]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/fib_trie.c
Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[net-next-2.6.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
91b9a277
OJ
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
97
98struct node {
91b9a277 99 unsigned long parent;
8d965444 100 t_key key;
19baf839
RO
101};
102
103struct leaf {
91b9a277 104 unsigned long parent;
8d965444 105 t_key key;
19baf839 106 struct hlist_head list;
2373ce1c 107 struct rcu_head rcu;
19baf839
RO
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
2373ce1c 112 struct rcu_head rcu;
19baf839
RO
113 int plen;
114 struct list_head falh;
115};
116
117struct tnode {
91b9a277 118 unsigned long parent;
8d965444 119 t_key key;
112d8cfc
ED
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
e0f7cb8c 127 struct tnode *tnode_free;
15be75cd 128 };
91b9a277 129 struct node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
93672292 149 unsigned int prefixes;
06ef921d 150 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 151};
19baf839
RO
152
153struct trie {
91b9a277 154 struct node *trie;
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
19baf839
RO
158};
159
19baf839 160static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
161static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 int wasfull);
19baf839 163static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
166/* tnodes to free after resize(); protected by RTNL */
167static struct tnode *tnode_free_head;
c3059477
JP
168static size_t tnode_free_size;
169
170/*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175static const int sync_pages = 128;
19baf839 176
e18b890b 177static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 178static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 179
06801916
SH
180static inline struct tnode *node_parent(struct node *node)
181{
b59cfbf7
ED
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183}
184
185static inline struct tnode *node_parent_rcu(struct node *node)
186{
187 struct tnode *ret = node_parent(node);
06801916 188
a034ee3c 189 return rcu_dereference_rtnl(ret);
06801916
SH
190}
191
6440cc9e
SH
192/* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
194 */
06801916
SH
195static inline void node_set_parent(struct node *node, struct tnode *ptr)
196{
6440cc9e
SH
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 199}
2373ce1c 200
b59cfbf7
ED
201static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
202{
203 BUG_ON(i >= 1U << tn->bits);
2373ce1c 204
b59cfbf7
ED
205 return tn->child[i];
206}
207
208static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 209{
b59cfbf7 210 struct node *ret = tnode_get_child(tn, i);
19baf839 211
a034ee3c 212 return rcu_dereference_rtnl(ret);
19baf839
RO
213}
214
bb435b8d 215static inline int tnode_child_length(const struct tnode *tn)
19baf839 216{
91b9a277 217 return 1 << tn->bits;
19baf839
RO
218}
219
ab66b4a7
SH
220static inline t_key mask_pfx(t_key k, unsigned short l)
221{
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223}
224
19baf839
RO
225static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
226{
91b9a277 227 if (offset < KEYLENGTH)
19baf839 228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 229 else
19baf839
RO
230 return 0;
231}
232
233static inline int tkey_equals(t_key a, t_key b)
234{
c877efb2 235 return a == b;
19baf839
RO
236}
237
238static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239{
c877efb2
SH
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
91b9a277
OJ
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 244}
19baf839
RO
245
246static inline int tkey_mismatch(t_key a, int offset, t_key b)
247{
248 t_key diff = a ^ b;
249 int i = offset;
250
c877efb2
SH
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
254 i++;
255 return i;
256}
257
19baf839 258/*
e905a9ed
YH
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
261 all of the bits in that key are significant.
262
263 Consider a node 'n' and its parent 'tp'.
264
e905a9ed
YH
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
19baf839
RO
270 correct key path.
271
e905a9ed
YH
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
277 call to tkey_sub_equals() in trie_insert().
278
e905a9ed 279 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
280 have many different meanings.
281
e905a9ed 282 Example:
19baf839
RO
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
e905a9ed 286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
287
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
91b9a277 296 n->bits = 4
19baf839 297
e905a9ed
YH
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
300 not use them for anything.
301
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 303 index into the parent's child array. That is, they will be used to find
19baf839
RO
304 'n' among tp's children.
305
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
308
e905a9ed 309 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
310 of the bits are really not needed or indeed known in n->key.
311
e905a9ed 312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 313 n's child array, and will of course be different for each child.
e905a9ed 314
c877efb2 315
19baf839
RO
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
318
319*/
320
0c7770c7 321static inline void check_tnode(const struct tnode *tn)
19baf839 322{
0c7770c7 323 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
324}
325
f5026fab
DL
326static const int halve_threshold = 25;
327static const int inflate_threshold = 50;
345aa031 328static const int halve_threshold_root = 15;
80b71b80 329static const int inflate_threshold_root = 30;
2373ce1c
RO
330
331static void __alias_free_mem(struct rcu_head *head)
19baf839 332{
2373ce1c
RO
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
335}
336
2373ce1c 337static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 338{
2373ce1c
RO
339 call_rcu(&fa->rcu, __alias_free_mem);
340}
91b9a277 341
2373ce1c
RO
342static void __leaf_free_rcu(struct rcu_head *head)
343{
bc3c8c1e
SH
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 346}
91b9a277 347
387a5487
SH
348static inline void free_leaf(struct leaf *l)
349{
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
351}
352
2373ce1c 353static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 354{
2373ce1c 355 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
356}
357
2373ce1c 358static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 359{
2373ce1c 360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
361}
362
8d965444 363static struct tnode *tnode_alloc(size_t size)
f0e36f8c 364{
2373ce1c 365 if (size <= PAGE_SIZE)
8d965444 366 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
367 else
368 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
369}
2373ce1c 370
15be75cd
SH
371static void __tnode_vfree(struct work_struct *arg)
372{
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
f0e36f8c
PM
375}
376
2373ce1c 377static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 378{
2373ce1c 379 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
380 size_t size = sizeof(struct tnode) +
381 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
382
383 if (size <= PAGE_SIZE)
384 kfree(tn);
15be75cd
SH
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
388 }
f0e36f8c
PM
389}
390
2373ce1c
RO
391static inline void tnode_free(struct tnode *tn)
392{
387a5487
SH
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
550e29bc 396 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
397}
398
e0f7cb8c
JP
399static void tnode_free_safe(struct tnode *tn)
400{
401 BUG_ON(IS_LEAF(tn));
7b85576d
JP
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
c3059477
JP
404 tnode_free_size += sizeof(struct tnode) +
405 (sizeof(struct node *) << tn->bits);
e0f7cb8c
JP
406}
407
408static void tnode_free_flush(void)
409{
410 struct tnode *tn;
411
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
416 }
c3059477
JP
417
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
421 }
e0f7cb8c
JP
422}
423
2373ce1c
RO
424static struct leaf *leaf_new(void)
425{
bc3c8c1e 426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
430 }
431 return l;
432}
433
434static struct leaf_info *leaf_info_new(int plen)
435{
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
440 }
441 return li;
442}
443
a07f5f50 444static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 445{
8d965444 446 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 447 struct tnode *tn = tnode_alloc(sz);
19baf839 448
91b9a277 449 if (tn) {
2373ce1c 450 tn->parent = T_TNODE;
19baf839
RO
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
456 }
c877efb2 457
a034ee3c
ED
458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 sizeof(struct node) << bits);
19baf839
RO
460 return tn;
461}
462
19baf839
RO
463/*
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
466 */
467
bb435b8d 468static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 469{
c877efb2 470 if (n == NULL || IS_LEAF(n))
19baf839
RO
471 return 0;
472
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474}
475
a07f5f50
SH
476static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 struct node *n)
19baf839
RO
478{
479 tnode_put_child_reorg(tn, i, n, -1);
480}
481
c877efb2 482 /*
19baf839
RO
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
485 */
486
a07f5f50
SH
487static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
488 int wasfull)
19baf839 489{
2373ce1c 490 struct node *chi = tn->child[i];
19baf839
RO
491 int isfull;
492
0c7770c7
SH
493 BUG_ON(i >= 1<<tn->bits);
494
19baf839
RO
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
c877efb2 500
19baf839 501 /* update fullChildren */
91b9a277 502 if (wasfull == -1)
19baf839
RO
503 wasfull = tnode_full(tn, chi);
504
505 isfull = tnode_full(tn, n);
c877efb2 506 if (wasfull && !isfull)
19baf839 507 tn->full_children--;
c877efb2 508 else if (!wasfull && isfull)
19baf839 509 tn->full_children++;
91b9a277 510
c877efb2 511 if (n)
06801916 512 node_set_parent(n, tn);
19baf839 513
2373ce1c 514 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
515}
516
80b71b80 517#define MAX_WORK 10
c877efb2 518static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
519{
520 int i;
2f80b3c8 521 struct tnode *old_tn;
e6308be8
RO
522 int inflate_threshold_use;
523 int halve_threshold_use;
80b71b80 524 int max_work;
19baf839 525
e905a9ed 526 if (!tn)
19baf839
RO
527 return NULL;
528
0c7770c7
SH
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
19baf839
RO
531
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 534 tnode_free_safe(tn);
19baf839
RO
535 return NULL;
536 }
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 539 goto one_child;
c877efb2 540 /*
19baf839
RO
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
543 */
544
545 /*
c877efb2
SH
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 548 * Telecommunications, page 6:
c877efb2 549 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
550 * children in the *doubled* node is at least 'high'."
