]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/fib_trie.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/acme/net-2.6
[net-next-2.6.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 */
45
2373ce1c 46#define VERSION "0.402"
19baf839
RO
47
48#include <linux/config.h>
49#include <asm/uaccess.h>
50#include <asm/system.h>
51#include <asm/bitops.h>
52#include <linux/types.h>
53#include <linux/kernel.h>
54#include <linux/sched.h>
55#include <linux/mm.h>
56#include <linux/string.h>
57#include <linux/socket.h>
58#include <linux/sockios.h>
59#include <linux/errno.h>
60#include <linux/in.h>
61#include <linux/inet.h>
62#include <linux/netdevice.h>
63#include <linux/if_arp.h>
64#include <linux/proc_fs.h>
2373ce1c 65#include <linux/rcupdate.h>
19baf839
RO
66#include <linux/skbuff.h>
67#include <linux/netlink.h>
68#include <linux/init.h>
69#include <linux/list.h>
70#include <net/ip.h>
71#include <net/protocol.h>
72#include <net/route.h>
73#include <net/tcp.h>
74#include <net/sock.h>
75#include <net/ip_fib.h>
76#include "fib_lookup.h"
77
78#undef CONFIG_IP_FIB_TRIE_STATS
79#define MAX_CHILDS 16384
80
19baf839
RO
81#define KEYLENGTH (8*sizeof(t_key))
82#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
83#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
84
19baf839
RO
85typedef unsigned int t_key;
86
87#define T_TNODE 0
88#define T_LEAF 1
89#define NODE_TYPE_MASK 0x1UL
91b9a277 90#define NODE_PARENT(node) \
2373ce1c
RO
91 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
92
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95#define NODE_SET_PARENT(node, ptr) \
96 rcu_assign_pointer((node)->parent, \
97 ((unsigned long)(ptr)) | NODE_TYPE(node))
91b9a277
OJ
98
99#define IS_TNODE(n) (!(n->parent & T_LEAF))
100#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
101
102struct node {
91b9a277
OJ
103 t_key key;
104 unsigned long parent;
19baf839
RO
105};
106
107struct leaf {
91b9a277
OJ
108 t_key key;
109 unsigned long parent;
19baf839 110 struct hlist_head list;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112};
113
114struct leaf_info {
115 struct hlist_node hlist;
2373ce1c 116 struct rcu_head rcu;
19baf839
RO
117 int plen;
118 struct list_head falh;
119};
120
121struct tnode {
91b9a277
OJ
122 t_key key;
123 unsigned long parent;
124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children; /* KEYLENGTH bits needed */
127 unsigned short empty_children; /* KEYLENGTH bits needed */
2373ce1c 128 struct rcu_head rcu;
91b9a277 129 struct node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int nodesizes[MAX_CHILDS];
c877efb2 150};
19baf839
RO
151
152struct trie {
91b9a277 153 struct node *trie;
19baf839
RO
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156#endif
91b9a277 157 int size;
19baf839
RO
158 unsigned int revision;
159};
160
19baf839
RO
161static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
162static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
19baf839 163static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839
RO
166static void tnode_free(struct tnode *tn);
167static void trie_dump_seq(struct seq_file *seq, struct trie *t);
19baf839 168
ba89966c 169static kmem_cache_t *fn_alias_kmem __read_mostly;
19baf839
RO
170static struct trie *trie_local = NULL, *trie_main = NULL;
171
2373ce1c
RO
172
173/* rcu_read_lock needs to be hold by caller from readside */
174
c877efb2 175static inline struct node *tnode_get_child(struct tnode *tn, int i)
19baf839 176{
91b9a277 177 BUG_ON(i >= 1 << tn->bits);
19baf839 178
2373ce1c 179 return rcu_dereference(tn->child[i]);
19baf839
RO
180}
181
bb435b8d 182static inline int tnode_child_length(const struct tnode *tn)
19baf839 183{
91b9a277 184 return 1 << tn->bits;
19baf839
RO
185}
186
19baf839
RO
187static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
188{
91b9a277 189 if (offset < KEYLENGTH)
19baf839 190 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 191 else
19baf839
RO
192 return 0;
193}
194
195static inline int tkey_equals(t_key a, t_key b)
196{
c877efb2 197 return a == b;
19baf839
RO
198}
199
200static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
201{
c877efb2
SH
202 if (bits == 0 || offset >= KEYLENGTH)
203 return 1;
91b9a277
OJ
204 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
205 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 206}
19baf839
RO
207
208static inline int tkey_mismatch(t_key a, int offset, t_key b)
209{
210 t_key diff = a ^ b;
211 int i = offset;
212
c877efb2
SH
213 if (!diff)
214 return 0;
215 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
216 i++;
217 return i;
218}
219
19baf839
RO
220/*
221 To understand this stuff, an understanding of keys and all their bits is
222 necessary. Every node in the trie has a key associated with it, but not
223 all of the bits in that key are significant.
224
225 Consider a node 'n' and its parent 'tp'.
226
227 If n is a leaf, every bit in its key is significant. Its presence is
228 necessitaded by path compression, since during a tree traversal (when
229 searching for a leaf - unless we are doing an insertion) we will completely
230 ignore all skipped bits we encounter. Thus we need to verify, at the end of
231 a potentially successful search, that we have indeed been walking the
232 correct key path.
233
234 Note that we can never "miss" the correct key in the tree if present by
235 following the wrong path. Path compression ensures that segments of the key
236 that are the same for all keys with a given prefix are skipped, but the
237 skipped part *is* identical for each node in the subtrie below the skipped
238 bit! trie_insert() in this implementation takes care of that - note the
239 call to tkey_sub_equals() in trie_insert().
240
241 if n is an internal node - a 'tnode' here, the various parts of its key
242 have many different meanings.
243
244 Example:
245 _________________________________________________________________
246 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
247 -----------------------------------------------------------------
248 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
249
250 _________________________________________________________________
251 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
252 -----------------------------------------------------------------
253 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
254
255 tp->pos = 7
256 tp->bits = 3
257 n->pos = 15
91b9a277 258 n->bits = 4
19baf839
RO
259
260 First, let's just ignore the bits that come before the parent tp, that is
261 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
262 not use them for anything.
263
264 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
265 index into the parent's child array. That is, they will be used to find
266 'n' among tp's children.
267
268 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
269 for the node n.
270
271 All the bits we have seen so far are significant to the node n. The rest
272 of the bits are really not needed or indeed known in n->key.
273
274 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
275 n's child array, and will of course be different for each child.
276
c877efb2 277
19baf839
RO
278 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
279 at this point.
280
281*/
282
0c7770c7 283static inline void check_tnode(const struct tnode *tn)
19baf839 284{
0c7770c7 285 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
286}
287
288static int halve_threshold = 25;
289static int inflate_threshold = 50;
290
2373ce1c
RO
291
292static void __alias_free_mem(struct rcu_head *head)
19baf839 293{
2373ce1c
RO
294 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
295 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
296}
297
2373ce1c 298static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 299{
2373ce1c
RO
300 call_rcu(&fa->rcu, __alias_free_mem);
301}
91b9a277 302
2373ce1c
RO
303static void __leaf_free_rcu(struct rcu_head *head)
304{
305 kfree(container_of(head, struct leaf, rcu));
306}
91b9a277 307
2373ce1c
RO
308static inline void free_leaf(struct leaf *leaf)
309{
310 call_rcu(&leaf->rcu, __leaf_free_rcu);
19baf839
RO
311}
312
2373ce1c 313static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 314{
2373ce1c 315 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
316}
317
2373ce1c 318static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 319{
2373ce1c 320 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
321}
322
f0e36f8c
PM
323static struct tnode *tnode_alloc(unsigned int size)
324{
2373ce1c
RO
325 struct page *pages;
326
327 if (size <= PAGE_SIZE)
328 return kcalloc(size, 1, GFP_KERNEL);
329
330 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
331 if (!pages)
332 return NULL;
333
334 return page_address(pages);
f0e36f8c
PM
335}
336
2373ce1c 337static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 338{
2373ce1c 339 struct tnode *tn = container_of(head, struct tnode, rcu);
f0e36f8c 340 unsigned int size = sizeof(struct tnode) +
2373ce1c 341 (1 << tn->bits) * sizeof(struct node *);
f0e36f8c
PM
342
343 if (size <= PAGE_SIZE)
344 kfree(tn);
345 else
346 free_pages((unsigned long)tn, get_order(size));
347}
348
2373ce1c
RO
349static inline void tnode_free(struct tnode *tn)
350{
351 call_rcu(&tn->rcu, __tnode_free_rcu);
352}
353
354static struct leaf *leaf_new(void)
355{
356 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
357 if (l) {
358 l->parent = T_LEAF;
359 INIT_HLIST_HEAD(&l->list);
360 }
361 return l;
362}
363
364static struct leaf_info *leaf_info_new(int plen)
365{
366 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
367 if (li) {
368 li->plen = plen;
369 INIT_LIST_HEAD(&li->falh);
370 }
371 return li;
372}
373
19baf839
RO
374static struct tnode* tnode_new(t_key key, int pos, int bits)
375{
376 int nchildren = 1<<bits;
377 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
f0e36f8c 378 struct tnode *tn = tnode_alloc(sz);
19baf839 379
91b9a277 380 if (tn) {
19baf839 381 memset(tn, 0, sz);
2373ce1c 382 tn->parent = T_TNODE;
19baf839
RO
383 tn->pos = pos;
384 tn->bits = bits;
385 tn->key = key;
386 tn->full_children = 0;
387 tn->empty_children = 1<<bits;
388 }
c877efb2 389
0c7770c7
SH
390 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
391 (unsigned int) (sizeof(struct node) * 1<<bits));
19baf839
RO
392 return tn;
393}
394
19baf839
RO
395/*
396 * Check whether a tnode 'n' is "full", i.e. it is an internal node
397 * and no bits are skipped. See discussion in dyntree paper p. 6
398 */
399
bb435b8d 400static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 401{
c877efb2 402 if (n == NULL || IS_LEAF(n))
19baf839
RO
403 return 0;
404
405 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
406}
407
c877efb2 408static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
19baf839
RO
409{
410 tnode_put_child_reorg(tn, i, n, -1);
411}
412
c877efb2 413 /*
19baf839
RO
414 * Add a child at position i overwriting the old value.
