]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/tcp_input.c
Merge branch 'fix/asoc' into for-linus
[net-next-2.6.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 43 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
e905a9ed 51 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 52 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 53 * work without delayed acks.
1da177e4
LT
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
62 */
63
1da177e4 64#include <linux/mm.h>
5a0e3ad6 65#include <linux/slab.h>
1da177e4
LT
66#include <linux/module.h>
67#include <linux/sysctl.h>
a0bffffc 68#include <linux/kernel.h>
5ffc02a1 69#include <net/dst.h>
1da177e4
LT
70#include <net/tcp.h>
71#include <net/inet_common.h>
72#include <linux/ipsec.h>
73#include <asm/unaligned.h>
1a2449a8 74#include <net/netdma.h>
1da177e4 75
ab32ea5d
BH
76int sysctl_tcp_timestamps __read_mostly = 1;
77int sysctl_tcp_window_scaling __read_mostly = 1;
78int sysctl_tcp_sack __read_mostly = 1;
79int sysctl_tcp_fack __read_mostly = 1;
80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
4bc2f18b 81EXPORT_SYMBOL(sysctl_tcp_reordering);
255cac91 82int sysctl_tcp_ecn __read_mostly = 2;
4bc2f18b 83EXPORT_SYMBOL(sysctl_tcp_ecn);
ab32ea5d
BH
84int sysctl_tcp_dsack __read_mostly = 1;
85int sysctl_tcp_app_win __read_mostly = 31;
86int sysctl_tcp_adv_win_scale __read_mostly = 2;
4bc2f18b 87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
1da177e4 88
ab32ea5d
BH
89int sysctl_tcp_stdurg __read_mostly;
90int sysctl_tcp_rfc1337 __read_mostly;
91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 92int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 93int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 94int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 95
7e380175
AP
96int sysctl_tcp_thin_dupack __read_mostly;
97
ab32ea5d
BH
98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99int sysctl_tcp_abc __read_mostly;
1da177e4 100
1da177e4
LT
101#define FLAG_DATA 0x01 /* Incoming frame contained data. */
102#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106#define FLAG_DATA_SACKED 0x20 /* New SACK. */
107#define FLAG_ECE 0x40 /* ECE in this ACK */
108#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 110#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 111#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 112#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
009a2e3e 113#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
cadbd031 114#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
1da177e4
LT
115
116#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 120#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 121
1da177e4 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 124
e905a9ed 125/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 126 * real world.
e905a9ed 127 */
056834d9 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 129{
463c84b9 130 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 132 unsigned int len;
1da177e4 133
e905a9ed 134 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
135
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
138 */
056834d9 139 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9
ACM
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
145 *
146 * "len" is invariant segment length, including TCP header.
147 */
9c70220b 148 len += skb->data - skb_transport_header(skb);
bee7ca9e 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
154 */
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
160 */
463c84b9
ACM
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
1da177e4 163 if (len == lss) {
463c84b9 164 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
165 return;
166 }
167 }
1ef9696c
AK
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
171 }
172}
173
463c84b9 174static void tcp_incr_quickack(struct sock *sk)
1da177e4 175{
463c84b9
ACM
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 178
056834d9
IJ
179 if (quickacks == 0)
180 quickacks = 2;
463c84b9
ACM
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
183}
184
1b9f4092 185static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 186{
463c84b9
ACM
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
191}
192
193/* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
195 */
196
463c84b9 197static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 198{
463c84b9
ACM
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
201}
202
bdf1ee5d
IJ
203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204{
056834d9 205 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207}
208
209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210{
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216{
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218}
219
220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221{
056834d9 222 if (tp->ecn_flags & TCP_ECN_OK) {
bdf1ee5d
IJ
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
230 }
231}
232
233static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234{
056834d9 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
236 tp->ecn_flags &= ~TCP_ECN_OK;
237}
238
239static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240{
056834d9 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
242 tp->ecn_flags &= ~TCP_ECN_OK;
243}
244
245static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246{
056834d9 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
bdf1ee5d
IJ
248 return 1;
249 return 0;
250}
251
1da177e4
LT
252/* Buffer size and advertised window tuning.
253 *
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255 */
256
257static void tcp_fixup_sndbuf(struct sock *sk)
258{
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
261
262 if (sk->sk_sndbuf < 3 * sndmem)
263 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
264}
265
266/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
267 *
268 * All tcp_full_space() is split to two parts: "network" buffer, allocated
269 * forward and advertised in receiver window (tp->rcv_wnd) and
270 * "application buffer", required to isolate scheduling/application
271 * latencies from network.
272 * window_clamp is maximal advertised window. It can be less than
273 * tcp_full_space(), in this case tcp_full_space() - window_clamp
274 * is reserved for "application" buffer. The less window_clamp is
275 * the smoother our behaviour from viewpoint of network, but the lower
276 * throughput and the higher sensitivity of the connection to losses. 8)
277 *
278 * rcv_ssthresh is more strict window_clamp used at "slow start"
279 * phase to predict further behaviour of this connection.
280 * It is used for two goals:
281 * - to enforce header prediction at sender, even when application
282 * requires some significant "application buffer". It is check #1.
283 * - to prevent pruning of receive queue because of misprediction
284 * of receiver window. Check #2.
285 *
286 * The scheme does not work when sender sends good segments opening
caa20d9a 287 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
288 * in common situations. Otherwise, we have to rely on queue collapsing.
289 */
290
291/* Slow part of check#2. */
9e412ba7 292static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 293{
9e412ba7 294 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 295 /* Optimize this! */
dfd4f0ae
ED
296 int truesize = tcp_win_from_space(skb->truesize) >> 1;
297 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
298
299 while (tp->rcv_ssthresh <= window) {
300 if (truesize <= skb->len)
463c84b9 301 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
302
303 truesize >>= 1;
304 window >>= 1;
305 }
306 return 0;
307}
308
056834d9 309static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
1da177e4 310{
9e412ba7
IJ
311 struct tcp_sock *tp = tcp_sk(sk);
312
1da177e4
LT
313 /* Check #1 */
314 if (tp->rcv_ssthresh < tp->window_clamp &&
315 (int)tp->rcv_ssthresh < tcp_space(sk) &&
316 !tcp_memory_pressure) {
317 int incr;
318
319 /* Check #2. Increase window, if skb with such overhead
320 * will fit to rcvbuf in future.
321 */
322 if (tcp_win_from_space(skb->truesize) <= skb->len)
056834d9 323 incr = 2 * tp->advmss;
1da177e4 324 else
9e412ba7 325 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
326
327 if (incr) {
056834d9
IJ
328 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
329 tp->window_clamp);
463c84b9 330 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
331 }
332 }
333}
334
335/* 3. Tuning rcvbuf, when connection enters established state. */
336
337static void tcp_fixup_rcvbuf(struct sock *sk)
338{
339 struct tcp_sock *tp = tcp_sk(sk);
340 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
341
342 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 343 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
344 * (was 3; 4 is minimum to allow fast retransmit to work.)
