248
3249 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3250 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3251
3252 sk_stream_set_owner_r(skb, sk);
3253
3254 if (!skb_peek(&tp->out_of_order_queue)) {
3255 /* Initial out of order segment, build 1 SACK. */
3256 if (tp->rx_opt.sack_ok) {
3257 tp->rx_opt.num_sacks = 1;
3258 tp->rx_opt.dsack = 0;
3259 tp->rx_opt.eff_sacks = 1;
3260 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3261 tp->selective_acks[0].end_seq =
3262 TCP_SKB_CB(skb)->end_seq;
3263 }
3264 __skb_queue_head(&tp->out_of_order_queue,skb);
3265 } else {
3266 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3267 u32 seq = TCP_SKB_CB(skb)->seq;
3268 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3269
3270 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3271 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3272
3273 if (!tp->rx_opt.num_sacks ||
3274 tp->selective_acks[0].end_seq != seq)
3275 goto add_sack;
3276
3277 /* Common case: data arrive in order after hole. */
3278 tp->selective_acks[0].end_seq = end_seq;
3279 return;
3280 }
3281
3282 /* Find place to insert this segment. */
3283 do {
3284 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3285 break;
3286 } while ((skb1 = skb1->prev) !=
3287 (struct sk_buff*)&tp->out_of_order_queue);
3288
3289 /* Do skb overlap to previous one? */
3290 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3291 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3292 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3293 /* All the bits are present. Drop. */
3294 __kfree_skb(skb);
3295 tcp_dsack_set(tp, seq, end_seq);
3296 goto add_sack;
3297 }
3298 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3299 /* Partial overlap. */
3300 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3301 } else {
3302 skb1 = skb1->prev;
3303 }
3304 }
3305 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3306
3307 /* And clean segments covered by new one as whole. */
3308 while ((skb1 = skb->next) !=
3309 (struct sk_buff*)&tp->out_of_order_queue &&
3310 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3311 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3312 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3313 break;
3314 }
8728b834 3315 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3316 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3317 __kfree_skb(skb1);
3318 }
3319
3320add_sack:
3321 if (tp->rx_opt.sack_ok)
3322 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3323 }
3324}
3325
3326/* Collapse contiguous sequence of skbs head..tail with
3327 * sequence numbers start..end.
3328 * Segments with FIN/SYN are not collapsed (only because this
3329 * simplifies code)
3330 */
3331static void
8728b834
DM
3332tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3333 struct sk_buff *head, struct sk_buff *tail,
3334 u32 start, u32 end)
1da177e4
LT
3335{
3336 struct sk_buff *skb;
3337
caa20d9a 3338 /* First, check that queue is collapsible and find
1da177e4
LT
3339 * the point where collapsing can be useful. */
3340 for (skb = head; skb != tail; ) {
3341 /* No new bits? It is possible on ofo queue. */
3342 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3343 struct sk_buff *next = skb->next;
8728b834 3344 __skb_unlink(skb, list);
1da177e4
LT
3345 __kfree_skb(skb);
3346 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3347 skb = next;
3348 continue;
3349 }
3350
3351 /* The first skb to collapse is:
3352 * - not SYN/FIN and
3353 * - bloated or contains data before "start" or
3354 * overlaps to the next one.
3355 */
3356 if (!skb->h.th->syn && !skb->h.th->fin &&
3357 (tcp_win_from_space(skb->truesize) > skb->len ||
3358 before(TCP_SKB_CB(skb)->seq, start) ||
3359 (skb->next != tail &&
3360 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3361 break;
3362
3363 /* Decided to skip this, advance start seq. */
3364 start = TCP_SKB_CB(skb)->end_seq;
3365 skb = skb->next;
3366 }
3367 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3368 return;
3369
3370 while (before(start, end)) {
3371 struct sk_buff *nskb;
3372 int header = skb_headroom(skb);
3373 int copy = SKB_MAX_ORDER(header, 0);
3374
3375 /* Too big header? This can happen with IPv6. */
3376 if (copy < 0)
3377 return;
3378 if (end-start < copy)
3379 copy = end-start;
3380 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3381 if (!nskb)
3382 return;
3383 skb_reserve(nskb, header);
3384 memcpy(nskb->head, skb->head, header);
3385 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3386 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3387 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3388 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3389 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3390 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3391 sk_stream_set_owner_r(nskb, sk);
3392
3393 /* Copy data, releasing collapsed skbs. */
3394 while (copy > 0) {
3395 int offset = start - TCP_SKB_CB(skb)->seq;
3396 int size = TCP_SKB_CB(skb)->end_seq - start;
3397
09a62660 3398 BUG_ON(offset < 0);
1da177e4
LT
3399 if (size > 0) {
3400 size = min(copy, size);
3401 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3402 BUG();
3403 TCP_SKB_CB(nskb)->end_seq += size;
3404 copy -= size;
3405 start += size;
3406 }
3407 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3408 struct sk_buff *next = skb->next;
8728b834 3409 __skb_unlink(skb, list);
1da177e4
LT
3410 __kfree_skb(skb);
3411 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3412 skb = next;
3413 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3414 return;
3415 }
3416 }
3417 }
3418}
3419
3420/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3421 * and tcp_collapse() them until all the queue is collapsed.