415 * Update the value of full_children and empty_children.
416 */
417
c877efb2 418static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
19baf839 419{
2373ce1c 420 struct node *chi = tn->child[i];
19baf839
RO
421 int isfull;
422
0c7770c7
SH
423 BUG_ON(i >= 1<<tn->bits);
424
19baf839
RO
425
426 /* update emptyChildren */
427 if (n == NULL && chi != NULL)
428 tn->empty_children++;
429 else if (n != NULL && chi == NULL)
430 tn->empty_children--;
c877efb2 431
19baf839 432 /* update fullChildren */
91b9a277 433 if (wasfull == -1)
19baf839
RO
434 wasfull = tnode_full(tn, chi);
435
436 isfull = tnode_full(tn, n);
c877efb2 437 if (wasfull && !isfull)
19baf839 438 tn->full_children--;
c877efb2 439 else if (!wasfull && isfull)
19baf839 440 tn->full_children++;
91b9a277 441
c877efb2
SH
442 if (n)
443 NODE_SET_PARENT(n, tn);
19baf839 444
2373ce1c 445 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
446}
447
c877efb2 448static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
449{
450 int i;
2f36895a 451 int err = 0;
2f80b3c8 452 struct tnode *old_tn;
19baf839
RO
453
454 if (!tn)
455 return NULL;
456
0c7770c7
SH
457 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
458 tn, inflate_threshold, halve_threshold);
19baf839
RO
459
460 /* No children */
461 if (tn->empty_children == tnode_child_length(tn)) {
462 tnode_free(tn);
463 return NULL;
464 }
465 /* One child */
466 if (tn->empty_children == tnode_child_length(tn) - 1)
467 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 468 struct node *n;
19baf839 469
91b9a277 470 n = tn->child[i];
2373ce1c 471 if (!n)
91b9a277 472 continue;
91b9a277
OJ
473
474 /* compress one level */
2373ce1c 475 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
476 tnode_free(tn);
477 return n;
19baf839 478 }
c877efb2 479 /*
19baf839
RO
480 * Double as long as the resulting node has a number of
481 * nonempty nodes that are above the threshold.
482 */
483
484 /*
c877efb2
SH
485 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
486 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 487 * Telecommunications, page 6:
c877efb2 488 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
489 * children in the *doubled* node is at least 'high'."
490 *
c877efb2
SH
491 * 'high' in this instance is the variable 'inflate_threshold'. It
492 * is expressed as a percentage, so we multiply it with
493 * tnode_child_length() and instead of multiplying by 2 (since the
494 * child array will be doubled by inflate()) and multiplying
495 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 496 * multiply the left-hand side by 50.
c877efb2
SH
497 *
498 * The left-hand side may look a bit weird: tnode_child_length(tn)
499 * - tn->empty_children is of course the number of non-null children
500 * in the current node. tn->full_children is the number of "full"
19baf839 501 * children, that is non-null tnodes with a skip value of 0.
c877efb2 502 * All of those will be doubled in the resulting inflated tnode, so
19baf839 503 * we just count them one extra time here.
c877efb2 504 *
19baf839 505 * A clearer way to write this would be:
c877efb2 506 *
19baf839 507 * to_be_doubled = tn->full_children;
c877efb2 508 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
509 * tn->full_children;
510 *
511 * new_child_length = tnode_child_length(tn) * 2;
512 *
c877efb2 513 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
514 * new_child_length;
515 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
516 *
517 * ...and so on, tho it would mess up the while () loop.
518 *
19baf839
RO
519 * anyway,
520 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
521 * inflate_threshold
c877efb2 522 *
19baf839
RO
523 * avoid a division:
524 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
525 * inflate_threshold * new_child_length
c877efb2 526 *
19baf839 527 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 528 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 529 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 530 *
19baf839 531 * expand new_child_length:
c877efb2 532 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 533 * tn->full_children) >=
19baf839 534 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 535 *
19baf839 536 * shorten again:
c877efb2 537 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 538 * tn->empty_children) >= inflate_threshold *
19baf839 539 * tnode_child_length(tn)
c877efb2 540 *
19baf839
RO
541 */
542
543 check_tnode(tn);
c877efb2 544
2f36895a 545 err = 0;
19baf839
RO
546 while ((tn->full_children > 0 &&
547 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
548 inflate_threshold * tnode_child_length(tn))) {
549
2f80b3c8
RO
550 old_tn = tn;
551 tn = inflate(t, tn);
552 if (IS_ERR(tn)) {
553 tn = old_tn;
2f36895a
RO
554#ifdef CONFIG_IP_FIB_TRIE_STATS
555 t->stats.resize_node_skipped++;
556#endif
557 break;
558 }
19baf839
RO
559 }
560
561 check_tnode(tn);
562
563 /*
564 * Halve as long as the number of empty children in this
565 * node is above threshold.
566 */
2f36895a
RO
567
568 err = 0;
19baf839
RO
569 while (tn->bits > 1 &&
570 100 * (tnode_child_length(tn) - tn->empty_children) <
2f36895a
RO
571 halve_threshold * tnode_child_length(tn)) {
572
2f80b3c8
RO
573 old_tn = tn;
574 tn = halve(t, tn);
575 if (IS_ERR(tn)) {
576 tn = old_tn;
2f36895a
RO
577#ifdef CONFIG_IP_FIB_TRIE_STATS
578 t->stats.resize_node_skipped++;
579#endif
580 break;
581 }
582 }
19baf839 583
c877efb2 584
19baf839 585 /* Only one child remains */
19baf839
RO
586 if (tn->empty_children == tnode_child_length(tn) - 1)
587 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 588 struct node *n;
19baf839 589
91b9a277 590 n = tn->child[i];
2373ce1c 591 if (!n)
91b9a277 592 continue;
91b9a277
OJ
593
594 /* compress one level */
595
2373ce1c 596 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
597 tnode_free(tn);
598 return n;
19baf839
RO
599 }
600
601 return (struct node *) tn;
602}
603
2f80b3c8 604static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839
RO
605{
606 struct tnode *inode;
607 struct tnode *oldtnode = tn;
608 int olen = tnode_child_length(tn);
609 int i;
610
0c7770c7 611 pr_debug("In inflate\n");
19baf839
RO
612
613 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
614
0c7770c7 615 if (!tn)
2f80b3c8 616 return ERR_PTR(-ENOMEM);
2f36895a
RO
617
618 /*
c877efb2
SH
619 * Preallocate and store tnodes before the actual work so we
620 * don't get into an inconsistent state if memory allocation
621 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
622 * of tnode is ignored.
623 */
91b9a277
OJ
624
625 for (i = 0; i < olen; i++) {
2f36895a
RO
626 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
627
628 if (inode &&
629 IS_TNODE(inode) &&
630 inode->pos == oldtnode->pos + oldtnode->bits &&
631 inode->bits > 1) {
632 struct tnode *left, *right;
2f36895a 633 t_key m = TKEY_GET_MASK(inode->pos, 1);
c877efb2 634
2f36895a
RO
635 left = tnode_new(inode->key&(~m), inode->pos + 1,
636 inode->bits - 1);
2f80b3c8
RO
637 if (!left)
638 goto nomem;
91b9a277 639
2f36895a
RO
640 right = tnode_new(inode->key|m, inode->pos + 1,
641 inode->bits - 1);
642
2f80b3c8
RO
643 if (!right) {
644 tnode_free(left);
645 goto nomem;
646 }
2f36895a
RO
647
648 put_child(t, tn, 2*i, (struct node *) left);
649 put_child(t, tn, 2*i+1, (struct node *) right);
650 }
651 }
652
91b9a277 653 for (i = 0; i < olen; i++) {
19baf839 654 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
655 struct tnode *left, *right;
656 int size, j;
c877efb2 657
19baf839
RO
658 /* An empty child */
659 if (node == NULL)
660 continue;
661
662 /* A leaf or an internal node with skipped bits */
663
c877efb2 664 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 665 tn->pos + tn->bits - 1) {
c877efb2 666 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
19baf839
RO
667 1) == 0)
668 put_child(t, tn, 2*i, node);
669 else
670 put_child(t, tn, 2*i+1, node);
671 continue;
672 }
673
674 /* An internal node with two children */
675 inode = (struct tnode *) node;
676
677 if (inode->bits == 1) {
678 put_child(t, tn, 2*i, inode->child[0]);
679 put_child(t, tn, 2*i+1, inode->child[1]);
680
681 tnode_free(inode);
91b9a277 682 continue;
19baf839
RO
683 }
684
91b9a277
OJ
685 /* An internal node with more than two children */
686
687 /* We will replace this node 'inode' with two new
688 * ones, 'left' and 'right', each with half of the
689 * original children. The two new nodes will have
690 * a position one bit further down the key and this
691 * means that the "significant" part of their keys
692 * (see the discussion near the top of this file)
693 * will differ by one bit, which will be "0" in
694 * left's key and "1" in right's key. Since we are
695 * moving the key position by one step, the bit that
696 * we are moving away from - the bit at position
697 * (inode->pos) - is the one that will differ between
698 * left and right. So... we synthesize that bit in the
699 * two new keys.
700 * The mask 'm' below will be a single "one" bit at
701 * the position (inode->pos)
702 */
19baf839 703
91b9a277
OJ
704 /* Use the old key, but set the new significant
705 * bit to zero.
