]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/fib_trie.c
[IPV4] fib_trie: rescan if key is lost during dump
[net-next-2.6.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
fd966255
RO
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
19baf839
RO
51 */
52
05eee48c 53#define VERSION "0.408"
19baf839 54
19baf839
RO
55#include <asm/uaccess.h>
56#include <asm/system.h>
1977f032 57#include <linux/bitops.h>
19baf839
RO
58#include <linux/types.h>
59#include <linux/kernel.h>
19baf839
RO
60#include <linux/mm.h>
61#include <linux/string.h>
62#include <linux/socket.h>
63#include <linux/sockios.h>
64#include <linux/errno.h>
65#include <linux/in.h>
66#include <linux/inet.h>
cd8787ab 67#include <linux/inetdevice.h>
19baf839
RO
68#include <linux/netdevice.h>
69#include <linux/if_arp.h>
70#include <linux/proc_fs.h>
2373ce1c 71#include <linux/rcupdate.h>
19baf839
RO
72#include <linux/skbuff.h>
73#include <linux/netlink.h>
74#include <linux/init.h>
75#include <linux/list.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839 87#define KEYLENGTH (8*sizeof(t_key))
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
91#define T_TNODE 0
92#define T_LEAF 1
93#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
91b9a277
OJ
96#define IS_TNODE(n) (!(n->parent & T_LEAF))
97#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
98
99struct node {
91b9a277 100 unsigned long parent;
8d965444 101 t_key key;
19baf839
RO
102};
103
104struct leaf {
91b9a277 105 unsigned long parent;
8d965444 106 t_key key;
19baf839 107 struct hlist_head list;
2373ce1c 108 struct rcu_head rcu;
19baf839
RO
109};
110
111struct leaf_info {
112 struct hlist_node hlist;
2373ce1c 113 struct rcu_head rcu;
19baf839
RO
114 int plen;
115 struct list_head falh;
116};
117
118struct tnode {
91b9a277 119 unsigned long parent;
8d965444 120 t_key key;
112d8cfc
ED
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
2373ce1c 125 struct rcu_head rcu;
91b9a277 126 struct node *child[0];
19baf839
RO
127};
128
129#ifdef CONFIG_IP_FIB_TRIE_STATS
130struct trie_use_stats {
131 unsigned int gets;
132 unsigned int backtrack;
133 unsigned int semantic_match_passed;
134 unsigned int semantic_match_miss;
135 unsigned int null_node_hit;
2f36895a 136 unsigned int resize_node_skipped;
19baf839
RO
137};
138#endif
139
140struct trie_stat {
141 unsigned int totdepth;
142 unsigned int maxdepth;
143 unsigned int tnodes;
144 unsigned int leaves;
145 unsigned int nullpointers;
93672292 146 unsigned int prefixes;
06ef921d 147 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 148};
19baf839
RO
149
150struct trie {
91b9a277 151 struct node *trie;
19baf839
RO
152#ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154#endif
19baf839
RO
155};
156
19baf839 157static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
158static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
159 int wasfull);
19baf839 160static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
161static struct tnode *inflate(struct trie *t, struct tnode *tn);
162static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 163static void tnode_free(struct tnode *tn);
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 166static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 167
06801916
SH
168static inline struct tnode *node_parent(struct node *node)
169{
b59cfbf7
ED
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171}
172
173static inline struct tnode *node_parent_rcu(struct node *node)
174{
175 struct tnode *ret = node_parent(node);
06801916 176
06801916
SH
177 return rcu_dereference(ret);
178}
179
180static inline void node_set_parent(struct node *node, struct tnode *ptr)
181{
182 rcu_assign_pointer(node->parent,
183 (unsigned long)ptr | NODE_TYPE(node));
184}
2373ce1c 185
b59cfbf7
ED
186static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
187{
188 BUG_ON(i >= 1U << tn->bits);
2373ce1c 189
b59cfbf7
ED
190 return tn->child[i];
191}
192
193static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 194{
b59cfbf7 195 struct node *ret = tnode_get_child(tn, i);
19baf839 196
b59cfbf7 197 return rcu_dereference(ret);
19baf839
RO
198}
199
bb435b8d 200static inline int tnode_child_length(const struct tnode *tn)
19baf839 201{
91b9a277 202 return 1 << tn->bits;
19baf839
RO
203}
204
ab66b4a7
SH
205static inline t_key mask_pfx(t_key k, unsigned short l)
206{
207 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
208}
209
19baf839
RO
210static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
211{
91b9a277 212 if (offset < KEYLENGTH)
19baf839 213 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 214 else
19baf839
RO
215 return 0;
216}
217
218static inline int tkey_equals(t_key a, t_key b)
219{
c877efb2 220 return a == b;
19baf839
RO
221}
222
223static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
224{
c877efb2
SH
225 if (bits == 0 || offset >= KEYLENGTH)
226 return 1;
91b9a277
OJ
227 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
228 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 229}
19baf839
RO
230
231static inline int tkey_mismatch(t_key a, int offset, t_key b)
232{
233 t_key diff = a ^ b;
234 int i = offset;
235
c877efb2
SH
236 if (!diff)
237 return 0;
238 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
239 i++;
240 return i;
241}
242
19baf839 243/*
e905a9ed
YH
244 To understand this stuff, an understanding of keys and all their bits is
245 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
246 all of the bits in that key are significant.
247
248 Consider a node 'n' and its parent 'tp'.
249
e905a9ed
YH
250 If n is a leaf, every bit in its key is significant. Its presence is
251 necessitated by path compression, since during a tree traversal (when
252 searching for a leaf - unless we are doing an insertion) we will completely
253 ignore all skipped bits we encounter. Thus we need to verify, at the end of
254 a potentially successful search, that we have indeed been walking the
19baf839
RO
255 correct key path.
256
e905a9ed
YH
257 Note that we can never "miss" the correct key in the tree if present by
258 following the wrong path. Path compression ensures that segments of the key
259 that are the same for all keys with a given prefix are skipped, but the
260 skipped part *is* identical for each node in the subtrie below the skipped
261 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
262 call to tkey_sub_equals() in trie_insert().
263
e905a9ed 264 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
265 have many different meanings.
266
e905a9ed 267 Example:
19baf839
RO
268 _________________________________________________________________
269 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
270 -----------------------------------------------------------------
e905a9ed 271 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
272
273 _________________________________________________________________
274 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
275 -----------------------------------------------------------------
276 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
277
278 tp->pos = 7
279 tp->bits = 3
280 n->pos = 15
91b9a277 281 n->bits = 4
19baf839 282
e905a9ed
YH
283 First, let's just ignore the bits that come before the parent tp, that is
284 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
285 not use them for anything.
286
287 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 288 index into the parent's child array. That is, they will be used to find
19baf839
RO
289 'n' among tp's children.
290
291 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
292 for the node n.
293
e905a9ed 294 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
295 of the bits are really not needed or indeed known in n->key.
296
e905a9ed 297 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 298 n's child array, and will of course be different for each child.
e905a9ed 299
c877efb2 300
19baf839
RO
301 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
302 at this point.
303
304*/
305
0c7770c7 306static inline void check_tnode(const struct tnode *tn)
19baf839 307{
0c7770c7 308 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
309}
310
f5026fab
DL
311static const int halve_threshold = 25;
312static const int inflate_threshold = 50;
313static const int halve_threshold_root = 8;
314static const int inflate_threshold_root = 15;
19baf839 315
2373ce1c
RO
316
317static void __alias_free_mem(struct rcu_head *head)
19baf839 318{
2373ce1c
RO
319 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
320 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
321}
322
2373ce1c 323static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 324{
2373ce1c
RO
325 call_rcu(&fa->rcu, __alias_free_mem);
326}
91b9a277 327
2373ce1c
RO
328static void __leaf_free_rcu(struct rcu_head *head)
329{
bc3c8c1e
SH
330 struct leaf *l = container_of(head, struct leaf, rcu);
331 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 332}
91b9a277 333
2373ce1c 334static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 335{
2373ce1c 336 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
337}
338
2373ce1c 339static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 340{
2373ce1c 341 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
342}
343
8d965444 344static struct tnode *tnode_alloc(size_t size)
f0e36f8c 345{
2373ce1c
RO
346 struct page *pages;
347
348 if (size <= PAGE_SIZE)
8d965444 349 return kzalloc(size, GFP_KERNEL);
2373ce1c
RO
350
351 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
352 if (!pages)
353 return NULL;
354
355 return page_address(pages);
f0e36f8c
PM
356}
357
2373ce1c 358static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 359{
2373ce1c 360 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
361 size_t size = sizeof(struct tnode) +
362 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
363
364 if (size <= PAGE_SIZE)
365 kfree(tn);
366 else
367 free_pages((unsigned long)tn, get_order(size));
368}
369
2373ce1c
RO
370static inline void tnode_free(struct tnode *tn)
371{
132adf54 372 if (IS_LEAF(tn)) {
550e29bc
RO
373 struct leaf *l = (struct leaf *) tn;
374 call_rcu_bh(&l->rcu, __leaf_free_rcu);
132adf54 375 } else
550e29bc 376 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
377}
378
379static struct leaf *leaf_new(void)
380{
bc3c8c1e 381 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
382 if (l) {
383 l->parent = T_LEAF;
384 INIT_HLIST_HEAD(&l->list);
385 }
386 return l;
387}
388
389static struct leaf_info *leaf_info_new(int plen)
390{
391 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
392 if (li) {
393 li->plen = plen;
394 INIT_LIST_HEAD(&li->falh);
395 }
396 return li;
397}
398
a07f5f50 399static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 400{
8d965444 401 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 402 struct tnode *tn = tnode_alloc(sz);
19baf839 403
91b9a277 404 if (tn) {
2373ce1c 405 tn->parent = T_TNODE;
19baf839
RO
406 tn->pos = pos;
407 tn->bits = bits;
408 tn->key = key;
409 tn->full_children = 0;
410 tn->empty_children = 1<<bits;
411 }
c877efb2 412
8d965444
ED
413 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
414 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
415 return tn;
416}
417
19baf839
RO
418/*
419 * Check whether a tnode 'n' is "full", i.e. it is an internal node
420 * and no bits are skipped. See discussion in dyntree paper p. 6
421 */
422
bb435b8d 423static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 424{
c877efb2 425 if (n == NULL || IS_LEAF(n))
19baf839
RO
426 return 0;
427
428 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
429}
430
a07f5f50
SH
431static inline void put_child(struct trie *t, struct tnode *tn, int i,
432 struct node *n)
19baf839
RO
433{
434 tnode_put_child_reorg(tn, i, n, -1);
435}
436
c877efb2 437 /*
19baf839
RO
438 * Add a child at position i overwriting the old value.