345 */
346 while (tcp_win_from_space(rcvmem) < tp->advmss)
347 rcvmem += 128;
348 if (sk->sk_rcvbuf < 4 * rcvmem)
349 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
350}
351
caa20d9a 352/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
353 * established state.
354 */
355static void tcp_init_buffer_space(struct sock *sk)
356{
357 struct tcp_sock *tp = tcp_sk(sk);
358 int maxwin;
359
360 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
361 tcp_fixup_rcvbuf(sk);
362 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
363 tcp_fixup_sndbuf(sk);
364
365 tp->rcvq_space.space = tp->rcv_wnd;
366
367 maxwin = tcp_full_space(sk);
368
369 if (tp->window_clamp >= maxwin) {
370 tp->window_clamp = maxwin;
371
372 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
373 tp->window_clamp = max(maxwin -
374 (maxwin >> sysctl_tcp_app_win),
375 4 * tp->advmss);
376 }
377
378 /* Force reservation of one segment. */
379 if (sysctl_tcp_app_win &&
380 tp->window_clamp > 2 * tp->advmss &&
381 tp->window_clamp + tp->advmss > maxwin)
382 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
383
384 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
385 tp->snd_cwnd_stamp = tcp_time_stamp;
386}
387
1da177e4 388/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 389static void tcp_clamp_window(struct sock *sk)
1da177e4 390{
9e412ba7 391 struct tcp_sock *tp = tcp_sk(sk);
6687e988 392 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 393
6687e988 394 icsk->icsk_ack.quick = 0;
1da177e4 395
326f36e9
JH
396 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
397 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
398 !tcp_memory_pressure &&
399 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
400 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
401 sysctl_tcp_rmem[2]);
1da177e4 402 }
326f36e9 403 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 404 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
405}
406
40efc6fa
SH
407/* Initialize RCV_MSS value.
408 * RCV_MSS is an our guess about MSS used by the peer.
409 * We haven't any direct information about the MSS.
410 * It's better to underestimate the RCV_MSS rather than overestimate.
411 * Overestimations make us ACKing less frequently than needed.
412 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
413 */
414void tcp_initialize_rcv_mss(struct sock *sk)
415{
416 struct tcp_sock *tp = tcp_sk(sk);
417 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
418
056834d9 419 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 420 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
421 hint = max(hint, TCP_MIN_MSS);
422
423 inet_csk(sk)->icsk_ack.rcv_mss = hint;
424}
4bc2f18b 425EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 426
1da177e4
LT
427/* Receiver "autotuning" code.
428 *
429 * The algorithm for RTT estimation w/o timestamps is based on
430 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 431 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
432 *
433 * More detail on this code can be found at
631dd1a8 434 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
435 * though this reference is out of date. A new paper
436 * is pending.
437 */
438static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
439{
440 u32 new_sample = tp->rcv_rtt_est.rtt;
441 long m = sample;
442
443 if (m == 0)
444 m = 1;
445
446 if (new_sample != 0) {
447 /* If we sample in larger samples in the non-timestamp
448 * case, we could grossly overestimate the RTT especially
449 * with chatty applications or bulk transfer apps which
450 * are stalled on filesystem I/O.
451 *
452 * Also, since we are only going for a minimum in the
31f34269 453 * non-timestamp case, we do not smooth things out
caa20d9a 454 * else with timestamps disabled convergence takes too
1da177e4
LT
455 * long.
456 */
457 if (!win_dep) {
458 m -= (new_sample >> 3);
459 new_sample += m;
460 } else if (m < new_sample)
461 new_sample = m << 3;
462 } else {
caa20d9a 463 /* No previous measure. */
1da177e4
LT
464 new_sample = m << 3;
465 }
466
467 if (tp->rcv_rtt_est.rtt != new_sample)
468 tp->rcv_rtt_est.rtt = new_sample;
469}
470
471static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
472{
473 if (tp->rcv_rtt_est.time == 0)
474 goto new_measure;
475 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
476 return;
056834d9 477 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
1da177e4
LT
478
479new_measure:
480 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
481 tp->rcv_rtt_est.time = tcp_time_stamp;
482}
483
056834d9
IJ
484static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
485 const struct sk_buff *skb)
1da177e4 486{
463c84b9 487 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
488 if (tp->rx_opt.rcv_tsecr &&
489 (TCP_SKB_CB(skb)->end_seq -
463c84b9 490 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
491 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492}
493
494/*
495 * This function should be called every time data is copied to user space.
496 * It calculates the appropriate TCP receive buffer space.
497 */
498void tcp_rcv_space_adjust(struct sock *sk)
499{
500 struct tcp_sock *tp = tcp_sk(sk);
501 int time;
502 int space;
e905a9ed 503
1da177e4
LT
504 if (tp->rcvq_space.time == 0)
505 goto new_measure;
e905a9ed 506
1da177e4 507 time = tcp_time_stamp - tp->rcvq_space.time;
056834d9 508 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
1da177e4 509 return;
e905a9ed 510
1da177e4
LT
511 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
512
513 space = max(tp->rcvq_space.space, space);
514
515 if (tp->rcvq_space.space != space) {
516 int rcvmem;
517
518 tp->rcvq_space.space = space;
519
6fcf9412
JH
520 if (sysctl_tcp_moderate_rcvbuf &&
521 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
522 int new_clamp = space;
523
524 /* Receive space grows, normalize in order to
525 * take into account packet headers and sk_buff
526 * structure overhead.
527 */
528 space /= tp->advmss;
529 if (!space)
530 space = 1;
531 rcvmem = (tp->advmss + MAX_TCP_HEADER +
532 16 + sizeof(struct sk_buff));
533 while (tcp_win_from_space(rcvmem) < tp->advmss)
534 rcvmem += 128;
535 space *= rcvmem;
536 space = min(space, sysctl_tcp_rmem[2]);
537 if (space > sk->sk_rcvbuf) {
538 sk->sk_rcvbuf = space;
539
540 /* Make the window clamp follow along. */
541 tp->window_clamp = new_clamp;
542 }
543 }
544 }
e905a9ed 545
1da177e4
LT
546new_measure:
547 tp->rcvq_space.seq = tp->copied_seq;
548 tp->rcvq_space.time = tcp_time_stamp;
549}
550
551/* There is something which you must keep in mind when you analyze the
552 * behavior of the tp->ato delayed ack timeout interval. When a
553 * connection starts up, we want to ack as quickly as possible. The
554 * problem is that "good" TCP's do slow start at the beginning of data
555 * transmission. The means that until we send the first few ACK's the
556 * sender will sit on his end and only queue most of his data, because
557 * he can only send snd_cwnd unacked packets at any given time. For
558 * each ACK we send, he increments snd_cwnd and transmits more of his
559 * queue. -DaveM
560 */
9e412ba7 561static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 562{
9e412ba7 563 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 564 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
565 u32 now;
566
463c84b9 567 inet_csk_schedule_ack(sk);
1da177e4 568
463c84b9 569 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
570
571 tcp_rcv_rtt_measure(tp);
e905a9ed 572
1da177e4
LT
573 now = tcp_time_stamp;
574
463c84b9 575 if (!icsk->icsk_ack.ato) {
1da177e4
LT
576 /* The _first_ data packet received, initialize
577 * delayed ACK engine.
