]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/fib_trie.c
ipvs: supply a valid 0 address to ip_vs_conn_new()
[net-next-2.6.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
05eee48c 51#define VERSION "0.408"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
91b9a277 127 struct node *child[0];
19baf839
RO
128};
129
130#ifdef CONFIG_IP_FIB_TRIE_STATS
131struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
2f36895a 137 unsigned int resize_node_skipped;
19baf839
RO
138};
139#endif
140
141struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
93672292 147 unsigned int prefixes;
06ef921d 148 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 149};
19baf839
RO
150
151struct trie {
91b9a277 152 struct node *trie;
19baf839
RO
153#ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155#endif
19baf839
RO
156};
157
19baf839 158static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
159static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
19baf839 161static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
162static struct tnode *inflate(struct trie *t, struct tnode *tn);
163static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 166static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 167
06801916
SH
168static inline struct tnode *node_parent(struct node *node)
169{
b59cfbf7
ED
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171}
172
173static inline struct tnode *node_parent_rcu(struct node *node)
174{
175 struct tnode *ret = node_parent(node);
06801916 176
06801916
SH
177 return rcu_dereference(ret);
178}
179
6440cc9e
SH
180/* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
06801916
SH
183static inline void node_set_parent(struct node *node, struct tnode *ptr)
184{
6440cc9e
SH
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 187}
2373ce1c 188
b59cfbf7
ED
189static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190{
191 BUG_ON(i >= 1U << tn->bits);
2373ce1c 192
b59cfbf7
ED
193 return tn->child[i];
194}
195
196static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 197{
b59cfbf7 198 struct node *ret = tnode_get_child(tn, i);
19baf839 199
b59cfbf7 200 return rcu_dereference(ret);
19baf839
RO
201}
202
bb435b8d 203static inline int tnode_child_length(const struct tnode *tn)
19baf839 204{
91b9a277 205 return 1 << tn->bits;
19baf839
RO
206}
207
ab66b4a7
SH
208static inline t_key mask_pfx(t_key k, unsigned short l)
209{
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211}
212
19baf839
RO
213static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214{
91b9a277 215 if (offset < KEYLENGTH)
19baf839 216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 217 else
19baf839
RO
218 return 0;
219}
220
221static inline int tkey_equals(t_key a, t_key b)
222{
c877efb2 223 return a == b;
19baf839
RO
224}
225
226static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227{
c877efb2
SH
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
91b9a277
OJ
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 232}
19baf839
RO
233
234static inline int tkey_mismatch(t_key a, int offset, t_key b)
235{
236 t_key diff = a ^ b;
237 int i = offset;
238
c877efb2
SH
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
242 i++;
243 return i;
244}
245
19baf839 246/*
e905a9ed
YH
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
e905a9ed
YH
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
19baf839
RO
258 correct key path.
259
e905a9ed
YH
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
265 call to tkey_sub_equals() in trie_insert().
266
e905a9ed 267 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
268 have many different meanings.
269
e905a9ed 270 Example:
19baf839
RO
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
e905a9ed 274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
91b9a277 284 n->bits = 4
19baf839 285
e905a9ed
YH
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 291 index into the parent's child array. That is, they will be used to find
19baf839
RO
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
e905a9ed 297 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
298 of the bits are really not needed or indeed known in n->key.
299
e905a9ed 300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 301 n's child array, and will of course be different for each child.