551 *
c877efb2
SH
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 557 * multiply the left-hand side by 50.
c877efb2
SH
558 *
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
19baf839 562 * children, that is non-null tnodes with a skip value of 0.
c877efb2 563 * All of those will be doubled in the resulting inflated tnode, so
19baf839 564 * we just count them one extra time here.
c877efb2 565 *
19baf839 566 * A clearer way to write this would be:
c877efb2 567 *
19baf839 568 * to_be_doubled = tn->full_children;
c877efb2 569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
570 * tn->full_children;
571 *
572 * new_child_length = tnode_child_length(tn) * 2;
573 *
c877efb2 574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
577 *
578 * ...and so on, tho it would mess up the while () loop.
579 *
19baf839
RO
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
c877efb2 583 *
19baf839
RO
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
c877efb2 587 *
19baf839 588 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 589 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 590 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 591 *
19baf839 592 * expand new_child_length:
c877efb2 593 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 594 * tn->full_children) >=
19baf839 595 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 596 *
19baf839 597 * shorten again:
c877efb2 598 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 599 * tn->empty_children) >= inflate_threshold *
19baf839 600 * tnode_child_length(tn)
c877efb2 601 *
19baf839
RO
602 */
603
604 check_tnode(tn);
c877efb2 605
e6308be8
RO
606 /* Keep root node larger */
607
a034ee3c 608 if (!node_parent((struct node *)tn)) {
80b71b80
JL
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
a034ee3c 611 } else {
e6308be8 612 inflate_threshold_use = inflate_threshold;
80b71b80
JL
613 halve_threshold_use = halve_threshold;
614 }
e6308be8 615
80b71b80
JL
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 621
2f80b3c8
RO
622 old_tn = tn;
623 tn = inflate(t, tn);
a07f5f50 624
2f80b3c8
RO
625 if (IS_ERR(tn)) {
626 tn = old_tn;
2f36895a
RO
627#ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629#endif
630 break;
631 }
19baf839
RO
632 }
633
634 check_tnode(tn);
635
80b71b80 636 /* Return if at least one inflate is run */
a034ee3c 637 if (max_work != MAX_WORK)
80b71b80
JL
638 return (struct node *) tn;
639
19baf839
RO
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
2f36895a 644
80b71b80
JL
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
19baf839 647 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 648 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 649
2f80b3c8
RO
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
2f36895a
RO
654#ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656#endif
657 break;
658 }
659 }
19baf839 660
c877efb2 661
19baf839 662 /* Only one child remains */
80b71b80
JL
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664one_child:
19baf839 665 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 666 struct node *n;
19baf839 667
91b9a277 668 n = tn->child[i];
2373ce1c 669 if (!n)
91b9a277 670 continue;
91b9a277
OJ
671
672 /* compress one level */
673
06801916 674 node_set_parent(n, NULL);
e0f7cb8c 675 tnode_free_safe(tn);
91b9a277 676 return n;
19baf839 677 }
80b71b80 678 }
19baf839
RO
679 return (struct node *) tn;
680}
681
2f80b3c8 682static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 683{
19baf839
RO
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
0c7770c7 688 pr_debug("In inflate\n");
19baf839
RO
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
0c7770c7 692 if (!tn)
2f80b3c8 693 return ERR_PTR(-ENOMEM);
2f36895a
RO
694
695 /*
c877efb2
SH
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
699 * of tnode is ignored.
700 */
91b9a277
OJ
701
702 for (i = 0; i < olen; i++) {
a07f5f50 703 struct tnode *inode;
2f36895a 704
a07f5f50 705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
ab66b4a7 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 712
2f36895a
RO
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
2f80b3c8
RO
715 if (!left)
716 goto nomem;
91b9a277 717
2f36895a
RO
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
e905a9ed 721 if (!right) {
2f80b3c8
RO
722 tnode_free(left);
723 goto nomem;
e905a9ed 724 }
2f36895a
RO
725
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
728 }
729 }
730
91b9a277 731 for (i = 0; i < olen; i++) {
c95aaf9a 732 struct tnode *inode;
19baf839 733 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
734 struct tnode *left, *right;
735 int size, j;
c877efb2 736
19baf839
RO
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
c877efb2 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 744 tn->pos + tn->bits - 1) {
a07f5f50
SH
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
19baf839
RO
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
e0f7cb8c 761 tnode_free_safe(inode);
91b9a277 762 continue;
19baf839
RO
763 }
764
91b9a277
OJ
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
19baf839 783
91b9a277
OJ
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
2f36895a 787
91b9a277
OJ
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
2f36895a 790
91b9a277 791 BUG_ON(!left);
2f36895a 792
91b9a277
OJ
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
19baf839 795
91b9a277 796 BUG_ON(!right);
19baf839 797
91b9a277
OJ
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
19baf839 802 }
91b9a277
OJ
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
e0f7cb8c 806 tnode_free_safe(inode);
19baf839 807 }
e0f7cb8c 808 tnode_free_safe(oldtnode);
19baf839 809 return tn;
2f80b3c8
RO
810nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
0c7770c7 815 for (j = 0; j < size; j++)
2f80b3c8
RO
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
0c7770c7 820
2f80b3c8
RO
821 return ERR_PTR(-ENOMEM);
822 }
19baf839
RO
823}
824
2f80b3c8 825static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
826{
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
831
0c7770c7 832 pr_debug("In halve\n");
c877efb2
SH
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 835
2f80b3c8
RO
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
2f36895a
RO
838
839 /*
c877efb2
SH
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
843 * of tnode is ignored.
844 */
845
91b9a277 846 for (i = 0; i < olen; i += 2) {
2f36895a
RO
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
c877efb2 849
2f36895a 850 /* Two nonempty children */
0c7770c7 851 if (left && right) {
2f80b3c8 852 struct tnode *newn;
0c7770c7 853
2f80b3c8 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
855
856 if (!newn)
2f80b3c8 857 goto nomem;
0c7770c7 858
2f80b3c8 859 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 860 }
2f36895a 861
2f36895a 862 }
19baf839 863
91b9a277
OJ
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
19baf839
RO
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
c877efb2 869
19baf839
RO
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
91b9a277 875 continue;
0c7770c7 876 }
91b9a277
OJ
877
878 if (right == NULL) {
19baf839 879 put_child(t, tn, i/2, left);
91b9a277
OJ
880 continue;
881 }
c877efb2 882
19baf839 883 /* Two nonempty children */
91b9a277
OJ
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
91b9a277
OJ
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 889 }
e0f7cb8c 890 tnode_free_safe(oldtnode);
19baf839 891 return tn;
2f80b3c8
RO
892nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
0c7770c7 897 for (j = 0; j < size; j++)
2f80b3c8
RO
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
0c7770c7 902
2f80b3c8
RO
903 return ERR_PTR(-ENOMEM);
904 }
19baf839
RO
905}
906
772cb712 907/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
908 via get_fa_head and dump */
909
772cb712 910static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 911{
772cb712 912 struct hlist_head *head = &l->list;
19baf839
RO
913 struct hlist_node *node;
914 struct leaf_info *li;
915
2373ce1c 916 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 917 if (li->plen == plen)
19baf839 918 return li;
91b9a277 919
19baf839
RO
920 return NULL;
921}
922
a07f5f50 923static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 924{
772cb712 925 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 926
91b9a277
OJ
927 if (!li)
928 return NULL;
c877efb2 929
91b9a277 930 return &li->falh;
19baf839
RO
931}
932
933static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934{
e905a9ed
YH
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
19baf839
RO
952}
953
2373ce1c
RO
954/* rcu_read_lock needs to be hold by caller from readside */
955
19baf839
RO
956static struct leaf *
957fib_find_node(struct trie *t, u32 key)
958{
959 int pos;
960 struct tnode *tn;
961 struct node *n;
962
963 pos = 0;
a034ee3c 964 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
91b9a277 968
19baf839 969 check_tnode(tn);
91b9a277 970
c877efb2 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 972 pos = tn->pos + tn->bits;
a07f5f50
SH
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
91b9a277 977 } else
19baf839
RO
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
91b9a277
OJ
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
19baf839
RO
985 return NULL;
986}
987
7b85576d 988static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 989{
19baf839 990 int wasfull;
3ed18d76 991 t_key cindex, key;
06801916 992 struct tnode *tp;
19baf839 993
3ed18d76
RO
994 key = tn->key;
995
06801916 996 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct node *)tn, wasfull);
91b9a277 1003
06801916 1004 tp = node_parent((struct node *) tn);
008440e3
JP
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct node *)tn);
1007
e0f7cb8c 1008 tnode_free_flush();
06801916 1009 if (!tp)
19baf839 1010 break;
06801916 1011 tn = tp;
19baf839 1012 }
06801916 1013
19baf839 1014 /* Handle last (top) tnode */
7b85576d 1015 if (IS_TNODE(tn))
a07f5f50 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1017
7b85576d
JP
1018 rcu_assign_pointer(t->trie, (struct node *)tn);
1019 tnode_free_flush();
19baf839
RO
1020}
1021
2373ce1c
RO
1022/* only used from updater-side */
1023
fea86ad8 1024static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1025{
1026 int pos, newpos;
1027 struct tnode *tp = NULL, *tn = NULL;
1028 struct node *n;
1029 struct leaf *l;
1030 int missbit;
c877efb2 1031 struct list_head *fa_head = NULL;
19baf839
RO
1032 struct leaf_info *li;
1033 t_key cindex;
1034
1035 pos = 0;
c877efb2 1036 n = t->trie;
19baf839 1037
c877efb2
SH
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1040 * and we should just put our new leaf in that.
c877efb2
SH
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1043 * not be the parent's 'pos'+'bits'!