3422 */
3423static void tcp_collapse_ofo_queue(struct sock *sk)
3424{
3425 struct tcp_sock *tp = tcp_sk(sk);
3426 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3427 struct sk_buff *head;
3428 u32 start, end;
3429
3430 if (skb == NULL)
3431 return;
3432
3433 start = TCP_SKB_CB(skb)->seq;
3434 end = TCP_SKB_CB(skb)->end_seq;
3435 head = skb;
3436
3437 for (;;) {
3438 skb = skb->next;
3439
3440 /* Segment is terminated when we see gap or when
3441 * we are at the end of all the queue. */
3442 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3443 after(TCP_SKB_CB(skb)->seq, end) ||
3444 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3445 tcp_collapse(sk, &tp->out_of_order_queue,
3446 head, skb, start, end);
1da177e4
LT
3447 head = skb;
3448 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3449 break;
3450 /* Start new segment */
3451 start = TCP_SKB_CB(skb)->seq;
3452 end = TCP_SKB_CB(skb)->end_seq;
3453 } else {
3454 if (before(TCP_SKB_CB(skb)->seq, start))
3455 start = TCP_SKB_CB(skb)->seq;
3456 if (after(TCP_SKB_CB(skb)->end_seq, end))
3457 end = TCP_SKB_CB(skb)->end_seq;
3458 }
3459 }
3460}
3461
3462/* Reduce allocated memory if we can, trying to get
3463 * the socket within its memory limits again.
3464 *
3465 * Return less than zero if we should start dropping frames
3466 * until the socket owning process reads some of the data
3467 * to stabilize the situation.
3468 */
3469static int tcp_prune_queue(struct sock *sk)
3470{
3471 struct tcp_sock *tp = tcp_sk(sk);
3472
3473 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3474
3475 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3476
3477 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3478 tcp_clamp_window(sk, tp);
3479 else if (tcp_memory_pressure)
3480 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3481
3482 tcp_collapse_ofo_queue(sk);
8728b834
DM
3483 tcp_collapse(sk, &sk->sk_receive_queue,
3484 sk->sk_receive_queue.next,
1da177e4
LT
3485 (struct sk_buff*)&sk->sk_receive_queue,
3486 tp->copied_seq, tp->rcv_nxt);
3487 sk_stream_mem_reclaim(sk);
3488
3489 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3490 return 0;
3491
3492 /* Collapsing did not help, destructive actions follow.
3493 * This must not ever occur. */
3494
3495 /* First, purge the out_of_order queue. */
b03efcfb
DM
3496 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3497 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3498 __skb_queue_purge(&tp->out_of_order_queue);
3499
3500 /* Reset SACK state. A conforming SACK implementation will
3501 * do the same at a timeout based retransmit. When a connection
3502 * is in a sad state like this, we care only about integrity
3503 * of the connection not performance.
3504 */
3505 if (tp->rx_opt.sack_ok)
3506 tcp_sack_reset(&tp->rx_opt);
3507 sk_stream_mem_reclaim(sk);
3508 }
3509
3510 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3511 return 0;
3512
3513 /* If we are really being abused, tell the caller to silently
3514 * drop receive data on the floor. It will get retransmitted
3515 * and hopefully then we'll have sufficient space.
3516 */
3517 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3518
3519 /* Massive buffer overcommit. */
3520 tp->pred_flags = 0;
3521 return -1;
3522}
3523
3524
3525/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3526 * As additional protections, we do not touch cwnd in retransmission phases,
3527 * and if application hit its sndbuf limit recently.
3528 */
3529void tcp_cwnd_application_limited(struct sock *sk)
3530{
3531 struct tcp_sock *tp = tcp_sk(sk);
3532
6687e988 3533 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3534 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3535 /* Limited by application or receiver window. */
3536 u32 win_used = max(tp->snd_cwnd_used, 2U);
3537 if (win_used < tp->snd_cwnd) {
6687e988 3538 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3539 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3540 }
3541 tp->snd_cwnd_used = 0;
3542 }
3543 tp->snd_cwnd_stamp = tcp_time_stamp;
3544}
3545
40efc6fa 3546static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
0d9901df
DM
3547{
3548 /* If the user specified a specific send buffer setting, do
3549 * not modify it.
3550 */
3551 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3552 return 0;
3553
3554 /* If we are under global TCP memory pressure, do not expand. */
3555 if (tcp_memory_pressure)
3556 return 0;
3557
3558 /* If we are under soft global TCP memory pressure, do not expand. */
3559 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3560 return 0;
3561
3562 /* If we filled the congestion window, do not expand. */
3563 if (tp->packets_out >= tp->snd_cwnd)
3564 return 0;
3565
3566 return 1;
3567}
1da177e4
LT
3568
3569/* When incoming ACK allowed to free some skb from write_queue,
3570 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3571 * on the exit from tcp input handler.
3572 *
3573 * PROBLEM: sndbuf expansion does not work well with largesend.