e905a9ed 302
c877efb2 303
19baf839
RO
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307*/
308
0c7770c7 309static inline void check_tnode(const struct tnode *tn)
19baf839 310{
0c7770c7 311 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
312}
313
f5026fab
DL
314static const int halve_threshold = 25;
315static const int inflate_threshold = 50;
316static const int halve_threshold_root = 8;
317static const int inflate_threshold_root = 15;
19baf839 318
2373ce1c
RO
319
320static void __alias_free_mem(struct rcu_head *head)
19baf839 321{
2373ce1c
RO
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
324}
325
2373ce1c 326static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 327{
2373ce1c
RO
328 call_rcu(&fa->rcu, __alias_free_mem);
329}
91b9a277 330
2373ce1c
RO
331static void __leaf_free_rcu(struct rcu_head *head)
332{
bc3c8c1e
SH
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 335}
91b9a277 336
387a5487
SH
337static inline void free_leaf(struct leaf *l)
338{
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340}
341
2373ce1c 342static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 343{
2373ce1c 344 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
345}
346
2373ce1c 347static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 348{
2373ce1c 349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
350}
351
8d965444 352static struct tnode *tnode_alloc(size_t size)
f0e36f8c 353{
2373ce1c 354 if (size <= PAGE_SIZE)
8d965444 355 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358}
2373ce1c 359
15be75cd
SH
360static void __tnode_vfree(struct work_struct *arg)
361{
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
f0e36f8c
PM
364}
365
2373ce1c 366static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 367{
2373ce1c 368 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
15be75cd
SH
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
f0e36f8c
PM
378}
379
2373ce1c
RO
380static inline void tnode_free(struct tnode *tn)
381{
387a5487
SH
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
550e29bc 385 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
386}
387
388static struct leaf *leaf_new(void)
389{
bc3c8c1e 390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396}
397
398static struct leaf_info *leaf_info_new(int plen)
399{
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406}
407
a07f5f50 408static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 409{
8d965444 410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 411 struct tnode *tn = tnode_alloc(sz);
19baf839 412
91b9a277 413 if (tn) {
2373ce1c 414 tn->parent = T_TNODE;
19baf839
RO
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
c877efb2 421
8d965444
ED
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
424 return tn;
425}
426
19baf839
RO
427/*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
bb435b8d 432static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 433{
c877efb2 434 if (n == NULL || IS_LEAF(n))
19baf839
RO
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438}
439
a07f5f50
SH
440static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
19baf839
RO
442{
443 tnode_put_child_reorg(tn, i, n, -1);
444}
445
c877efb2 446 /*
19baf839
RO
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
a07f5f50
SH
451static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
19baf839 453{
2373ce1c 454 struct node *chi = tn->child[i];
19baf839
RO
455 int isfull;
456
0c7770c7
SH
457 BUG_ON(i >= 1<<tn->bits);
458
19baf839
RO
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
c877efb2 464
19baf839 465 /* update fullChildren */
91b9a277 466 if (wasfull == -1)
19baf839
RO
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
c877efb2 470 if (wasfull && !isfull)
19baf839 471 tn->full_children--;
c877efb2 472 else if (!wasfull && isfull)
19baf839 473 tn->full_children++;
91b9a277 474
c877efb2 475 if (n)
06801916 476 node_set_parent(n, tn);
19baf839 477
2373ce1c 478 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
479}
480
c877efb2 481static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
482{
483 int i;
2f36895a 484 int err = 0;
2f80b3c8 485 struct tnode *old_tn;
e6308be8
RO
486 int inflate_threshold_use;
487 int halve_threshold_use;
05eee48c 488 int max_resize;
19baf839 489
e905a9ed 490 if (!tn)
19baf839
RO
491 return NULL;
492
0c7770c7
SH
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
19baf839
RO
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 504 struct node *n;
19baf839 505
91b9a277 506 n = tn->child[i];
2373ce1c 507 if (!n)
91b9a277 508 continue;
91b9a277
OJ
509
510 /* compress one level */
06801916 511 node_set_parent(n, NULL);
91b9a277
OJ
512 tnode_free(tn);
513 return n;
19baf839 514 }
c877efb2 515 /*
19baf839
RO
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
c877efb2
SH
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 523 * Telecommunications, page 6:
c877efb2 524 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
525 * children in the *doubled* node is at least 'high'."