439 * Update the value of full_children and empty_children.
440 */
441
a07f5f50
SH
442static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
443 int wasfull)
19baf839 444{
2373ce1c 445 struct node *chi = tn->child[i];
19baf839
RO
446 int isfull;
447
0c7770c7
SH
448 BUG_ON(i >= 1<<tn->bits);
449
19baf839
RO
450 /* update emptyChildren */
451 if (n == NULL && chi != NULL)
452 tn->empty_children++;
453 else if (n != NULL && chi == NULL)
454 tn->empty_children--;
c877efb2 455
19baf839 456 /* update fullChildren */
91b9a277 457 if (wasfull == -1)
19baf839
RO
458 wasfull = tnode_full(tn, chi);
459
460 isfull = tnode_full(tn, n);
c877efb2 461 if (wasfull && !isfull)
19baf839 462 tn->full_children--;
c877efb2 463 else if (!wasfull && isfull)
19baf839 464 tn->full_children++;
91b9a277 465
c877efb2 466 if (n)
06801916 467 node_set_parent(n, tn);
19baf839 468
2373ce1c 469 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
470}
471
c877efb2 472static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
473{
474 int i;
2f36895a 475 int err = 0;
2f80b3c8 476 struct tnode *old_tn;
e6308be8
RO
477 int inflate_threshold_use;
478 int halve_threshold_use;
05eee48c 479 int max_resize;
19baf839 480
e905a9ed 481 if (!tn)
19baf839
RO
482 return NULL;
483
0c7770c7
SH
484 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
485 tn, inflate_threshold, halve_threshold);
19baf839
RO
486
487 /* No children */
488 if (tn->empty_children == tnode_child_length(tn)) {
489 tnode_free(tn);
490 return NULL;
491 }
492 /* One child */
493 if (tn->empty_children == tnode_child_length(tn) - 1)
494 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 495 struct node *n;
19baf839 496
91b9a277 497 n = tn->child[i];
2373ce1c 498 if (!n)
91b9a277 499 continue;
91b9a277
OJ
500
501 /* compress one level */
06801916 502 node_set_parent(n, NULL);
91b9a277
OJ
503 tnode_free(tn);
504 return n;
19baf839 505 }
c877efb2 506 /*
19baf839
RO
507 * Double as long as the resulting node has a number of
508 * nonempty nodes that are above the threshold.
509 */
510
511 /*
c877efb2
SH
512 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
513 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 514 * Telecommunications, page 6:
c877efb2 515 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
516 * children in the *doubled* node is at least 'high'."
517 *
c877efb2
SH
518 * 'high' in this instance is the variable 'inflate_threshold'. It
519 * is expressed as a percentage, so we multiply it with
520 * tnode_child_length() and instead of multiplying by 2 (since the
521 * child array will be doubled by inflate()) and multiplying
522 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 523 * multiply the left-hand side by 50.
c877efb2
SH
524 *
525 * The left-hand side may look a bit weird: tnode_child_length(tn)
526 * - tn->empty_children is of course the number of non-null children
527 * in the current node. tn->full_children is the number of "full"
19baf839 528 * children, that is non-null tnodes with a skip value of 0.
c877efb2 529 * All of those will be doubled in the resulting inflated tnode, so
19baf839 530 * we just count them one extra time here.
c877efb2 531 *
19baf839 532 * A clearer way to write this would be:
c877efb2 533 *
19baf839 534 * to_be_doubled = tn->full_children;
c877efb2 535 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
536 * tn->full_children;
537 *
538 * new_child_length = tnode_child_length(tn) * 2;
539 *
c877efb2 540 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
541 * new_child_length;
542 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
543 *
544 * ...and so on, tho it would mess up the while () loop.
545 *
19baf839
RO
546 * anyway,
547 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
548 * inflate_threshold
c877efb2 549 *
19baf839
RO
550 * avoid a division:
551 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
552 * inflate_threshold * new_child_length
c877efb2 553 *
19baf839 554 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 555 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 556 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 557 *
19baf839 558 * expand new_child_length:
c877efb2 559 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 560 * tn->full_children) >=
19baf839 561 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 562 *
19baf839 563 * shorten again:
c877efb2 564 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 565 * tn->empty_children) >= inflate_threshold *
19baf839 566 * tnode_child_length(tn)
c877efb2 567 *
19baf839
RO
568 */
569
570 check_tnode(tn);
c877efb2 571
e6308be8
RO
572 /* Keep root node larger */
573
132adf54 574 if (!tn->parent)
e6308be8 575 inflate_threshold_use = inflate_threshold_root;
e905a9ed 576 else
e6308be8
RO
577 inflate_threshold_use = inflate_threshold;
578
2f36895a 579 err = 0;
05eee48c
RO
580 max_resize = 10;
581 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
582 50 * (tn->full_children + tnode_child_length(tn)
583 - tn->empty_children)
584 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 585
2f80b3c8
RO
586 old_tn = tn;
587 tn = inflate(t, tn);
a07f5f50 588
2f80b3c8
RO
589 if (IS_ERR(tn)) {
590 tn = old_tn;
2f36895a
RO
591#ifdef CONFIG_IP_FIB_TRIE_STATS
592 t->stats.resize_node_skipped++;
593#endif
594 break;
595 }
19baf839
RO
596 }
597
05eee48c
RO
598 if (max_resize < 0) {
599 if (!tn->parent)
a07f5f50
SH
600 pr_warning("Fix inflate_threshold_root."
601 " Now=%d size=%d bits\n",
602 inflate_threshold_root, tn->bits);
05eee48c 603 else
a07f5f50
SH
604 pr_warning("Fix inflate_threshold."
605 " Now=%d size=%d bits\n",
606 inflate_threshold, tn->bits);
05eee48c
RO
607 }
608
19baf839
RO
609 check_tnode(tn);
610
611 /*
612 * Halve as long as the number of empty children in this
613 * node is above threshold.
614 */
2f36895a 615
e6308be8
RO
616
617 /* Keep root node larger */
618
132adf54 619 if (!tn->parent)
e6308be8 620 halve_threshold_use = halve_threshold_root;
e905a9ed 621 else
e6308be8
RO
622 halve_threshold_use = halve_threshold;
623
2f36895a 624 err = 0;
05eee48c
RO
625 max_resize = 10;
626 while (tn->bits > 1 && max_resize-- &&
19baf839 627 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 628 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 629
2f80b3c8
RO
630 old_tn = tn;
631 tn = halve(t, tn);
632 if (IS_ERR(tn)) {
633 tn = old_tn;
2f36895a
RO
634#ifdef CONFIG_IP_FIB_TRIE_STATS
635 t->stats.resize_node_skipped++;
636#endif
637 break;
638 }
639 }
19baf839 640
05eee48c
RO
641 if (max_resize < 0) {
642 if (!tn->parent)
a07f5f50
SH
643 pr_warning("Fix halve_threshold_root."
644 " Now=%d size=%d bits\n",
645 halve_threshold_root, tn->bits);
05eee48c 646 else
a07f5f50
SH
647 pr_warning("Fix halve_threshold."
648 " Now=%d size=%d bits\n",
649 halve_threshold, tn->bits);
05eee48c 650 }
c877efb2 651
19baf839 652 /* Only one child remains */
19baf839
RO
653 if (tn->empty_children == tnode_child_length(tn) - 1)
654 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 655 struct node *n;
19baf839 656
91b9a277 657 n = tn->child[i];
2373ce1c 658 if (!n)
91b9a277 659 continue;
91b9a277
OJ
660
661 /* compress one level */
662
06801916 663 node_set_parent(n, NULL);
91b9a277
OJ
664 tnode_free(tn);
665 return n;
19baf839
RO
666 }
667
668 return (struct node *) tn;
669}
670
2f80b3c8 671static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 672{
19baf839
RO
673 struct tnode *oldtnode = tn;
674 int olen = tnode_child_length(tn);
675 int i;
676
0c7770c7 677 pr_debug("In inflate\n");
19baf839
RO
678
679 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
680
0c7770c7 681 if (!tn)
2f80b3c8 682 return ERR_PTR(-ENOMEM);
2f36895a
RO
683
684 /*
c877efb2
SH
685 * Preallocate and store tnodes before the actual work so we
686 * don't get into an inconsistent state if memory allocation
687 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
688 * of tnode is ignored.
689 */
91b9a277
OJ
690
691 for (i = 0; i < olen; i++) {
a07f5f50 692 struct tnode *inode;
2f36895a 693
a07f5f50 694 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
695 if (inode &&
696 IS_TNODE(inode) &&
697 inode->pos == oldtnode->pos + oldtnode->bits &&
698 inode->bits > 1) {
699 struct tnode *left, *right;
ab66b4a7 700 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 701
2f36895a
RO
702 left = tnode_new(inode->key&(~m), inode->pos + 1,
703 inode->bits - 1);
2f80b3c8
RO
704 if (!left)
705 goto nomem;
91b9a277 706
2f36895a
RO
707 right = tnode_new(inode->key|m, inode->pos + 1,
708 inode->bits - 1);
709
e905a9ed 710 if (!right) {
2f80b3c8
RO
711 tnode_free(left);
712 goto nomem;
e905a9ed 713 }
2f36895a
RO
714
715 put_child(t, tn, 2*i, (struct node *) left);
716 put_child(t, tn, 2*i+1, (struct node *) right);
717 }
718 }
719
91b9a277 720 for (i = 0; i < olen; i++) {
c95aaf9a 721 struct tnode *inode;
19baf839 722 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
723 struct tnode *left, *right;
724 int size, j;
c877efb2 725
19baf839
RO
726 /* An empty child */
727 if (node == NULL)
728 continue;
729
730 /* A leaf or an internal node with skipped bits */
731
c877efb2 732 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 733 tn->pos + tn->bits - 1) {
a07f5f50
SH
734 if (tkey_extract_bits(node->key,
735 oldtnode->pos + oldtnode->bits,
736 1) == 0)
19baf839
RO
737 put_child(t, tn, 2*i, node);
738 else
739 put_child(t, tn, 2*i+1, node);
740 continue;
741 }
742
743 /* An internal node with two children */
744 inode = (struct tnode *) node;
745
746 if (inode->bits == 1) {
747 put_child(t, tn, 2*i, inode->child[0]);
748 put_child(t, tn, 2*i+1, inode->child[1]);
749
750 tnode_free(inode);
91b9a277 751 continue;
19baf839
RO
752 }
753
91b9a277
OJ
754 /* An internal node with more than two children */
755
756 /* We will replace this node 'inode' with two new
757 * ones, 'left' and 'right', each with half of the
758 * original children. The two new nodes will have
759 * a position one bit further down the key and this
760 * means that the "significant" part of their keys
761 * (see the discussion near the top of this file)
762 * will differ by one bit, which will be "0" in
763 * left's key and "1" in right's key. Since we are
764 * moving the key position by one step, the bit that
765 * we are moving away from - the bit at position
766 * (inode->pos) - is the one that will differ between
767 * left and right. So... we synthesize that bit in the
768 * two new keys.