3574 */
3575static void tcp_new_space(struct sock *sk)
3576{
3577 struct tcp_sock *tp = tcp_sk(sk);
3578
0d9901df 3579 if (tcp_should_expand_sndbuf(sk, tp)) {
c1b4a7e6 3580 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3581 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3582 demanded = max_t(unsigned int, tp->snd_cwnd,
3583 tp->reordering + 1);
3584 sndmem *= 2*demanded;
3585 if (sndmem > sk->sk_sndbuf)
3586 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3587 tp->snd_cwnd_stamp = tcp_time_stamp;
3588 }
3589
3590 sk->sk_write_space(sk);
3591}
3592
40efc6fa 3593static void tcp_check_space(struct sock *sk)
1da177e4
LT
3594{
3595 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3596 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3597 if (sk->sk_socket &&
3598 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3599 tcp_new_space(sk);
3600 }
3601}
3602
40efc6fa 3603static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
1da177e4 3604{
55c97f3e 3605 tcp_push_pending_frames(sk, tp);
1da177e4
LT
3606 tcp_check_space(sk);
3607}
3608
3609/*
3610 * Check if sending an ack is needed.
3611 */
3612static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3613{
3614 struct tcp_sock *tp = tcp_sk(sk);
3615
3616 /* More than one full frame received... */
463c84b9 3617 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
3618 /* ... and right edge of window advances far enough.
3619 * (tcp_recvmsg() will send ACK otherwise). Or...
3620 */
3621 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3622 /* We ACK each frame or... */
463c84b9 3623 tcp_in_quickack_mode(sk) ||
1da177e4
LT
3624 /* We have out of order data. */
3625 (ofo_possible &&
3626 skb_peek(&tp->out_of_order_queue))) {
3627 /* Then ack it now */
3628 tcp_send_ack(sk);
3629 } else {
3630 /* Else, send delayed ack. */
3631 tcp_send_delayed_ack(sk);
3632 }
3633}
3634
40efc6fa 3635static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 3636{
463c84b9 3637 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
3638 /* We sent a data segment already. */
3639 return;
3640 }
3641 __tcp_ack_snd_check(sk, 1);
3642}
3643
3644/*
3645 * This routine is only called when we have urgent data
caa20d9a 3646 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
3647 * moved inline now as tcp_urg is only called from one
3648 * place. We handle URGent data wrong. We have to - as
3649 * BSD still doesn't use the correction from RFC961.
3650 * For 1003.1g we should support a new option TCP_STDURG to permit
3651 * either form (or just set the sysctl tcp_stdurg).
3652 */
3653
3654static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3655{
3656 struct tcp_sock *tp = tcp_sk(sk);
3657 u32 ptr = ntohs(th->urg_ptr);
3658
3659 if (ptr && !sysctl_tcp_stdurg)
3660 ptr--;
3661 ptr += ntohl(th->seq);
3662
3663 /* Ignore urgent data that we've already seen and read. */
3664 if (after(tp->copied_seq, ptr))
3665 return;
3666
3667 /* Do not replay urg ptr.
3668 *
3669 * NOTE: interesting situation not covered by specs.
3670 * Misbehaving sender may send urg ptr, pointing to segment,
3671 * which we already have in ofo queue. We are not able to fetch
3672 * such data and will stay in TCP_URG_NOTYET until will be eaten
3673 * by recvmsg(). Seems, we are not obliged to handle such wicked
3674 * situations. But it is worth to think about possibility of some
3675 * DoSes using some hypothetical application level deadlock.
3676 */
3677 if (before(ptr, tp->rcv_nxt))
3678 return;
3679
3680 /* Do we already have a newer (or duplicate) urgent pointer? */
3681 if (tp->urg_data && !after(ptr, tp->urg_seq))
3682 return;
3683
3684 /* Tell the world about our new urgent pointer. */
3685 sk_send_sigurg(sk);
3686
3687 /* We may be adding urgent data when the last byte read was
3688 * urgent. To do this requires some care. We cannot just ignore
3689 * tp->copied_seq since we would read the last urgent byte again
3690 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 3691 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
3692 *
3693 * NOTE. Double Dutch. Rendering to plain English: author of comment
3694 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3695 * and expect that both A and B disappear from stream. This is _wrong_.
3696 * Though this happens in BSD with high probability, this is occasional.
3697 * Any application relying on this is buggy. Note also, that fix "works"
3698 * only in this artificial test. Insert some normal data between A and B and we will
3699 * decline of BSD again. Verdict: it is better to remove to trap
3700 * buggy users.