706 */
2f36895a 707
91b9a277
OJ
708 left = (struct tnode *) tnode_get_child(tn, 2*i);
709 put_child(t, tn, 2*i, NULL);
2f36895a 710
91b9a277 711 BUG_ON(!left);
2f36895a 712
91b9a277
OJ
713 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
714 put_child(t, tn, 2*i+1, NULL);
19baf839 715
91b9a277 716 BUG_ON(!right);
19baf839 717
91b9a277
OJ
718 size = tnode_child_length(left);
719 for (j = 0; j < size; j++) {
720 put_child(t, left, j, inode->child[j]);
721 put_child(t, right, j, inode->child[j + size]);
19baf839 722 }
91b9a277
OJ
723 put_child(t, tn, 2*i, resize(t, left));
724 put_child(t, tn, 2*i+1, resize(t, right));
725
726 tnode_free(inode);
19baf839
RO
727 }
728 tnode_free(oldtnode);
729 return tn;
2f80b3c8
RO
730nomem:
731 {
732 int size = tnode_child_length(tn);
733 int j;
734
0c7770c7 735 for (j = 0; j < size; j++)
2f80b3c8
RO
736 if (tn->child[j])
737 tnode_free((struct tnode *)tn->child[j]);
738
739 tnode_free(tn);
0c7770c7 740
2f80b3c8
RO
741 return ERR_PTR(-ENOMEM);
742 }
19baf839
RO
743}
744
2f80b3c8 745static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
746{
747 struct tnode *oldtnode = tn;
748 struct node *left, *right;
749 int i;
750 int olen = tnode_child_length(tn);
751
0c7770c7 752 pr_debug("In halve\n");
c877efb2
SH
753
754 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 755
2f80b3c8
RO
756 if (!tn)
757 return ERR_PTR(-ENOMEM);
2f36895a
RO
758
759 /*
c877efb2
SH
760 * Preallocate and store tnodes before the actual work so we
761 * don't get into an inconsistent state if memory allocation
762 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
763 * of tnode is ignored.
764 */
765
91b9a277 766 for (i = 0; i < olen; i += 2) {
2f36895a
RO
767 left = tnode_get_child(oldtnode, i);
768 right = tnode_get_child(oldtnode, i+1);
c877efb2 769
2f36895a 770 /* Two nonempty children */
0c7770c7 771 if (left && right) {
2f80b3c8 772 struct tnode *newn;
0c7770c7 773
2f80b3c8 774 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
775
776 if (!newn)
2f80b3c8 777 goto nomem;
0c7770c7 778
2f80b3c8 779 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 780 }
2f36895a 781
2f36895a 782 }
19baf839 783
91b9a277
OJ
784 for (i = 0; i < olen; i += 2) {
785 struct tnode *newBinNode;
786
19baf839
RO
787 left = tnode_get_child(oldtnode, i);
788 right = tnode_get_child(oldtnode, i+1);
c877efb2 789
19baf839
RO
790 /* At least one of the children is empty */
791 if (left == NULL) {
792 if (right == NULL) /* Both are empty */
793 continue;
794 put_child(t, tn, i/2, right);
91b9a277 795 continue;
0c7770c7 796 }
91b9a277
OJ
797
798 if (right == NULL) {
19baf839 799 put_child(t, tn, i/2, left);
91b9a277
OJ
800 continue;
801 }
c877efb2 802
19baf839 803 /* Two nonempty children */
91b9a277
OJ
804 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
805 put_child(t, tn, i/2, NULL);
91b9a277
OJ
806 put_child(t, newBinNode, 0, left);
807 put_child(t, newBinNode, 1, right);
808 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
809 }
810 tnode_free(oldtnode);
811 return tn;
2f80b3c8
RO
812nomem:
813 {
814 int size = tnode_child_length(tn);
815 int j;
816
0c7770c7 817 for (j = 0; j < size; j++)
2f80b3c8
RO
818 if (tn->child[j])
819 tnode_free((struct tnode *)tn->child[j]);
820
821 tnode_free(tn);
0c7770c7 822
2f80b3c8
RO
823 return ERR_PTR(-ENOMEM);
824 }
19baf839
RO
825}
826
91b9a277 827static void trie_init(struct trie *t)
19baf839 828{
91b9a277
OJ
829 if (!t)
830 return;
831
832 t->size = 0;
2373ce1c 833 rcu_assign_pointer(t->trie, NULL);
91b9a277 834 t->revision = 0;
19baf839 835#ifdef CONFIG_IP_FIB_TRIE_STATS
91b9a277 836 memset(&t->stats, 0, sizeof(struct trie_use_stats));
19baf839 837#endif
19baf839
RO
838}
839
2373ce1c
RO
840/* readside most use rcu_read_lock currently dump routines
841 via get_fa_head and dump */
842
19baf839
RO
843static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen)
844{
845 struct hlist_node *node;
846 struct leaf_info *li;
847
2373ce1c 848 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 849 if (li->plen == plen)
19baf839 850 return li;
91b9a277 851
19baf839
RO
852 return NULL;
853}
854
855static inline struct list_head * get_fa_head(struct leaf *l, int plen)
856{
19baf839 857 struct leaf_info *li = find_leaf_info(&l->list, plen);
c877efb2 858
91b9a277
OJ
859 if (!li)
860 return NULL;
c877efb2 861
91b9a277 862 return &li->falh;
19baf839
RO
863}
864
865static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
866{
2373ce1c
RO
867 struct leaf_info *li = NULL, *last = NULL;
868 struct hlist_node *node;
869
870 if (hlist_empty(head)) {
871 hlist_add_head_rcu(&new->hlist, head);
872 } else {
873 hlist_for_each_entry(li, node, head, hlist) {
874 if (new->plen > li->plen)
875 break;
876
877 last = li;
878 }
879 if (last)
880 hlist_add_after_rcu(&last->hlist, &new->hlist);
881 else
882 hlist_add_before_rcu(&new->hlist, &li->hlist);
883 }
19baf839
RO
884}
885
2373ce1c
RO
886/* rcu_read_lock needs to be hold by caller from readside */
887
19baf839
RO
888static struct leaf *
889fib_find_node(struct trie *t, u32 key)
890{
891 int pos;
892 struct tnode *tn;
893 struct node *n;
894
895 pos = 0;
2373ce1c 896 n = rcu_dereference(t->trie);
19baf839
RO
897
898 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
899 tn = (struct tnode *) n;
91b9a277 900
19baf839 901 check_tnode(tn);
91b9a277 902
c877efb2 903 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 904 pos = tn->pos + tn->bits;
19baf839 905 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
91b9a277 906 } else
19baf839
RO
907 break;
908 }
909 /* Case we have found a leaf. Compare prefixes */
910
91b9a277
OJ
911 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
912 return (struct leaf *)n;
913
19baf839
RO
914 return NULL;
915}
916
917static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
918{
19baf839
RO
919 int wasfull;
920 t_key cindex, key;
921 struct tnode *tp = NULL;
922
19baf839 923 key = tn->key;
19baf839
RO
924
925 while (tn != NULL && NODE_PARENT(tn) != NULL) {
19baf839
RO
926
927 tp = NODE_PARENT(tn);
928 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
929 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
930 tn = (struct tnode *) resize (t, (struct tnode *)tn);
931 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
91b9a277 932
c877efb2 933 if (!NODE_PARENT(tn))
19baf839
RO
934 break;
935
936 tn = NODE_PARENT(tn);
937 }
938 /* Handle last (top) tnode */
c877efb2 939 if (IS_TNODE(tn))
19baf839
RO
940 tn = (struct tnode*) resize(t, (struct tnode *)tn);
941
942 return (struct node*) tn;
943}
944
2373ce1c
RO
945/* only used from updater-side */
946
f835e471
RO
947static struct list_head *
948fib_insert_node(struct trie *t, int *err, u32 key, int plen)
19baf839
RO
949{
950 int pos, newpos;
951 struct tnode *tp = NULL, *tn = NULL;
952 struct node *n;
953 struct leaf *l;
954 int missbit;
c877efb2 955 struct list_head *fa_head = NULL;
19baf839
RO
956 struct leaf_info *li;
957 t_key cindex;
958
959 pos = 0;
c877efb2 960 n = t->trie;
19baf839 961
c877efb2
SH
962 /* If we point to NULL, stop. Either the tree is empty and we should
963 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 964 * and we should just put our new leaf in that.
c877efb2
SH
965 * If we point to a T_TNODE, check if it matches our key. Note that
966 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
967 * not be the parent's 'pos'+'bits'!
968 *
c877efb2 969 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
970 * the index from our key, push the T_TNODE and walk the tree.
971 *
972 * If it doesn't, we have to replace it with a new T_TNODE.
973 *
c877efb2
SH
974 * If we point to a T_LEAF, it might or might not have the same key
975 * as we do. If it does, just change the value, update the T_LEAF's
976 * value, and return it.
19baf839
RO
977 * If it doesn't, we need to replace it with a T_TNODE.