578 */
463c84b9
ACM
579 tcp_incr_quickack(sk);
580 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 581 } else {
463c84b9 582 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 583
056834d9 584 if (m <= TCP_ATO_MIN / 2) {
1da177e4 585 /* The fastest case is the first. */
463c84b9
ACM
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
587 } else if (m < icsk->icsk_ack.ato) {
588 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
589 if (icsk->icsk_ack.ato > icsk->icsk_rto)
590 icsk->icsk_ack.ato = icsk->icsk_rto;
591 } else if (m > icsk->icsk_rto) {
caa20d9a 592 /* Too long gap. Apparently sender failed to
1da177e4
LT
593 * restart window, so that we send ACKs quickly.
594 */
463c84b9 595 tcp_incr_quickack(sk);
3ab224be 596 sk_mem_reclaim(sk);
1da177e4
LT
597 }
598 }
463c84b9 599 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
600
601 TCP_ECN_check_ce(tp, skb);
602
603 if (skb->len >= 128)
9e412ba7 604 tcp_grow_window(sk, skb);
1da177e4
LT
605}
606
1da177e4
LT
607/* Called to compute a smoothed rtt estimate. The data fed to this
608 * routine either comes from timestamps, or from segments that were
609 * known _not_ to have been retransmitted [see Karn/Partridge
610 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
611 * piece by Van Jacobson.
612 * NOTE: the next three routines used to be one big routine.
613 * To save cycles in the RFC 1323 implementation it was better to break
614 * it up into three procedures. -- erics
615 */
2d2abbab 616static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 617{
6687e988 618 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
619 long m = mrtt; /* RTT */
620
1da177e4
LT
621 /* The following amusing code comes from Jacobson's
622 * article in SIGCOMM '88. Note that rtt and mdev
623 * are scaled versions of rtt and mean deviation.
e905a9ed 624 * This is designed to be as fast as possible
1da177e4
LT
625 * m stands for "measurement".
626 *
627 * On a 1990 paper the rto value is changed to:
628 * RTO = rtt + 4 * mdev
629 *
630 * Funny. This algorithm seems to be very broken.
631 * These formulae increase RTO, when it should be decreased, increase
31f34269 632 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
633 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
634 * does not matter how to _calculate_ it. Seems, it was trap
635 * that VJ failed to avoid. 8)
636 */
2de979bd 637 if (m == 0)
1da177e4
LT
638 m = 1;
639 if (tp->srtt != 0) {
640 m -= (tp->srtt >> 3); /* m is now error in rtt est */
641 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
642 if (m < 0) {
643 m = -m; /* m is now abs(error) */
644 m -= (tp->mdev >> 2); /* similar update on mdev */
645 /* This is similar to one of Eifel findings.
646 * Eifel blocks mdev updates when rtt decreases.
647 * This solution is a bit different: we use finer gain
648 * for mdev in this case (alpha*beta).
649 * Like Eifel it also prevents growth of rto,
650 * but also it limits too fast rto decreases,
651 * happening in pure Eifel.
652 */
653 if (m > 0)
654 m >>= 3;
655 } else {
656 m -= (tp->mdev >> 2); /* similar update on mdev */
657 }
658 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
659 if (tp->mdev > tp->mdev_max) {
660 tp->mdev_max = tp->mdev;
661 if (tp->mdev_max > tp->rttvar)
662 tp->rttvar = tp->mdev_max;
663 }
664 if (after(tp->snd_una, tp->rtt_seq)) {
665 if (tp->mdev_max < tp->rttvar)
056834d9 666 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
1da177e4 667 tp->rtt_seq = tp->snd_nxt;
05bb1fad 668 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
669 }
670 } else {
671 /* no previous measure. */
056834d9
IJ
672 tp->srtt = m << 3; /* take the measured time to be rtt */
673 tp->mdev = m << 1; /* make sure rto = 3*rtt */
05bb1fad 674 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
675 tp->rtt_seq = tp->snd_nxt;
676 }
1da177e4
LT
677}
678
679/* Calculate rto without backoff. This is the second half of Van Jacobson's
680 * routine referred to above.
681 */
463c84b9 682static inline void tcp_set_rto(struct sock *sk)
1da177e4 683{
463c84b9 684 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
685 /* Old crap is replaced with new one. 8)
686 *
687 * More seriously:
688 * 1. If rtt variance happened to be less 50msec, it is hallucination.
689 * It cannot be less due to utterly erratic ACK generation made
690 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
691 * to do with delayed acks, because at cwnd>2 true delack timeout
692 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 693 * ACKs in some circumstances.
1da177e4 694 */
f1ecd5d9 695 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
696
697 /* 2. Fixups made earlier cannot be right.
698 * If we do not estimate RTO correctly without them,
699 * all the algo is pure shit and should be replaced
caa20d9a 700 * with correct one. It is exactly, which we pretend to do.
1da177e4 701 */
1da177e4 702
ee6aac59
IJ
703 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
704 * guarantees that rto is higher.
705 */
f1ecd5d9 706 tcp_bound_rto(sk);
1da177e4
LT
707}
708
709/* Save metrics learned by this TCP session.
710 This function is called only, when TCP finishes successfully
711 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
712 */
713void tcp_update_metrics(struct sock *sk)
714{
715 struct tcp_sock *tp = tcp_sk(sk);
716 struct dst_entry *dst = __sk_dst_get(sk);
717
718 if (sysctl_tcp_nometrics_save)
719 return;
720
721 dst_confirm(dst);
722
056834d9 723 if (dst && (dst->flags & DST_HOST)) {
6687e988 724 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 725 int m;
c1e20f7c 726 unsigned long rtt;
1da177e4 727
6687e988 728 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
729 /* This session failed to estimate rtt. Why?
730 * Probably, no packets returned in time.
731 * Reset our results.
732 */
733 if (!(dst_metric_locked(dst, RTAX_RTT)))
056834d9 734 dst->metrics[RTAX_RTT - 1] = 0;
1da177e4
LT
735 return;
736 }
737
c1e20f7c
SH
738 rtt = dst_metric_rtt(dst, RTAX_RTT);
739 m = rtt - tp->srtt;
1da177e4
LT
740
741 /* If newly calculated rtt larger than stored one,
742 * store new one. Otherwise, use EWMA. Remember,
743 * rtt overestimation is always better than underestimation.