3701 */
3702 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3703 !sock_flag(sk, SOCK_URGINLINE) &&
3704 tp->copied_seq != tp->rcv_nxt) {
3705 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3706 tp->copied_seq++;
3707 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 3708 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
3709 __kfree_skb(skb);
3710 }
3711 }
3712
3713 tp->urg_data = TCP_URG_NOTYET;
3714 tp->urg_seq = ptr;
3715
3716 /* Disable header prediction. */
3717 tp->pred_flags = 0;
3718}
3719
3720/* This is the 'fast' part of urgent handling. */
3721static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3722{
3723 struct tcp_sock *tp = tcp_sk(sk);
3724
3725 /* Check if we get a new urgent pointer - normally not. */
3726 if (th->urg)
3727 tcp_check_urg(sk,th);
3728
3729 /* Do we wait for any urgent data? - normally not... */
3730 if (tp->urg_data == TCP_URG_NOTYET) {
3731 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3732 th->syn;
3733
3734 /* Is the urgent pointer pointing into this packet? */
3735 if (ptr < skb->len) {
3736 u8 tmp;
3737 if (skb_copy_bits(skb, ptr, &tmp, 1))
3738 BUG();
3739 tp->urg_data = TCP_URG_VALID | tmp;
3740 if (!sock_flag(sk, SOCK_DEAD))
3741 sk->sk_data_ready(sk, 0);
3742 }
3743 }
3744}
3745
3746static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3747{
3748 struct tcp_sock *tp = tcp_sk(sk);
3749 int chunk = skb->len - hlen;
3750 int err;
3751
3752 local_bh_enable();
3753 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3754 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3755 else
3756 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3757 tp->ucopy.iov);
3758
3759 if (!err) {
3760 tp->ucopy.len -= chunk;
3761 tp->copied_seq += chunk;
3762 tcp_rcv_space_adjust(sk);
3763 }
3764
3765 local_bh_disable();
3766 return err;
3767}
3768
3769static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3770{
3771 int result;
3772
3773 if (sock_owned_by_user(sk)) {
3774 local_bh_enable();
3775 result = __tcp_checksum_complete(skb);
3776 local_bh_disable();
3777 } else {
3778 result = __tcp_checksum_complete(skb);
3779 }
3780 return result;
3781}
3782
40efc6fa 3783static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
3784{
3785 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3786 __tcp_checksum_complete_user(sk, skb);
3787}
3788
1a2449a8
CL
3789#ifdef CONFIG_NET_DMA
3790static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3791{
3792 struct tcp_sock *tp = tcp_sk(sk);
3793 int chunk = skb->len - hlen;
3794 int dma_cookie;
3795 int copied_early = 0;
3796
3797 if (tp->ucopy.wakeup)
3798 return 0;
3799
3800 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3801 tp->ucopy.dma_chan = get_softnet_dma();
3802
3803 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3804
3805 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3806 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3807
3808 if (dma_cookie < 0)
3809 goto out;
3810
3811 tp->ucopy.dma_cookie = dma_cookie;
3812 copied_early = 1;
3813
3814 tp->ucopy.len -= chunk;
3815 tp->copied_seq += chunk;
3816 tcp_rcv_space_adjust(sk);
3817
3818 if ((tp->ucopy.len == 0) ||
3819 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3820 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3821 tp->ucopy.wakeup = 1;
3822 sk->sk_data_ready(sk, 0);
3823 }
3824 } else if (chunk > 0) {
3825 tp->ucopy.wakeup = 1;
3826 sk->sk_data_ready(sk, 0);
3827 }
3828out:
3829 return copied_early;
3830}
3831#endif /* CONFIG_NET_DMA */
3832
1da177e4
LT
3833/*
3834 * TCP receive function for the ESTABLISHED state.
3835 *
3836 * It is split into a fast path and a slow path. The fast path is
3837 * disabled when:
3838 * - A zero window was announced from us - zero window probing
3839 * is only handled properly in the slow path.
3840 * - Out of order segments arrived.
3841 * - Urgent data is expected.
3842 * - There is no buffer space left
3843 * - Unexpected TCP flags/window values/header lengths are received
3844 * (detected by checking the TCP header against pred_flags)
3845 * - Data is sent in both directions. Fast path only supports pure senders
3846 * or pure receivers (this means either the sequence number or the ack
3847 * value must stay constant)
3848 * - Unexpected TCP option.
3849 *
3850 * When these conditions are not satisfied it drops into a standard
3851 * receive procedure patterned after RFC793 to handle all cases.
3852 * The first three cases are guaranteed by proper pred_flags setting,
3853 * the rest is checked inline. Fast processing is turned on in
3854 * tcp_data_queue when everything is OK.
3855 */
3856int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3857 struct tcphdr *th, unsigned len)
3858{
3859 struct tcp_sock *tp = tcp_sk(sk);
3860
3861 /*
3862 * Header prediction.
3863 * The code loosely follows the one in the famous
3864 * "30 instruction TCP receive" Van Jacobson mail.
3865 *
3866 * Van's trick is to deposit buffers into socket queue
3867 * on a device interrupt, to call tcp_recv function
3868 * on the receive process context and checksum and copy
3869 * the buffer to user space. smart...
3870 *
3871 * Our current scheme is not silly either but we take the
3872 * extra cost of the net_bh soft interrupt processing...
3873 * We do checksum and copy also but from device to kernel.
3874 */
3875
3876 tp->rx_opt.saw_tstamp = 0;
3877
3878 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 3879 * if header_prediction is to be made
1da177e4
LT
3880 * 'S' will always be tp->tcp_header_len >> 2
3881 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3882 * turn it off (when there are holes in the receive
3883 * space for instance)
3884 * PSH flag is ignored.
3885 */
3886
3887 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3888 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3889 int tcp_header_len = tp->tcp_header_len;
3890
3891 /* Timestamp header prediction: tcp_header_len
3892 * is automatically equal to th->doff*4 due to pred_flags
3893 * match.
3894 */
3895
3896 /* Check timestamp */
3897 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3898 __u32 *ptr = (__u32 *)(th + 1);
3899
3900 /* No? Slow path! */
3901 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3902 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3903 goto slow_path;
3904
3905 tp->rx_opt.saw_tstamp = 1;
3906 ++ptr;
3907 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3908 ++ptr;
3909 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3910
3911 /* If PAWS failed, check it more carefully in slow path */
3912 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3913 goto slow_path;
3914
3915 /* DO NOT update ts_recent here, if checksum fails
3916 * and timestamp was corrupted part, it will result
3917 * in a hung connection since we will drop all
3918 * future packets due to the PAWS test.