978 */
979
980 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
981 tn = (struct tnode *) n;
91b9a277 982
c877efb2 983 check_tnode(tn);
91b9a277 984
c877efb2 985 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 986 tp = tn;
91b9a277 987 pos = tn->pos + tn->bits;
19baf839
RO
988 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
989
0c7770c7 990 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 991 } else
19baf839
RO
992 break;
993 }
994
995 /*
996 * n ----> NULL, LEAF or TNODE
997 *
c877efb2 998 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
999 */
1000
91b9a277 1001 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1002
1003 /* Case 1: n is a leaf. Compare prefixes */
1004
c877efb2 1005 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
91b9a277
OJ
1006 struct leaf *l = (struct leaf *) n;
1007
19baf839 1008 li = leaf_info_new(plen);
91b9a277 1009
c877efb2 1010 if (!li) {
f835e471
RO
1011 *err = -ENOMEM;
1012 goto err;
1013 }
19baf839
RO
1014
1015 fa_head = &li->falh;
1016 insert_leaf_info(&l->list, li);
1017 goto done;
1018 }
1019 t->size++;
1020 l = leaf_new();
1021
c877efb2 1022 if (!l) {
f835e471
RO
1023 *err = -ENOMEM;
1024 goto err;
1025 }
19baf839
RO
1026
1027 l->key = key;
1028 li = leaf_info_new(plen);
1029
c877efb2 1030 if (!li) {
f835e471
RO
1031 tnode_free((struct tnode *) l);
1032 *err = -ENOMEM;
1033 goto err;
1034 }
19baf839
RO
1035
1036 fa_head = &li->falh;
1037 insert_leaf_info(&l->list, li);
1038
19baf839 1039 if (t->trie && n == NULL) {
91b9a277 1040 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839
RO
1041
1042 NODE_SET_PARENT(l, tp);
19baf839 1043
91b9a277
OJ
1044 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1045 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1046 } else {
1047 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1048 /*
1049 * Add a new tnode here
19baf839
RO
1050 * first tnode need some special handling
1051 */
1052
1053 if (tp)
91b9a277 1054 pos = tp->pos+tp->bits;
19baf839 1055 else
91b9a277
OJ
1056 pos = 0;
1057
c877efb2 1058 if (n) {
19baf839
RO
1059 newpos = tkey_mismatch(key, pos, n->key);
1060 tn = tnode_new(n->key, newpos, 1);
91b9a277 1061 } else {
19baf839 1062 newpos = 0;
c877efb2 1063 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1064 }
19baf839 1065
c877efb2 1066 if (!tn) {
f835e471
RO
1067 free_leaf_info(li);
1068 tnode_free((struct tnode *) l);
1069 *err = -ENOMEM;
1070 goto err;
91b9a277
OJ
1071 }
1072
19baf839
RO
1073 NODE_SET_PARENT(tn, tp);
1074
91b9a277 1075 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1076 put_child(t, tn, missbit, (struct node *)l);
1077 put_child(t, tn, 1-missbit, n);
1078
c877efb2 1079 if (tp) {
19baf839
RO
1080 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1081 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
91b9a277 1082 } else {
2373ce1c 1083 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
19baf839
RO
1084 tp = tn;
1085 }
1086 }
91b9a277
OJ
1087
1088 if (tp && tp->pos + tp->bits > 32)
c877efb2 1089 printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
19baf839 1090 tp, tp->pos, tp->bits, key, plen);
91b9a277 1091
19baf839 1092 /* Rebalance the trie */
2373ce1c
RO
1093
1094 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471
RO
1095done:
1096 t->revision++;
91b9a277 1097err:
19baf839
RO
1098 return fa_head;
1099}
1100
1101static int
1102fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1103 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1104{
1105 struct trie *t = (struct trie *) tb->tb_data;
1106 struct fib_alias *fa, *new_fa;
c877efb2 1107 struct list_head *fa_head = NULL;
19baf839
RO
1108 struct fib_info *fi;
1109 int plen = r->rtm_dst_len;
1110 int type = r->rtm_type;
1111 u8 tos = r->rtm_tos;
1112 u32 key, mask;
1113 int err;
1114 struct leaf *l;
1115
1116 if (plen > 32)
1117 return -EINVAL;
1118
1119 key = 0;
c877efb2 1120 if (rta->rta_dst)
19baf839
RO
1121 memcpy(&key, rta->rta_dst, 4);
1122
1123 key = ntohl(key);
1124
0c7770c7 1125 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
19baf839 1126
91b9a277 1127 mask = ntohl(inet_make_mask(plen));
19baf839 1128
c877efb2 1129 if (key & ~mask)
19baf839
RO
1130 return -EINVAL;
1131
1132 key = key & mask;
1133
91b9a277
OJ
1134 fi = fib_create_info(r, rta, nlhdr, &err);
1135
1136 if (!fi)
19baf839
RO
1137 goto err;
1138
1139 l = fib_find_node(t, key);
c877efb2 1140 fa = NULL;
19baf839 1141
c877efb2 1142 if (l) {
19baf839
RO
1143 fa_head = get_fa_head(l, plen);
1144 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1145 }
1146
1147 /* Now fa, if non-NULL, points to the first fib alias
1148 * with the same keys [prefix,tos,priority], if such key already
1149 * exists or to the node before which we will insert new one.
1150 *
1151 * If fa is NULL, we will need to allocate a new one and
1152 * insert to the head of f.
1153 *
1154 * If f is NULL, no fib node matched the destination key
1155 * and we need to allocate a new one of those as well.
1156 */
1157
91b9a277 1158 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1159 struct fib_alias *fa_orig;
1160
1161 err = -EEXIST;
1162 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1163 goto out;
1164
1165 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1166 struct fib_info *fi_drop;
1167 u8 state;
1168
2373ce1c
RO
1169 err = -ENOBUFS;
1170 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1171 if (new_fa == NULL)
1172 goto out;
19baf839
RO
1173
1174 fi_drop = fa->fa_info;
2373ce1c
RO
1175 new_fa->fa_tos = fa->fa_tos;
1176 new_fa->fa_info = fi;
1177 new_fa->fa_type = type;
1178 new_fa->fa_scope = r->rtm_scope;
19baf839 1179 state = fa->fa_state;
2373ce1c 1180 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1181
2373ce1c
RO
1182 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1183 alias_free_mem_rcu(fa);
19baf839
RO
1184
1185 fib_release_info(fi_drop);
1186 if (state & FA_S_ACCESSED)
91b9a277 1187 rt_cache_flush(-1);
19baf839 1188
91b9a277 1189 goto succeeded;
19baf839
RO
1190 }
1191 /* Error if we find a perfect match which
1192 * uses the same scope, type, and nexthop
1193 * information.
1194 */
1195 fa_orig = fa;
1196 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1197 if (fa->fa_tos != tos)
1198 break;
1199 if (fa->fa_info->fib_priority != fi->fib_priority)
1200 break;
1201 if (fa->fa_type == type &&
1202 fa->fa_scope == r->rtm_scope &&
1203 fa->fa_info == fi) {
1204 goto out;
1205 }
1206 }
1207 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1208 fa = fa_orig;
1209 }
1210 err = -ENOENT;
91b9a277 1211 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
19baf839
RO
1212 goto out;
1213
1214 err = -ENOBUFS;
1215 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1216 if (new_fa == NULL)
1217 goto out;
1218
1219 new_fa->fa_info = fi;
1220 new_fa->fa_tos = tos;
1221 new_fa->fa_type = type;
1222 new_fa->fa_scope = r->rtm_scope;
1223 new_fa->fa_state = 0;
19baf839
RO
1224 /*
1225 * Insert new entry to the list.
1226 */
1227
c877efb2 1228 if (!fa_head) {
f835e471
RO
1229 fa_head = fib_insert_node(t, &err, key, plen);
1230 err = 0;
c877efb2 1231 if (err)
f835e471
RO
1232 goto out_free_new_fa;
1233 }
19baf839 1234
2373ce1c
RO
1235 list_add_tail_rcu(&new_fa->fa_list,
1236 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1237
1238 rt_cache_flush(-1);
1239 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1240succeeded:
1241 return 0;
f835e471
RO
1242
1243out_free_new_fa:
1244 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1245out:
1246 fib_release_info(fi);
91b9a277 1247err:
19baf839
RO
1248 return err;
1249}
1250
2373ce1c
RO
1251
1252/* should be clalled with rcu_read_lock */
0c7770c7
SH
1253static inline int check_leaf(struct trie *t, struct leaf *l,
1254 t_key key, int *plen, const struct flowi *flp,
06c74270 1255 struct fib_result *res)
19baf839 1256{
06c74270 1257 int err, i;
19baf839
RO
1258 t_key mask;
1259 struct leaf_info *li;
1260 struct hlist_head *hhead = &l->list;
1261 struct hlist_node *node;
c877efb2 1262
2373ce1c 1263 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
19baf839
RO
1264 i = li->plen;
1265 mask = ntohl(inet_make_mask(i));
c877efb2 1266 if (l->key != (key & mask))
19baf839
RO
1267 continue;
1268
06c74270 1269 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
19baf839
RO
1270 *plen = i;
1271#ifdef CONFIG_IP_FIB_TRIE_STATS
1272 t->stats.semantic_match_passed++;
1273#endif
06c74270 1274 return err;
19baf839
RO
1275 }
1276#ifdef CONFIG_IP_FIB_TRIE_STATS
1277 t->stats.semantic_match_miss++;
1278#endif
1279 }
06c74270 1280 return 1;
19baf839
RO
1281}
1282
1283static int
1284fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1285{
1286 struct trie *t = (struct trie *) tb->tb_data;
1287 int plen, ret = 0;
1288 struct node *n;
1289 struct tnode *pn;
1290 int pos, bits;
91b9a277 1291 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1292 int chopped_off;
1293 t_key cindex = 0;
1294 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1295 struct tnode *cn;
1296 t_key node_prefix, key_prefix, pref_mismatch;
1297 int mp;
1298
2373ce1c 1299 rcu_read_lock();
91b9a277 1300
2373ce1c 1301 n = rcu_dereference(t->trie);
c877efb2 1302 if (!n)
19baf839
RO
1303 goto failed;
1304
1305#ifdef CONFIG_IP_FIB_TRIE_STATS
1306 t->stats.gets++;
1307#endif
1308
1309 /* Just a leaf? */
1310 if (IS_LEAF(n)) {
06c74270 1311 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
19baf839
RO
1312 goto found;
1313 goto failed;
1314 }
1315 pn = (struct tnode *) n;
1316 chopped_off = 0;
c877efb2 1317
91b9a277 1318 while (pn) {
19baf839
RO
1319 pos = pn->pos;
1320 bits = pn->bits;
1321
c877efb2 1322 if (!chopped_off)
19baf839
RO
1323 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1324
1325 n = tnode_get_child(pn, cindex);
1326
1327 if (n == NULL) {
1328#ifdef CONFIG_IP_FIB_TRIE_STATS
1329 t->stats.null_node_hit++;
1330#endif
1331 goto backtrace;
1332 }
1333
91b9a277
OJ
1334 if (IS_LEAF(n)) {
1335 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1336 goto found;
1337 else
1338 goto backtrace;
1339 }
1340
19baf839
RO
1341#define HL_OPTIMIZE
1342#ifdef HL_OPTIMIZE
91b9a277 1343 cn = (struct tnode *)n;
19baf839 1344
91b9a277
OJ
1345 /*
1346 * It's a tnode, and we can do some extra checks here if we
1347 * like, to avoid descending into a dead-end branch.