1044 *
c877efb2 1045 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1046 * the index from our key, push the T_TNODE and walk the tree.
1047 *
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1049 *
c877efb2
SH
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
19baf839
RO
1053 * If it doesn't, we need to replace it with a T_TNODE.
1054 */
1055
1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1057 tn = (struct tnode *) n;
91b9a277 1058
c877efb2 1059 check_tnode(tn);
91b9a277 1060
c877efb2 1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1062 tp = tn;
91b9a277 1063 pos = tn->pos + tn->bits;
a07f5f50
SH
1064 n = tnode_get_child(tn,
1065 tkey_extract_bits(key,
1066 tn->pos,
1067 tn->bits));
19baf839 1068
06801916 1069 BUG_ON(n && node_parent(n) != tn);
91b9a277 1070 } else
19baf839
RO
1071 break;
1072 }
1073
1074 /*
1075 * n ----> NULL, LEAF or TNODE
1076 *
c877efb2 1077 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1078 */
1079
91b9a277 1080 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1081
1082 /* Case 1: n is a leaf. Compare prefixes */
1083
c877efb2 1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1085 l = (struct leaf *) n;
19baf839 1086 li = leaf_info_new(plen);
91b9a277 1087
fea86ad8
SH
1088 if (!li)
1089 return NULL;
19baf839
RO
1090
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093 goto done;
1094 }
19baf839
RO
1095 l = leaf_new();
1096
fea86ad8
SH
1097 if (!l)
1098 return NULL;
19baf839
RO
1099
1100 l->key = key;
1101 li = leaf_info_new(plen);
1102
c877efb2 1103 if (!li) {
387a5487 1104 free_leaf(l);
fea86ad8 1105 return NULL;
f835e471 1106 }
19baf839
RO
1107
1108 fa_head = &li->falh;
1109 insert_leaf_info(&l->list, li);
1110
19baf839 1111 if (t->trie && n == NULL) {
91b9a277 1112 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1113
06801916 1114 node_set_parent((struct node *)l, tp);
19baf839 1115
91b9a277
OJ
1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1118 } else {
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1120 /*
1121 * Add a new tnode here
19baf839
RO
1122 * first tnode need some special handling
1123 */
1124
1125 if (tp)
91b9a277 1126 pos = tp->pos+tp->bits;
19baf839 1127 else
91b9a277
OJ
1128 pos = 0;
1129
c877efb2 1130 if (n) {
19baf839
RO
1131 newpos = tkey_mismatch(key, pos, n->key);
1132 tn = tnode_new(n->key, newpos, 1);
91b9a277 1133 } else {
19baf839 1134 newpos = 0;
c877efb2 1135 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1136 }
19baf839 1137
c877efb2 1138 if (!tn) {
f835e471 1139 free_leaf_info(li);
387a5487 1140 free_leaf(l);
fea86ad8 1141 return NULL;
91b9a277
OJ
1142 }
1143
06801916 1144 node_set_parent((struct node *)tn, tp);
19baf839 1145
91b9a277 1146 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1147 put_child(t, tn, missbit, (struct node *)l);
1148 put_child(t, tn, 1-missbit, n);
1149
c877efb2 1150 if (tp) {
19baf839 1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1152 put_child(t, (struct tnode *)tp, cindex,
1153 (struct node *)tn);
91b9a277 1154 } else {
a07f5f50 1155 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1156 tp = tn;
1157 }
1158 }
91b9a277
OJ
1159
1160 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp, tp->pos, tp->bits, key, plen);
91b9a277 1164
19baf839 1165 /* Rebalance the trie */
2373ce1c 1166
7b85576d 1167 trie_rebalance(t, tp);
f835e471 1168done:
19baf839
RO
1169 return fa_head;
1170}
1171
d562f1f8
RO
1172/*
1173 * Caller must hold RTNL.
1174 */
16c6cf8b 1175int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1176{
1177 struct trie *t = (struct trie *) tb->tb_data;
1178 struct fib_alias *fa, *new_fa;
c877efb2 1179 struct list_head *fa_head = NULL;
19baf839 1180 struct fib_info *fi;
4e902c57
TG
1181 int plen = cfg->fc_dst_len;
1182 u8 tos = cfg->fc_tos;
19baf839
RO
1183 u32 key, mask;
1184 int err;
1185 struct leaf *l;
1186
1187 if (plen > 32)
1188 return -EINVAL;
1189
4e902c57 1190 key = ntohl(cfg->fc_dst);
19baf839 1191
2dfe55b4 1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1193
91b9a277 1194 mask = ntohl(inet_make_mask(plen));
19baf839 1195
c877efb2 1196 if (key & ~mask)
19baf839
RO
1197 return -EINVAL;
1198
1199 key = key & mask;
1200
4e902c57
TG
1201 fi = fib_create_info(cfg);
1202 if (IS_ERR(fi)) {
1203 err = PTR_ERR(fi);
19baf839 1204 goto err;
4e902c57 1205 }
19baf839
RO
1206
1207 l = fib_find_node(t, key);
c877efb2 1208 fa = NULL;
19baf839 1209
c877efb2 1210 if (l) {
19baf839
RO
1211 fa_head = get_fa_head(l, plen);
1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 }
1214
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1218 *
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1221 *
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1224 */
1225
936f6f8e
JA
1226 if (fa && fa->fa_tos == tos &&
1227 fa->fa_info->fib_priority == fi->fib_priority) {
1228 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1229
1230 err = -EEXIST;
4e902c57 1231 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1232 goto out;
1233
936f6f8e
JA
1234 /* We have 2 goals:
1235 * 1. Find exact match for type, scope, fib_info to avoid
1236 * duplicate routes
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 */
1239 fa_match = NULL;
1240 fa_first = fa;
1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 if (fa->fa_tos != tos)
1244 break;
1245 if (fa->fa_info->fib_priority != fi->fib_priority)
1246 break;
1247 if (fa->fa_type == cfg->fc_type &&
1248 fa->fa_scope == cfg->fc_scope &&
1249 fa->fa_info == fi) {
1250 fa_match = fa;
1251 break;
1252 }
1253 }
1254
4e902c57 1255 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1256 struct fib_info *fi_drop;
1257 u8 state;
1258
936f6f8e
JA
1259 fa = fa_first;
1260 if (fa_match) {
1261 if (fa == fa_match)
1262 err = 0;
6725033f 1263 goto out;
936f6f8e 1264 }
2373ce1c 1265 err = -ENOBUFS;
e94b1766 1266 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1267 if (new_fa == NULL)
1268 goto out;
19baf839
RO
1269
1270 fi_drop = fa->fa_info;
2373ce1c
RO
1271 new_fa->fa_tos = fa->fa_tos;
1272 new_fa->fa_info = fi;
4e902c57
TG
1273 new_fa->fa_type = cfg->fc_type;
1274 new_fa->fa_scope = cfg->fc_scope;
19baf839 1275 state = fa->fa_state;
936f6f8e 1276 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1277
2373ce1c
RO
1278 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1279 alias_free_mem_rcu(fa);
19baf839
RO
1280
1281 fib_release_info(fi_drop);
1282 if (state & FA_S_ACCESSED)
76e6ebfb 1283 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1286
91b9a277 1287 goto succeeded;
19baf839
RO
1288 }
1289 /* Error if we find a perfect match which
1290 * uses the same scope, type, and nexthop
1291 * information.
1292 */
936f6f8e
JA
1293 if (fa_match)
1294 goto out;
a07f5f50 1295
4e902c57 1296 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1297 fa = fa_first;
19baf839
RO
1298 }
1299 err = -ENOENT;
4e902c57 1300 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1301 goto out;
1302
1303 err = -ENOBUFS;
e94b1766 1304 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1305 if (new_fa == NULL)
1306 goto out;
1307
1308 new_fa->fa_info = fi;
1309 new_fa->fa_tos = tos;
4e902c57
TG
1310 new_fa->fa_type = cfg->fc_type;
1311 new_fa->fa_scope = cfg->fc_scope;
19baf839 1312 new_fa->fa_state = 0;
19baf839
RO
1313 /*
1314 * Insert new entry to the list.