3919 */
3920 }
3921
3922 if (len <= tcp_header_len) {
3923 /* Bulk data transfer: sender */
3924 if (len == tcp_header_len) {
3925 /* Predicted packet is in window by definition.
3926 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3927 * Hence, check seq<=rcv_wup reduces to:
3928 */
3929 if (tcp_header_len ==
3930 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3931 tp->rcv_nxt == tp->rcv_wup)
3932 tcp_store_ts_recent(tp);
3933
1da177e4
LT
3934 /* We know that such packets are checksummed
3935 * on entry.
3936 */
3937 tcp_ack(sk, skb, 0);
3938 __kfree_skb(skb);
55c97f3e 3939 tcp_data_snd_check(sk, tp);
1da177e4
LT
3940 return 0;
3941 } else { /* Header too small */
3942 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3943 goto discard;
3944 }
3945 } else {
3946 int eaten = 0;
1a2449a8 3947 int copied_early = 0;
1da177e4 3948
1a2449a8
CL
3949 if (tp->copied_seq == tp->rcv_nxt &&
3950 len - tcp_header_len <= tp->ucopy.len) {
3951#ifdef CONFIG_NET_DMA
3952 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3953 copied_early = 1;
3954 eaten = 1;
3955 }
3956#endif
3957 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3958 __set_current_state(TASK_RUNNING);
1da177e4 3959
1a2449a8
CL
3960 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3961 eaten = 1;
3962 }
3963 if (eaten) {
1da177e4
LT
3964 /* Predicted packet is in window by definition.
3965 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3966 * Hence, check seq<=rcv_wup reduces to:
3967 */
3968 if (tcp_header_len ==
3969 (sizeof(struct tcphdr) +
3970 TCPOLEN_TSTAMP_ALIGNED) &&
3971 tp->rcv_nxt == tp->rcv_wup)
3972 tcp_store_ts_recent(tp);
3973
463c84b9 3974 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
3975
3976 __skb_pull(skb, tcp_header_len);
3977 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3978 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 3979 }
1a2449a8
CL
3980 if (copied_early)
3981 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
3982 }
3983 if (!eaten) {
3984 if (tcp_checksum_complete_user(sk, skb))
3985 goto csum_error;
3986
3987 /* Predicted packet is in window by definition.
3988 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3989 * Hence, check seq<=rcv_wup reduces to:
3990 */
3991 if (tcp_header_len ==
3992 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3993 tp->rcv_nxt == tp->rcv_wup)
3994 tcp_store_ts_recent(tp);
3995
463c84b9 3996 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
3997
3998 if ((int)skb->truesize > sk->sk_forward_alloc)
3999 goto step5;
4000
4001 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4002
4003 /* Bulk data transfer: receiver */
4004 __skb_pull(skb,tcp_header_len);
4005 __skb_queue_tail(&sk->sk_receive_queue, skb);
4006 sk_stream_set_owner_r(skb, sk);
4007 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4008 }
4009
4010 tcp_event_data_recv(sk, tp, skb);
4011
4012 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4013 /* Well, only one small jumplet in fast path... */
4014 tcp_ack(sk, skb, FLAG_DATA);
55c97f3e 4015 tcp_data_snd_check(sk, tp);
463c84b9 4016 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4017 goto no_ack;
4018 }
4019
31432412 4020 __tcp_ack_snd_check(sk, 0);
1da177e4 4021no_ack:
1a2449a8
CL
4022#ifdef CONFIG_NET_DMA
4023 if (copied_early)
4024 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4025 else
4026#endif
1da177e4
LT
4027 if (eaten)
4028 __kfree_skb(skb);
4029 else
4030 sk->sk_data_ready(sk, 0);
4031 return 0;
4032 }
4033 }
4034
4035slow_path:
4036 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4037 goto csum_error;
4038
4039 /*
4040 * RFC1323: H1. Apply PAWS check first.
4041 */
4042 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4043 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4044 if (!th->rst) {
4045 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4046 tcp_send_dupack(sk, skb);
4047 goto discard;
4048 }
4049 /* Resets are accepted even if PAWS failed.
4050
4051 ts_recent update must be made after we are sure
4052 that the packet is in window.
4053 */
4054 }
4055
4056 /*
4057 * Standard slow path.
4058 */
4059
4060 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4061 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4062 * (RST) segments are validated by checking their SEQ-fields."
4063 * And page 69: "If an incoming segment is not acceptable,
4064 * an acknowledgment should be sent in reply (unless the RST bit
4065 * is set, if so drop the segment and return)".