526 *
c877efb2
SH
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 532 * multiply the left-hand side by 50.
c877efb2
SH
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
19baf839 537 * children, that is non-null tnodes with a skip value of 0.
c877efb2 538 * All of those will be doubled in the resulting inflated tnode, so
19baf839 539 * we just count them one extra time here.
c877efb2 540 *
19baf839 541 * A clearer way to write this would be:
c877efb2 542 *
19baf839 543 * to_be_doubled = tn->full_children;
c877efb2 544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
c877efb2 549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
19baf839
RO
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
c877efb2 558 *
19baf839
RO
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
c877efb2 562 *
19baf839 563 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 564 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 565 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 566 *
19baf839 567 * expand new_child_length:
c877efb2 568 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 569 * tn->full_children) >=
19baf839 570 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 571 *
19baf839 572 * shorten again:
c877efb2 573 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 574 * tn->empty_children) >= inflate_threshold *
19baf839 575 * tnode_child_length(tn)
c877efb2 576 *
19baf839
RO
577 */
578
579 check_tnode(tn);
c877efb2 580
e6308be8
RO
581 /* Keep root node larger */
582
132adf54 583 if (!tn->parent)
e6308be8 584 inflate_threshold_use = inflate_threshold_root;
e905a9ed 585 else
e6308be8
RO
586 inflate_threshold_use = inflate_threshold;
587
2f36895a 588 err = 0;
05eee48c
RO
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 594
2f80b3c8
RO
595 old_tn = tn;
596 tn = inflate(t, tn);
a07f5f50 597
2f80b3c8
RO
598 if (IS_ERR(tn)) {
599 tn = old_tn;
2f36895a
RO
600#ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602#endif
603 break;
604 }
19baf839
RO
605 }
606
05eee48c
RO
607 if (max_resize < 0) {
608 if (!tn->parent)
a07f5f50
SH
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
05eee48c 612 else
a07f5f50
SH
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
05eee48c
RO
616 }
617
19baf839
RO
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
2f36895a 624
e6308be8
RO
625
626 /* Keep root node larger */
627
132adf54 628 if (!tn->parent)
e6308be8 629 halve_threshold_use = halve_threshold_root;
e905a9ed 630 else
e6308be8
RO
631 halve_threshold_use = halve_threshold;
632
2f36895a 633 err = 0;
05eee48c
RO
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
19baf839 636 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 637 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 638
2f80b3c8
RO
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
2f36895a
RO
643#ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645#endif
646 break;
647 }
648 }
19baf839 649
05eee48c
RO
650 if (max_resize < 0) {
651 if (!tn->parent)
a07f5f50
SH
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
05eee48c 655 else
a07f5f50
SH
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
05eee48c 659 }
c877efb2 660
19baf839 661 /* Only one child remains */
19baf839
RO
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 664 struct node *n;
19baf839 665
91b9a277 666 n = tn->child[i];
2373ce1c 667 if (!n)
91b9a277 668 continue;
91b9a277
OJ
669
670 /* compress one level */
671
06801916 672 node_set_parent(n, NULL);
91b9a277
OJ
673 tnode_free(tn);
674 return n;
19baf839
RO
675 }
676
677 return (struct node *) tn;
678}
679
2f80b3c8 680static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 681{
19baf839
RO
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
0c7770c7 686 pr_debug("In inflate\n");
19baf839
RO
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
0c7770c7 690 if (!tn)
2f80b3c8 691 return ERR_PTR(-ENOMEM);
2f36895a
RO
692
693 /*
c877efb2
SH
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
697 * of tnode is ignored.