744 */
745 if (!(dst_metric_locked(dst, RTAX_RTT))) {
746 if (m <= 0)
c1e20f7c 747 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
1da177e4 748 else
c1e20f7c 749 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
1da177e4
LT
750 }
751
752 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
c1e20f7c 753 unsigned long var;
1da177e4
LT
754 if (m < 0)
755 m = -m;
756
757 /* Scale deviation to rttvar fixed point */
758 m >>= 1;
759 if (m < tp->mdev)
760 m = tp->mdev;
761
c1e20f7c
SH
762 var = dst_metric_rtt(dst, RTAX_RTTVAR);
763 if (m >= var)
764 var = m;
1da177e4 765 else
c1e20f7c
SH
766 var -= (var - m) >> 2;
767
768 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
1da177e4
LT
769 }
770
0b6a05c1 771 if (tcp_in_initial_slowstart(tp)) {
1da177e4
LT
772 /* Slow start still did not finish. */
773 if (dst_metric(dst, RTAX_SSTHRESH) &&
774 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
775 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
776 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
777 if (!dst_metric_locked(dst, RTAX_CWND) &&
778 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
056834d9 779 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
1da177e4 780 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 781 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
782 /* Cong. avoidance phase, cwnd is reliable. */
783 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
784 dst->metrics[RTAX_SSTHRESH-1] =
785 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
786 if (!dst_metric_locked(dst, RTAX_CWND))
5ffc02a1 787 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
1da177e4
LT
788 } else {
789 /* Else slow start did not finish, cwnd is non-sense,
790 ssthresh may be also invalid.
791 */
792 if (!dst_metric_locked(dst, RTAX_CWND))
5ffc02a1
SS
793 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
794 if (dst_metric(dst, RTAX_SSTHRESH) &&
1da177e4 795 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
5ffc02a1 796 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
1da177e4
LT
797 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
798 }
799
800 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
5ffc02a1 801 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
1da177e4
LT
802 tp->reordering != sysctl_tcp_reordering)
803 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
804 }
805 }
806}
807
1da177e4
LT
808__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
809{
810 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
811
22b71c8f
GR
812 if (!cwnd)
813 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
1da177e4
LT
814 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
815}
816
40efc6fa 817/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 818void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
819{
820 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 821 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
822
823 tp->prior_ssthresh = 0;
824 tp->bytes_acked = 0;
e01f9d77 825 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 826 tp->undo_marker = 0;
3cfe3baa
IJ
827 if (set_ssthresh)
828 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
829 tp->snd_cwnd = min(tp->snd_cwnd,
830 tcp_packets_in_flight(tp) + 1U);
831 tp->snd_cwnd_cnt = 0;
832 tp->high_seq = tp->snd_nxt;
833 tp->snd_cwnd_stamp = tcp_time_stamp;
834 TCP_ECN_queue_cwr(tp);
835
836 tcp_set_ca_state(sk, TCP_CA_CWR);
837 }
838}
839
e60402d0
IJ
840/*
841 * Packet counting of FACK is based on in-order assumptions, therefore TCP
842 * disables it when reordering is detected
843 */
844static void tcp_disable_fack(struct tcp_sock *tp)
845{
85cc391c
IJ
846 /* RFC3517 uses different metric in lost marker => reset on change */
847 if (tcp_is_fack(tp))
848 tp->lost_skb_hint = NULL;
e60402d0
IJ
849 tp->rx_opt.sack_ok &= ~2;
850}
851
564262c1 852/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
853static void tcp_dsack_seen(struct tcp_sock *tp)
854{
855 tp->rx_opt.sack_ok |= 4;
856}
857
1da177e4
LT
858/* Initialize metrics on socket. */
859
860static void tcp_init_metrics(struct sock *sk)
861{
862 struct tcp_sock *tp = tcp_sk(sk);
863 struct dst_entry *dst = __sk_dst_get(sk);
864
865 if (dst == NULL)
866 goto reset;
867
868 dst_confirm(dst);
869
870 if (dst_metric_locked(dst, RTAX_CWND))
871 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
872 if (dst_metric(dst, RTAX_SSTHRESH)) {
873 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
874 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
875 tp->snd_ssthresh = tp->snd_cwnd_clamp;
876 }
877 if (dst_metric(dst, RTAX_REORDERING) &&
878 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 879 tcp_disable_fack(tp);
1da177e4
LT
880 tp->reordering = dst_metric(dst, RTAX_REORDERING);
881 }
882
883 if (dst_metric(dst, RTAX_RTT) == 0)
884 goto reset;
885
c1e20f7c 886 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
1da177e4
LT
887 goto reset;
888
889 /* Initial rtt is determined from SYN,SYN-ACK.
890 * The segment is small and rtt may appear much
891 * less than real one. Use per-dst memory
892 * to make it more realistic.
893 *
894 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 895 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
896 * packets force peer to delay ACKs and calculation is correct too.
897 * The algorithm is adaptive and, provided we follow specs, it
898 * NEVER underestimate RTT. BUT! If peer tries to make some clever
899 * tricks sort of "quick acks" for time long enough to decrease RTT
900 * to low value, and then abruptly stops to do it and starts to delay
901 * ACKs, wait for troubles.
902 */
c1e20f7c
SH
903 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
904 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
1da177e4
LT
905 tp->rtt_seq = tp->snd_nxt;
906 }
c1e20f7c
SH
907 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
908 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
488faa2a 909 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4 910 }
463c84b9 911 tcp_set_rto(sk);
463c84b9 912 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4 913 goto reset;
86bcebaf
IJ
914
915cwnd:
1da177e4
LT
916 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
917 tp->snd_cwnd_stamp = tcp_time_stamp;
918 return;
919
920reset:
921 /* Play conservative. If timestamps are not
922 * supported, TCP will fail to recalculate correct
923 * rtt, if initial rto is too small. FORGET ALL AND RESET!