4066 */
4067 if (!th->rst)
4068 tcp_send_dupack(sk, skb);
4069 goto discard;
4070 }
4071
4072 if(th->rst) {
4073 tcp_reset(sk);
4074 goto discard;
4075 }
4076
4077 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4078
4079 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4080 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4081 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4082 tcp_reset(sk);
4083 return 1;
4084 }
4085
4086step5:
4087 if(th->ack)
4088 tcp_ack(sk, skb, FLAG_SLOWPATH);
4089
463c84b9 4090 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4091
4092 /* Process urgent data. */
4093 tcp_urg(sk, skb, th);
4094
4095 /* step 7: process the segment text */
4096 tcp_data_queue(sk, skb);
4097
55c97f3e 4098 tcp_data_snd_check(sk, tp);
1da177e4
LT
4099 tcp_ack_snd_check(sk);
4100 return 0;
4101
4102csum_error:
4103 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4104
4105discard:
4106 __kfree_skb(skb);
4107 return 0;
4108}
4109
4110static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4111 struct tcphdr *th, unsigned len)
4112{
4113 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4114 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4115 int saved_clamp = tp->rx_opt.mss_clamp;
4116
4117 tcp_parse_options(skb, &tp->rx_opt, 0);
4118
4119 if (th->ack) {
4120 /* rfc793:
4121 * "If the state is SYN-SENT then
4122 * first check the ACK bit
4123 * If the ACK bit is set
4124 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4125 * a reset (unless the RST bit is set, if so drop
4126 * the segment and return)"
4127 *
4128 * We do not send data with SYN, so that RFC-correct
4129 * test reduces to:
4130 */
4131 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4132 goto reset_and_undo;
4133
4134 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4135 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4136 tcp_time_stamp)) {
4137 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4138 goto reset_and_undo;
4139 }
4140
4141 /* Now ACK is acceptable.
4142 *
4143 * "If the RST bit is set
4144 * If the ACK was acceptable then signal the user "error:
4145 * connection reset", drop the segment, enter CLOSED state,
4146 * delete TCB, and return."
4147 */
4148
4149 if (th->rst) {
4150 tcp_reset(sk);
4151 goto discard;
4152 }
4153
4154 /* rfc793:
4155 * "fifth, if neither of the SYN or RST bits is set then
4156 * drop the segment and return."
4157 *
4158 * See note below!
4159 * --ANK(990513)
4160 */
4161 if (!th->syn)
4162 goto discard_and_undo;
4163
4164 /* rfc793:
4165 * "If the SYN bit is on ...
4166 * are acceptable then ...
4167 * (our SYN has been ACKed), change the connection
4168 * state to ESTABLISHED..."
4169 */
4170
4171 TCP_ECN_rcv_synack(tp, th);
4172 if (tp->ecn_flags&TCP_ECN_OK)
4173 sock_set_flag(sk, SOCK_NO_LARGESEND);
4174
4175 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4176 tcp_ack(sk, skb, FLAG_SLOWPATH);
4177
4178 /* Ok.. it's good. Set up sequence numbers and
4179 * move to established.
4180 */
4181 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4182 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4183
4184 /* RFC1323: The window in SYN & SYN/ACK segments is
4185 * never scaled.
4186 */
4187 tp->snd_wnd = ntohs(th->window);
4188 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4189
4190 if (!tp->rx_opt.wscale_ok) {
4191 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4192 tp->window_clamp = min(tp->window_clamp, 65535U);
4193 }
4194
4195 if (tp->rx_opt.saw_tstamp) {
4196 tp->rx_opt.tstamp_ok = 1;
4197 tp->tcp_header_len =
4198 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4199 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4200 tcp_store_ts_recent(tp);
4201 } else {
4202 tp->tcp_header_len = sizeof(struct tcphdr);
4203 }
4204
4205 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4206 tp->rx_opt.sack_ok |= 2;
4207
5d424d5a 4208 tcp_mtup_init(sk);
d83d8461 4209 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4210 tcp_initialize_rcv_mss(sk);
4211
4212 /* Remember, tcp_poll() does not lock socket!
4213 * Change state from SYN-SENT only after copied_seq
4214 * is initialized. */
4215 tp->copied_seq = tp->rcv_nxt;
4216 mb();
4217 tcp_set_state(sk, TCP_ESTABLISHED);
4218
4219 /* Make sure socket is routed, for correct metrics. */
8292a17a 4220 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4221
4222 tcp_init_metrics(sk);
4223
6687e988 4224 tcp_init_congestion_control(sk);
317a76f9 4225
1da177e4
LT
4226 /* Prevent spurious tcp_cwnd_restart() on first data
4227 * packet.
4228 */
4229 tp->lsndtime = tcp_time_stamp;
4230
4231 tcp_init_buffer_space(sk);
4232
4233 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4234 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4235
4236 if (!tp->rx_opt.snd_wscale)
4237 __tcp_fast_path_on(tp, tp->snd_wnd);
4238 else
4239 tp->pred_flags = 0;
4240
4241 if (!sock_flag(sk, SOCK_DEAD)) {
4242 sk->sk_state_change(sk);
4243 sk_wake_async(sk, 0, POLL_OUT);
4244 }
4245
295f7324
ACM
4246 if (sk->sk_write_pending ||
4247 icsk->icsk_accept_queue.rskq_defer_accept ||
4248 icsk->icsk_ack.pingpong) {
1da177e4
LT
4249 /* Save one ACK. Data will be ready after
4250 * several ticks, if write_pending is set.
4251 *
4252 * It may be deleted, but with this feature tcpdumps
4253 * look so _wonderfully_ clever, that I was not able
4254 * to stand against the temptation 8) --ANK
4255 */
463c84b9 4256 inet_csk_schedule_ack(sk);
295f7324
ACM
4257 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4258 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4259 tcp_incr_quickack(sk);
4260 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4261 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4262 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4263
4264discard:
4265 __kfree_skb(skb);
4266 return 0;
4267 } else {
4268 tcp_send_ack(sk);
4269 }
4270 return -1;
4271 }
4272
4273 /* No ACK in the segment */
4274
4275 if (th->rst) {
4276 /* rfc793:
4277 * "If the RST bit is set
4278 *
4279 * Otherwise (no ACK) drop the segment and return."