698 */
91b9a277
OJ
699
700 for (i = 0; i < olen; i++) {
a07f5f50 701 struct tnode *inode;
2f36895a 702
a07f5f50 703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
ab66b4a7 709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 710
2f36895a
RO
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
2f80b3c8
RO
713 if (!left)
714 goto nomem;
91b9a277 715
2f36895a
RO
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
e905a9ed 719 if (!right) {
2f80b3c8
RO
720 tnode_free(left);
721 goto nomem;
e905a9ed 722 }
2f36895a
RO
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
91b9a277 729 for (i = 0; i < olen; i++) {
c95aaf9a 730 struct tnode *inode;
19baf839 731 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
732 struct tnode *left, *right;
733 int size, j;
c877efb2 734
19baf839
RO
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
c877efb2 741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 742 tn->pos + tn->bits - 1) {
a07f5f50
SH
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
19baf839
RO
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
91b9a277 760 continue;
19baf839
RO
761 }
762
91b9a277
OJ
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
19baf839 781
91b9a277
OJ
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
2f36895a 785
91b9a277
OJ
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
2f36895a 788
91b9a277 789 BUG_ON(!left);
2f36895a 790
91b9a277
OJ
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
19baf839 793
91b9a277 794 BUG_ON(!right);
19baf839 795
91b9a277
OJ
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
19baf839 800 }
91b9a277
OJ
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
19baf839
RO
805 }
806 tnode_free(oldtnode);
807 return tn;
2f80b3c8
RO
808nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
0c7770c7 813 for (j = 0; j < size; j++)
2f80b3c8
RO
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
0c7770c7 818
2f80b3c8
RO
819 return ERR_PTR(-ENOMEM);
820 }
19baf839
RO
821}
822
2f80b3c8 823static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
824{
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
0c7770c7 830 pr_debug("In halve\n");
c877efb2
SH
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 833
2f80b3c8
RO
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
2f36895a
RO
836
837 /*
c877efb2
SH
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
841 * of tnode is ignored.
842 */
843
91b9a277 844 for (i = 0; i < olen; i += 2) {
2f36895a
RO
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
c877efb2 847
2f36895a 848 /* Two nonempty children */
0c7770c7 849 if (left && right) {
2f80b3c8 850 struct tnode *newn;
0c7770c7 851
2f80b3c8 852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
853
854 if (!newn)
2f80b3c8 855 goto nomem;
0c7770c7 856
2f80b3c8 857 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 858 }
2f36895a 859
2f36895a 860 }
19baf839 861
91b9a277
OJ
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
19baf839
RO
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
c877efb2 867
19baf839
RO
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
91b9a277 873 continue;
0c7770c7 874 }
91b9a277
OJ
875
876 if (right == NULL) {
19baf839 877 put_child(t, tn, i/2, left);
91b9a277
OJ
878 continue;
879 }
c877efb2 880
19baf839 881 /* Two nonempty children */
91b9a277
OJ
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
91b9a277
OJ
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
887 }
888 tnode_free(oldtnode);
889 return tn;
2f80b3c8
RO
890nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
0c7770c7 895 for (j = 0; j < size; j++)
2f80b3c8
RO
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
0c7770c7 900
2f80b3c8
RO
901 return ERR_PTR(-ENOMEM);
902 }
19baf839
RO
903}
904
772cb712 905/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
906 via get_fa_head and dump */
907
772cb712 908static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 909{
772cb712 910 struct hlist_head *head = &l->list;
19baf839
RO
911 struct hlist_node *node;
912 struct leaf_info *li;
913