1348 * This tnode is in the parent's child array at index
1349 * key[p_pos..p_pos+p_bits] but potentially with some bits
1350 * chopped off, so in reality the index may be just a
1351 * subprefix, padded with zero at the end.
1352 * We can also take a look at any skipped bits in this
1353 * tnode - everything up to p_pos is supposed to be ok,
1354 * and the non-chopped bits of the index (se previous
1355 * paragraph) are also guaranteed ok, but the rest is
1356 * considered unknown.
1357 *
1358 * The skipped bits are key[pos+bits..cn->pos].
1359 */
19baf839 1360
91b9a277
OJ
1361 /* If current_prefix_length < pos+bits, we are already doing
1362 * actual prefix matching, which means everything from
1363 * pos+(bits-chopped_off) onward must be zero along some
1364 * branch of this subtree - otherwise there is *no* valid
1365 * prefix present. Here we can only check the skipped
1366 * bits. Remember, since we have already indexed into the
1367 * parent's child array, we know that the bits we chopped of
1368 * *are* zero.
1369 */
19baf839 1370
91b9a277 1371 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
19baf839 1372
91b9a277
OJ
1373 if (current_prefix_length < pos+bits) {
1374 if (tkey_extract_bits(cn->key, current_prefix_length,
1375 cn->pos - current_prefix_length) != 0 ||
1376 !(cn->child[0]))
1377 goto backtrace;
1378 }
19baf839 1379
91b9a277
OJ
1380 /*
1381 * If chopped_off=0, the index is fully validated and we
1382 * only need to look at the skipped bits for this, the new,
1383 * tnode. What we actually want to do is to find out if
1384 * these skipped bits match our key perfectly, or if we will
1385 * have to count on finding a matching prefix further down,
1386 * because if we do, we would like to have some way of
1387 * verifying the existence of such a prefix at this point.
1388 */
19baf839 1389
91b9a277
OJ
1390 /* The only thing we can do at this point is to verify that
1391 * any such matching prefix can indeed be a prefix to our
1392 * key, and if the bits in the node we are inspecting that
1393 * do not match our key are not ZERO, this cannot be true.
1394 * Thus, find out where there is a mismatch (before cn->pos)
1395 * and verify that all the mismatching bits are zero in the
1396 * new tnode's key.
1397 */
19baf839 1398
91b9a277
OJ
1399 /* Note: We aren't very concerned about the piece of the key
1400 * that precede pn->pos+pn->bits, since these have already been
1401 * checked. The bits after cn->pos aren't checked since these are
1402 * by definition "unknown" at this point. Thus, what we want to
1403 * see is if we are about to enter the "prefix matching" state,
1404 * and in that case verify that the skipped bits that will prevail
1405 * throughout this subtree are zero, as they have to be if we are
1406 * to find a matching prefix.
1407 */
1408
1409 node_prefix = MASK_PFX(cn->key, cn->pos);
1410 key_prefix = MASK_PFX(key, cn->pos);
1411 pref_mismatch = key_prefix^node_prefix;
1412 mp = 0;
1413
1414 /* In short: If skipped bits in this node do not match the search
1415 * key, enter the "prefix matching" state.directly.
1416 */
1417 if (pref_mismatch) {
1418 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1419 mp++;
1420 pref_mismatch = pref_mismatch <<1;
1421 }
1422 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1423
1424 if (key_prefix != 0)
1425 goto backtrace;
1426
1427 if (current_prefix_length >= cn->pos)
1428 current_prefix_length = mp;
c877efb2 1429 }
91b9a277
OJ
1430#endif
1431 pn = (struct tnode *)n; /* Descend */
1432 chopped_off = 0;
1433 continue;
1434
19baf839
RO
1435backtrace:
1436 chopped_off++;
1437
1438 /* As zero don't change the child key (cindex) */
91b9a277 1439 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
19baf839 1440 chopped_off++;
19baf839
RO
1441
1442 /* Decrease current_... with bits chopped off */
1443 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1444 current_prefix_length = pn->pos + pn->bits - chopped_off;
91b9a277 1445
19baf839 1446 /*
c877efb2 1447 * Either we do the actual chop off according or if we have
19baf839
RO
1448 * chopped off all bits in this tnode walk up to our parent.
1449 */
1450
91b9a277 1451 if (chopped_off <= pn->bits) {
19baf839 1452 cindex &= ~(1 << (chopped_off-1));
91b9a277 1453 } else {
c877efb2 1454 if (NODE_PARENT(pn) == NULL)
19baf839 1455 goto failed;
91b9a277 1456
19baf839
RO
1457 /* Get Child's index */
1458 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1459 pn = NODE_PARENT(pn);
1460 chopped_off = 0;
1461
1462#ifdef CONFIG_IP_FIB_TRIE_STATS
1463 t->stats.backtrack++;
1464#endif
1465 goto backtrace;
c877efb2 1466 }
19baf839
RO
1467 }
1468failed:
c877efb2 1469 ret = 1;
19baf839 1470found:
2373ce1c 1471 rcu_read_unlock();
19baf839
RO
1472 return ret;
1473}
1474
2373ce1c 1475/* only called from updater side */
19baf839
RO
1476static int trie_leaf_remove(struct trie *t, t_key key)
1477{
1478 t_key cindex;
1479 struct tnode *tp = NULL;
1480 struct node *n = t->trie;
1481 struct leaf *l;
1482
0c7770c7 1483 pr_debug("entering trie_leaf_remove(%p)\n", n);
19baf839
RO
1484
1485 /* Note that in the case skipped bits, those bits are *not* checked!
c877efb2 1486 * When we finish this, we will have NULL or a T_LEAF, and the
19baf839
RO
1487 * T_LEAF may or may not match our key.
1488 */
1489
91b9a277 1490 while (n != NULL && IS_TNODE(n)) {
19baf839
RO
1491 struct tnode *tn = (struct tnode *) n;
1492 check_tnode(tn);
1493 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1494
0c7770c7 1495 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1496 }
19baf839
RO
1497 l = (struct leaf *) n;
1498
c877efb2 1499 if (!n || !tkey_equals(l->key, key))
19baf839 1500 return 0;
c877efb2
SH
1501
1502 /*
1503 * Key found.
1504 * Remove the leaf and rebalance the tree
19baf839
RO
1505 */
1506
1507 t->revision++;
1508 t->size--;
1509
2373ce1c 1510 preempt_disable();
19baf839
RO
1511 tp = NODE_PARENT(n);
1512 tnode_free((struct tnode *) n);
1513
c877efb2 1514 if (tp) {
19baf839
RO
1515 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1516 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1517 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1518 } else
2373ce1c
RO
1519 rcu_assign_pointer(t->trie, NULL);
1520 preempt_enable();
19baf839
RO
1521
1522 return 1;
1523}
1524
1525static int
1526fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
91b9a277 1527 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
19baf839
RO
1528{
1529 struct trie *t = (struct trie *) tb->tb_data;
1530 u32 key, mask;
1531 int plen = r->rtm_dst_len;
1532 u8 tos = r->rtm_tos;
1533 struct fib_alias *fa, *fa_to_delete;
1534 struct list_head *fa_head;
1535 struct leaf *l;
91b9a277
OJ
1536 struct leaf_info *li;
1537
19baf839 1538
c877efb2 1539 if (plen > 32)
19baf839
RO
1540 return -EINVAL;
1541
1542 key = 0;
c877efb2 1543 if (rta->rta_dst)
19baf839
RO
1544 memcpy(&key, rta->rta_dst, 4);
1545
1546 key = ntohl(key);
91b9a277 1547 mask = ntohl(inet_make_mask(plen));
19baf839 1548
c877efb2 1549 if (key & ~mask)
19baf839
RO
1550 return -EINVAL;
1551
1552 key = key & mask;
1553 l = fib_find_node(t, key);
1554
c877efb2 1555 if (!l)
19baf839
RO
1556 return -ESRCH;
1557
1558 fa_head = get_fa_head(l, plen);
1559 fa = fib_find_alias(fa_head, tos, 0);
1560
1561 if (!fa)
1562 return -ESRCH;
1563
0c7770c7 1564 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1565
1566 fa_to_delete = NULL;
1567 fa_head = fa->fa_list.prev;
2373ce1c 1568
19baf839
RO
1569 list_for_each_entry(fa, fa_head, fa_list) {
1570 struct fib_info *fi = fa->fa_info;
1571
1572 if (fa->fa_tos != tos)
1573 break;
1574
1575 if ((!r->rtm_type ||
1576 fa->fa_type == r->rtm_type) &&
1577 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1578 fa->fa_scope == r->rtm_scope) &&
1579 (!r->rtm_protocol ||
1580 fi->fib_protocol == r->rtm_protocol) &&
1581 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1582 fa_to_delete = fa;
1583 break;
1584 }
1585 }
1586
91b9a277
OJ
1587 if (!fa_to_delete)
1588 return -ESRCH;
19baf839 1589
91b9a277
OJ
1590 fa = fa_to_delete;
1591 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1592
1593 l = fib_find_node(t, key);
1594 li = find_leaf_info(&l->list, plen);
19baf839 1595
2373ce1c 1596 list_del_rcu(&fa->fa_list);
19baf839 1597
91b9a277 1598 if (list_empty(fa_head)) {
2373ce1c 1599 hlist_del_rcu(&li->hlist);
91b9a277 1600 free_leaf_info(li);
2373ce1c 1601 }
19baf839 1602
91b9a277
OJ
1603 if (hlist_empty(&l->list))
1604 trie_leaf_remove(t, key);
19baf839 1605
91b9a277
OJ
1606 if (fa->fa_state & FA_S_ACCESSED)
1607 rt_cache_flush(-1);
19baf839 1608
2373ce1c
RO
1609 fib_release_info(fa->fa_info);
1610 alias_free_mem_rcu(fa);
91b9a277 1611 return 0;
19baf839
RO
1612}
1613
1614static int trie_flush_list(struct trie *t, struct list_head *head)
1615{
1616 struct fib_alias *fa, *fa_node;
1617 int found = 0;
1618