1315 */
1316
c877efb2 1317 if (!fa_head) {
fea86ad8
SH
1318 fa_head = fib_insert_node(t, key, plen);
1319 if (unlikely(!fa_head)) {
1320 err = -ENOMEM;
f835e471 1321 goto out_free_new_fa;
fea86ad8 1322 }
f835e471 1323 }
19baf839 1324
2373ce1c
RO
1325 list_add_tail_rcu(&new_fa->fa_list,
1326 (fa ? &fa->fa_list : fa_head));
19baf839 1327
76e6ebfb 1328 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1329 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1330 &cfg->fc_nlinfo, 0);
19baf839
RO
1331succeeded:
1332 return 0;
f835e471
RO
1333
1334out_free_new_fa:
1335 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1336out:
1337 fib_release_info(fi);
91b9a277 1338err:
19baf839
RO
1339 return err;
1340}
1341
772cb712 1342/* should be called with rcu_read_lock */
a07f5f50
SH
1343static int check_leaf(struct trie *t, struct leaf *l,
1344 t_key key, const struct flowi *flp,
ebc0ffae 1345 struct fib_result *res, int fib_flags)
19baf839 1346{
19baf839
RO
1347 struct leaf_info *li;
1348 struct hlist_head *hhead = &l->list;
1349 struct hlist_node *node;
c877efb2 1350
2373ce1c 1351 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1352 int err;
1353 int plen = li->plen;
1354 __be32 mask = inet_make_mask(plen);
1355
888454c5 1356 if (l->key != (key & ntohl(mask)))
19baf839
RO
1357 continue;
1358
ebc0ffae 1359 err = fib_semantic_match(&li->falh, flp, res, plen, fib_flags);
a07f5f50 1360
19baf839 1361#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1362 if (err <= 0)
19baf839 1363 t->stats.semantic_match_passed++;
a07f5f50
SH
1364 else
1365 t->stats.semantic_match_miss++;
19baf839 1366#endif
a07f5f50 1367 if (err <= 0)
2e655571 1368 return err;
19baf839 1369 }
a07f5f50 1370
2e655571 1371 return 1;
19baf839
RO
1372}
1373
16c6cf8b 1374int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
ebc0ffae 1375 struct fib_result *res, int fib_flags)
19baf839
RO
1376{
1377 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1378 int ret;
19baf839
RO
1379 struct node *n;
1380 struct tnode *pn;
1381 int pos, bits;
91b9a277 1382 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1383 int chopped_off;
1384 t_key cindex = 0;
1385 int current_prefix_length = KEYLENGTH;
91b9a277 1386 struct tnode *cn;
874ffa8f 1387 t_key pref_mismatch;
91b9a277 1388
2373ce1c 1389 rcu_read_lock();
91b9a277 1390
2373ce1c 1391 n = rcu_dereference(t->trie);
c877efb2 1392 if (!n)
19baf839
RO
1393 goto failed;
1394
1395#ifdef CONFIG_IP_FIB_TRIE_STATS
1396 t->stats.gets++;
1397#endif
1398
1399 /* Just a leaf? */
1400 if (IS_LEAF(n)) {
ebc0ffae 1401 ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1402 goto found;
19baf839 1403 }
a07f5f50 1404
19baf839
RO
1405 pn = (struct tnode *) n;
1406 chopped_off = 0;
c877efb2 1407
91b9a277 1408 while (pn) {
19baf839
RO
1409 pos = pn->pos;
1410 bits = pn->bits;
1411
c877efb2 1412 if (!chopped_off)
ab66b4a7
SH
1413 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1414 pos, bits);
19baf839 1415
b902e573 1416 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1417
1418 if (n == NULL) {
1419#ifdef CONFIG_IP_FIB_TRIE_STATS
1420 t->stats.null_node_hit++;
1421#endif
1422 goto backtrace;
1423 }
1424
91b9a277 1425 if (IS_LEAF(n)) {
ebc0ffae 1426 ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1427 if (ret > 0)
91b9a277 1428 goto backtrace;
a07f5f50 1429 goto found;
91b9a277
OJ
1430 }
1431
91b9a277 1432 cn = (struct tnode *)n;
19baf839 1433
91b9a277
OJ
1434 /*
1435 * It's a tnode, and we can do some extra checks here if we
1436 * like, to avoid descending into a dead-end branch.
1437 * This tnode is in the parent's child array at index
1438 * key[p_pos..p_pos+p_bits] but potentially with some bits
1439 * chopped off, so in reality the index may be just a
1440 * subprefix, padded with zero at the end.
1441 * We can also take a look at any skipped bits in this
1442 * tnode - everything up to p_pos is supposed to be ok,
1443 * and the non-chopped bits of the index (se previous
1444 * paragraph) are also guaranteed ok, but the rest is
1445 * considered unknown.
1446 *
1447 * The skipped bits are key[pos+bits..cn->pos].
1448 */
19baf839 1449
91b9a277
OJ
1450 /* If current_prefix_length < pos+bits, we are already doing
1451 * actual prefix matching, which means everything from
1452 * pos+(bits-chopped_off) onward must be zero along some
1453 * branch of this subtree - otherwise there is *no* valid
1454 * prefix present. Here we can only check the skipped
1455 * bits. Remember, since we have already indexed into the
1456 * parent's child array, we know that the bits we chopped of
1457 * *are* zero.
1458 */
19baf839 1459
a07f5f50
SH
1460 /* NOTA BENE: Checking only skipped bits
1461 for the new node here */
19baf839 1462
91b9a277
OJ
1463 if (current_prefix_length < pos+bits) {
1464 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1465 cn->pos - current_prefix_length)
1466 || !(cn->child[0]))
91b9a277
OJ
1467 goto backtrace;
1468 }
19baf839 1469
91b9a277
OJ
1470 /*
1471 * If chopped_off=0, the index is fully validated and we
1472 * only need to look at the skipped bits for this, the new,
1473 * tnode. What we actually want to do is to find out if
1474 * these skipped bits match our key perfectly, or if we will
1475 * have to count on finding a matching prefix further down,
1476 * because if we do, we would like to have some way of
1477 * verifying the existence of such a prefix at this point.
1478 */
19baf839 1479
91b9a277
OJ
1480 /* The only thing we can do at this point is to verify that
1481 * any such matching prefix can indeed be a prefix to our
1482 * key, and if the bits in the node we are inspecting that
1483 * do not match our key are not ZERO, this cannot be true.
1484 * Thus, find out where there is a mismatch (before cn->pos)
1485 * and verify that all the mismatching bits are zero in the
1486 * new tnode's key.
1487 */
19baf839 1488
a07f5f50
SH
1489 /*
1490 * Note: We aren't very concerned about the piece of
1491 * the key that precede pn->pos+pn->bits, since these
1492 * have already been checked. The bits after cn->pos
1493 * aren't checked since these are by definition
1494 * "unknown" at this point. Thus, what we want to see
1495 * is if we are about to enter the "prefix matching"
1496 * state, and in that case verify that the skipped
1497 * bits that will prevail throughout this subtree are
1498 * zero, as they have to be if we are to find a
1499 * matching prefix.
91b9a277
OJ
1500 */
1501
874ffa8f 1502 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1503
a07f5f50
SH
1504 /*
1505 * In short: If skipped bits in this node do not match
1506 * the search key, enter the "prefix matching"
1507 * state.directly.
91b9a277
OJ
1508 */
1509 if (pref_mismatch) {
874ffa8f 1510 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1511
874ffa8f 1512 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1513 goto backtrace;
1514
1515 if (current_prefix_length >= cn->pos)
1516 current_prefix_length = mp;
c877efb2 1517 }
a07f5f50 1518
91b9a277
OJ
1519 pn = (struct tnode *)n; /* Descend */
1520 chopped_off = 0;
1521 continue;
1522
19baf839
RO
1523backtrace:
1524 chopped_off++;
1525
1526 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1527 while ((chopped_off <= pn->bits)
1528 && !(cindex & (1<<(chopped_off-1))))
19baf839 1529 chopped_off++;
19baf839
RO
1530
1531 /* Decrease current_... with bits chopped off */
1532 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1533 current_prefix_length = pn->pos + pn->bits
1534 - chopped_off;
91b9a277 1535
19baf839 1536 /*
c877efb2 1537 * Either we do the actual chop off according or if we have
19baf839
RO
1538 * chopped off all bits in this tnode walk up to our parent.
1539 */
1540
91b9a277 1541 if (chopped_off <= pn->bits) {
19baf839 1542 cindex &= ~(1 << (chopped_off-1));
91b9a277 1543 } else {
b902e573 1544 struct tnode *parent = node_parent_rcu((struct node *) pn);
06801916 1545 if (!parent)
19baf839 1546 goto failed;
91b9a277 1547
19baf839 1548 /* Get Child's index */
06801916
SH
1549 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1550 pn = parent;
19baf839
RO
1551 chopped_off = 0;
1552
1553#ifdef CONFIG_IP_FIB_TRIE_STATS
1554 t->stats.backtrack++;
1555#endif
1556 goto backtrace;
c877efb2 1557 }
19baf839
RO
1558 }
1559failed:
c877efb2 1560 ret = 1;
19baf839 1561found:
2373ce1c 1562 rcu_read_unlock();
19baf839
RO
1563 return ret;
1564}
1565
9195bef7
SH
1566/*
1567 * Remove the leaf and return parent.