2373ce1c 914 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 915 if (li->plen == plen)
19baf839 916 return li;
91b9a277 917
19baf839
RO
918 return NULL;
919}
920
a07f5f50 921static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 922{
772cb712 923 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 924
91b9a277
OJ
925 if (!li)
926 return NULL;
c877efb2 927
91b9a277 928 return &li->falh;
19baf839
RO
929}
930
931static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932{
e905a9ed
YH
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
19baf839
RO
950}
951
2373ce1c
RO
952/* rcu_read_lock needs to be hold by caller from readside */
953
19baf839
RO
954static struct leaf *
955fib_find_node(struct trie *t, u32 key)
956{
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
2373ce1c 962 n = rcu_dereference(t->trie);
19baf839
RO
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
91b9a277 966
19baf839 967 check_tnode(tn);
91b9a277 968
c877efb2 969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 970 pos = tn->pos + tn->bits;
a07f5f50
SH
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
91b9a277 975 } else
19baf839
RO
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
91b9a277
OJ
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
19baf839
RO
983 return NULL;
984}
985
986static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987{
19baf839 988 int wasfull;
06801916
SH
989 t_key cindex, key = tn->key;
990 struct tnode *tp;
19baf839 991
06801916 992 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
993 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
994 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
995 tn = (struct tnode *) resize(t, (struct tnode *)tn);
996
997 tnode_put_child_reorg((struct tnode *)tp, cindex,
998 (struct node *)tn, wasfull);
91b9a277 999
06801916
SH
1000 tp = node_parent((struct node *) tn);
1001 if (!tp)
19baf839 1002 break;
06801916 1003 tn = tp;
19baf839 1004 }
06801916 1005
19baf839 1006 /* Handle last (top) tnode */
c877efb2 1007 if (IS_TNODE(tn))
a07f5f50 1008 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1009
a07f5f50 1010 return (struct node *)tn;
19baf839
RO
1011}
1012
2373ce1c
RO
1013/* only used from updater-side */
1014
fea86ad8 1015static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1016{
1017 int pos, newpos;
1018 struct tnode *tp = NULL, *tn = NULL;
1019 struct node *n;
1020 struct leaf *l;
1021 int missbit;
c877efb2 1022 struct list_head *fa_head = NULL;
19baf839
RO
1023 struct leaf_info *li;
1024 t_key cindex;
1025
1026 pos = 0;
c877efb2 1027 n = t->trie;
19baf839 1028
c877efb2
SH
1029 /* If we point to NULL, stop. Either the tree is empty and we should
1030 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1031 * and we should just put our new leaf in that.
c877efb2
SH
1032 * If we point to a T_TNODE, check if it matches our key. Note that
1033 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1034 * not be the parent's 'pos'+'bits'!
1035 *
c877efb2 1036 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1037 * the index from our key, push the T_TNODE and walk the tree.
1038 *
1039 * If it doesn't, we have to replace it with a new T_TNODE.
1040 *
c877efb2
SH
1041 * If we point to a T_LEAF, it might or might not have the same key
1042 * as we do. If it does, just change the value, update the T_LEAF's
1043 * value, and return it.
19baf839
RO
1044 * If it doesn't, we need to replace it with a T_TNODE.
1045 */
1046
1047 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1048 tn = (struct tnode *) n;
91b9a277 1049
c877efb2 1050 check_tnode(tn);
91b9a277 1051
c877efb2 1052 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1053 tp = tn;
91b9a277 1054 pos = tn->pos + tn->bits;
a07f5f50
SH
1055 n = tnode_get_child(tn,
1056 tkey_extract_bits(key,
1057 tn->pos,
1058 tn->bits));
19baf839 1059
06801916 1060 BUG_ON(n && node_parent(n) != tn);
91b9a277 1061 } else
19baf839
RO
1062 break;
1063 }
1064
1065 /*
1066 * n ----> NULL, LEAF or TNODE
1067 *
c877efb2 1068 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1069 */
1070
91b9a277 1071 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1072