924 */
925 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926 tp->srtt = 0;
927 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 928 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4 929 }
86bcebaf 930 goto cwnd;
1da177e4
LT
931}
932
6687e988
ACM
933static void tcp_update_reordering(struct sock *sk, const int metric,
934 const int ts)
1da177e4 935{
6687e988 936 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 937 if (metric > tp->reordering) {
40b215e5
PE
938 int mib_idx;
939
1da177e4
LT
940 tp->reordering = min(TCP_MAX_REORDERING, metric);
941
942 /* This exciting event is worth to be remembered. 8) */
943 if (ts)
40b215e5 944 mib_idx = LINUX_MIB_TCPTSREORDER;
e60402d0 945 else if (tcp_is_reno(tp))
40b215e5 946 mib_idx = LINUX_MIB_TCPRENOREORDER;
e60402d0 947 else if (tcp_is_fack(tp))
40b215e5 948 mib_idx = LINUX_MIB_TCPFACKREORDER;
1da177e4 949 else
40b215e5
PE
950 mib_idx = LINUX_MIB_TCPSACKREORDER;
951
de0744af 952 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1da177e4
LT
953#if FASTRETRANS_DEBUG > 1
954 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 955 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
956 tp->reordering,
957 tp->fackets_out,
958 tp->sacked_out,
959 tp->undo_marker ? tp->undo_retrans : 0);
960#endif
e60402d0 961 tcp_disable_fack(tp);
1da177e4
LT
962 }
963}
964
006f582c 965/* This must be called before lost_out is incremented */
c8c213f2
IJ
966static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
967{
006f582c 968 if ((tp->retransmit_skb_hint == NULL) ||
c8c213f2
IJ
969 before(TCP_SKB_CB(skb)->seq,
970 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c
IJ
971 tp->retransmit_skb_hint = skb;
972
973 if (!tp->lost_out ||
974 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
975 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
c8c213f2
IJ
976}
977
41ea36e3
IJ
978static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
979{
980 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
981 tcp_verify_retransmit_hint(tp, skb);
982
983 tp->lost_out += tcp_skb_pcount(skb);
984 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
985 }
986}
987
e1aa680f
IJ
988static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
989 struct sk_buff *skb)
006f582c
IJ
990{
991 tcp_verify_retransmit_hint(tp, skb);
992
993 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994 tp->lost_out += tcp_skb_pcount(skb);
995 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
996 }
997}
998
1da177e4
LT
999/* This procedure tags the retransmission queue when SACKs arrive.
1000 *
1001 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1002 * Packets in queue with these bits set are counted in variables
1003 * sacked_out, retrans_out and lost_out, correspondingly.
1004 *
1005 * Valid combinations are:
1006 * Tag InFlight Description
1007 * 0 1 - orig segment is in flight.
1008 * S 0 - nothing flies, orig reached receiver.
1009 * L 0 - nothing flies, orig lost by net.
1010 * R 2 - both orig and retransmit are in flight.
1011 * L|R 1 - orig is lost, retransmit is in flight.
1012 * S|R 1 - orig reached receiver, retrans is still in flight.
1013 * (L|S|R is logically valid, it could occur when L|R is sacked,
1014 * but it is equivalent to plain S and code short-curcuits it to S.
1015 * L|S is logically invalid, it would mean -1 packet in flight 8))
1016 *
1017 * These 6 states form finite state machine, controlled by the following events:
1018 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1019 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1020 * 3. Loss detection event of one of three flavors:
1021 * A. Scoreboard estimator decided the packet is lost.
1022 * A'. Reno "three dupacks" marks head of queue lost.
1023 * A''. Its FACK modfication, head until snd.fack is lost.
1024 * B. SACK arrives sacking data transmitted after never retransmitted
1025 * hole was sent out.
1026 * C. SACK arrives sacking SND.NXT at the moment, when the
1027 * segment was retransmitted.
1028 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1029 *
1030 * It is pleasant to note, that state diagram turns out to be commutative,
1031 * so that we are allowed not to be bothered by order of our actions,
1032 * when multiple events arrive simultaneously. (see the function below).
1033 *
1034 * Reordering detection.
1035 * --------------------
1036 * Reordering metric is maximal distance, which a packet can be displaced
1037 * in packet stream. With SACKs we can estimate it:
1038 *
1039 * 1. SACK fills old hole and the corresponding segment was not
1040 * ever retransmitted -> reordering. Alas, we cannot use it
1041 * when segment was retransmitted.
1042 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1043 * for retransmitted and already SACKed segment -> reordering..
1044 * Both of these heuristics are not used in Loss state, when we cannot
1045 * account for retransmits accurately.
5b3c9882
IJ
1046 *
1047 * SACK block validation.
1048 * ----------------------
1049 *
1050 * SACK block range validation checks that the received SACK block fits to
1051 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1052 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1053 * it means that the receiver is rather inconsistent with itself reporting
1054 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1055 * perfectly valid, however, in light of RFC2018 which explicitly states
1056 * that "SACK block MUST reflect the newest segment. Even if the newest
1057 * segment is going to be discarded ...", not that it looks very clever
1058 * in case of head skb. Due to potentional receiver driven attacks, we
1059 * choose to avoid immediate execution of a walk in write queue due to
1060 * reneging and defer head skb's loss recovery to standard loss recovery
1061 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1062 *
1063 * Implements also blockage to start_seq wrap-around. Problem lies in the
1064 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1065 * there's no guarantee that it will be before snd_nxt (n). The problem
1066 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1067 * wrap (s_w):
1068 *
1069 * <- outs wnd -> <- wrapzone ->
1070 * u e n u_w e_w s n_w
1071 * | | | | | | |
1072 * |<------------+------+----- TCP seqno space --------------+---------->|
1073 * ...-- <2^31 ->| |<--------...
1074 * ...---- >2^31 ------>| |<--------...
1075 *
1076 * Current code wouldn't be vulnerable but it's better still to discard such
1077 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1078 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1079 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1080 * equal to the ideal case (infinite seqno space without wrap caused issues).
1081 *
1082 * With D-SACK the lower bound is extended to cover sequence space below
1083 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1084 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1085 * for the normal SACK blocks, explained above). But there all simplicity
1086 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1087 * fully below undo_marker they do not affect behavior in anyway and can
1088 * therefore be safely ignored. In rare cases (which are more or less
1089 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1090 * fragmentation and packet reordering past skb's retransmission. To consider
1091 * them correctly, the acceptable range must be extended even more though
1092 * the exact amount is rather hard to quantify. However, tp->max_window can
1093 * be used as an exaggerated estimate.
1da177e4 1094 */
5b3c9882
IJ
1095static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1096 u32 start_seq, u32 end_seq)
1097{
1098 /* Too far in future, or reversed (interpretation is ambiguous) */
1099 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1100 return 0;
1101
1102 /* Nasty start_seq wrap-around check (see comments above) */
1103 if (!before(start_seq, tp->snd_nxt))
1104 return 0;
1105
564262c1 1106 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1107 * start_seq == snd_una is non-sensical (see comments above)
1108 */
1109 if (after(start_seq, tp->snd_una))
1110 return 1;
1111
1112 if (!is_dsack || !tp->undo_marker)
1113 return 0;
1114
1115 /* ...Then it's D-SACK, and must reside below snd_una completely */
1116 if (!after(end_seq, tp->snd_una))
1117 return 0;
1118
1119 if (!before(start_seq, tp->undo_marker))
1120 return 1;
1121
1122 /* Too old */
1123 if (!after(end_seq, tp->undo_marker))
1124 return 0;
1125
1126 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1127 * start_seq < undo_marker and end_seq >= undo_marker.