1568 */
1569static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1570{
9195bef7 1571 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1572
9195bef7 1573 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1574
c877efb2 1575 if (tp) {
9195bef7 1576 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1577 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1578 trie_rebalance(t, tp);
91b9a277 1579 } else
2373ce1c 1580 rcu_assign_pointer(t->trie, NULL);
19baf839 1581
387a5487 1582 free_leaf(l);
19baf839
RO
1583}
1584
d562f1f8
RO
1585/*
1586 * Caller must hold RTNL.
1587 */
16c6cf8b 1588int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1589{
1590 struct trie *t = (struct trie *) tb->tb_data;
1591 u32 key, mask;
4e902c57
TG
1592 int plen = cfg->fc_dst_len;
1593 u8 tos = cfg->fc_tos;
19baf839
RO
1594 struct fib_alias *fa, *fa_to_delete;
1595 struct list_head *fa_head;
1596 struct leaf *l;
91b9a277
OJ
1597 struct leaf_info *li;
1598
c877efb2 1599 if (plen > 32)
19baf839
RO
1600 return -EINVAL;
1601
4e902c57 1602 key = ntohl(cfg->fc_dst);
91b9a277 1603 mask = ntohl(inet_make_mask(plen));
19baf839 1604
c877efb2 1605 if (key & ~mask)
19baf839
RO
1606 return -EINVAL;
1607
1608 key = key & mask;
1609 l = fib_find_node(t, key);
1610
c877efb2 1611 if (!l)
19baf839
RO
1612 return -ESRCH;
1613
1614 fa_head = get_fa_head(l, plen);
1615 fa = fib_find_alias(fa_head, tos, 0);
1616
1617 if (!fa)
1618 return -ESRCH;
1619
0c7770c7 1620 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1621
1622 fa_to_delete = NULL;
936f6f8e
JA
1623 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1624 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1625 struct fib_info *fi = fa->fa_info;
1626
1627 if (fa->fa_tos != tos)
1628 break;
1629
4e902c57
TG
1630 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1631 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1632 fa->fa_scope == cfg->fc_scope) &&
1633 (!cfg->fc_protocol ||
1634 fi->fib_protocol == cfg->fc_protocol) &&
1635 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1636 fa_to_delete = fa;
1637 break;
1638 }
1639 }
1640
91b9a277
OJ
1641 if (!fa_to_delete)
1642 return -ESRCH;
19baf839 1643
91b9a277 1644 fa = fa_to_delete;
4e902c57 1645 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1646 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1647
1648 l = fib_find_node(t, key);
772cb712 1649 li = find_leaf_info(l, plen);
19baf839 1650
2373ce1c 1651 list_del_rcu(&fa->fa_list);
19baf839 1652
91b9a277 1653 if (list_empty(fa_head)) {
2373ce1c 1654 hlist_del_rcu(&li->hlist);
91b9a277 1655 free_leaf_info(li);
2373ce1c 1656 }
19baf839 1657
91b9a277 1658 if (hlist_empty(&l->list))
9195bef7 1659 trie_leaf_remove(t, l);
19baf839 1660
91b9a277 1661 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1662 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1663
2373ce1c
RO
1664 fib_release_info(fa->fa_info);
1665 alias_free_mem_rcu(fa);
91b9a277 1666 return 0;
19baf839
RO
1667}
1668
ef3660ce 1669static int trie_flush_list(struct list_head *head)
19baf839
RO
1670{
1671 struct fib_alias *fa, *fa_node;
1672 int found = 0;
1673
1674 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1675 struct fib_info *fi = fa->fa_info;
19baf839 1676
2373ce1c
RO
1677 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1678 list_del_rcu(&fa->fa_list);
1679 fib_release_info(fa->fa_info);
1680 alias_free_mem_rcu(fa);
19baf839
RO
1681 found++;
1682 }
1683 }
1684 return found;
1685}
1686
ef3660ce 1687static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1688{
1689 int found = 0;
1690 struct hlist_head *lih = &l->list;
1691 struct hlist_node *node, *tmp;
1692 struct leaf_info *li = NULL;
1693
1694 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1695 found += trie_flush_list(&li->falh);
19baf839
RO
1696
1697 if (list_empty(&li->falh)) {
2373ce1c 1698 hlist_del_rcu(&li->hlist);
19baf839
RO
1699 free_leaf_info(li);
1700 }
1701 }
1702 return found;
1703}
1704
82cfbb00
SH
1705/*
1706 * Scan for the next right leaf starting at node p->child[idx]
1707 * Since we have back pointer, no recursion necessary.
1708 */
1709static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1710{
82cfbb00
SH
1711 do {
1712 t_key idx;
c877efb2 1713
c877efb2 1714 if (c)
82cfbb00 1715 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1716 else
82cfbb00 1717 idx = 0;
2373ce1c 1718
82cfbb00
SH
1719 while (idx < 1u << p->bits) {
1720 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1721 if (!c)
91b9a277
OJ
1722 continue;
1723
82cfbb00
SH
1724 if (IS_LEAF(c)) {
1725 prefetch(p->child[idx]);
1726 return (struct leaf *) c;
19baf839 1727 }
82cfbb00
SH
1728
1729 /* Rescan start scanning in new node */
1730 p = (struct tnode *) c;
1731 idx = 0;
19baf839 1732 }
82cfbb00
SH
1733
1734 /* Node empty, walk back up to parent */
91b9a277 1735 c = (struct node *) p;
a034ee3c 1736 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1737
1738 return NULL; /* Root of trie */
1739}
1740
82cfbb00
SH
1741static struct leaf *trie_firstleaf(struct trie *t)
1742{
a034ee3c 1743 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1744
1745 if (!n)
1746 return NULL;
1747
1748 if (IS_LEAF(n)) /* trie is just a leaf */
1749 return (struct leaf *) n;
1750
1751 return leaf_walk_rcu(n, NULL);
1752}
1753
1754static struct leaf *trie_nextleaf(struct leaf *l)
1755{
1756 struct node *c = (struct node *) l;
b902e573 1757 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1758
1759 if (!p)
1760 return NULL; /* trie with just one leaf */
1761
1762 return leaf_walk_rcu(p, c);
19baf839
RO
1763}
1764
71d67e66
SH
1765static struct leaf *trie_leafindex(struct trie *t, int index)
1766{
1767 struct leaf *l = trie_firstleaf(t);
1768
ec28cf73 1769 while (l && index-- > 0)
71d67e66 1770 l = trie_nextleaf(l);
ec28cf73 1771
71d67e66
SH
1772 return l;
1773}
1774
1775
d562f1f8
RO
1776/*
1777 * Caller must hold RTNL.