1073 /* Case 1: n is a leaf. Compare prefixes */
1074
c877efb2 1075 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1076 l = (struct leaf *) n;
19baf839 1077 li = leaf_info_new(plen);
91b9a277 1078
fea86ad8
SH
1079 if (!li)
1080 return NULL;
19baf839
RO
1081
1082 fa_head = &li->falh;
1083 insert_leaf_info(&l->list, li);
1084 goto done;
1085 }
19baf839
RO
1086 l = leaf_new();
1087
fea86ad8
SH
1088 if (!l)
1089 return NULL;
19baf839
RO
1090
1091 l->key = key;
1092 li = leaf_info_new(plen);
1093
c877efb2 1094 if (!li) {
387a5487 1095 free_leaf(l);
fea86ad8 1096 return NULL;
f835e471 1097 }
19baf839
RO
1098
1099 fa_head = &li->falh;
1100 insert_leaf_info(&l->list, li);
1101
19baf839 1102 if (t->trie && n == NULL) {
91b9a277 1103 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1104
06801916 1105 node_set_parent((struct node *)l, tp);
19baf839 1106
91b9a277
OJ
1107 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1108 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1109 } else {
1110 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1111 /*
1112 * Add a new tnode here
19baf839
RO
1113 * first tnode need some special handling
1114 */
1115
1116 if (tp)
91b9a277 1117 pos = tp->pos+tp->bits;
19baf839 1118 else
91b9a277
OJ
1119 pos = 0;
1120
c877efb2 1121 if (n) {
19baf839
RO
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
91b9a277 1124 } else {
19baf839 1125 newpos = 0;
c877efb2 1126 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1127 }
19baf839 1128
c877efb2 1129 if (!tn) {
f835e471 1130 free_leaf_info(li);
387a5487 1131 free_leaf(l);
fea86ad8 1132 return NULL;
91b9a277
OJ
1133 }
1134
06801916 1135 node_set_parent((struct node *)tn, tp);
19baf839 1136
91b9a277 1137 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1138 put_child(t, tn, missbit, (struct node *)l);
1139 put_child(t, tn, 1-missbit, n);
1140
c877efb2 1141 if (tp) {
19baf839 1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1143 put_child(t, (struct tnode *)tp, cindex,
1144 (struct node *)tn);
91b9a277 1145 } else {
a07f5f50 1146 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1147 tp = tn;
1148 }
1149 }
91b9a277
OJ
1150
1151 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1152 pr_warning("fib_trie"
1153 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1154 tp, tp->pos, tp->bits, key, plen);
91b9a277 1155
19baf839 1156 /* Rebalance the trie */
2373ce1c
RO
1157
1158 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1159done:
19baf839
RO
1160 return fa_head;
1161}
1162
d562f1f8
RO
1163/*
1164 * Caller must hold RTNL.
1165 */
4e902c57 1166static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1167{
1168 struct trie *t = (struct trie *) tb->tb_data;
1169 struct fib_alias *fa, *new_fa;
c877efb2 1170 struct list_head *fa_head = NULL;
19baf839 1171 struct fib_info *fi;
4e902c57
TG
1172 int plen = cfg->fc_dst_len;
1173 u8 tos = cfg->fc_tos;
19baf839
RO
1174 u32 key, mask;
1175 int err;
1176 struct leaf *l;
1177
1178 if (plen > 32)
1179 return -EINVAL;
1180
4e902c57 1181 key = ntohl(cfg->fc_dst);
19baf839 1182
2dfe55b4 1183 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1184
91b9a277 1185 mask = ntohl(inet_make_mask(plen));
19baf839 1186
c877efb2 1187 if (key & ~mask)
19baf839
RO
1188 return -EINVAL;
1189
1190 key = key & mask;
1191
4e902c57
TG
1192 fi = fib_create_info(cfg);
1193 if (IS_ERR(fi)) {
1194 err = PTR_ERR(fi);
19baf839 1195 goto err;
4e902c57 1196 }
19baf839
RO
1197
1198 l = fib_find_node(t, key);
c877efb2 1199 fa = NULL;
19baf839 1200
c877efb2 1201 if (l) {
19baf839
RO
1202 fa_head = get_fa_head(l, plen);
1203 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1204 }
1205
1206 /* Now fa, if non-NULL, points to the first fib alias
1207 * with the same keys [prefix,tos,priority], if such key already
1208 * exists or to the node before which we will insert new one.
1209 *
1210 * If fa is NULL, we will need to allocate a new one and
1211 * insert to the head of f.
1212 *
1213 * If f is NULL, no fib node matched the destination key
1214 * and we need to allocate a new one of those as well.