4280 */
4281
4282 goto discard_and_undo;
4283 }
4284
4285 /* PAWS check. */
4286 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4287 goto discard_and_undo;
4288
4289 if (th->syn) {
4290 /* We see SYN without ACK. It is attempt of
4291 * simultaneous connect with crossed SYNs.
4292 * Particularly, it can be connect to self.
4293 */
4294 tcp_set_state(sk, TCP_SYN_RECV);
4295
4296 if (tp->rx_opt.saw_tstamp) {
4297 tp->rx_opt.tstamp_ok = 1;
4298 tcp_store_ts_recent(tp);
4299 tp->tcp_header_len =
4300 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4301 } else {
4302 tp->tcp_header_len = sizeof(struct tcphdr);
4303 }
4304
4305 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4306 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4307
4308 /* RFC1323: The window in SYN & SYN/ACK segments is
4309 * never scaled.
4310 */
4311 tp->snd_wnd = ntohs(th->window);
4312 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4313 tp->max_window = tp->snd_wnd;
4314
4315 TCP_ECN_rcv_syn(tp, th);
4316 if (tp->ecn_flags&TCP_ECN_OK)
4317 sock_set_flag(sk, SOCK_NO_LARGESEND);
4318
5d424d5a 4319 tcp_mtup_init(sk);
d83d8461 4320 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4321 tcp_initialize_rcv_mss(sk);
4322
4323
4324 tcp_send_synack(sk);
4325#if 0
4326 /* Note, we could accept data and URG from this segment.
4327 * There are no obstacles to make this.
4328 *
4329 * However, if we ignore data in ACKless segments sometimes,
4330 * we have no reasons to accept it sometimes.
4331 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4332 * is not flawless. So, discard packet for sanity.
4333 * Uncomment this return to process the data.
4334 */
4335 return -1;
4336#else
4337 goto discard;
4338#endif
4339 }
4340 /* "fifth, if neither of the SYN or RST bits is set then
4341 * drop the segment and return."
4342 */
4343
4344discard_and_undo:
4345 tcp_clear_options(&tp->rx_opt);
4346 tp->rx_opt.mss_clamp = saved_clamp;
4347 goto discard;
4348
4349reset_and_undo:
4350 tcp_clear_options(&tp->rx_opt);
4351 tp->rx_opt.mss_clamp = saved_clamp;
4352 return 1;
4353}
4354
4355
4356/*
4357 * This function implements the receiving procedure of RFC 793 for
4358 * all states except ESTABLISHED and TIME_WAIT.
4359 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4360 * address independent.
4361 */
4362
4363int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4364 struct tcphdr *th, unsigned len)
4365{
4366 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4367 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4368 int queued = 0;
4369
4370 tp->rx_opt.saw_tstamp = 0;
4371
4372 switch (sk->sk_state) {
4373 case TCP_CLOSE:
4374 goto discard;
4375
4376 case TCP_LISTEN:
4377 if(th->ack)
4378 return 1;
4379
4380 if(th->rst)
4381 goto discard;
4382
4383 if(th->syn) {
8292a17a 4384 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4385 return 1;
4386
1da177e4
LT
4387 /* Now we have several options: In theory there is
4388 * nothing else in the frame. KA9Q has an option to
4389 * send data with the syn, BSD accepts data with the
4390 * syn up to the [to be] advertised window and
4391 * Solaris 2.1 gives you a protocol error. For now
4392 * we just ignore it, that fits the spec precisely
4393 * and avoids incompatibilities. It would be nice in
4394 * future to drop through and process the data.
4395 *
4396 * Now that TTCP is starting to be used we ought to
4397 * queue this data.
4398 * But, this leaves one open to an easy denial of
4399 * service attack, and SYN cookies can't defend
4400 * against this problem. So, we drop the data
4401 * in the interest of security over speed.
4402 */
4403 goto discard;
4404 }
4405 goto discard;
4406
4407 case TCP_SYN_SENT:
1da177e4
LT
4408 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4409 if (queued >= 0)
4410 return queued;
4411
4412 /* Do step6 onward by hand. */
4413 tcp_urg(sk, skb, th);
4414 __kfree_skb(skb);
55c97f3e 4415 tcp_data_snd_check(sk, tp);
1da177e4
LT
4416 return 0;
4417 }
4418
4419 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4420 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4421 if (!th->rst) {
4422 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4423 tcp_send_dupack(sk, skb);
4424 goto discard;
4425 }
4426 /* Reset is accepted even if it did not pass PAWS. */
4427 }
4428
4429 /* step 1: check sequence number */
4430 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4431 if (!th->rst)
4432 tcp_send_dupack(sk, skb);
4433 goto discard;
4434 }
4435
4436 /* step 2: check RST bit */
4437 if(th->rst) {
4438 tcp_reset(sk);
4439 goto discard;
4440 }
4441
4442 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4443
4444 /* step 3: check security and precedence [ignored] */
4445
4446 /* step 4:
4447 *
4448 * Check for a SYN in window.