1619 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1620 struct fib_info *fi = fa->fa_info;
19baf839 1621
2373ce1c
RO
1622 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1623 list_del_rcu(&fa->fa_list);
1624 fib_release_info(fa->fa_info);
1625 alias_free_mem_rcu(fa);
19baf839
RO
1626 found++;
1627 }
1628 }
1629 return found;
1630}
1631
1632static int trie_flush_leaf(struct trie *t, struct leaf *l)
1633{
1634 int found = 0;
1635 struct hlist_head *lih = &l->list;
1636 struct hlist_node *node, *tmp;
1637 struct leaf_info *li = NULL;
1638
1639 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1640 found += trie_flush_list(t, &li->falh);
1641
1642 if (list_empty(&li->falh)) {
2373ce1c 1643 hlist_del_rcu(&li->hlist);
19baf839
RO
1644 free_leaf_info(li);
1645 }
1646 }
1647 return found;
1648}
1649
2373ce1c
RO
1650/* rcu_read_lock needs to be hold by caller from readside */
1651
19baf839
RO
1652static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1653{
1654 struct node *c = (struct node *) thisleaf;
1655 struct tnode *p;
1656 int idx;
2373ce1c 1657 struct node *trie = rcu_dereference(t->trie);
19baf839 1658
c877efb2 1659 if (c == NULL) {
2373ce1c 1660 if (trie == NULL)
19baf839
RO
1661 return NULL;
1662
2373ce1c
RO
1663 if (IS_LEAF(trie)) /* trie w. just a leaf */
1664 return (struct leaf *) trie;
19baf839 1665
2373ce1c 1666 p = (struct tnode*) trie; /* Start */
91b9a277 1667 } else
19baf839 1668 p = (struct tnode *) NODE_PARENT(c);
c877efb2 1669
19baf839
RO
1670 while (p) {
1671 int pos, last;
1672
1673 /* Find the next child of the parent */
c877efb2
SH
1674 if (c)
1675 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1676 else
19baf839
RO
1677 pos = 0;
1678
1679 last = 1 << p->bits;
91b9a277 1680 for (idx = pos; idx < last ; idx++) {
2373ce1c
RO
1681 c = rcu_dereference(p->child[idx]);
1682
1683 if (!c)
91b9a277
OJ
1684 continue;
1685
1686 /* Decend if tnode */
2373ce1c
RO
1687 while (IS_TNODE(c)) {
1688 p = (struct tnode *) c;
1689 idx = 0;
91b9a277
OJ
1690
1691 /* Rightmost non-NULL branch */
1692 if (p && IS_TNODE(p))
2373ce1c
RO
1693 while (!(c = rcu_dereference(p->child[idx]))
1694 && idx < (1<<p->bits)) idx++;
91b9a277
OJ
1695
1696 /* Done with this tnode? */
2373ce1c 1697 if (idx >= (1 << p->bits) || !c)
91b9a277 1698 goto up;
19baf839 1699 }
2373ce1c 1700 return (struct leaf *) c;
19baf839
RO
1701 }
1702up:
1703 /* No more children go up one step */
91b9a277 1704 c = (struct node *) p;
19baf839
RO
1705 p = (struct tnode *) NODE_PARENT(p);
1706 }
1707 return NULL; /* Ready. Root of trie */
1708}
1709
1710static int fn_trie_flush(struct fib_table *tb)
1711{
1712 struct trie *t = (struct trie *) tb->tb_data;
1713 struct leaf *ll = NULL, *l = NULL;
1714 int found = 0, h;
1715
1716 t->revision++;
1717
2373ce1c 1718 rcu_read_lock();
91b9a277 1719 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1720 found += trie_flush_leaf(t, l);
1721
1722 if (ll && hlist_empty(&ll->list))
1723 trie_leaf_remove(t, ll->key);
1724 ll = l;
1725 }
2373ce1c 1726 rcu_read_unlock();
19baf839
RO
1727
1728 if (ll && hlist_empty(&ll->list))
1729 trie_leaf_remove(t, ll->key);
1730
0c7770c7 1731 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1732 return found;
1733}
1734
91b9a277 1735static int trie_last_dflt = -1;
19baf839
RO
1736
1737static void
1738fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1739{
1740 struct trie *t = (struct trie *) tb->tb_data;
1741 int order, last_idx;
1742 struct fib_info *fi = NULL;
1743 struct fib_info *last_resort;
1744 struct fib_alias *fa = NULL;
1745 struct list_head *fa_head;
1746 struct leaf *l;
1747
1748 last_idx = -1;
1749 last_resort = NULL;
1750 order = -1;
1751
2373ce1c 1752 rcu_read_lock();
c877efb2 1753
19baf839 1754 l = fib_find_node(t, 0);
c877efb2 1755 if (!l)
19baf839
RO
1756 goto out;
1757
1758 fa_head = get_fa_head(l, 0);
c877efb2 1759 if (!fa_head)
19baf839
RO
1760 goto out;
1761
c877efb2 1762 if (list_empty(fa_head))
19baf839
RO
1763 goto out;
1764
2373ce1c 1765 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1766 struct fib_info *next_fi = fa->fa_info;
91b9a277 1767
19baf839
RO
1768 if (fa->fa_scope != res->scope ||
1769 fa->fa_type != RTN_UNICAST)
1770 continue;
91b9a277 1771
19baf839
RO
1772 if (next_fi->fib_priority > res->fi->fib_priority)
1773 break;
1774 if (!next_fi->fib_nh[0].nh_gw ||
1775 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1776 continue;
1777 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1778
19baf839
RO
1779 if (fi == NULL) {
1780 if (next_fi != res->fi)
1781 break;
1782 } else if (!fib_detect_death(fi, order, &last_resort,
1783 &last_idx, &trie_last_dflt)) {
1784 if (res->fi)
1785 fib_info_put(res->fi);
1786 res->fi = fi;
1787 atomic_inc(&fi->fib_clntref);
1788 trie_last_dflt = order;
1789 goto out;
1790 }
1791 fi = next_fi;
1792 order++;
1793 }
1794 if (order <= 0 || fi == NULL) {
1795 trie_last_dflt = -1;
1796 goto out;
1797 }
1798
1799 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1800 if (res->fi)
1801 fib_info_put(res->fi);
1802 res->fi = fi;
1803 atomic_inc(&fi->fib_clntref);
1804 trie_last_dflt = order;
1805 goto out;
1806 }
1807 if (last_idx >= 0) {
1808 if (res->fi)
1809 fib_info_put(res->fi);
1810 res->fi = last_resort;
1811 if (last_resort)
1812 atomic_inc(&last_resort->fib_clntref);
1813 }
1814 trie_last_dflt = last_idx;
1815 out:;
2373ce1c 1816 rcu_read_unlock();
19baf839
RO
1817}
1818
c877efb2 1819static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
19baf839
RO
1820 struct sk_buff *skb, struct netlink_callback *cb)
1821{
1822 int i, s_i;
1823 struct fib_alias *fa;
1824
91b9a277 1825 u32 xkey = htonl(key);
19baf839 1826
91b9a277 1827 s_i = cb->args[3];
19baf839
RO
1828 i = 0;
1829
2373ce1c
RO
1830 /* rcu_read_lock is hold by caller */
1831
1832 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1833 if (i < s_i) {
1834 i++;
1835 continue;
1836 }
1837 if (fa->fa_info->fib_nh == NULL) {
1838 printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1839 i++;
1840 continue;
1841 }
1842 if (fa->fa_info == NULL) {
1843 printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1844 i++;
1845 continue;
1846 }
1847
1848 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1849 cb->nlh->nlmsg_seq,
1850 RTM_NEWROUTE,
1851 tb->tb_id,
1852 fa->fa_type,
1853 fa->fa_scope,
1854 &xkey,
1855 plen,
1856 fa->fa_tos,
90f66914 1857 fa->fa_info, 0) < 0) {
19baf839
RO
1858 cb->args[3] = i;
1859 return -1;
91b9a277 1860 }
19baf839
RO
1861 i++;
1862 }
91b9a277 1863 cb->args[3] = i;
19baf839
RO
1864 return skb->len;
1865}
1866
c877efb2 1867static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
19baf839
RO
1868 struct netlink_callback *cb)
1869{
1870 int h, s_h;
1871 struct list_head *fa_head;
1872 struct leaf *l = NULL;
19baf839 1873
91b9a277 1874 s_h = cb->args[2];
19baf839 1875
91b9a277 1876 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1877 if (h < s_h)
1878 continue;
1879 if (h > s_h)
1880 memset(&cb->args[3], 0,
1881 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1882
1883 fa_head = get_fa_head(l, plen);
91b9a277 1884
c877efb2 1885 if (!fa_head)
19baf839
RO
1886 continue;
1887
c877efb2 1888 if (list_empty(fa_head))
19baf839
RO
1889 continue;
1890
1891 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
91b9a277 1892 cb->args[2] = h;
19baf839
RO
1893 return -1;
1894 }
1895 }
91b9a277 1896 cb->args[2] = h;
19baf839
RO
1897 return skb->len;
1898}
1899
1900static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1901{
1902 int m, s_m;
1903 struct trie *t = (struct trie *) tb->tb_data;
1904
1905 s_m = cb->args[1];
1906
2373ce1c 1907 rcu_read_lock();
91b9a277 1908 for (m = 0; m <= 32; m++) {
19baf839
RO
1909 if (m < s_m)
1910 continue;
1911 if (m > s_m)
1912 memset(&cb->args[2], 0,
91b9a277 1913 sizeof(cb->args) - 2*sizeof(cb->args[0]));
19baf839
RO
1914
1915 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1916 cb->args[1] = m;
1917 goto out;
1918 }
1919 }
2373ce1c 1920 rcu_read_unlock();
19baf839
RO
1921 cb->args[1] = m;
1922 return skb->len;
91b9a277 1923out:
2373ce1c 1924 rcu_read_unlock();
19baf839
RO
1925 return -1;
1926}
1927
1928/* Fix more generic FIB names for init later */
1929
1930#ifdef CONFIG_IP_MULTIPLE_TABLES
1931struct fib_table * fib_hash_init(int id)
1932#else
1933struct fib_table * __init fib_hash_init(int id)
1934#endif
1935{
1936 struct fib_table *tb;
1937 struct trie *t;
1938
1939 if (fn_alias_kmem == NULL)
1940 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1941 sizeof(struct fib_alias),
1942 0, SLAB_HWCACHE_ALIGN,
1943 NULL, NULL);
1944
1945 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1946 GFP_KERNEL);
1947 if (tb == NULL)
1948 return NULL;
1949
1950 tb->tb_id = id;
1951 tb->tb_lookup = fn_trie_lookup;
1952 tb->tb_insert = fn_trie_insert;
1953 tb->tb_delete = fn_trie_delete;
1954 tb->tb_flush = fn_trie_flush;