769 * The mask 'm' below will be a single "one" bit at
770 * the position (inode->pos)
771 */
19baf839 772
91b9a277
OJ
773 /* Use the old key, but set the new significant
774 * bit to zero.
775 */
2f36895a 776
91b9a277
OJ
777 left = (struct tnode *) tnode_get_child(tn, 2*i);
778 put_child(t, tn, 2*i, NULL);
2f36895a 779
91b9a277 780 BUG_ON(!left);
2f36895a 781
91b9a277
OJ
782 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
783 put_child(t, tn, 2*i+1, NULL);
19baf839 784
91b9a277 785 BUG_ON(!right);
19baf839 786
91b9a277
OJ
787 size = tnode_child_length(left);
788 for (j = 0; j < size; j++) {
789 put_child(t, left, j, inode->child[j]);
790 put_child(t, right, j, inode->child[j + size]);
19baf839 791 }
91b9a277
OJ
792 put_child(t, tn, 2*i, resize(t, left));
793 put_child(t, tn, 2*i+1, resize(t, right));
794
795 tnode_free(inode);
19baf839
RO
796 }
797 tnode_free(oldtnode);
798 return tn;
2f80b3c8
RO
799nomem:
800 {
801 int size = tnode_child_length(tn);
802 int j;
803
0c7770c7 804 for (j = 0; j < size; j++)
2f80b3c8
RO
805 if (tn->child[j])
806 tnode_free((struct tnode *)tn->child[j]);
807
808 tnode_free(tn);
0c7770c7 809
2f80b3c8
RO
810 return ERR_PTR(-ENOMEM);
811 }
19baf839
RO
812}
813
2f80b3c8 814static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
815{
816 struct tnode *oldtnode = tn;
817 struct node *left, *right;
818 int i;
819 int olen = tnode_child_length(tn);
820
0c7770c7 821 pr_debug("In halve\n");
c877efb2
SH
822
823 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 824
2f80b3c8
RO
825 if (!tn)
826 return ERR_PTR(-ENOMEM);
2f36895a
RO
827
828 /*
c877efb2
SH
829 * Preallocate and store tnodes before the actual work so we
830 * don't get into an inconsistent state if memory allocation
831 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
832 * of tnode is ignored.
833 */
834
91b9a277 835 for (i = 0; i < olen; i += 2) {
2f36895a
RO
836 left = tnode_get_child(oldtnode, i);
837 right = tnode_get_child(oldtnode, i+1);
c877efb2 838
2f36895a 839 /* Two nonempty children */
0c7770c7 840 if (left && right) {
2f80b3c8 841 struct tnode *newn;
0c7770c7 842
2f80b3c8 843 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
844
845 if (!newn)
2f80b3c8 846 goto nomem;
0c7770c7 847
2f80b3c8 848 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 849 }
2f36895a 850
2f36895a 851 }
19baf839 852
91b9a277
OJ
853 for (i = 0; i < olen; i += 2) {
854 struct tnode *newBinNode;
855
19baf839
RO
856 left = tnode_get_child(oldtnode, i);
857 right = tnode_get_child(oldtnode, i+1);
c877efb2 858
19baf839
RO
859 /* At least one of the children is empty */
860 if (left == NULL) {
861 if (right == NULL) /* Both are empty */
862 continue;
863 put_child(t, tn, i/2, right);
91b9a277 864 continue;
0c7770c7 865 }
91b9a277
OJ
866
867 if (right == NULL) {
19baf839 868 put_child(t, tn, i/2, left);
91b9a277
OJ
869 continue;
870 }
c877efb2 871
19baf839 872 /* Two nonempty children */
91b9a277
OJ
873 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
874 put_child(t, tn, i/2, NULL);
91b9a277
OJ
875 put_child(t, newBinNode, 0, left);
876 put_child(t, newBinNode, 1, right);
877 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
878 }
879 tnode_free(oldtnode);
880 return tn;
2f80b3c8
RO
881nomem:
882 {
883 int size = tnode_child_length(tn);
884 int j;
885
0c7770c7 886 for (j = 0; j < size; j++)
2f80b3c8
RO
887 if (tn->child[j])
888 tnode_free((struct tnode *)tn->child[j]);
889
890 tnode_free(tn);
0c7770c7 891
2f80b3c8
RO
892 return ERR_PTR(-ENOMEM);
893 }
19baf839
RO
894}
895
772cb712 896/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
897 via get_fa_head and dump */
898
772cb712 899static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 900{
772cb712 901 struct hlist_head *head = &l->list;
19baf839
RO
902 struct hlist_node *node;
903 struct leaf_info *li;
904
2373ce1c 905 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 906 if (li->plen == plen)
19baf839 907 return li;
91b9a277 908
19baf839
RO
909 return NULL;
910}
911
a07f5f50 912static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 913{
772cb712 914 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 915
91b9a277
OJ
916 if (!li)
917 return NULL;
c877efb2 918
91b9a277 919 return &li->falh;
19baf839
RO
920}
921
922static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
923{
e905a9ed
YH
924 struct leaf_info *li = NULL, *last = NULL;
925 struct hlist_node *node;
926
927 if (hlist_empty(head)) {
928 hlist_add_head_rcu(&new->hlist, head);
929 } else {
930 hlist_for_each_entry(li, node, head, hlist) {
931 if (new->plen > li->plen)
932 break;
933
934 last = li;
935 }
936 if (last)
937 hlist_add_after_rcu(&last->hlist, &new->hlist);
938 else
939 hlist_add_before_rcu(&new->hlist, &li->hlist);
940 }
19baf839
RO
941}
942
2373ce1c
RO
943/* rcu_read_lock needs to be hold by caller from readside */
944
19baf839
RO
945static struct leaf *
946fib_find_node(struct trie *t, u32 key)
947{
948 int pos;
949 struct tnode *tn;
950 struct node *n;
951
952 pos = 0;
2373ce1c 953 n = rcu_dereference(t->trie);
19baf839
RO
954
955 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
956 tn = (struct tnode *) n;
91b9a277 957
19baf839 958 check_tnode(tn);
91b9a277 959
c877efb2 960 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 961 pos = tn->pos + tn->bits;
a07f5f50
SH
962 n = tnode_get_child_rcu(tn,
963 tkey_extract_bits(key,
964 tn->pos,
965 tn->bits));
91b9a277 966 } else
19baf839
RO
967 break;
968 }
969 /* Case we have found a leaf. Compare prefixes */
970
91b9a277
OJ
971 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
972 return (struct leaf *)n;
973
19baf839
RO
974 return NULL;
975}
976
977static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
978{
19baf839 979 int wasfull;
06801916
SH
980 t_key cindex, key = tn->key;
981 struct tnode *tp;
19baf839 982
06801916 983 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
984 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
985 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
986 tn = (struct tnode *) resize(t, (struct tnode *)tn);
987
988 tnode_put_child_reorg((struct tnode *)tp, cindex,
989 (struct node *)tn, wasfull);
91b9a277 990
06801916
SH
991 tp = node_parent((struct node *) tn);
992 if (!tp)
19baf839 993 break;
06801916 994 tn = tp;
19baf839 995 }
06801916 996
19baf839 997 /* Handle last (top) tnode */
c877efb2 998 if (IS_TNODE(tn))
a07f5f50 999 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1000
a07f5f50 1001 return (struct node *)tn;
19baf839
RO
1002}
1003
2373ce1c
RO
1004/* only used from updater-side */
1005
fea86ad8 1006static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1007{
1008 int pos, newpos;
1009 struct tnode *tp = NULL, *tn = NULL;
1010 struct node *n;
1011 struct leaf *l;
1012 int missbit;
c877efb2 1013 struct list_head *fa_head = NULL;
19baf839
RO
1014 struct leaf_info *li;
1015 t_key cindex;
1016
1017 pos = 0;
c877efb2 1018 n = t->trie;
19baf839 1019
c877efb2
SH
1020 /* If we point to NULL, stop. Either the tree is empty and we should
1021 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1022 * and we should just put our new leaf in that.
c877efb2
SH
1023 * If we point to a T_TNODE, check if it matches our key. Note that
1024 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1025 * not be the parent's 'pos'+'bits'!
1026 *
c877efb2 1027 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1028 * the index from our key, push the T_TNODE and walk the tree.
1029 *
1030 * If it doesn't, we have to replace it with a new T_TNODE.
1031 *
c877efb2
SH
1032 * If we point to a T_LEAF, it might or might not have the same key
1033 * as we do. If it does, just change the value, update the T_LEAF's
1034 * value, and return it.
19baf839
RO
1035 * If it doesn't, we need to replace it with a T_TNODE.