4449 */
4450 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4451 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4452 tcp_reset(sk);
4453 return 1;
4454 }
4455
4456 /* step 5: check the ACK field */
4457 if (th->ack) {
4458 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4459
4460 switch(sk->sk_state) {
4461 case TCP_SYN_RECV:
4462 if (acceptable) {
4463 tp->copied_seq = tp->rcv_nxt;
4464 mb();
4465 tcp_set_state(sk, TCP_ESTABLISHED);
4466 sk->sk_state_change(sk);
4467
4468 /* Note, that this wakeup is only for marginal
4469 * crossed SYN case. Passively open sockets
4470 * are not waked up, because sk->sk_sleep ==
4471 * NULL and sk->sk_socket == NULL.
4472 */
4473 if (sk->sk_socket) {
4474 sk_wake_async(sk,0,POLL_OUT);
4475 }
4476
4477 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4478 tp->snd_wnd = ntohs(th->window) <<
4479 tp->rx_opt.snd_wscale;
4480 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4481 TCP_SKB_CB(skb)->seq);
4482
4483 /* tcp_ack considers this ACK as duplicate
4484 * and does not calculate rtt.
4485 * Fix it at least with timestamps.
4486 */
4487 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4488 !tp->srtt)
2d2abbab 4489 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4490
4491 if (tp->rx_opt.tstamp_ok)
4492 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4493
4494 /* Make sure socket is routed, for
4495 * correct metrics.
4496 */
8292a17a 4497 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4498
4499 tcp_init_metrics(sk);
4500
6687e988 4501 tcp_init_congestion_control(sk);
317a76f9 4502
1da177e4
LT
4503 /* Prevent spurious tcp_cwnd_restart() on
4504 * first data packet.
4505 */
4506 tp->lsndtime = tcp_time_stamp;
4507
5d424d5a 4508 tcp_mtup_init(sk);
1da177e4
LT
4509 tcp_initialize_rcv_mss(sk);
4510 tcp_init_buffer_space(sk);
4511 tcp_fast_path_on(tp);
4512 } else {
4513 return 1;
4514 }
4515 break;
4516
4517 case TCP_FIN_WAIT1:
4518 if (tp->snd_una == tp->write_seq) {
4519 tcp_set_state(sk, TCP_FIN_WAIT2);
4520 sk->sk_shutdown |= SEND_SHUTDOWN;
4521 dst_confirm(sk->sk_dst_cache);
4522
4523 if (!sock_flag(sk, SOCK_DEAD))
4524 /* Wake up lingering close() */
4525 sk->sk_state_change(sk);
4526 else {
4527 int tmo;
4528
4529 if (tp->linger2 < 0 ||
4530 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4531 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4532 tcp_done(sk);
4533 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4534 return 1;
4535 }
4536
463c84b9 4537 tmo = tcp_fin_time(sk);
1da177e4 4538 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4539 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4540 } else if (th->fin || sock_owned_by_user(sk)) {
4541 /* Bad case. We could lose such FIN otherwise.
4542 * It is not a big problem, but it looks confusing
4543 * and not so rare event. We still can lose it now,
4544 * if it spins in bh_lock_sock(), but it is really
4545 * marginal case.
4546 */
463c84b9 4547 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4548 } else {
4549 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4550 goto discard;
4551 }
4552 }
4553 }
4554 break;
4555
4556 case TCP_CLOSING:
4557 if (tp->snd_una == tp->write_seq) {
4558 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4559 goto discard;
4560 }
4561 break;
4562
4563 case TCP_LAST_ACK:
4564 if (tp->snd_una == tp->write_seq) {
4565 tcp_update_metrics(sk);
4566 tcp_done(sk);
4567 goto discard;
4568 }
4569 break;
4570 }
4571 } else
4572 goto discard;
4573
4574 /* step 6: check the URG bit */
4575 tcp_urg(sk, skb, th);
4576
4577 /* step 7: process the segment text */
4578 switch (sk->sk_state) {
4579 case TCP_CLOSE_WAIT:
4580 case TCP_CLOSING:
4581 case TCP_LAST_ACK:
4582 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4583 break;
4584 case TCP_FIN_WAIT1:
4585 case TCP_FIN_WAIT2:
4586 /* RFC 793 says to queue data in these states,
4587 * RFC 1122 says we MUST send a reset.
4588 * BSD 4.4 also does reset.
4589 */
4590 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4591 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4592 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4593 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4594 tcp_reset(sk);
4595 return 1;
4596 }
4597 }
4598 /* Fall through */
4599 case TCP_ESTABLISHED:
4600 tcp_data_queue(sk, skb);
4601 queued = 1;
4602 break;
4603 }
4604
4605 /* tcp_data could move socket to TIME-WAIT */
4606 if (sk->sk_state != TCP_CLOSE) {
55c97f3e 4607 tcp_data_snd_check(sk, tp);
1da177e4
LT
4608 tcp_ack_snd_check(sk);
4609 }
4610
4611 if (!queued) {
4612discard:
4613 __kfree_skb(skb);
4614 }
4615 return 0;
4616}
4617
4618EXPORT_SYMBOL(sysctl_tcp_ecn);
4619EXPORT_SYMBOL(sysctl_tcp_reordering);
4620EXPORT_SYMBOL(tcp_parse_options);
4621EXPORT_SYMBOL(tcp_rcv_established);
4622EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 4623EXPORT_SYMBOL(tcp_initialize_rcv_mss);