1778 */
16c6cf8b 1779int fib_table_flush(struct fib_table *tb)
19baf839
RO
1780{
1781 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1782 struct leaf *l, *ll = NULL;
82cfbb00 1783 int found = 0;
19baf839 1784
82cfbb00 1785 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1786 found += trie_flush_leaf(l);
19baf839
RO
1787
1788 if (ll && hlist_empty(&ll->list))
9195bef7 1789 trie_leaf_remove(t, ll);
19baf839
RO
1790 ll = l;
1791 }
1792
1793 if (ll && hlist_empty(&ll->list))
9195bef7 1794 trie_leaf_remove(t, ll);
19baf839 1795
0c7770c7 1796 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1797 return found;
1798}
1799
4aa2c466
PE
1800void fib_free_table(struct fib_table *tb)
1801{
1802 kfree(tb);
1803}
1804
16c6cf8b
SH
1805void fib_table_select_default(struct fib_table *tb,
1806 const struct flowi *flp,
1807 struct fib_result *res)
19baf839
RO
1808{
1809 struct trie *t = (struct trie *) tb->tb_data;
1810 int order, last_idx;
1811 struct fib_info *fi = NULL;
1812 struct fib_info *last_resort;
1813 struct fib_alias *fa = NULL;
1814 struct list_head *fa_head;
1815 struct leaf *l;
1816
1817 last_idx = -1;
1818 last_resort = NULL;
1819 order = -1;
1820
2373ce1c 1821 rcu_read_lock();
c877efb2 1822
19baf839 1823 l = fib_find_node(t, 0);
c877efb2 1824 if (!l)
19baf839
RO
1825 goto out;
1826
1827 fa_head = get_fa_head(l, 0);
c877efb2 1828 if (!fa_head)
19baf839
RO
1829 goto out;
1830
c877efb2 1831 if (list_empty(fa_head))
19baf839
RO
1832 goto out;
1833
2373ce1c 1834 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1835 struct fib_info *next_fi = fa->fa_info;
91b9a277 1836
19baf839
RO
1837 if (fa->fa_scope != res->scope ||
1838 fa->fa_type != RTN_UNICAST)
1839 continue;
91b9a277 1840
19baf839
RO
1841 if (next_fi->fib_priority > res->fi->fib_priority)
1842 break;
1843 if (!next_fi->fib_nh[0].nh_gw ||
1844 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1845 continue;
9b0c290e
ED
1846
1847 fib_alias_accessed(fa);
91b9a277 1848
19baf839
RO
1849 if (fi == NULL) {
1850 if (next_fi != res->fi)
1851 break;
1852 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1853 &last_idx, tb->tb_default)) {
a2bbe682 1854 fib_result_assign(res, fi);
971b893e 1855 tb->tb_default = order;
19baf839
RO
1856 goto out;
1857 }
1858 fi = next_fi;
1859 order++;
1860 }
1861 if (order <= 0 || fi == NULL) {
971b893e 1862 tb->tb_default = -1;
19baf839
RO
1863 goto out;
1864 }
1865
971b893e
DL
1866 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1867 tb->tb_default)) {
a2bbe682 1868 fib_result_assign(res, fi);
971b893e 1869 tb->tb_default = order;
19baf839
RO
1870 goto out;
1871 }
a2bbe682
DL
1872 if (last_idx >= 0)
1873 fib_result_assign(res, last_resort);
971b893e
DL
1874 tb->tb_default = last_idx;
1875out:
2373ce1c 1876 rcu_read_unlock();
19baf839
RO
1877}
1878
a07f5f50
SH
1879static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1880 struct fib_table *tb,
19baf839
RO
1881 struct sk_buff *skb, struct netlink_callback *cb)
1882{
1883 int i, s_i;
1884 struct fib_alias *fa;
32ab5f80 1885 __be32 xkey = htonl(key);
19baf839 1886
71d67e66 1887 s_i = cb->args[5];
19baf839
RO
1888 i = 0;
1889
2373ce1c
RO
1890 /* rcu_read_lock is hold by caller */
1891
1892 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1893 if (i < s_i) {
1894 i++;
1895 continue;
1896 }
19baf839
RO
1897
1898 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1899 cb->nlh->nlmsg_seq,
1900 RTM_NEWROUTE,
1901 tb->tb_id,
1902 fa->fa_type,
1903 fa->fa_scope,
be403ea1 1904 xkey,
19baf839
RO
1905 plen,
1906 fa->fa_tos,
64347f78 1907 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1908 cb->args[5] = i;
19baf839 1909 return -1;
91b9a277 1910 }
19baf839
RO
1911 i++;
1912 }
71d67e66 1913 cb->args[5] = i;
19baf839
RO
1914 return skb->len;
1915}
1916
a88ee229
SH
1917static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1918 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1919{
a88ee229
SH
1920 struct leaf_info *li;
1921 struct hlist_node *node;
1922 int i, s_i;
19baf839 1923
71d67e66 1924 s_i = cb->args[4];
a88ee229 1925 i = 0;
19baf839 1926
a88ee229
SH
1927 /* rcu_read_lock is hold by caller */
1928 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1929 if (i < s_i) {
1930 i++;
19baf839 1931 continue;
a88ee229 1932 }
91b9a277 1933
a88ee229 1934 if (i > s_i)
71d67e66 1935 cb->args[5] = 0;
19baf839 1936
a88ee229 1937 if (list_empty(&li->falh))
19baf839
RO
1938 continue;
1939
a88ee229 1940 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1941 cb->args[4] = i;
19baf839
RO
1942 return -1;
1943 }
a88ee229 1944 i++;
19baf839 1945 }
a88ee229 1946
71d67e66 1947 cb->args[4] = i;
19baf839
RO
1948 return skb->len;
1949}
1950
16c6cf8b
SH
1951int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1952 struct netlink_callback *cb)
19baf839 1953{
a88ee229 1954 struct leaf *l;
19baf839 1955 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1956 t_key key = cb->args[2];
71d67e66 1957 int count = cb->args[3];
19baf839 1958
2373ce1c 1959 rcu_read_lock();
d5ce8a0e
SH
1960 /* Dump starting at last key.
1961 * Note: 0.0.0.0/0 (ie default) is first key.
1962 */
71d67e66 1963 if (count == 0)
d5ce8a0e
SH
1964 l = trie_firstleaf(t);
1965 else {
71d67e66
SH
1966 /* Normally, continue from last key, but if that is missing
1967 * fallback to using slow rescan
1968 */
d5ce8a0e 1969 l = fib_find_node(t, key);
71d67e66
SH
1970 if (!l)
1971 l = trie_leafindex(t, count);
d5ce8a0e 1972 }
a88ee229 1973
d5ce8a0e
SH
1974 while (l) {
1975 cb->args[2] = l->key;
a88ee229 1976 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1977 cb->args[3] = count;
a88ee229 1978 rcu_read_unlock();
a88ee229 1979 return -1;
19baf839 1980 }
d5ce8a0e 1981
71d67e66 1982 ++count;
d5ce8a0e 1983 l = trie_nextleaf(l);
71d67e66
SH
1984 memset(&cb->args[4], 0,
1985 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1986 }
71d67e66 1987 cb->args[3] = count;
2373ce1c 1988 rcu_read_unlock();
a88ee229 1989
19baf839 1990 return skb->len;
19baf839
RO
1991}
1992
7f9b8052
SH
1993void __init fib_hash_init(void)
1994{
a07f5f50
SH
1995 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1996 sizeof(struct fib_alias),
bc3c8c1e
SH
1997 0, SLAB_PANIC, NULL);
1998
1999 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2000 max(sizeof(struct leaf),
2001 sizeof(struct leaf_info)),
2002 0, SLAB_PANIC, NULL);
7f9b8052 2003}
19baf839 2004
7f9b8052
SH
2005
2006/* Fix more generic FIB names for init later */
2007struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2008{
2009 struct fib_table *tb;
2010 struct trie *t;
2011
19baf839
RO
2012 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2013 GFP_KERNEL);
2014 if (tb == NULL)
2015 return NULL;
2016
2017 tb->tb_id = id;
971b893e 2018 tb->tb_default = -1;
19baf839
RO
2019
2020 t = (struct trie *) tb->tb_data;
c28a1cf4 2021 memset(t, 0, sizeof(*t));
19baf839 2022
19baf839 2023 if (id == RT_TABLE_LOCAL)
a07f5f50 2024 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2025
2026 return tb;
2027}
2028
cb7b593c
SH
2029#ifdef CONFIG_PROC_FS
2030/* Depth first Trie walk iterator */
2031struct fib_trie_iter {
1c340b2f 2032 struct seq_net_private p;
3d3b2d25 2033 struct fib_table *tb;
cb7b593c 2034 struct tnode *tnode;
a034ee3c
ED
2035 unsigned int index;
2036 unsigned int depth;
cb7b593c 2037};
19baf839 2038
cb7b593c 2039static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2040{
cb7b593c 2041 struct tnode *tn = iter->tnode;
a034ee3c 2042 unsigned int cindex = iter->index;
cb7b593c 2043 struct tnode *p;
19baf839 2044
6640e697
EB
2045 /* A single entry routing table */
2046 if (!tn)
2047 return NULL;
2048
cb7b593c
SH
2049 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2050 iter->tnode, iter->index, iter->depth);
2051rescan:
2052 while (cindex < (1<<tn->bits)) {
b59cfbf7 2053 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2054
cb7b593c
SH
2055 if (n) {
2056 if (IS_LEAF(n)) {
2057 iter->tnode = tn;
2058 iter->index = cindex + 1;
2059 } else {
2060 /* push down one level */
2061 iter->tnode = (struct tnode *) n;
2062 iter->index = 0;
2063 ++iter->depth;
2064 }
2065 return n;
2066 }
19baf839 2067
cb7b593c
SH
2068 ++cindex;
2069 }
91b9a277 2070
cb7b593c 2071 /* Current node exhausted, pop back up */
b59cfbf7 2072 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2073 if (p) {
2074 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2075 tn = p;
2076 --iter->depth;
2077 goto rescan;
19baf839 2078 }
cb7b593c
SH
2079
2080 /* got root? */
2081 return NULL;
19baf839
RO
2082}
2083
cb7b593c
SH
2084static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2085 struct trie *t)
19baf839 2086{
3d3b2d25 2087 struct node *n;
5ddf0eb2 2088