1215 */
1216
936f6f8e
JA
1217 if (fa && fa->fa_tos == tos &&
1218 fa->fa_info->fib_priority == fi->fib_priority) {
1219 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1220
1221 err = -EEXIST;
4e902c57 1222 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1223 goto out;
1224
936f6f8e
JA
1225 /* We have 2 goals:
1226 * 1. Find exact match for type, scope, fib_info to avoid
1227 * duplicate routes
1228 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1229 */
1230 fa_match = NULL;
1231 fa_first = fa;
1232 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1233 list_for_each_entry_continue(fa, fa_head, fa_list) {
1234 if (fa->fa_tos != tos)
1235 break;
1236 if (fa->fa_info->fib_priority != fi->fib_priority)
1237 break;
1238 if (fa->fa_type == cfg->fc_type &&
1239 fa->fa_scope == cfg->fc_scope &&
1240 fa->fa_info == fi) {
1241 fa_match = fa;
1242 break;
1243 }
1244 }
1245
4e902c57 1246 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1247 struct fib_info *fi_drop;
1248 u8 state;
1249
936f6f8e
JA
1250 fa = fa_first;
1251 if (fa_match) {
1252 if (fa == fa_match)
1253 err = 0;
6725033f 1254 goto out;
936f6f8e 1255 }
2373ce1c 1256 err = -ENOBUFS;
e94b1766 1257 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1258 if (new_fa == NULL)
1259 goto out;
19baf839
RO
1260
1261 fi_drop = fa->fa_info;
2373ce1c
RO
1262 new_fa->fa_tos = fa->fa_tos;
1263 new_fa->fa_info = fi;
4e902c57
TG
1264 new_fa->fa_type = cfg->fc_type;
1265 new_fa->fa_scope = cfg->fc_scope;
19baf839 1266 state = fa->fa_state;
936f6f8e 1267 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1268
2373ce1c
RO
1269 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1270 alias_free_mem_rcu(fa);
19baf839
RO
1271
1272 fib_release_info(fi_drop);
1273 if (state & FA_S_ACCESSED)
76e6ebfb 1274 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1276 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1277
91b9a277 1278 goto succeeded;
19baf839
RO
1279 }
1280 /* Error if we find a perfect match which
1281 * uses the same scope, type, and nexthop
1282 * information.
1283 */
936f6f8e
JA
1284 if (fa_match)
1285 goto out;
a07f5f50 1286
4e902c57 1287 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1288 fa = fa_first;
19baf839
RO
1289 }
1290 err = -ENOENT;
4e902c57 1291 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1292 goto out;
1293
1294 err = -ENOBUFS;
e94b1766 1295 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1296 if (new_fa == NULL)
1297 goto out;
1298
1299 new_fa->fa_info = fi;
1300 new_fa->fa_tos = tos;
4e902c57
TG
1301 new_fa->fa_type = cfg->fc_type;
1302 new_fa->fa_scope = cfg->fc_scope;
19baf839 1303 new_fa->fa_state = 0;
19baf839
RO
1304 /*
1305 * Insert new entry to the list.