1128 */
1129 return !before(start_seq, end_seq - tp->max_window);
1130}
1131
1c1e87ed
IJ
1132/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1133 * Event "C". Later note: FACK people cheated me again 8), we have to account
1134 * for reordering! Ugly, but should help.
f785a8e2
IJ
1135 *
1136 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1137 * less than what is now known to be received by the other end (derived from
9f58f3b7
IJ
1138 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1139 * retransmitted skbs to avoid some costly processing per ACKs.
1c1e87ed 1140 */
407ef1de 1141static void tcp_mark_lost_retrans(struct sock *sk)
1c1e87ed 1142{
9f58f3b7 1143 const struct inet_connection_sock *icsk = inet_csk(sk);
1c1e87ed
IJ
1144 struct tcp_sock *tp = tcp_sk(sk);
1145 struct sk_buff *skb;
f785a8e2 1146 int cnt = 0;
df2e014b 1147 u32 new_low_seq = tp->snd_nxt;
6859d494 1148 u32 received_upto = tcp_highest_sack_seq(tp);
9f58f3b7
IJ
1149
1150 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1151 !after(received_upto, tp->lost_retrans_low) ||
1152 icsk->icsk_ca_state != TCP_CA_Recovery)
407ef1de 1153 return;
1c1e87ed
IJ
1154
1155 tcp_for_write_queue(skb, sk) {
1156 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1157
1158 if (skb == tcp_send_head(sk))
1159 break;
f785a8e2 1160 if (cnt == tp->retrans_out)
1c1e87ed
IJ
1161 break;
1162 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1163 continue;
1164
f785a8e2
IJ
1165 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1166 continue;
1167
d0af4160
IJ
1168 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1169 * constraint here (see above) but figuring out that at
1170 * least tp->reordering SACK blocks reside between ack_seq
1171 * and received_upto is not easy task to do cheaply with
1172 * the available datastructures.
1173 *
1174 * Whether FACK should check here for tp->reordering segs
1175 * in-between one could argue for either way (it would be
1176 * rather simple to implement as we could count fack_count
1177 * during the walk and do tp->fackets_out - fack_count).
1178 */
1179 if (after(received_upto, ack_seq)) {
1c1e87ed
IJ
1180 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1181 tp->retrans_out -= tcp_skb_pcount(skb);
1182
006f582c 1183 tcp_skb_mark_lost_uncond_verify(tp, skb);
de0744af 1184 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
f785a8e2 1185 } else {
df2e014b 1186 if (before(ack_seq, new_low_seq))
b08d6cb2 1187 new_low_seq = ack_seq;
f785a8e2 1188 cnt += tcp_skb_pcount(skb);
1c1e87ed
IJ
1189 }
1190 }
b08d6cb2
IJ
1191
1192 if (tp->retrans_out)
1193 tp->lost_retrans_low = new_low_seq;
1c1e87ed 1194}
5b3c9882 1195
1ed83465 1196static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
d06e021d
DM
1197 struct tcp_sack_block_wire *sp, int num_sacks,
1198 u32 prior_snd_una)
1199{
1ed83465 1200 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1201 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1202 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
d06e021d
DM
1203 int dup_sack = 0;
1204
1205 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1206 dup_sack = 1;
e60402d0 1207 tcp_dsack_seen(tp);
de0744af 1208 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1209 } else if (num_sacks > 1) {
d3e2ce3b
HH
1210 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1211 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1212
1213 if (!after(end_seq_0, end_seq_1) &&
1214 !before(start_seq_0, start_seq_1)) {
1215 dup_sack = 1;
e60402d0 1216 tcp_dsack_seen(tp);
de0744af
PE
1217 NET_INC_STATS_BH(sock_net(sk),
1218 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1219 }
1220 }
1221
1222 /* D-SACK for already forgotten data... Do dumb counting. */
1223 if (dup_sack &&
1224 !after(end_seq_0, prior_snd_una) &&
1225 after(end_seq_0, tp->undo_marker))
1226 tp->undo_retrans--;
1227
1228 return dup_sack;
1229}
1230
a1197f5a
IJ
1231struct tcp_sacktag_state {
1232 int reord;
1233 int fack_count;
1234 int flag;
1235};
1236
d1935942
IJ
1237/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1238 * the incoming SACK may not exactly match but we can find smaller MSS
1239 * aligned portion of it that matches. Therefore we might need to fragment
1240 * which may fail and creates some hassle (caller must handle error case
1241 * returns).
832d11c5
IJ
1242 *
1243 * FIXME: this could be merged to shift decision code
d1935942 1244 */
0f79efdc
AB
1245static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246 u32 start_seq, u32 end_seq)
d1935942
IJ
1247{
1248 int in_sack, err;
1249 unsigned int pkt_len;
adb92db8 1250 unsigned int mss;
d1935942
IJ
1251
1252 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1253 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1254
1255 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1256 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1257 mss = tcp_skb_mss(skb);
d1935942
IJ
1258 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1259
adb92db8 1260 if (!in_sack) {
d1935942 1261 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1262 if (pkt_len < mss)
1263 pkt_len = mss;
1264 } else {
d1935942 1265 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1266 if (pkt_len < mss)
1267 return -EINVAL;
1268 }
1269
1270 /* Round if necessary so that SACKs cover only full MSSes
1271 * and/or the remaining small portion (if present)
1272 */
1273 if (pkt_len > mss) {
1274 unsigned int new_len = (pkt_len / mss) * mss;
1275 if (!in_sack && new_len < pkt_len) {
1276 new_len += mss;
1277 if (new_len > skb->len)
1278 return 0;
1279 }
1280 pkt_len = new_len;
1281 }
1282 err = tcp_fragment(sk, skb, pkt_len, mss);
d1935942
IJ
1283 if (err < 0)
1284 return err;
1285 }
1286
1287 return in_sack;
1288}
1289
a1197f5a
IJ
1290static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1291 struct tcp_sacktag_state *state,
1292 int dup_sack, int pcount)
9e10c47c 1293{
6859d494 1294 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c 1295 u8 sacked = TCP_SKB_CB(skb)->sacked;
a1197f5a 1296 int fack_count = state->fack_count;
9e10c47c
IJ
1297
1298 /* Account D-SACK for retransmitted packet. */
1299 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1300 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1301 tp->undo_retrans--;
ede9f3b1 1302 if (sacked & TCPCB_SACKED_ACKED)
a1197f5a 1303 state->reord = min(fack_count, state->reord);
9e10c47c
IJ
1304 }
1305
1306 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1307 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
a1197f5a 1308 return sacked;
9e10c47c
IJ
1309
1310 if (!(sacked & TCPCB_SACKED_ACKED)) {
1311 if (sacked & TCPCB_SACKED_RETRANS) {
1312 /* If the segment is not tagged as lost,
1313 * we do not clear RETRANS, believing
1314 * that retransmission is still in flight.