1036 */
1037
1038 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1039 tn = (struct tnode *) n;
91b9a277 1040
c877efb2 1041 check_tnode(tn);
91b9a277 1042
c877efb2 1043 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1044 tp = tn;
91b9a277 1045 pos = tn->pos + tn->bits;
a07f5f50
SH
1046 n = tnode_get_child(tn,
1047 tkey_extract_bits(key,
1048 tn->pos,
1049 tn->bits));
19baf839 1050
06801916 1051 BUG_ON(n && node_parent(n) != tn);
91b9a277 1052 } else
19baf839
RO
1053 break;
1054 }
1055
1056 /*
1057 * n ----> NULL, LEAF or TNODE
1058 *
c877efb2 1059 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1060 */
1061
91b9a277 1062 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1063
1064 /* Case 1: n is a leaf. Compare prefixes */
1065
c877efb2 1066 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1067 l = (struct leaf *) n;
19baf839 1068 li = leaf_info_new(plen);
91b9a277 1069
fea86ad8
SH
1070 if (!li)
1071 return NULL;
19baf839
RO
1072
1073 fa_head = &li->falh;
1074 insert_leaf_info(&l->list, li);
1075 goto done;
1076 }
19baf839
RO
1077 l = leaf_new();
1078
fea86ad8
SH
1079 if (!l)
1080 return NULL;
19baf839
RO
1081
1082 l->key = key;
1083 li = leaf_info_new(plen);
1084
c877efb2 1085 if (!li) {
f835e471 1086 tnode_free((struct tnode *) l);
fea86ad8 1087 return NULL;
f835e471 1088 }
19baf839
RO
1089
1090 fa_head = &li->falh;
1091 insert_leaf_info(&l->list, li);
1092
19baf839 1093 if (t->trie && n == NULL) {
91b9a277 1094 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1095
06801916 1096 node_set_parent((struct node *)l, tp);
19baf839 1097
91b9a277
OJ
1098 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1099 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1100 } else {
1101 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1102 /*
1103 * Add a new tnode here
19baf839
RO
1104 * first tnode need some special handling
1105 */
1106
1107 if (tp)
91b9a277 1108 pos = tp->pos+tp->bits;
19baf839 1109 else
91b9a277
OJ
1110 pos = 0;
1111
c877efb2 1112 if (n) {
19baf839
RO
1113 newpos = tkey_mismatch(key, pos, n->key);
1114 tn = tnode_new(n->key, newpos, 1);
91b9a277 1115 } else {
19baf839 1116 newpos = 0;
c877efb2 1117 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1118 }
19baf839 1119
c877efb2 1120 if (!tn) {
f835e471
RO
1121 free_leaf_info(li);
1122 tnode_free((struct tnode *) l);
fea86ad8 1123 return NULL;
91b9a277
OJ
1124 }
1125
06801916 1126 node_set_parent((struct node *)tn, tp);
19baf839 1127
91b9a277 1128 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1129 put_child(t, tn, missbit, (struct node *)l);
1130 put_child(t, tn, 1-missbit, n);
1131
c877efb2 1132 if (tp) {
19baf839 1133 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1134 put_child(t, (struct tnode *)tp, cindex,
1135 (struct node *)tn);
91b9a277 1136 } else {
a07f5f50 1137 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1138 tp = tn;
1139 }
1140 }
91b9a277
OJ
1141
1142 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1143 pr_warning("fib_trie"
1144 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1145 tp, tp->pos, tp->bits, key, plen);
91b9a277 1146
19baf839 1147 /* Rebalance the trie */
2373ce1c
RO
1148
1149 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1150done:
19baf839
RO
1151 return fa_head;
1152}
1153
d562f1f8
RO
1154/*
1155 * Caller must hold RTNL.
1156 */
4e902c57 1157static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1158{
1159 struct trie *t = (struct trie *) tb->tb_data;
1160 struct fib_alias *fa, *new_fa;
c877efb2 1161 struct list_head *fa_head = NULL;
19baf839 1162 struct fib_info *fi;
4e902c57
TG
1163 int plen = cfg->fc_dst_len;
1164 u8 tos = cfg->fc_tos;
19baf839
RO
1165 u32 key, mask;
1166 int err;
1167 struct leaf *l;
1168
1169 if (plen > 32)
1170 return -EINVAL;
1171
4e902c57 1172 key = ntohl(cfg->fc_dst);
19baf839 1173
2dfe55b4 1174 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1175
91b9a277 1176 mask = ntohl(inet_make_mask(plen));
19baf839 1177
c877efb2 1178 if (key & ~mask)
19baf839
RO
1179 return -EINVAL;
1180
1181 key = key & mask;
1182
4e902c57
TG
1183 fi = fib_create_info(cfg);
1184 if (IS_ERR(fi)) {
1185 err = PTR_ERR(fi);
19baf839 1186 goto err;
4e902c57 1187 }
19baf839
RO
1188
1189 l = fib_find_node(t, key);
c877efb2 1190 fa = NULL;
19baf839 1191
c877efb2 1192 if (l) {
19baf839
RO
1193 fa_head = get_fa_head(l, plen);
1194 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1195 }
1196
1197 /* Now fa, if non-NULL, points to the first fib alias
1198 * with the same keys [prefix,tos,priority], if such key already
1199 * exists or to the node before which we will insert new one.
1200 *
1201 * If fa is NULL, we will need to allocate a new one and
1202 * insert to the head of f.
1203 *
1204 * If f is NULL, no fib node matched the destination key
1205 * and we need to allocate a new one of those as well.
1206 */
1207
936f6f8e
JA
1208 if (fa && fa->fa_tos == tos &&
1209 fa->fa_info->fib_priority == fi->fib_priority) {
1210 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1211
1212 err = -EEXIST;
4e902c57 1213 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1214 goto out;
1215
936f6f8e
JA
1216 /* We have 2 goals:
1217 * 1. Find exact match for type, scope, fib_info to avoid
1218 * duplicate routes
1219 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1220 */
1221 fa_match = NULL;
1222 fa_first = fa;
1223 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1224 list_for_each_entry_continue(fa, fa_head, fa_list) {
1225 if (fa->fa_tos != tos)
1226 break;
1227 if (fa->fa_info->fib_priority != fi->fib_priority)
1228 break;
1229 if (fa->fa_type == cfg->fc_type &&
1230 fa->fa_scope == cfg->fc_scope &&
1231 fa->fa_info == fi) {
1232 fa_match = fa;
1233 break;
1234 }
1235 }
1236
4e902c57 1237 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1238 struct fib_info *fi_drop;
1239 u8 state;
1240
936f6f8e
JA
1241 fa = fa_first;
1242 if (fa_match) {
1243 if (fa == fa_match)
1244 err = 0;
6725033f 1245 goto out;
936f6f8e 1246 }
2373ce1c 1247 err = -ENOBUFS;
e94b1766 1248 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1249 if (new_fa == NULL)
1250 goto out;
19baf839
RO
1251
1252 fi_drop = fa->fa_info;
2373ce1c
RO
1253 new_fa->fa_tos = fa->fa_tos;
1254 new_fa->fa_info = fi;
4e902c57
TG
1255 new_fa->fa_type = cfg->fc_type;
1256 new_fa->fa_scope = cfg->fc_scope;
19baf839 1257 state = fa->fa_state;
936f6f8e 1258 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1259
2373ce1c
RO
1260 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1261 alias_free_mem_rcu(fa);
19baf839
RO
1262
1263 fib_release_info(fi_drop);
1264 if (state & FA_S_ACCESSED)
91b9a277 1265 rt_cache_flush(-1);
b8f55831
MK
1266 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1267 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1268
91b9a277 1269 goto succeeded;
19baf839
RO
1270 }
1271 /* Error if we find a perfect match which
1272 * uses the same scope, type, and nexthop
1273 * information.
1274 */
936f6f8e
JA
1275 if (fa_match)
1276 goto out;
a07f5f50 1277
4e902c57 1278 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1279 fa = fa_first;
19baf839
RO
1280 }
1281 err = -ENOENT;
4e902c57 1282 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1283 goto out;
1284
1285 err = -ENOBUFS;
e94b1766 1286 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1287 if (new_fa == NULL)
1288 goto out;
1289
1290 new_fa->fa_info = fi;
1291 new_fa->fa_tos = tos;
4e902c57
TG
1292 new_fa->fa_type = cfg->fc_type;
1293 new_fa->fa_scope = cfg->fc_scope;
19baf839 1294 new_fa->fa_state = 0;
19baf839
RO
1295 /*
1296 * Insert new entry to the list.
1297 */
1298
c877efb2 1299 if (!fa_head) {
fea86ad8
SH
1300 fa_head = fib_insert_node(t, key, plen);
1301 if (unlikely(!fa_head)) {
1302 err = -ENOMEM;
f835e471 1303 goto out_free_new_fa;
fea86ad8 1304 }
f835e471 1305 }
19baf839 1306
2373ce1c
RO
1307 list_add_tail_rcu(&new_fa->fa_list,
1308 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1309
1310 rt_cache_flush(-1);
4e902c57 1311 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1312 &cfg->fc_nlinfo, 0);
19baf839
RO
1313succeeded:
1314 return 0;
f835e471
RO
1315
1316out_free_new_fa:
1317 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1318out:
1319 fib_release_info(fi);
91b9a277 1320err:
19baf839
RO
1321 return err;
1322}
1323
772cb712 1324/* should be called with rcu_read_lock */
a07f5f50
SH
1325static int check_leaf(struct trie *t, struct leaf *l,
1326 t_key key, const struct flowi *flp,
1327 struct fib_result *res)
19baf839 1328{
19baf839
RO
1329 struct leaf_info *li;
1330 struct hlist_head *hhead = &l->list;
1331 struct hlist_node *node;
c877efb2 1332
2373ce1c 1333 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1334 int err;
1335 int plen = li->plen;
1336 __be32 mask = inet_make_mask(plen);
1337
888454c5 1338 if (l->key != (key & ntohl(mask)))
19baf839
RO
1339 continue;
1340
a07f5f50
SH
1341 err = fib_semantic_match(&li->falh, flp, res,
1342 htonl(l->key), mask, plen);
1343
19baf839 1344#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1345 if (err <= 0)
19baf839 1346 t->stats.semantic_match_passed++;
a07f5f50
SH
1347 else
1348 t->stats.semantic_match_miss++;
19baf839 1349#endif
a07f5f50
SH
1350 if (err <= 0)
1351 return plen;
19baf839 1352 }
a07f5f50
SH
1353
1354 return -1;
19baf839
RO
1355}
1356
a07f5f50
SH
1357static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1358 struct fib_result *res)
19baf839
RO
1359{
1360 struct trie *t = (struct trie *) tb->tb_data;
1361 int plen, ret = 0;
1362 struct node *n;
1363 struct tnode *pn;
1364 int pos, bits;
91b9a277 1365 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1366 int chopped_off;
1367 t_key cindex = 0;
1368 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1369 struct tnode *cn;
1370 t_key node_prefix, key_prefix, pref_mismatch;
1371 int mp;
1372
2373ce1c 1373 rcu_read_lock();
91b9a277 1374
2373ce1c 1375 n = rcu_dereference(t->trie);
c877efb2 1376 if (!n)
19baf839
RO
1377 goto failed;
1378
1379#ifdef CONFIG_IP_FIB_TRIE_STATS
1380 t->stats.gets++;
1381#endif
1382
1383 /* Just a leaf? */
1384 if (IS_LEAF(n)) {
a07f5f50
SH
1385 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1386 if (plen < 0)
1387 goto failed;
1388 ret = 0;
1389 goto found;
19baf839 1390 }
a07f5f50 1391
19baf839
RO
1392 pn = (struct tnode *) n;
1393 chopped_off = 0;
c877efb2 1394
91b9a277 1395 while (pn) {
19baf839
RO
1396 pos = pn->pos;
1397 bits = pn->bits;
1398
c877efb2 1399 if (!chopped_off)
ab66b4a7
SH
1400 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1401 pos, bits);
19baf839
RO
1402
1403 n = tnode_get_child(pn, cindex);
1404
1405 if (n == NULL) {
1406#ifdef CONFIG_IP_FIB_TRIE_STATS
1407 t->stats.null_node_hit++;
1408#endif
1409 goto backtrace;
1410 }
1411
91b9a277 1412 if (IS_LEAF(n)) {
a07f5f50
SH
1413 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1414 if (plen < 0)
91b9a277 1415 goto backtrace;
a07f5f50
SH
1416
1417 ret = 0;
1418 goto found;
91b9a277
OJ
1419 }
1420
91b9a277 1421 cn = (struct tnode *)n;
19baf839 1422
91b9a277
OJ
1423 /*
1424 * It's a tnode, and we can do some extra checks here if we
1425 * like, to avoid descending into a dead-end branch.