132adf54 2089 if (!t)
5ddf0eb2
RO
2090 return NULL;
2091
2092 n = rcu_dereference(t->trie);
3d3b2d25 2093 if (!n)
5ddf0eb2 2094 return NULL;
19baf839 2095
3d3b2d25
SH
2096 if (IS_TNODE(n)) {
2097 iter->tnode = (struct tnode *) n;
2098 iter->index = 0;
2099 iter->depth = 1;
2100 } else {
2101 iter->tnode = NULL;
2102 iter->index = 0;
2103 iter->depth = 0;
91b9a277 2104 }
3d3b2d25
SH
2105
2106 return n;
cb7b593c 2107}
91b9a277 2108
cb7b593c
SH
2109static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2110{
2111 struct node *n;
2112 struct fib_trie_iter iter;
91b9a277 2113
cb7b593c 2114 memset(s, 0, sizeof(*s));
91b9a277 2115
cb7b593c 2116 rcu_read_lock();
3d3b2d25 2117 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2118 if (IS_LEAF(n)) {
93672292
SH
2119 struct leaf *l = (struct leaf *)n;
2120 struct leaf_info *li;
2121 struct hlist_node *tmp;
2122
cb7b593c
SH
2123 s->leaves++;
2124 s->totdepth += iter.depth;
2125 if (iter.depth > s->maxdepth)
2126 s->maxdepth = iter.depth;
93672292
SH
2127
2128 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2129 ++s->prefixes;
cb7b593c
SH
2130 } else {
2131 const struct tnode *tn = (const struct tnode *) n;
2132 int i;
2133
2134 s->tnodes++;
132adf54 2135 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2136 s->nodesizes[tn->bits]++;
2137
cb7b593c
SH
2138 for (i = 0; i < (1<<tn->bits); i++)
2139 if (!tn->child[i])
2140 s->nullpointers++;
19baf839 2141 }
19baf839 2142 }
2373ce1c 2143 rcu_read_unlock();
19baf839
RO
2144}
2145
cb7b593c
SH
2146/*
2147 * This outputs /proc/net/fib_triestats
2148 */
2149static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2150{
a034ee3c 2151 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2152
cb7b593c
SH
2153 if (stat->leaves)
2154 avdepth = stat->totdepth*100 / stat->leaves;
2155 else
2156 avdepth = 0;
91b9a277 2157
a07f5f50
SH
2158 seq_printf(seq, "\tAver depth: %u.%02d\n",
2159 avdepth / 100, avdepth % 100);
cb7b593c 2160 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2161
cb7b593c 2162 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2163 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2164
2165 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2166 bytes += sizeof(struct leaf_info) * stat->prefixes;
2167
187b5188 2168 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2169 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2170
06ef921d
RO
2171 max = MAX_STAT_DEPTH;
2172 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2173 max--;
19baf839 2174
cb7b593c
SH
2175 pointers = 0;
2176 for (i = 1; i <= max; i++)
2177 if (stat->nodesizes[i] != 0) {
187b5188 2178 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2179 pointers += (1<<i) * stat->nodesizes[i];
2180 }
2181 seq_putc(seq, '\n');
187b5188 2182 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2183
cb7b593c 2184 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2185 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2186 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2187}
2373ce1c 2188
cb7b593c 2189#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2190static void trie_show_usage(struct seq_file *seq,
2191 const struct trie_use_stats *stats)
2192{
2193 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2194 seq_printf(seq, "gets = %u\n", stats->gets);
2195 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2196 seq_printf(seq, "semantic match passed = %u\n",
2197 stats->semantic_match_passed);
2198 seq_printf(seq, "semantic match miss = %u\n",
2199 stats->semantic_match_miss);
2200 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2201 seq_printf(seq, "skipped node resize = %u\n\n",
2202 stats->resize_node_skipped);
cb7b593c 2203}
66a2f7fd
SH
2204#endif /* CONFIG_IP_FIB_TRIE_STATS */
2205
3d3b2d25 2206static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2207{
3d3b2d25
SH
2208 if (tb->tb_id == RT_TABLE_LOCAL)
2209 seq_puts(seq, "Local:\n");
2210 else if (tb->tb_id == RT_TABLE_MAIN)
2211 seq_puts(seq, "Main:\n");
2212 else
2213 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2214}
19baf839 2215
3d3b2d25 2216
cb7b593c
SH
2217static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2218{
1c340b2f 2219 struct net *net = (struct net *)seq->private;
3d3b2d25 2220 unsigned int h;
877a9bff 2221
d717a9a6 2222 seq_printf(seq,
a07f5f50
SH
2223 "Basic info: size of leaf:"
2224 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2225 sizeof(struct leaf), sizeof(struct tnode));
2226
3d3b2d25
SH
2227 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2228 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2229 struct hlist_node *node;
2230 struct fib_table *tb;
2231
2232 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2233 struct trie *t = (struct trie *) tb->tb_data;
2234 struct trie_stat stat;
877a9bff 2235
3d3b2d25
SH
2236 if (!t)
2237 continue;
2238
2239 fib_table_print(seq, tb);
2240
2241 trie_collect_stats(t, &stat);
2242 trie_show_stats(seq, &stat);
2243#ifdef CONFIG_IP_FIB_TRIE_STATS
2244 trie_show_usage(seq, &t->stats);
2245#endif
2246 }
2247 }
19baf839 2248
cb7b593c 2249 return 0;
19baf839
RO
2250}
2251
cb7b593c 2252static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2253{
de05c557 2254 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2255}
2256
9a32144e 2257static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2258 .owner = THIS_MODULE,
2259 .open = fib_triestat_seq_open,
2260 .read = seq_read,
2261 .llseek = seq_lseek,
b6fcbdb4 2262 .release = single_release_net,
cb7b593c
SH
2263};
2264
1218854a 2265static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2266{
1218854a
YH
2267 struct fib_trie_iter *iter = seq->private;
2268 struct net *net = seq_file_net(seq);
cb7b593c 2269 loff_t idx = 0;
3d3b2d25 2270 unsigned int h;
cb7b593c 2271
3d3b2d25
SH
2272 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2273 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2274 struct hlist_node *node;
2275 struct fib_table *tb;
cb7b593c 2276
3d3b2d25
SH
2277 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2278 struct node *n;
2279
2280 for (n = fib_trie_get_first(iter,
2281 (struct trie *) tb->tb_data);
2282 n; n = fib_trie_get_next(iter))
2283 if (pos == idx++) {
2284 iter->tb = tb;
2285 return n;
2286 }
2287 }
cb7b593c 2288 }
3d3b2d25 2289
19baf839
RO
2290 return NULL;
2291}
2292
cb7b593c 2293static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2294 __acquires(RCU)
19baf839 2295{
cb7b593c 2296 rcu_read_lock();
1218854a 2297 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2298}
2299
cb7b593c 2300static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2301{
cb7b593c 2302 struct fib_trie_iter *iter = seq->private;
1218854a 2303 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2304 struct fib_table *tb = iter->tb;
2305 struct hlist_node *tb_node;
2306 unsigned int h;
2307 struct node *n;
cb7b593c 2308
19baf839 2309 ++*pos;
3d3b2d25
SH
2310 /* next node in same table */
2311 n = fib_trie_get_next(iter);
2312 if (n)
2313 return n;
19baf839 2314
3d3b2d25
SH
2315 /* walk rest of this hash chain */
2316 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2317 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2318 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2319 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2320 if (n)
2321 goto found;
2322 }
19baf839 2323
3d3b2d25
SH
2324 /* new hash chain */
2325 while (++h < FIB_TABLE_HASHSZ) {
2326 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2327 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2328 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2329 if (n)
2330 goto found;
2331 }
2332 }
cb7b593c 2333 return NULL;
3d3b2d25
SH
2334
2335found:
2336 iter->tb = tb;
2337 return n;
cb7b593c 2338}
19baf839 2339
cb7b593c 2340static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2341 __releases(RCU)
19baf839 2342{
cb7b593c
SH
2343 rcu_read_unlock();
2344}
91b9a277 2345
cb7b593c
SH
2346static void seq_indent(struct seq_file *seq, int n)
2347{
a034ee3c
ED
2348 while (n-- > 0)
2349 seq_puts(seq, " ");
cb7b593c 2350}
19baf839 2351
28d36e37 2352static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2353{
132adf54 2354 switch (s) {
cb7b593c
SH
2355 case RT_SCOPE_UNIVERSE: return "universe";
2356 case RT_SCOPE_SITE: return "site";
2357 case RT_SCOPE_LINK: return "link";
2358 case RT_SCOPE_HOST: return "host";
2359 case RT_SCOPE_NOWHERE: return "nowhere";
2360 default:
28d36e37 2361 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2362 return buf;
2363 }
2364}
19baf839 2365
36cbd3dc 2366static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2367 [RTN_UNSPEC] = "UNSPEC",