1315 */
1316 if (sacked & TCPCB_LOST) {
a1197f5a 1317 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1318 tp->lost_out -= pcount;
1319 tp->retrans_out -= pcount;
9e10c47c
IJ
1320 }
1321 } else {
1322 if (!(sacked & TCPCB_RETRANS)) {
1323 /* New sack for not retransmitted frame,
1324 * which was in hole. It is reordering.
1325 */
1326 if (before(TCP_SKB_CB(skb)->seq,
1327 tcp_highest_sack_seq(tp)))
a1197f5a
IJ
1328 state->reord = min(fack_count,
1329 state->reord);
9e10c47c
IJ
1330
1331 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1332 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
a1197f5a 1333 state->flag |= FLAG_ONLY_ORIG_SACKED;
9e10c47c
IJ
1334 }
1335
1336 if (sacked & TCPCB_LOST) {
a1197f5a 1337 sacked &= ~TCPCB_LOST;
f58b22fd 1338 tp->lost_out -= pcount;
9e10c47c
IJ
1339 }
1340 }
1341
a1197f5a
IJ
1342 sacked |= TCPCB_SACKED_ACKED;
1343 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1344 tp->sacked_out += pcount;
9e10c47c 1345
f58b22fd 1346 fack_count += pcount;
9e10c47c
IJ
1347
1348 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1349 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1350 before(TCP_SKB_CB(skb)->seq,
1351 TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1352 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1353
1354 if (fack_count > tp->fackets_out)
1355 tp->fackets_out = fack_count;
9e10c47c
IJ
1356 }
1357
1358 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1359 * frames and clear it. undo_retrans is decreased above, L|R frames
1360 * are accounted above as well.
1361 */
a1197f5a
IJ
1362 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1363 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1364 tp->retrans_out -= pcount;
9e10c47c
IJ
1365 }
1366
a1197f5a 1367 return sacked;
9e10c47c
IJ
1368}
1369
50133161 1370static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
a1197f5a 1371 struct tcp_sacktag_state *state,
9ec06ff5
IJ
1372 unsigned int pcount, int shifted, int mss,
1373 int dup_sack)
832d11c5
IJ
1374{
1375 struct tcp_sock *tp = tcp_sk(sk);
50133161 1376 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
832d11c5
IJ
1377
1378 BUG_ON(!pcount);
1379
92ee76b6
IJ
1380 /* Tweak before seqno plays */
1381 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1382 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1383 tp->lost_cnt_hint += pcount;
1384
832d11c5
IJ
1385 TCP_SKB_CB(prev)->end_seq += shifted;
1386 TCP_SKB_CB(skb)->seq += shifted;
1387
1388 skb_shinfo(prev)->gso_segs += pcount;
1389 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1390 skb_shinfo(skb)->gso_segs -= pcount;
1391
1392 /* When we're adding to gso_segs == 1, gso_size will be zero,
1393 * in theory this shouldn't be necessary but as long as DSACK
1394 * code can come after this skb later on it's better to keep
1395 * setting gso_size to something.
1396 */
1397 if (!skb_shinfo(prev)->gso_size) {
1398 skb_shinfo(prev)->gso_size = mss;
1399 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1400 }
1401
1402 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1403 if (skb_shinfo(skb)->gso_segs <= 1) {
1404 skb_shinfo(skb)->gso_size = 0;
1405 skb_shinfo(skb)->gso_type = 0;
1406 }
1407
a1197f5a 1408 /* We discard results */
9ec06ff5 1409 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
832d11c5
IJ
1410
1411 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1412 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1413
832d11c5
IJ
1414 if (skb->len > 0) {
1415 BUG_ON(!tcp_skb_pcount(skb));
111cc8b9 1416 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
832d11c5
IJ
1417 return 0;
1418 }
1419
1420 /* Whole SKB was eaten :-) */
1421
92ee76b6
IJ
1422 if (skb == tp->retransmit_skb_hint)
1423 tp->retransmit_skb_hint = prev;
1424 if (skb == tp->scoreboard_skb_hint)
1425 tp->scoreboard_skb_hint = prev;
1426 if (skb == tp->lost_skb_hint) {
1427 tp->lost_skb_hint = prev;
1428 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1429 }
1430
832d11c5
IJ
1431 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1432 if (skb == tcp_highest_sack(sk))
1433 tcp_advance_highest_sack(sk, skb);
1434
1435 tcp_unlink_write_queue(skb, sk);
1436 sk_wmem_free_skb(sk, skb);
1437
111cc8b9
IJ
1438 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1439
832d11c5
IJ
1440 return 1;
1441}
1442
1443/* I wish gso_size would have a bit more sane initialization than
1444 * something-or-zero which complicates things
1445 */
775ffabf 1446static int tcp_skb_seglen(struct sk_buff *skb)
832d11c5 1447{
775ffabf 1448 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1449}
1450
1451/* Shifting pages past head area doesn't work */
1452static int skb_can_shift(struct sk_buff *skb)
1453{
1454 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1455}
1456
1457/* Try collapsing SACK blocks spanning across multiple skbs to a single
1458 * skb.
1459 */
1460static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1461 struct tcp_sacktag_state *state,
832d11c5 1462 u32 start_seq, u32 end_seq,
a1197f5a 1463 int dup_sack)
832d11c5
IJ
1464{
1465 struct tcp_sock *tp = tcp_sk(sk);
1466 struct sk_buff *prev;
1467 int mss;
1468 int pcount = 0;
1469 int len;
1470 int in_sack;
1471
1472 if (!sk_can_gso(sk))
1473 goto fallback;
1474
1475 /* Normally R but no L won't result in plain S */
1476 if (!dup_sack &&
9969ca5f 1477 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1478 goto fallback;
1479 if (!skb_can_shift(skb))
1480 goto fallback;
1481 /* This frame is about to be dropped (was ACKed). */
1482 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1483 goto fallback;
1484
1485 /* Can only happen with delayed DSACK + discard craziness */
1486 if (unlikely(skb == tcp_write_queue_head(sk)))
1487 goto fallback;
1488 prev = tcp_write_queue_prev(sk, skb);
1489
1490 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1491 goto fallback;
1492
1493 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1494 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1495
1496 if (in_sack) {
1497 len = skb->len;
1498 pcount = tcp_skb_pcount(skb);
775ffabf 1499 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1500
1501 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1502 * drop this restriction as unnecessary
1503 */
775ffabf 1504 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1505 goto fallback;
1506 } else {
1507 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1508 goto noop;
1509 /* CHECKME: This is non-MSS split case only?, this will
1510 * cause skipped skbs due to advancing loop btw, original
1511 * has that feature too
1512 */
1513 if (tcp_skb_pcount(skb) <= 1)
1514 goto noop;
1515
1516 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1517 if (!in_sack) {
1518 /* TODO: head merge to next could be attempted here
1519 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1520 * though it might not be worth of the additional hassle
1521 *
1522 * ...we can probably just fallback to what was done
1523 * previously. We could try merging non-SACKed ones
1524 * as well but it probably isn't going to buy off
1525 * because later SACKs might again split them, and
1526 * it would make skb timestamp tracking considerably
1527 * harder problem.