1426 * This tnode is in the parent's child array at index
1427 * key[p_pos..p_pos+p_bits] but potentially with some bits
1428 * chopped off, so in reality the index may be just a
1429 * subprefix, padded with zero at the end.
1430 * We can also take a look at any skipped bits in this
1431 * tnode - everything up to p_pos is supposed to be ok,
1432 * and the non-chopped bits of the index (se previous
1433 * paragraph) are also guaranteed ok, but the rest is
1434 * considered unknown.
1435 *
1436 * The skipped bits are key[pos+bits..cn->pos].
1437 */
19baf839 1438
91b9a277
OJ
1439 /* If current_prefix_length < pos+bits, we are already doing
1440 * actual prefix matching, which means everything from
1441 * pos+(bits-chopped_off) onward must be zero along some
1442 * branch of this subtree - otherwise there is *no* valid
1443 * prefix present. Here we can only check the skipped
1444 * bits. Remember, since we have already indexed into the
1445 * parent's child array, we know that the bits we chopped of
1446 * *are* zero.
1447 */
19baf839 1448
a07f5f50
SH
1449 /* NOTA BENE: Checking only skipped bits
1450 for the new node here */
19baf839 1451
91b9a277
OJ
1452 if (current_prefix_length < pos+bits) {
1453 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1454 cn->pos - current_prefix_length)
1455 || !(cn->child[0]))
91b9a277
OJ
1456 goto backtrace;
1457 }
19baf839 1458
91b9a277
OJ
1459 /*
1460 * If chopped_off=0, the index is fully validated and we
1461 * only need to look at the skipped bits for this, the new,
1462 * tnode. What we actually want to do is to find out if
1463 * these skipped bits match our key perfectly, or if we will
1464 * have to count on finding a matching prefix further down,
1465 * because if we do, we would like to have some way of
1466 * verifying the existence of such a prefix at this point.
1467 */
19baf839 1468
91b9a277
OJ
1469 /* The only thing we can do at this point is to verify that
1470 * any such matching prefix can indeed be a prefix to our
1471 * key, and if the bits in the node we are inspecting that
1472 * do not match our key are not ZERO, this cannot be true.
1473 * Thus, find out where there is a mismatch (before cn->pos)
1474 * and verify that all the mismatching bits are zero in the
1475 * new tnode's key.
1476 */
19baf839 1477
a07f5f50
SH
1478 /*
1479 * Note: We aren't very concerned about the piece of
1480 * the key that precede pn->pos+pn->bits, since these
1481 * have already been checked. The bits after cn->pos
1482 * aren't checked since these are by definition
1483 * "unknown" at this point. Thus, what we want to see
1484 * is if we are about to enter the "prefix matching"
1485 * state, and in that case verify that the skipped
1486 * bits that will prevail throughout this subtree are
1487 * zero, as they have to be if we are to find a
1488 * matching prefix.
91b9a277
OJ
1489 */
1490
ab66b4a7
SH
1491 node_prefix = mask_pfx(cn->key, cn->pos);
1492 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1493 pref_mismatch = key_prefix^node_prefix;
1494 mp = 0;
1495
a07f5f50
SH
1496 /*
1497 * In short: If skipped bits in this node do not match
1498 * the search key, enter the "prefix matching"
1499 * state.directly.
91b9a277
OJ
1500 */
1501 if (pref_mismatch) {
1502 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1503 mp++;
a07f5f50 1504 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1505 }
1506 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1507
1508 if (key_prefix != 0)
1509 goto backtrace;
1510
1511 if (current_prefix_length >= cn->pos)
1512 current_prefix_length = mp;
c877efb2 1513 }
a07f5f50 1514
91b9a277
OJ
1515 pn = (struct tnode *)n; /* Descend */
1516 chopped_off = 0;
1517 continue;
1518
19baf839
RO
1519backtrace:
1520 chopped_off++;
1521
1522 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1523 while ((chopped_off <= pn->bits)
1524 && !(cindex & (1<<(chopped_off-1))))
19baf839 1525 chopped_off++;
19baf839
RO
1526
1527 /* Decrease current_... with bits chopped off */
1528 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1529 current_prefix_length = pn->pos + pn->bits
1530 - chopped_off;
91b9a277 1531
19baf839 1532 /*
c877efb2 1533 * Either we do the actual chop off according or if we have
19baf839
RO
1534 * chopped off all bits in this tnode walk up to our parent.
1535 */
1536
91b9a277 1537 if (chopped_off <= pn->bits) {
19baf839 1538 cindex &= ~(1 << (chopped_off-1));
91b9a277 1539 } else {
06801916
SH
1540 struct tnode *parent = node_parent((struct node *) pn);
1541 if (!parent)
19baf839 1542 goto failed;
91b9a277 1543
19baf839 1544 /* Get Child's index */
06801916
SH
1545 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1546 pn = parent;
19baf839
RO
1547 chopped_off = 0;
1548
1549#ifdef CONFIG_IP_FIB_TRIE_STATS
1550 t->stats.backtrack++;
1551#endif
1552 goto backtrace;
c877efb2 1553 }
19baf839
RO
1554 }
1555failed:
c877efb2 1556 ret = 1;
19baf839 1557found:
2373ce1c 1558 rcu_read_unlock();
19baf839
RO
1559 return ret;
1560}
1561
9195bef7
SH
1562/*
1563 * Remove the leaf and return parent.
1564 */
1565static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1566{
9195bef7 1567 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1568
9195bef7 1569 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1570
c877efb2 1571 if (tp) {
9195bef7 1572 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1573 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1574 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1575 } else
2373ce1c 1576 rcu_assign_pointer(t->trie, NULL);
19baf839 1577
9195bef7 1578 tnode_free((struct tnode *) l);
19baf839
RO
1579}
1580
d562f1f8
RO
1581/*
1582 * Caller must hold RTNL.
1583 */
4e902c57 1584static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1585{
1586 struct trie *t = (struct trie *) tb->tb_data;
1587 u32 key, mask;
4e902c57
TG
1588 int plen = cfg->fc_dst_len;
1589 u8 tos = cfg->fc_tos;
19baf839
RO
1590 struct fib_alias *fa, *fa_to_delete;
1591 struct list_head *fa_head;
1592 struct leaf *l;
91b9a277
OJ
1593 struct leaf_info *li;
1594
c877efb2 1595 if (plen > 32)
19baf839
RO
1596 return -EINVAL;
1597
4e902c57 1598 key = ntohl(cfg->fc_dst);
91b9a277 1599 mask = ntohl(inet_make_mask(plen));
19baf839 1600
c877efb2 1601 if (key & ~mask)
19baf839
RO
1602 return -EINVAL;
1603
1604 key = key & mask;
1605 l = fib_find_node(t, key);
1606
c877efb2 1607 if (!l)
19baf839
RO
1608 return -ESRCH;
1609
1610 fa_head = get_fa_head(l, plen);
1611 fa = fib_find_alias(fa_head, tos, 0);
1612
1613 if (!fa)
1614 return -ESRCH;
1615
0c7770c7 1616 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1617
1618 fa_to_delete = NULL;
936f6f8e
JA
1619 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1620 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1621 struct fib_info *fi = fa->fa_info;
1622
1623 if (fa->fa_tos != tos)
1624 break;
1625
4e902c57
TG
1626 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1627 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1628 fa->fa_scope == cfg->fc_scope) &&
1629 (!cfg->fc_protocol ||
1630 fi->fib_protocol == cfg->fc_protocol) &&
1631 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1632 fa_to_delete = fa;
1633 break;
1634 }
1635 }
1636
91b9a277
OJ
1637 if (!fa_to_delete)
1638 return -ESRCH;
19baf839 1639
91b9a277 1640 fa = fa_to_delete;
4e902c57 1641 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1642 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1643
1644 l = fib_find_node(t, key);
772cb712 1645 li = find_leaf_info(l, plen);
19baf839 1646
2373ce1c 1647 list_del_rcu(&fa->fa_list);
19baf839 1648
91b9a277 1649 if (list_empty(fa_head)) {
2373ce1c 1650 hlist_del_rcu(&li->hlist);
91b9a277 1651 free_leaf_info(li);
2373ce1c 1652 }
19baf839 1653
91b9a277 1654 if (hlist_empty(&l->list))
9195bef7 1655 trie_leaf_remove(t, l);
19baf839 1656
91b9a277
OJ
1657 if (fa->fa_state & FA_S_ACCESSED)
1658 rt_cache_flush(-1);
19baf839 1659
2373ce1c
RO
1660 fib_release_info(fa->fa_info);
1661 alias_free_mem_rcu(fa);
91b9a277 1662 return 0;
19baf839
RO
1663}
1664
1665static int trie_flush_list(struct trie *t, struct list_head *head)
1666{
1667 struct fib_alias *fa, *fa_node;
1668 int found = 0;
1669
1670 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1671 struct fib_info *fi = fa->fa_info;
19baf839 1672
2373ce1c
RO
1673 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1674 list_del_rcu(&fa->fa_list);
1675 fib_release_info(fa->fa_info);
1676 alias_free_mem_rcu(fa);
19baf839
RO
1677 found++;
1678 }
1679 }
1680 return found;
1681}
1682
1683static int trie_flush_leaf(struct trie *t, struct leaf *l)
1684{
1685 int found = 0;
1686 struct hlist_head *lih = &l->list;
1687 struct hlist_node *node, *tmp;
1688 struct leaf_info *li = NULL;
1689
1690 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1691 found += trie_flush_list(t, &li->falh);
1692
1693 if (list_empty(&li->falh)) {
2373ce1c 1694 hlist_del_rcu(&li->hlist);
19baf839
RO
1695 free_leaf_info(li);
1696 }
1697 }
1698 return found;
1699}
1700
82cfbb00
SH
1701/*
1702 * Scan for the next right leaf starting at node p->child[idx]
1703 * Since we have back pointer, no recursion necessary.