2368 [RTN_UNICAST] = "UNICAST",
2369 [RTN_LOCAL] = "LOCAL",
2370 [RTN_BROADCAST] = "BROADCAST",
2371 [RTN_ANYCAST] = "ANYCAST",
2372 [RTN_MULTICAST] = "MULTICAST",
2373 [RTN_BLACKHOLE] = "BLACKHOLE",
2374 [RTN_UNREACHABLE] = "UNREACHABLE",
2375 [RTN_PROHIBIT] = "PROHIBIT",
2376 [RTN_THROW] = "THROW",
2377 [RTN_NAT] = "NAT",
2378 [RTN_XRESOLVE] = "XRESOLVE",
2379};
19baf839 2380
a034ee3c 2381static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2382{
cb7b593c
SH
2383 if (t < __RTN_MAX && rtn_type_names[t])
2384 return rtn_type_names[t];
28d36e37 2385 snprintf(buf, len, "type %u", t);
cb7b593c 2386 return buf;
19baf839
RO
2387}
2388
cb7b593c
SH
2389/* Pretty print the trie */
2390static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2391{
cb7b593c
SH
2392 const struct fib_trie_iter *iter = seq->private;
2393 struct node *n = v;
c877efb2 2394
3d3b2d25
SH
2395 if (!node_parent_rcu(n))
2396 fib_table_print(seq, iter->tb);
095b8501 2397
cb7b593c
SH
2398 if (IS_TNODE(n)) {
2399 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2400 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2401
1d25cd6c 2402 seq_indent(seq, iter->depth-1);
673d57e7
HH
2403 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2404 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2405 tn->empty_children);
e905a9ed 2406
cb7b593c
SH
2407 } else {
2408 struct leaf *l = (struct leaf *) n;
1328042e
SH
2409 struct leaf_info *li;
2410 struct hlist_node *node;
32ab5f80 2411 __be32 val = htonl(l->key);
cb7b593c
SH
2412
2413 seq_indent(seq, iter->depth);
673d57e7 2414 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2415
2416 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2417 struct fib_alias *fa;
2418
2419 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2420 char buf1[32], buf2[32];
2421
2422 seq_indent(seq, iter->depth+1);
2423 seq_printf(seq, " /%d %s %s", li->plen,
2424 rtn_scope(buf1, sizeof(buf1),
2425 fa->fa_scope),
2426 rtn_type(buf2, sizeof(buf2),
2427 fa->fa_type));
2428 if (fa->fa_tos)
b9c4d82a 2429 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2430 seq_putc(seq, '\n');
cb7b593c
SH
2431 }
2432 }
19baf839 2433 }
cb7b593c 2434
19baf839
RO
2435 return 0;
2436}
2437
f690808e 2438static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2439 .start = fib_trie_seq_start,
2440 .next = fib_trie_seq_next,
2441 .stop = fib_trie_seq_stop,
2442 .show = fib_trie_seq_show,
19baf839
RO
2443};
2444
cb7b593c 2445static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2446{
1c340b2f
DL
2447 return seq_open_net(inode, file, &fib_trie_seq_ops,
2448 sizeof(struct fib_trie_iter));
19baf839
RO
2449}
2450
9a32144e 2451static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2452 .owner = THIS_MODULE,
2453 .open = fib_trie_seq_open,
2454 .read = seq_read,
2455 .llseek = seq_lseek,
1c340b2f 2456 .release = seq_release_net,
19baf839
RO
2457};
2458
8315f5d8
SH
2459struct fib_route_iter {
2460 struct seq_net_private p;
2461 struct trie *main_trie;
2462 loff_t pos;
2463 t_key key;
2464};
2465
2466static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2467{
2468 struct leaf *l = NULL;
2469 struct trie *t = iter->main_trie;
2470
2471 /* use cache location of last found key */
2472 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2473 pos -= iter->pos;
2474 else {
2475 iter->pos = 0;
2476 l = trie_firstleaf(t);
2477 }
2478
2479 while (l && pos-- > 0) {
2480 iter->pos++;
2481 l = trie_nextleaf(l);
2482 }
2483
2484 if (l)
2485 iter->key = pos; /* remember it */
2486 else
2487 iter->pos = 0; /* forget it */
2488
2489 return l;
2490}
2491
2492static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2493 __acquires(RCU)
2494{
2495 struct fib_route_iter *iter = seq->private;
2496 struct fib_table *tb;
2497
2498 rcu_read_lock();
1218854a 2499 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2500 if (!tb)
2501 return NULL;
2502
2503 iter->main_trie = (struct trie *) tb->tb_data;
2504 if (*pos == 0)
2505 return SEQ_START_TOKEN;
2506 else
2507 return fib_route_get_idx(iter, *pos - 1);
2508}
2509
2510static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2511{
2512 struct fib_route_iter *iter = seq->private;
2513 struct leaf *l = v;
2514
2515 ++*pos;
2516 if (v == SEQ_START_TOKEN) {
2517 iter->pos = 0;
2518 l = trie_firstleaf(iter->main_trie);
2519 } else {
2520 iter->pos++;
2521 l = trie_nextleaf(l);
2522 }
2523
2524 if (l)
2525 iter->key = l->key;
2526 else
2527 iter->pos = 0;
2528 return l;
2529}
2530
2531static void fib_route_seq_stop(struct seq_file *seq, void *v)
2532 __releases(RCU)
2533{
2534 rcu_read_unlock();
2535}
2536
a034ee3c 2537static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2538{
a034ee3c 2539 unsigned int flags = 0;
19baf839 2540
a034ee3c
ED
2541 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2542 flags = RTF_REJECT;
cb7b593c
SH
2543 if (fi && fi->fib_nh->nh_gw)
2544 flags |= RTF_GATEWAY;
32ab5f80 2545 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2546 flags |= RTF_HOST;
2547 flags |= RTF_UP;
2548 return flags;
19baf839
RO
2549}
2550
cb7b593c
SH
2551/*
2552 * This outputs /proc/net/route.
2553 * The format of the file is not supposed to be changed
a034ee3c 2554 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2555 * legacy utilities
2556 */
2557static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2558{
cb7b593c 2559 struct leaf *l = v;
1328042e
SH
2560 struct leaf_info *li;
2561 struct hlist_node *node;
19baf839 2562
cb7b593c
SH
2563 if (v == SEQ_START_TOKEN) {
2564 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2565 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2566 "\tWindow\tIRTT");
2567 return 0;
2568 }
19baf839 2569
1328042e 2570 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2571 struct fib_alias *fa;
32ab5f80 2572 __be32 mask, prefix;
91b9a277 2573
cb7b593c
SH
2574 mask = inet_make_mask(li->plen);
2575 prefix = htonl(l->key);
19baf839 2576
cb7b593c 2577 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2578 const struct fib_info *fi = fa->fa_info;
a034ee3c 2579 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2580 int len;
19baf839 2581
cb7b593c
SH
2582 if (fa->fa_type == RTN_BROADCAST
2583 || fa->fa_type == RTN_MULTICAST)
2584 continue;
19baf839 2585
cb7b593c 2586 if (fi)
5e659e4c
PE
2587 seq_printf(seq,
2588 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2589 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2590 fi->fib_dev ? fi->fib_dev->name : "*",
2591 prefix,
2592 fi->fib_nh->nh_gw, flags, 0, 0,
2593 fi->fib_priority,
2594 mask,
a07f5f50
SH
2595 (fi->fib_advmss ?
2596 fi->fib_advmss + 40 : 0),
cb7b593c 2597 fi->fib_window,
5e659e4c 2598 fi->fib_rtt >> 3, &len);
cb7b593c 2599 else
5e659e4c
PE
2600 seq_printf(seq,
2601 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2602 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2603 prefix, 0, flags, 0, 0, 0,
5e659e4c 2604 mask, 0, 0, 0, &len);
19baf839 2605
5e659e4c 2606 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2607 }
19baf839
RO
2608 }
2609
2610 return 0;
2611}
2612
f690808e 2613static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2614 .start = fib_route_seq_start,
2615 .next = fib_route_seq_next,
2616 .stop = fib_route_seq_stop,
cb7b593c 2617 .show = fib_route_seq_show,
19baf839
RO
2618};
2619
cb7b593c 2620static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2621{
1c340b2f 2622 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2623 sizeof(struct fib_route_iter));
19baf839
RO
2624}
2625
9a32144e 2626static const struct file_operations fib_route_fops = {
cb7b593c
SH
2627 .owner = THIS_MODULE,
2628 .open = fib_route_seq_open,
2629 .read = seq_read,
2630 .llseek = seq_lseek,
1c340b2f 2631 .release = seq_release_net,
19baf839
RO
2632};
2633
61a02653 2634int __net_init fib_proc_init(struct net *net)
19baf839 2635{
61a02653 2636 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2637 goto out1;
2638
61a02653
DL
2639 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2640 &fib_triestat_fops))
cb7b593c
SH
2641 goto out2;
2642
61a02653 2643 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2644 goto out3;
2645
19baf839 2646 return 0;
cb7b593c
SH
2647
2648out3:
61a02653 2649 proc_net_remove(net, "fib_triestat");
cb7b593c 2650out2:
61a02653 2651 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2652out1:
2653 return -ENOMEM;
19baf839
RO
2654}
2655
61a02653 2656void __net_exit fib_proc_exit(struct net *net)
19baf839 2657{
61a02653
DL
2658 proc_net_remove(net, "fib_trie");
2659 proc_net_remove(net, "fib_triestat");
2660 proc_net_remove(net, "route");
19baf839
RO
2661}
2662
2663#endif /* CONFIG_PROC_FS */