1528 */
1529 goto fallback;
1530 }
1531
1532 len = end_seq - TCP_SKB_CB(skb)->seq;
1533 BUG_ON(len < 0);
1534 BUG_ON(len > skb->len);
1535
1536 /* MSS boundaries should be honoured or else pcount will
1537 * severely break even though it makes things bit trickier.
1538 * Optimize common case to avoid most of the divides
1539 */
1540 mss = tcp_skb_mss(skb);
1541
1542 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1543 * drop this restriction as unnecessary
1544 */
775ffabf 1545 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1546 goto fallback;
1547
1548 if (len == mss) {
1549 pcount = 1;
1550 } else if (len < mss) {
1551 goto noop;
1552 } else {
1553 pcount = len / mss;
1554 len = pcount * mss;
1555 }
1556 }
1557
1558 if (!skb_shift(prev, skb, len))
1559 goto fallback;
9ec06ff5 1560 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1561 goto out;
1562
1563 /* Hole filled allows collapsing with the next as well, this is very
1564 * useful when hole on every nth skb pattern happens
1565 */
1566 if (prev == tcp_write_queue_tail(sk))
1567 goto out;
1568 skb = tcp_write_queue_next(sk, prev);
1569
f0bc52f3
IJ
1570 if (!skb_can_shift(skb) ||
1571 (skb == tcp_send_head(sk)) ||
1572 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1573 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1574 goto out;
1575
1576 len = skb->len;
1577 if (skb_shift(prev, skb, len)) {
1578 pcount += tcp_skb_pcount(skb);
9ec06ff5 1579 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
832d11c5
IJ
1580 }
1581
1582out:
a1197f5a 1583 state->fack_count += pcount;
832d11c5
IJ
1584 return prev;
1585
1586noop:
1587 return skb;
1588
1589fallback:
111cc8b9 1590 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1591 return NULL;
1592}
1593
68f8353b
IJ
1594static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1595 struct tcp_sack_block *next_dup,
a1197f5a 1596 struct tcp_sacktag_state *state,
68f8353b 1597 u32 start_seq, u32 end_seq,
a1197f5a 1598 int dup_sack_in)
68f8353b 1599{
832d11c5
IJ
1600 struct tcp_sock *tp = tcp_sk(sk);
1601 struct sk_buff *tmp;
1602
68f8353b
IJ
1603 tcp_for_write_queue_from(skb, sk) {
1604 int in_sack = 0;
1605 int dup_sack = dup_sack_in;
1606
1607 if (skb == tcp_send_head(sk))
1608 break;
1609
1610 /* queue is in-order => we can short-circuit the walk early */
1611 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1612 break;
1613
1614 if ((next_dup != NULL) &&
1615 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1616 in_sack = tcp_match_skb_to_sack(sk, skb,
1617 next_dup->start_seq,
1618 next_dup->end_seq);
1619 if (in_sack > 0)
1620 dup_sack = 1;
1621 }
1622
832d11c5
IJ
1623 /* skb reference here is a bit tricky to get right, since
1624 * shifting can eat and free both this skb and the next,
1625 * so not even _safe variant of the loop is enough.
1626 */
1627 if (in_sack <= 0) {
a1197f5a
IJ
1628 tmp = tcp_shift_skb_data(sk, skb, state,
1629 start_seq, end_seq, dup_sack);
832d11c5
IJ
1630 if (tmp != NULL) {
1631 if (tmp != skb) {
1632 skb = tmp;
1633 continue;
1634 }
1635
1636 in_sack = 0;
1637 } else {
1638 in_sack = tcp_match_skb_to_sack(sk, skb,
1639 start_seq,
1640 end_seq);
1641 }
1642 }
1643
68f8353b
IJ
1644 if (unlikely(in_sack < 0))
1645 break;
1646
832d11c5 1647 if (in_sack) {
a1197f5a
IJ
1648 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1649 state,
1650 dup_sack,
1651 tcp_skb_pcount(skb));
68f8353b 1652
832d11c5
IJ
1653 if (!before(TCP_SKB_CB(skb)->seq,
1654 tcp_highest_sack_seq(tp)))
1655 tcp_advance_highest_sack(sk, skb);
1656 }
1657
a1197f5a 1658 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1659 }
1660 return skb;
1661}
1662
1663/* Avoid all extra work that is being done by sacktag while walking in
1664 * a normal way
1665 */
1666static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1667 struct tcp_sacktag_state *state,
1668 u32 skip_to_seq)
68f8353b
IJ
1669{
1670 tcp_for_write_queue_from(skb, sk) {
1671 if (skb == tcp_send_head(sk))
1672 break;
1673
e8bae275 1674 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
68f8353b 1675 break;
d152a7d8 1676
a1197f5a 1677 state->fack_count += tcp_skb_pcount(skb);
68f8353b
IJ
1678 }
1679 return skb;
1680}
1681
1682static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1683 struct sock *sk,
1684 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1685 struct tcp_sacktag_state *state,
1686 u32 skip_to_seq)
68f8353b
IJ
1687{
1688 if (next_dup == NULL)
1689 return skb;
1690
1691 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1692 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1693 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1694 next_dup->start_seq, next_dup->end_seq,
1695 1);
68f8353b
IJ
1696 }
1697
1698 return skb;
1699}
1700
1701static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1702{
1703 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1704}
1705
1da177e4 1706static int
056834d9
IJ
1707tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1708 u32 prior_snd_una)
1da177e4 1709{
6687e988 1710 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1711 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1712 unsigned char *ptr = (skb_transport_header(ack_skb) +
1713 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1714 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1715 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b 1716 struct tcp_sack_block *cache;
a1197f5a 1717 struct tcp_sacktag_state state;
68f8353b 1718 struct sk_buff *skb;
4389dded 1719 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1720 int used_sacks;
7769f406 1721 int found_dup_sack = 0;
68f8353b 1722 int i, j;
fda03fbb 1723 int first_sack_index;
1da177e4 1724
a1197f5a
IJ
1725 state.flag = 0;
1726 state.reord = tp->packets_out;
1727
d738cd8f 1728 if (!tp->sacked_out) {
de83c058
IJ
1729 if (WARN_ON(tp->fackets_out))
1730 tp->fackets_out = 0;
6859d494 1731 tcp_highest_sack_reset(sk);
d738cd8f 1732 }
1da177e4 1733
1ed83465 1734 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d
DM
1735 num_sacks, prior_snd_una);
1736 if (found_dup_sack)
a1197f5a 1737 state.flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1738
1739 /* Eliminate too old ACKs, but take into
1740 * account more or less fresh ones, they can
1741 * contain valid SACK info.
1742 */
1743 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1744 return 0;
1745