1704 */
1705static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1706{
82cfbb00
SH
1707 do {
1708 t_key idx;
c877efb2 1709
c877efb2 1710 if (c)
82cfbb00 1711 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1712 else
82cfbb00 1713 idx = 0;
2373ce1c 1714
82cfbb00
SH
1715 while (idx < 1u << p->bits) {
1716 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1717 if (!c)
91b9a277
OJ
1718 continue;
1719
82cfbb00
SH
1720 if (IS_LEAF(c)) {
1721 prefetch(p->child[idx]);
1722 return (struct leaf *) c;
19baf839 1723 }
82cfbb00
SH
1724
1725 /* Rescan start scanning in new node */
1726 p = (struct tnode *) c;
1727 idx = 0;
19baf839 1728 }
82cfbb00
SH
1729
1730 /* Node empty, walk back up to parent */
91b9a277 1731 c = (struct node *) p;
82cfbb00
SH
1732 } while ( (p = node_parent_rcu(c)) != NULL);
1733
1734 return NULL; /* Root of trie */
1735}
1736
82cfbb00
SH
1737static struct leaf *trie_firstleaf(struct trie *t)
1738{
1739 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1740
1741 if (!n)
1742 return NULL;
1743
1744 if (IS_LEAF(n)) /* trie is just a leaf */
1745 return (struct leaf *) n;
1746
1747 return leaf_walk_rcu(n, NULL);
1748}
1749
1750static struct leaf *trie_nextleaf(struct leaf *l)
1751{
1752 struct node *c = (struct node *) l;
1753 struct tnode *p = node_parent(c);
1754
1755 if (!p)
1756 return NULL; /* trie with just one leaf */
1757
1758 return leaf_walk_rcu(p, c);
19baf839
RO
1759}
1760
71d67e66
SH
1761static struct leaf *trie_leafindex(struct trie *t, int index)
1762{
1763 struct leaf *l = trie_firstleaf(t);
1764
1765 while (index-- > 0) {
1766 l = trie_nextleaf(l);
1767 if (!l)
1768 break;
1769 }
1770 return l;
1771}
1772
1773
d562f1f8
RO
1774/*
1775 * Caller must hold RTNL.
1776 */
19baf839
RO
1777static int fn_trie_flush(struct fib_table *tb)
1778{
1779 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1780 struct leaf *l, *ll = NULL;
82cfbb00 1781 int found = 0;
19baf839 1782
82cfbb00 1783 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
19baf839
RO
1784 found += trie_flush_leaf(t, l);
1785
1786 if (ll && hlist_empty(&ll->list))
9195bef7 1787 trie_leaf_remove(t, ll);
19baf839
RO
1788 ll = l;
1789 }
1790
1791 if (ll && hlist_empty(&ll->list))
9195bef7 1792 trie_leaf_remove(t, ll);
19baf839 1793
0c7770c7 1794 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1795 return found;
1796}
1797
a07f5f50
SH
1798static void fn_trie_select_default(struct fib_table *tb,
1799 const struct flowi *flp,
1800 struct fib_result *res)
19baf839
RO
1801{
1802 struct trie *t = (struct trie *) tb->tb_data;
1803 int order, last_idx;
1804 struct fib_info *fi = NULL;
1805 struct fib_info *last_resort;
1806 struct fib_alias *fa = NULL;
1807 struct list_head *fa_head;
1808 struct leaf *l;
1809
1810 last_idx = -1;
1811 last_resort = NULL;
1812 order = -1;
1813
2373ce1c 1814 rcu_read_lock();
c877efb2 1815
19baf839 1816 l = fib_find_node(t, 0);
c877efb2 1817 if (!l)
19baf839
RO
1818 goto out;
1819
1820 fa_head = get_fa_head(l, 0);
c877efb2 1821 if (!fa_head)
19baf839
RO
1822 goto out;
1823
c877efb2 1824 if (list_empty(fa_head))
19baf839
RO
1825 goto out;
1826
2373ce1c 1827 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1828 struct fib_info *next_fi = fa->fa_info;
91b9a277 1829
19baf839
RO
1830 if (fa->fa_scope != res->scope ||
1831 fa->fa_type != RTN_UNICAST)
1832 continue;
91b9a277 1833
19baf839
RO
1834 if (next_fi->fib_priority > res->fi->fib_priority)
1835 break;
1836 if (!next_fi->fib_nh[0].nh_gw ||
1837 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1838 continue;
1839 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1840
19baf839
RO
1841 if (fi == NULL) {
1842 if (next_fi != res->fi)
1843 break;
1844 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1845 &last_idx, tb->tb_default)) {
a2bbe682 1846 fib_result_assign(res, fi);
971b893e 1847 tb->tb_default = order;
19baf839
RO
1848 goto out;
1849 }
1850 fi = next_fi;
1851 order++;
1852 }
1853 if (order <= 0 || fi == NULL) {
971b893e 1854 tb->tb_default = -1;
19baf839
RO
1855 goto out;
1856 }
1857
971b893e
DL
1858 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1859 tb->tb_default)) {
a2bbe682 1860 fib_result_assign(res, fi);
971b893e 1861 tb->tb_default = order;
19baf839
RO
1862 goto out;
1863 }
a2bbe682
DL
1864 if (last_idx >= 0)
1865 fib_result_assign(res, last_resort);
971b893e
DL
1866 tb->tb_default = last_idx;
1867out:
2373ce1c 1868 rcu_read_unlock();
19baf839
RO
1869}
1870
a07f5f50
SH
1871static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1872 struct fib_table *tb,
19baf839
RO
1873 struct sk_buff *skb, struct netlink_callback *cb)
1874{
1875 int i, s_i;
1876 struct fib_alias *fa;
32ab5f80 1877 __be32 xkey = htonl(key);
19baf839 1878
71d67e66 1879 s_i = cb->args[5];
19baf839
RO
1880 i = 0;
1881
2373ce1c
RO
1882 /* rcu_read_lock is hold by caller */
1883
1884 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1885 if (i < s_i) {
1886 i++;
1887 continue;
1888 }
19baf839
RO
1889
1890 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1891 cb->nlh->nlmsg_seq,
1892 RTM_NEWROUTE,
1893 tb->tb_id,
1894 fa->fa_type,
1895 fa->fa_scope,
be403ea1 1896 xkey,
19baf839
RO
1897 plen,
1898 fa->fa_tos,
64347f78 1899 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1900 cb->args[5] = i;
19baf839 1901 return -1;
91b9a277 1902 }
19baf839
RO
1903 i++;
1904 }
71d67e66 1905 cb->args[5] = i;
19baf839
RO
1906 return skb->len;
1907}
1908
a88ee229
SH
1909static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1910 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1911{
a88ee229
SH
1912 struct leaf_info *li;
1913 struct hlist_node *node;
1914 int i, s_i;
19baf839 1915
71d67e66 1916 s_i = cb->args[4];
a88ee229 1917 i = 0;
19baf839 1918
a88ee229
SH
1919 /* rcu_read_lock is hold by caller */
1920 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1921 if (i < s_i) {
1922 i++;
19baf839 1923 continue;
a88ee229 1924 }
91b9a277 1925
a88ee229 1926 if (i > s_i)
71d67e66 1927 cb->args[5] = 0;
19baf839 1928
a88ee229 1929 if (list_empty(&li->falh))
19baf839
RO
1930 continue;
1931
a88ee229 1932 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1933 cb->args[4] = i;
19baf839
RO
1934 return -1;
1935 }
a88ee229 1936 i++;
19baf839 1937 }
a88ee229 1938
71d67e66 1939 cb->args[4] = i;
19baf839
RO
1940 return skb->len;
1941}
1942
a07f5f50
SH
1943static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1944 struct netlink_callback *cb)
19baf839 1945{
a88ee229 1946 struct leaf *l;
19baf839 1947 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1948 t_key key = cb->args[2];
71d67e66 1949 int count = cb->args[3];
19baf839 1950
2373ce1c 1951 rcu_read_lock();
d5ce8a0e
SH
1952 /* Dump starting at last key.
1953 * Note: 0.0.0.0/0 (ie default) is first key.