1955 tb->tb_select_default = fn_trie_select_default;
1956 tb->tb_dump = fn_trie_dump;
1957 memset(tb->tb_data, 0, sizeof(struct trie));
1958
1959 t = (struct trie *) tb->tb_data;
1960
1961 trie_init(t);
1962
c877efb2 1963 if (id == RT_TABLE_LOCAL)
91b9a277 1964 trie_local = t;
c877efb2 1965 else if (id == RT_TABLE_MAIN)
91b9a277 1966 trie_main = t;
19baf839
RO
1967
1968 if (id == RT_TABLE_LOCAL)
1969 printk("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1970
1971 return tb;
1972}
1973
1974/* Trie dump functions */
1975
1976static void putspace_seq(struct seq_file *seq, int n)
1977{
91b9a277
OJ
1978 while (n--)
1979 seq_printf(seq, " ");
19baf839
RO
1980}
1981
1982static void printbin_seq(struct seq_file *seq, unsigned int v, int bits)
1983{
1984 while (bits--)
1985 seq_printf(seq, "%s", (v & (1<<bits))?"1":"0");
1986}
1987
c877efb2 1988static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
19baf839
RO
1989 int pend, int cindex, int bits)
1990{
1991 putspace_seq(seq, indent);
1992 if (IS_LEAF(n))
1993 seq_printf(seq, "|");
1994 else
1995 seq_printf(seq, "+");
1996 if (bits) {
1997 seq_printf(seq, "%d/", cindex);
1998 printbin_seq(seq, cindex, bits);
1999 seq_printf(seq, ": ");
91b9a277 2000 } else
19baf839
RO
2001 seq_printf(seq, "<root>: ");
2002 seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n);
2003
19baf839 2004 if (IS_LEAF(n)) {
91b9a277 2005 struct leaf *l = (struct leaf *)n;
19baf839
RO
2006 struct fib_alias *fa;
2007 int i;
91b9a277
OJ
2008
2009 seq_printf(seq, "key=%d.%d.%d.%d\n",
2010 n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256);
2011
2012 for (i = 32; i >= 0; i--)
2013 if (find_leaf_info(&l->list, i)) {
19baf839 2014 struct list_head *fa_head = get_fa_head(l, i);
91b9a277 2015
c877efb2 2016 if (!fa_head)
19baf839
RO
2017 continue;
2018
c877efb2 2019 if (list_empty(fa_head))
19baf839
RO
2020 continue;
2021
2022 putspace_seq(seq, indent+2);
2023 seq_printf(seq, "{/%d...dumping}\n", i);
2024
2373ce1c 2025 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 2026 putspace_seq(seq, indent+2);
19baf839
RO
2027 if (fa->fa_info == NULL) {
2028 seq_printf(seq, "Error fa_info=NULL\n");
2029 continue;
2030 }
91b9a277
OJ
2031 if (fa->fa_info->fib_nh == NULL) {
2032 seq_printf(seq, "Error _fib_nh=NULL\n");
2033 continue;
2034 }
19baf839
RO
2035
2036 seq_printf(seq, "{type=%d scope=%d TOS=%d}\n",
2037 fa->fa_type,
2038 fa->fa_scope,
2039 fa->fa_tos);
2040 }
2041 }
91b9a277 2042 } else {
c877efb2 2043 struct tnode *tn = (struct tnode *)n;
91b9a277
OJ
2044 int plen = ((struct tnode *)n)->pos;
2045 t_key prf = MASK_PFX(n->key, plen);
2046
2047 seq_printf(seq, "key=%d.%d.%d.%d/%d\n",
2048 prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen);
2049
19baf839 2050 putspace_seq(seq, indent); seq_printf(seq, "| ");
91b9a277 2051 seq_printf(seq, "{key prefix=%08x/", tn->key & TKEY_GET_MASK(0, tn->pos));
19baf839
RO
2052 printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos);
2053 seq_printf(seq, "}\n");
2054 putspace_seq(seq, indent); seq_printf(seq, "| ");
2055 seq_printf(seq, "{pos=%d", tn->pos);
2056 seq_printf(seq, " (skip=%d bits)", tn->pos - pend);
2057 seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits));
2058 putspace_seq(seq, indent); seq_printf(seq, "| ");
2059 seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children);
2060 }
2061}
2062
2063static void trie_dump_seq(struct seq_file *seq, struct trie *t)
2064{
2373ce1c 2065 struct node *n;
91b9a277
OJ
2066 int cindex = 0;
2067 int indent = 1;
2068 int pend = 0;
19baf839 2069 int depth = 0;
91b9a277 2070 struct tnode *tn;
19baf839 2071
2373ce1c
RO
2072 rcu_read_lock();
2073 n = rcu_dereference(t->trie);
19baf839 2074 seq_printf(seq, "------ trie_dump of t=%p ------\n", t);
19baf839 2075
91b9a277
OJ
2076 if (!n) {
2077 seq_printf(seq, "------ trie is empty\n");
2078
2373ce1c 2079 rcu_read_unlock();
91b9a277
OJ
2080 return;
2081 }
2082
2083 printnode_seq(seq, indent, n, pend, cindex, 0);
2084
2085 if (!IS_TNODE(n)) {
2373ce1c 2086 rcu_read_unlock();
91b9a277
OJ
2087 return;
2088 }
2089
2090 tn = (struct tnode *)n;
2091 pend = tn->pos+tn->bits;
2092 putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
2093 indent += 3;
2094 depth++;
2095
2096 while (tn && cindex < (1 << tn->bits)) {
2373ce1c
RO
2097 struct node *child = rcu_dereference(tn->child[cindex]);
2098 if (!child)
2099 cindex++;
2100 else {
91b9a277 2101 /* Got a child */
2373ce1c
RO
2102 printnode_seq(seq, indent, child, pend,
2103 cindex, tn->bits);
91b9a277 2104
2373ce1c 2105 if (IS_LEAF(child))
91b9a277 2106 cindex++;
2373ce1c
RO
2107
2108 else {
19baf839 2109 /*
91b9a277 2110 * New tnode. Decend one level
19baf839 2111 */
19baf839 2112
91b9a277 2113 depth++;
2373ce1c
RO
2114 n = child;
2115 tn = (struct tnode *)n;
2116 pend = tn->pos+tn->bits;
2117 putspace_seq(seq, indent);
2118 seq_printf(seq, "\\--\n");
91b9a277
OJ
2119 indent += 3;
2120 cindex = 0;
19baf839 2121 }
2373ce1c 2122 }
91b9a277
OJ
2123
2124 /*
2125 * Test if we are done
2126 */
2127
2128 while (cindex >= (1 << tn->bits)) {
2129 /*
2130 * Move upwards and test for root
2131 * pop off all traversed nodes
2132 */
2133
2134 if (NODE_PARENT(tn) == NULL) {
2135 tn = NULL;
2136 break;
2137 }
2138
2139 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2140 cindex++;
2141 tn = NODE_PARENT(tn);
2142 pend = tn->pos + tn->bits;
2143 indent -= 3;
2144 depth--;
19baf839 2145 }
19baf839 2146 }
2373ce1c 2147 rcu_read_unlock();
19baf839
RO
2148}
2149
2150static struct trie_stat *trie_stat_new(void)
2151{
91b9a277 2152 struct trie_stat *s;
19baf839 2153 int i;
c877efb2 2154
91b9a277
OJ
2155 s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL);
2156 if (!s)
2157 return NULL;
2158
2159 s->totdepth = 0;
2160 s->maxdepth = 0;
2161 s->tnodes = 0;
2162 s->leaves = 0;
2163 s->nullpointers = 0;
2164
2165 for (i = 0; i < MAX_CHILDS; i++)
2166 s->nodesizes[i] = 0;
2167
19baf839 2168 return s;
c877efb2 2169}
19baf839
RO
2170
2171static struct trie_stat *trie_collect_stats(struct trie *t)
2172{
2373ce1c 2173 struct node *n;
19baf839
RO
2174 struct trie_stat *s = trie_stat_new();
2175 int cindex = 0;
19baf839
RO
2176 int pend = 0;
2177 int depth = 0;
2178
91b9a277
OJ
2179 if (!s)
2180 return NULL;
2373ce1c
RO
2181
2182 rcu_read_lock();
2183 n = rcu_dereference(t->trie);
2184
91b9a277
OJ
2185 if (!n)
2186 return s;
19baf839 2187
91b9a277
OJ
2188 if (IS_TNODE(n)) {
2189 struct tnode *tn = (struct tnode *)n;
2190 pend = tn->pos+tn->bits;
2191 s->nodesizes[tn->bits]++;
2192 depth++;
2193
2194 while (tn && cindex < (1 << tn->bits)) {
2373ce1c
RO
2195 struct node *ch = rcu_dereference(tn->child[cindex]);
2196 if (ch) {
2197
91b9a277 2198 /* Got a child */
19baf839 2199
91b9a277
OJ
2200 if (IS_LEAF(tn->child[cindex])) {
2201 cindex++;
2202
2203 /* stats */
2204 if (depth > s->maxdepth)
2205 s->maxdepth = depth;
2206 s->totdepth += depth;
2207 s->leaves++;
2208 } else {
19baf839 2209 /*
91b9a277 2210 * New tnode. Decend one level
19baf839 2211 */
91b9a277
OJ
2212
2213 s->tnodes++;
2214 s->nodesizes[tn->bits]++;
2215 depth++;
2216
2373ce1c 2217 n = ch;
91b9a277
OJ
2218 tn = (struct tnode *)n;
2219 pend = tn->pos+tn->bits;
2220
2221 cindex = 0;
19baf839 2222 }
91b9a277
OJ
2223 } else {
2224 cindex++;
2225 s->nullpointers++;
19baf839 2226 }
91b9a277
OJ
2227
2228 /*
2229 * Test if we are done
2230 */
2231
2232 while (cindex >= (1 << tn->bits)) {
2233 /*
2234 * Move upwards and test for root
2235 * pop off all traversed nodes
2236 */
2237
2238 if (NODE_PARENT(tn) == NULL) {
2239 tn = NULL;
2240 n = NULL;
2241 break;
2242 }
2243
2244 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2245 tn = NODE_PARENT(tn);
2246 cindex++;
2247 n = (struct node *)tn;
2248 pend = tn->pos+tn->bits;
2249 depth--;
2250 }
19baf839
RO
2251 }
2252 }
2253
2373ce1c 2254 rcu_read_unlock();
19baf839
RO
2255 return s;
2256}
2257
2258#ifdef CONFIG_PROC_FS
2259
2260static struct fib_alias *fib_triestat_get_first(struct seq_file *seq)
2261{
2262 return NULL;
2263}
2264
2265static struct fib_alias *fib_triestat_get_next(struct seq_file *seq)
2266{
2267 return NULL;
2268}
2269
2270static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos)
2271{
91b9a277
OJ
2272 if (!ip_fib_main_table)
2273 return NULL;
19baf839 2274
91b9a277
OJ
2275 if (*pos)
2276 return fib_triestat_get_next(seq);
2277 else
2278 return SEQ_START_TOKEN;
19baf839
RO
2279}
2280
2281static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2282{
2283 ++*pos;
91b9a277
OJ
2284 if (v == SEQ_START_TOKEN)
2285 return fib_triestat_get_first(seq);
2286 else
2287 return fib_triestat_get_next(seq);
19baf839
RO
2288}
2289
2290static void fib_triestat_seq_stop(struct seq_file *seq, void *v)
2291{
2292
2293}
2294
c877efb2 2295/*
19baf839
RO
2296 * This outputs /proc/net/fib_triestats
2297 *
2298 * It always works in backward compatibility mode.
2299 * The format of the file is not supposed to be changed.
2300 */
2301
2302static void collect_and_show(struct trie *t, struct seq_file *seq)
2303{
2304 int bytes = 0; /* How many bytes are used, a ref is 4 bytes */
2305 int i, max, pointers;
91b9a277 2306 struct trie_stat *stat;
19baf839
RO
2307 int avdepth;
2308
2309 stat = trie_collect_stats(t);
2310
91b9a277 2311 bytes = 0;
19baf839
RO
2312 seq_printf(seq, "trie=%p\n", t);
2313
2314 if (stat) {
2315 if (stat->leaves)
91b9a277 2316 avdepth = stat->totdepth*100 / stat->leaves;
19baf839 2317 else
91b9a277
OJ
2318 avdepth = 0;
2319 seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100);
19baf839 2320 seq_printf(seq, "Max depth: %4d\n", stat->maxdepth);
91b9a277 2321
19baf839
RO
2322 seq_printf(seq, "Leaves: %d\n", stat->leaves);
2323 bytes += sizeof(struct leaf) * stat->leaves;
2324 seq_printf(seq, "Internal nodes: %d\n", stat->tnodes);
2325 bytes += sizeof(struct tnode) * stat->tnodes;
2326
2327 max = MAX_CHILDS-1;
2328
2329 while (max >= 0 && stat->nodesizes[max] == 0)
2330 max--;
2331 pointers = 0;
2332
c877efb2 2333 for (i = 1; i <= max; i++)
19baf839
RO
2334 if (stat->nodesizes[i] != 0) {
2335 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2336 pointers += (1<<i) * stat->nodesizes[i];
2337 }
2338 seq_printf(seq, "\n");
2339 seq_printf(seq, "Pointers: %d\n", pointers);
2340 bytes += sizeof(struct node *) * pointers;
2341 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2342 seq_printf(seq, "Total size: %d kB\n", bytes / 1024);
2343
2344 kfree(stat);
2345 }
2346
2347#ifdef CONFIG_IP_FIB_TRIE_STATS
2348 seq_printf(seq, "Counters:\n---------\n");
2349 seq_printf(seq,"gets = %d\n", t->stats.gets);
2350 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2351 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2352 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2353 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2f36895a 2354 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
19baf839
RO
2355#ifdef CLEAR_STATS
2356 memset(&(t->stats), 0, sizeof(t->stats));
2357#endif
2358#endif /* CONFIG_IP_FIB_TRIE_STATS */
2359}
2360
2361static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2362{
2363 char bf[128];
c877efb2 2364
19baf839 2365 if (v == SEQ_START_TOKEN) {
c877efb2 2366 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
19baf839 2367 sizeof(struct leaf), sizeof(struct tnode));
c877efb2 2368 if (trie_local)
19baf839
RO
2369 collect_and_show(trie_local, seq);
2370
c877efb2 2371 if (trie_main)
19baf839 2372 collect_and_show(trie_main, seq);
91b9a277
OJ
2373 } else {
2374 snprintf(bf, sizeof(bf), "*\t%08X\t%08X", 200, 400);
2375
19baf839
RO
2376 seq_printf(seq, "%-127s\n", bf);
2377 }
2378 return 0;
2379}
2380
2381static struct seq_operations fib_triestat_seq_ops = {
c877efb2
SH
2382 .start = fib_triestat_seq_start,
2383 .next = fib_triestat_seq_next,
2384 .stop = fib_triestat_seq_stop,
2385 .show = fib_triestat_seq_show,
19baf839
RO
2386};
2387
2388static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2389{
2390 struct seq_file *seq;
2391 int rc = -ENOMEM;
2392
2393 rc = seq_open(file, &fib_triestat_seq_ops);
2394 if (rc)
2395 goto out_kfree;
2396
c877efb2 2397 seq = file->private_data;
19baf839
RO
2398out:
2399 return rc;
2400out_kfree:
2401 goto out;
2402}
2403
2404static struct file_operations fib_triestat_seq_fops = {
c877efb2
SH
2405 .owner = THIS_MODULE,
2406 .open = fib_triestat_seq_open,
2407 .read = seq_read,
2408 .llseek = seq_lseek,
2409 .release = seq_release_private,
19baf839
RO
2410};
2411
2412int __init fib_stat_proc_init(void)
2413{
2414 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops))
2415 return -ENOMEM;
2416 return 0;
2417}
2418
2419void __init fib_stat_proc_exit(void)
2420{
2421 proc_net_remove("fib_triestat");
2422}
2423
2424static struct fib_alias *fib_trie_get_first(struct seq_file *seq)
2425{
2426 return NULL;
2427}
2428
2429static struct fib_alias *fib_trie_get_next(struct seq_file *seq)
2430{
2431 return NULL;
2432}
2433
2434static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2435{
91b9a277
OJ
2436 if (!ip_fib_main_table)
2437 return NULL;
19baf839 2438
91b9a277
OJ
2439 if (*pos)
2440 return fib_trie_get_next(seq);
2441 else
2442 return SEQ_START_TOKEN;
19baf839
RO
2443}
2444
2445static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2446{
2447 ++*pos;
91b9a277
OJ
2448 if (v == SEQ_START_TOKEN)
2449 return fib_trie_get_first(seq);
2450 else
2451 return fib_trie_get_next(seq);
2452
19baf839
RO
2453}
2454
2455static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2456{
19baf839
RO
2457}
2458
c877efb2 2459/*
19baf839
RO
2460 * This outputs /proc/net/fib_trie.
2461 *
2462 * It always works in backward compatibility mode.
2463 * The format of the file is not supposed to be changed.
2464 */
2465
2466static int fib_trie_seq_show(struct seq_file *seq, void *v)
2467{
2468 char bf[128];
2469
2470 if (v == SEQ_START_TOKEN) {
c877efb2 2471 if (trie_local)
19baf839
RO
2472 trie_dump_seq(seq, trie_local);
2473
c877efb2 2474 if (trie_main)
19baf839 2475 trie_dump_seq(seq, trie_main);
91b9a277 2476 } else {
19baf839
RO
2477 snprintf(bf, sizeof(bf),
2478 "*\t%08X\t%08X", 200, 400);
2479 seq_printf(seq, "%-127s\n", bf);
2480 }
2481
2482 return 0;
2483}
2484
2485static struct seq_operations fib_trie_seq_ops = {
c877efb2
SH
2486 .start = fib_trie_seq_start,
2487 .next = fib_trie_seq_next,
2488 .stop = fib_trie_seq_stop,
2489 .show = fib_trie_seq_show,
19baf839
RO
2490};
2491
2492static int fib_trie_seq_open(struct inode *inode, struct file *file)
2493{
2494 struct seq_file *seq;
2495 int rc = -ENOMEM;
2496
2497 rc = seq_open(file, &fib_trie_seq_ops);
2498 if (rc)
2499 goto out_kfree;
2500
c877efb2 2501 seq = file->private_data;
19baf839
RO
2502out:
2503 return rc;
2504out_kfree:
2505 goto out;
2506}
2507
2508static struct file_operations fib_trie_seq_fops = {
c877efb2
SH
2509 .owner = THIS_MODULE,
2510 .open = fib_trie_seq_open,
2511 .read = seq_read,
2512 .llseek = seq_lseek,
2513 .release= seq_release_private,
19baf839
RO
2514};
2515
2516int __init fib_proc_init(void)
2517{
2518 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops))
2519 return -ENOMEM;
2520 return 0;
2521}
2522
2523void __init fib_proc_exit(void)
2524{
2525 proc_net_remove("fib_trie");
2526}
2527
2528#endif /* CONFIG_PROC_FS */