1954 */
71d67e66 1955 if (count == 0)
d5ce8a0e
SH
1956 l = trie_firstleaf(t);
1957 else {
71d67e66
SH
1958 /* Normally, continue from last key, but if that is missing
1959 * fallback to using slow rescan
1960 */
d5ce8a0e 1961 l = fib_find_node(t, key);
71d67e66
SH
1962 if (!l)
1963 l = trie_leafindex(t, count);
d5ce8a0e 1964 }
a88ee229 1965
d5ce8a0e
SH
1966 while (l) {
1967 cb->args[2] = l->key;
a88ee229 1968 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1969 cb->args[3] = count;
a88ee229 1970 rcu_read_unlock();
a88ee229 1971 return -1;
19baf839 1972 }
d5ce8a0e 1973
71d67e66 1974 ++count;
d5ce8a0e 1975 l = trie_nextleaf(l);
71d67e66
SH
1976 memset(&cb->args[4], 0,
1977 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1978 }
71d67e66 1979 cb->args[3] = count;
2373ce1c 1980 rcu_read_unlock();
a88ee229 1981
19baf839 1982 return skb->len;
19baf839
RO
1983}
1984
7f9b8052
SH
1985void __init fib_hash_init(void)
1986{
a07f5f50
SH
1987 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1988 sizeof(struct fib_alias),
bc3c8c1e
SH
1989 0, SLAB_PANIC, NULL);
1990
1991 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1992 max(sizeof(struct leaf),
1993 sizeof(struct leaf_info)),
1994 0, SLAB_PANIC, NULL);
7f9b8052 1995}
19baf839 1996
7f9b8052
SH
1997
1998/* Fix more generic FIB names for init later */
1999struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2000{
2001 struct fib_table *tb;
2002 struct trie *t;
2003
19baf839
RO
2004 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2005 GFP_KERNEL);
2006 if (tb == NULL)
2007 return NULL;
2008
2009 tb->tb_id = id;
971b893e 2010 tb->tb_default = -1;
19baf839
RO
2011 tb->tb_lookup = fn_trie_lookup;
2012 tb->tb_insert = fn_trie_insert;
2013 tb->tb_delete = fn_trie_delete;
2014 tb->tb_flush = fn_trie_flush;
2015 tb->tb_select_default = fn_trie_select_default;
2016 tb->tb_dump = fn_trie_dump;
19baf839
RO
2017
2018 t = (struct trie *) tb->tb_data;
c28a1cf4 2019 memset(t, 0, sizeof(*t));
19baf839 2020
19baf839 2021 if (id == RT_TABLE_LOCAL)
a07f5f50 2022 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2023
2024 return tb;
2025}
2026
cb7b593c
SH
2027#ifdef CONFIG_PROC_FS
2028/* Depth first Trie walk iterator */
2029struct fib_trie_iter {
1c340b2f 2030 struct seq_net_private p;
877a9bff 2031 struct trie *trie_local, *trie_main;
cb7b593c
SH
2032 struct tnode *tnode;
2033 struct trie *trie;
2034 unsigned index;
2035 unsigned depth;
2036};
19baf839 2037
cb7b593c 2038static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2039{
cb7b593c
SH
2040 struct tnode *tn = iter->tnode;
2041 unsigned cindex = iter->index;
2042 struct tnode *p;
19baf839 2043
6640e697
EB
2044 /* A single entry routing table */
2045 if (!tn)
2046 return NULL;
2047
cb7b593c
SH
2048 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2049 iter->tnode, iter->index, iter->depth);
2050rescan:
2051 while (cindex < (1<<tn->bits)) {
b59cfbf7 2052 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2053
cb7b593c
SH
2054 if (n) {
2055 if (IS_LEAF(n)) {
2056 iter->tnode = tn;
2057 iter->index = cindex + 1;
2058 } else {
2059 /* push down one level */
2060 iter->tnode = (struct tnode *) n;
2061 iter->index = 0;
2062 ++iter->depth;
2063 }
2064 return n;
2065 }
19baf839 2066
cb7b593c
SH
2067 ++cindex;
2068 }
91b9a277 2069
cb7b593c 2070 /* Current node exhausted, pop back up */
b59cfbf7 2071 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2072 if (p) {
2073 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2074 tn = p;
2075 --iter->depth;
2076 goto rescan;
19baf839 2077 }
cb7b593c
SH
2078
2079 /* got root? */
2080 return NULL;
19baf839
RO
2081}
2082
cb7b593c
SH
2083static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2084 struct trie *t)
19baf839 2085{
5ddf0eb2
RO
2086 struct node *n ;
2087
132adf54 2088 if (!t)
5ddf0eb2
RO
2089 return NULL;
2090
2091 n = rcu_dereference(t->trie);
2092
132adf54 2093 if (!iter)
5ddf0eb2 2094 return NULL;
19baf839 2095
6640e697
EB
2096 if (n) {
2097 if (IS_TNODE(n)) {
2098 iter->tnode = (struct tnode *) n;
2099 iter->trie = t;
2100 iter->index = 0;
2101 iter->depth = 1;
2102 } else {
2103 iter->tnode = NULL;
2104 iter->trie = t;
2105 iter->index = 0;
2106 iter->depth = 0;
2107 }
cb7b593c 2108 return n;
91b9a277 2109 }
cb7b593c
SH
2110 return NULL;
2111}
91b9a277 2112
cb7b593c
SH
2113static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2114{
2115 struct node *n;
2116 struct fib_trie_iter iter;
91b9a277 2117
cb7b593c 2118 memset(s, 0, sizeof(*s));
91b9a277 2119
cb7b593c
SH
2120 rcu_read_lock();
2121 for (n = fib_trie_get_first(&iter, t); n;
2122 n = fib_trie_get_next(&iter)) {
2123 if (IS_LEAF(n)) {
93672292
SH
2124 struct leaf *l = (struct leaf *)n;
2125 struct leaf_info *li;
2126 struct hlist_node *tmp;
2127
cb7b593c
SH
2128 s->leaves++;
2129 s->totdepth += iter.depth;
2130 if (iter.depth > s->maxdepth)
2131 s->maxdepth = iter.depth;
93672292
SH
2132
2133 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2134 ++s->prefixes;
cb7b593c
SH
2135 } else {
2136 const struct tnode *tn = (const struct tnode *) n;
2137 int i;
2138
2139 s->tnodes++;
132adf54 2140 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2141 s->nodesizes[tn->bits]++;
2142
cb7b593c
SH
2143 for (i = 0; i < (1<<tn->bits); i++)
2144 if (!tn->child[i])
2145 s->nullpointers++;
19baf839 2146 }
19baf839 2147 }
2373ce1c 2148 rcu_read_unlock();
19baf839
RO
2149}
2150
cb7b593c
SH
2151/*
2152 * This outputs /proc/net/fib_triestats
2153 */
2154static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2155{
cb7b593c 2156 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2157
cb7b593c
SH
2158 if (stat->leaves)
2159 avdepth = stat->totdepth*100 / stat->leaves;
2160 else
2161 avdepth = 0;
91b9a277 2162
a07f5f50
SH
2163 seq_printf(seq, "\tAver depth: %u.%02d\n",
2164 avdepth / 100, avdepth % 100);
cb7b593c 2165 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2166
cb7b593c 2167 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2168 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2169
2170 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2171 bytes += sizeof(struct leaf_info) * stat->prefixes;
2172
187b5188 2173 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2174 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2175
06ef921d
RO
2176 max = MAX_STAT_DEPTH;
2177 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2178 max--;
19baf839 2179
cb7b593c
SH
2180 pointers = 0;
2181 for (i = 1; i <= max; i++)
2182 if (stat->nodesizes[i] != 0) {
187b5188 2183 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2184 pointers += (1<<i) * stat->nodesizes[i];
2185 }
2186 seq_putc(seq, '\n');
187b5188 2187 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2188
cb7b593c 2189 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2190 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2191 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2192}
2373ce1c 2193
cb7b593c 2194#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2195static void trie_show_usage(struct seq_file *seq,
2196 const struct trie_use_stats *stats)
2197{
2198 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2199 seq_printf(seq, "gets = %u\n", stats->gets);
2200 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2201 seq_printf(seq, "semantic match passed = %u\n",
2202 stats->semantic_match_passed);
2203 seq_printf(seq, "semantic match miss = %u\n",
2204 stats->semantic_match_miss);
2205 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2206 seq_printf(seq, "skipped node resize = %u\n\n",
2207 stats->resize_node_skipped);
cb7b593c 2208}
66a2f7fd
SH
2209#endif /* CONFIG_IP_FIB_TRIE_STATS */
2210
a07f5f50
SH
2211static void fib_trie_show(struct seq_file *seq, const char *name,
2212 struct trie *trie)
d717a9a6
SH
2213{
2214 struct trie_stat stat;
2215
d717a9a6 2216 trie_collect_stats(trie, &stat);
93672292 2217 seq_printf(seq, "%s:\n", name);
d717a9a6
SH
2218 trie_show_stats(seq, &stat);
2219#ifdef CONFIG_IP_FIB_TRIE_STATS
2220 trie_show_usage(seq, &trie->stats);
2221#endif
2222}
19baf839 2223
cb7b593c
SH
2224static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2225{
1c340b2f 2226 struct net *net = (struct net *)seq->private;
877a9bff
EB
2227 struct fib_table *tb;
2228
d717a9a6 2229 seq_printf(seq,
a07f5f50
SH
2230 "Basic info: size of leaf:"
2231 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2232 sizeof(struct leaf), sizeof(struct tnode));
2233
1c340b2f 2234 tb = fib_get_table(net, RT_TABLE_LOCAL);
877a9bff 2235 if (tb)
d717a9a6 2236 fib_trie_show(seq, "Local", (struct trie *) tb->tb_data);
877a9bff 2237
1c340b2f 2238 tb = fib_get_table(net, RT_TABLE_MAIN);
877a9bff 2239 if (tb)
d717a9a6 2240 fib_trie_show(seq, "Main", (struct trie *) tb->tb_data);
19baf839 2241
cb7b593c 2242 return 0;
19baf839
RO
2243}
2244
cb7b593c 2245static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2246{
1c340b2f
DL
2247 int err;
2248 struct net *net;
2249
2250 net = get_proc_net(inode);
2251 if (net == NULL)
2252 return -ENXIO;
2253 err = single_open(file, fib_triestat_seq_show, net);
2254 if (err < 0) {
2255 put_net(net);
2256 return err;
2257 }
2258 return 0;
2259}
2260
2261static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2262{
2263 struct seq_file *seq = f->private_data;
2264 put_net(seq->private);
2265 return single_release(ino, f);
19baf839
RO
2266}
2267
9a32144e 2268static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2269 .owner = THIS_MODULE,
2270 .open = fib_triestat_seq_open,
2271 .read = seq_read,
2272 .llseek = seq_lseek,
1c340b2f 2273 .release = fib_triestat_seq_release,
cb7b593c
SH
2274};
2275
2276static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2277 loff_t pos)
19baf839 2278{
cb7b593c
SH
2279 loff_t idx = 0;
2280 struct node *n;
2281
877a9bff 2282 for (n = fib_trie_get_first(iter, iter->trie_local);
cb7b593c
SH
2283 n; ++idx, n = fib_trie_get_next(iter)) {
2284 if (pos == idx)
2285 return n;
2286 }
2287
877a9bff 2288 for (n = fib_trie_get_first(iter, iter->trie_main);
cb7b593c
SH
2289 n; ++idx, n = fib_trie_get_next(iter)) {
2290 if (pos == idx)
2291 return n;
2292 }
19baf839
RO
2293 return NULL;
2294}
2295
cb7b593c 2296static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2297 __acquires(RCU)
19baf839 2298{
877a9bff
EB
2299 struct fib_trie_iter *iter = seq->private;
2300 struct fib_table *tb;
2301
2302 if (!iter->trie_local) {
1c340b2f 2303 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
877a9bff
EB
2304 if (tb)
2305 iter->trie_local = (struct trie *) tb->tb_data;
2306 }
2307 if (!iter->trie_main) {
1c340b2f 2308 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
877a9bff
EB
2309 if (tb)
2310 iter->trie_main = (struct trie *) tb->tb_data;
2311 }
cb7b593c
SH
2312 rcu_read_lock();
2313 if (*pos == 0)
91b9a277 2314 return SEQ_START_TOKEN;
877a9bff 2315 return fib_trie_get_idx(iter, *pos - 1);
19baf839
RO
2316}
2317
cb7b593c 2318static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2319{
cb7b593c
SH
2320 struct fib_trie_iter *iter = seq->private;
2321 void *l = v;
2322
19baf839 2323 ++*pos;
91b9a277 2324 if (v == SEQ_START_TOKEN)
cb7b593c 2325 return fib_trie_get_idx(iter, 0);
19baf839 2326
cb7b593c
SH
2327 v = fib_trie_get_next(iter);
2328 BUG_ON(v == l);
2329 if (v)
2330 return v;
19baf839 2331
cb7b593c 2332 /* continue scan in next trie */
877a9bff
EB
2333 if (iter->trie == iter->trie_local)
2334 return fib_trie_get_first(iter, iter->trie_main);
19baf839 2335
cb7b593c
SH
2336 return NULL;
2337}
19baf839 2338
cb7b593c 2339static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2340 __releases(RCU)
19baf839 2341{
cb7b593c
SH
2342 rcu_read_unlock();
2343}
91b9a277 2344
cb7b593c
SH
2345static void seq_indent(struct seq_file *seq, int n)
2346{
2347 while (n-- > 0) seq_puts(seq, " ");
2348}
19baf839 2349
28d36e37 2350static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2351{
132adf54 2352 switch (s) {
cb7b593c
SH
2353 case RT_SCOPE_UNIVERSE: return "universe";
2354 case RT_SCOPE_SITE: return "site";
2355 case RT_SCOPE_LINK: return "link";
2356 case RT_SCOPE_HOST: return "host";
2357 case RT_SCOPE_NOWHERE: return "nowhere";
2358 default:
28d36e37 2359 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2360 return buf;
2361 }
2362}
19baf839 2363
cb7b593c
SH
2364static const char *rtn_type_names[__RTN_MAX] = {
2365 [RTN_UNSPEC] = "UNSPEC",
2366 [RTN_UNICAST] = "UNICAST",
2367 [RTN_LOCAL] = "LOCAL",
2368 [RTN_BROADCAST] = "BROADCAST",
2369 [RTN_ANYCAST] = "ANYCAST",
2370 [RTN_MULTICAST] = "MULTICAST",
2371 [RTN_BLACKHOLE] = "BLACKHOLE",
2372 [RTN_UNREACHABLE] = "UNREACHABLE",
2373 [RTN_PROHIBIT] = "PROHIBIT",
2374 [RTN_THROW] = "THROW",
2375 [RTN_NAT] = "NAT",
2376 [RTN_XRESOLVE] = "XRESOLVE",
2377};
19baf839 2378
28d36e37 2379static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2380{
cb7b593c
SH
2381 if (t < __RTN_MAX && rtn_type_names[t])
2382 return rtn_type_names[t];
28d36e37 2383 snprintf(buf, len, "type %u", t);
cb7b593c 2384 return buf;
19baf839
RO
2385}
2386
cb7b593c
SH
2387/* Pretty print the trie */
2388static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2389{
cb7b593c
SH
2390 const struct fib_trie_iter *iter = seq->private;
2391 struct node *n = v;
c877efb2 2392
cb7b593c
SH
2393 if (v == SEQ_START_TOKEN)
2394 return 0;
19baf839 2395
b59cfbf7 2396 if (!node_parent_rcu(n)) {
877a9bff 2397 if (iter->trie == iter->trie_local)
095b8501
RO
2398 seq_puts(seq, "<local>:\n");
2399 else
2400 seq_puts(seq, "<main>:\n");
2401 }
2402
cb7b593c
SH
2403 if (IS_TNODE(n)) {
2404 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2405 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2406
1d25cd6c
RO
2407 seq_indent(seq, iter->depth-1);
2408 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
e905a9ed 2409 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2410 tn->empty_children);
e905a9ed 2411
cb7b593c
SH
2412 } else {
2413 struct leaf *l = (struct leaf *) n;
1328042e
SH
2414 struct leaf_info *li;
2415 struct hlist_node *node;
32ab5f80 2416 __be32 val = htonl(l->key);
cb7b593c
SH
2417
2418 seq_indent(seq, iter->depth);
2419 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
1328042e
SH
2420
2421 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2422 struct fib_alias *fa;
2423
2424 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2425 char buf1[32], buf2[32];
2426
2427 seq_indent(seq, iter->depth+1);
2428 seq_printf(seq, " /%d %s %s", li->plen,
2429 rtn_scope(buf1, sizeof(buf1),
2430 fa->fa_scope),
2431 rtn_type(buf2, sizeof(buf2),
2432 fa->fa_type));
2433 if (fa->fa_tos)
2434 seq_printf(seq, "tos =%d\n",
2435 fa->fa_tos);
2436 seq_putc(seq, '\n');
cb7b593c
SH
2437 }
2438 }
19baf839 2439 }
cb7b593c 2440
19baf839
RO
2441 return 0;
2442}
2443
f690808e 2444static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2445 .start = fib_trie_seq_start,
2446 .next = fib_trie_seq_next,
2447 .stop = fib_trie_seq_stop,
2448 .show = fib_trie_seq_show,
19baf839
RO
2449};
2450
cb7b593c 2451static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2452{
1c340b2f
DL
2453 return seq_open_net(inode, file, &fib_trie_seq_ops,
2454 sizeof(struct fib_trie_iter));
19baf839
RO
2455}
2456
9a32144e 2457static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2458 .owner = THIS_MODULE,
2459 .open = fib_trie_seq_open,
2460 .read = seq_read,
2461 .llseek = seq_lseek,
1c340b2f 2462 .release = seq_release_net,
19baf839
RO
2463};
2464
32ab5f80 2465static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2466{
cb7b593c
SH
2467 static unsigned type2flags[RTN_MAX + 1] = {
2468 [7] = RTF_REJECT, [8] = RTF_REJECT,
2469 };
2470 unsigned flags = type2flags[type];
19baf839 2471
cb7b593c
SH
2472 if (fi && fi->fib_nh->nh_gw)
2473 flags |= RTF_GATEWAY;
32ab5f80 2474 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2475 flags |= RTF_HOST;
2476 flags |= RTF_UP;
2477 return flags;
19baf839
RO
2478}
2479
cb7b593c
SH
2480/*
2481 * This outputs /proc/net/route.
2482 * The format of the file is not supposed to be changed
2483 * and needs to be same as fib_hash output to avoid breaking
2484 * legacy utilities
2485 */
2486static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2487{
c9e53cbe 2488 const struct fib_trie_iter *iter = seq->private;
cb7b593c 2489 struct leaf *l = v;
1328042e
SH
2490 struct leaf_info *li;
2491 struct hlist_node *node;
19baf839 2492
cb7b593c
SH
2493 if (v == SEQ_START_TOKEN) {
2494 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2495 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2496 "\tWindow\tIRTT");
2497 return 0;
2498 }
19baf839 2499
877a9bff 2500 if (iter->trie == iter->trie_local)
c9e53cbe 2501 return 0;
a07f5f50 2502
cb7b593c
SH
2503 if (IS_TNODE(l))
2504 return 0;
19baf839 2505
1328042e 2506 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2507 struct fib_alias *fa;
32ab5f80 2508 __be32 mask, prefix;
91b9a277 2509
cb7b593c
SH
2510 mask = inet_make_mask(li->plen);
2511 prefix = htonl(l->key);
19baf839 2512
cb7b593c 2513 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2514 const struct fib_info *fi = fa->fa_info;
cb7b593c 2515 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
1328042e 2516 char bf[128];
19baf839 2517
cb7b593c
SH
2518 if (fa->fa_type == RTN_BROADCAST
2519 || fa->fa_type == RTN_MULTICAST)
2520 continue;
19baf839 2521
cb7b593c
SH
2522 if (fi)
2523 snprintf(bf, sizeof(bf),
2524 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2525 fi->fib_dev ? fi->fib_dev->name : "*",
2526 prefix,
2527 fi->fib_nh->nh_gw, flags, 0, 0,
2528 fi->fib_priority,
2529 mask,
a07f5f50
SH
2530 (fi->fib_advmss ?
2531 fi->fib_advmss + 40 : 0),
cb7b593c
SH
2532 fi->fib_window,
2533 fi->fib_rtt >> 3);
2534 else
2535 snprintf(bf, sizeof(bf),
2536 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2537 prefix, 0, flags, 0, 0, 0,
2538 mask, 0, 0, 0);
19baf839 2539
cb7b593c
SH
2540 seq_printf(seq, "%-127s\n", bf);
2541 }
19baf839
RO
2542 }
2543
2544 return 0;
2545}
2546
f690808e 2547static const struct seq_operations fib_route_seq_ops = {
cb7b593c
SH
2548 .start = fib_trie_seq_start,
2549 .next = fib_trie_seq_next,
2550 .stop = fib_trie_seq_stop,
2551 .show = fib_route_seq_show,
19baf839
RO
2552};
2553
cb7b593c 2554static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2555{
1c340b2f
DL
2556 return seq_open_net(inode, file, &fib_route_seq_ops,
2557 sizeof(struct fib_trie_iter));
19baf839
RO
2558}
2559
9a32144e 2560static const struct file_operations fib_route_fops = {
cb7b593c
SH
2561 .owner = THIS_MODULE,
2562 .open = fib_route_seq_open,
2563 .read = seq_read,
2564 .llseek = seq_lseek,
1c340b2f 2565 .release = seq_release_net,
19baf839
RO
2566};
2567
61a02653 2568int __net_init fib_proc_init(struct net *net)
19baf839 2569{
61a02653 2570 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2571 goto out1;
2572
61a02653
DL
2573 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2574 &fib_triestat_fops))
cb7b593c
SH
2575 goto out2;
2576
61a02653 2577 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2578 goto out3;
2579
19baf839 2580 return 0;
cb7b593c
SH
2581
2582out3:
61a02653 2583 proc_net_remove(net, "fib_triestat");
cb7b593c 2584out2:
61a02653 2585 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2586out1:
2587 return -ENOMEM;
19baf839
RO
2588}
2589
61a02653 2590void __net_exit fib_proc_exit(struct net *net)
19baf839 2591{
61a02653
DL
2592 proc_net_remove(net, "fib_trie");
2593 proc_net_remove(net, "fib_triestat");
2594 proc_net_remove(net, "route");
19baf839
RO
2595}
2596
2597#endif /* CONFIG_PROC_FS */