1306 */
1307
c877efb2 1308 if (!fa_head) {
fea86ad8
SH
1309 fa_head = fib_insert_node(t, key, plen);
1310 if (unlikely(!fa_head)) {
1311 err = -ENOMEM;
f835e471 1312 goto out_free_new_fa;
fea86ad8 1313 }
f835e471 1314 }
19baf839 1315
2373ce1c
RO
1316 list_add_tail_rcu(&new_fa->fa_list,
1317 (fa ? &fa->fa_list : fa_head));
19baf839 1318
76e6ebfb 1319 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1320 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1321 &cfg->fc_nlinfo, 0);
19baf839
RO
1322succeeded:
1323 return 0;
f835e471
RO
1324
1325out_free_new_fa:
1326 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1327out:
1328 fib_release_info(fi);
91b9a277 1329err:
19baf839
RO
1330 return err;
1331}
1332
772cb712 1333/* should be called with rcu_read_lock */
a07f5f50
SH
1334static int check_leaf(struct trie *t, struct leaf *l,
1335 t_key key, const struct flowi *flp,
1336 struct fib_result *res)
19baf839 1337{
19baf839
RO
1338 struct leaf_info *li;
1339 struct hlist_head *hhead = &l->list;
1340 struct hlist_node *node;
c877efb2 1341
2373ce1c 1342 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1343 int err;
1344 int plen = li->plen;
1345 __be32 mask = inet_make_mask(plen);
1346
888454c5 1347 if (l->key != (key & ntohl(mask)))
19baf839
RO
1348 continue;
1349
a07f5f50
SH
1350 err = fib_semantic_match(&li->falh, flp, res,
1351 htonl(l->key), mask, plen);
1352
19baf839 1353#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1354 if (err <= 0)
19baf839 1355 t->stats.semantic_match_passed++;
a07f5f50
SH
1356 else
1357 t->stats.semantic_match_miss++;
19baf839 1358#endif
a07f5f50 1359 if (err <= 0)
2e655571 1360 return err;
19baf839 1361 }
a07f5f50 1362
2e655571 1363 return 1;
19baf839
RO
1364}
1365
a07f5f50
SH
1366static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1367 struct fib_result *res)
19baf839
RO
1368{
1369 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1370 int ret;
19baf839
RO
1371 struct node *n;
1372 struct tnode *pn;
1373 int pos, bits;
91b9a277 1374 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1375 int chopped_off;
1376 t_key cindex = 0;
1377 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1378 struct tnode *cn;
1379 t_key node_prefix, key_prefix, pref_mismatch;
1380 int mp;
1381
2373ce1c 1382 rcu_read_lock();
91b9a277 1383
2373ce1c 1384 n = rcu_dereference(t->trie);
c877efb2 1385 if (!n)
19baf839
RO
1386 goto failed;
1387
1388#ifdef CONFIG_IP_FIB_TRIE_STATS
1389 t->stats.gets++;
1390#endif
1391
1392 /* Just a leaf? */
1393 if (IS_LEAF(n)) {
2e655571 1394 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1395 goto found;
19baf839 1396 }
a07f5f50 1397
19baf839
RO
1398 pn = (struct tnode *) n;
1399 chopped_off = 0;
c877efb2 1400
91b9a277 1401 while (pn) {
19baf839
RO
1402 pos = pn->pos;
1403 bits = pn->bits;
1404
c877efb2 1405 if (!chopped_off)
ab66b4a7
SH
1406 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1407 pos, bits);
19baf839
RO
1408
1409 n = tnode_get_child(pn, cindex);
1410
1411 if (n == NULL) {
1412#ifdef CONFIG_IP_FIB_TRIE_STATS
1413 t->stats.null_node_hit++;
1414#endif
1415 goto backtrace;
1416 }
1417
91b9a277 1418 if (IS_LEAF(n)) {
2e655571
BH
1419 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1420 if (ret > 0)
91b9a277 1421 goto backtrace;
a07f5f50 1422 goto found;
91b9a277
OJ
1423 }
1424
91b9a277 1425 cn = (struct tnode *)n;
19baf839 1426
91b9a277
OJ
1427 /*
1428 * It's a tnode, and we can do some extra checks here if we
1429 * like, to avoid descending into a dead-end branch.
1430 * This tnode is in the parent's child array at index
1431 * key[p_pos..p_pos+p_bits] but potentially with some bits
1432 * chopped off, so in reality the index may be just a
1433 * subprefix, padded with zero at the end.
1434 * We can also take a look at any skipped bits in this
1435 * tnode - everything up to p_pos is supposed to be ok,
1436 * and the non-chopped bits of the index (se previous
1437 * paragraph) are also guaranteed ok, but the rest is
1438 * considered unknown.
1439 *
1440 * The skipped bits are key[pos+bits..cn->pos].
1441 */
19baf839 1442
91b9a277
OJ
1443 /* If current_prefix_length < pos+bits, we are already doing
1444 * actual prefix matching, which means everything from
1445 * pos+(bits-chopped_off) onward must be zero along some
1446 * branch of this subtree - otherwise there is *no* valid
1447 * prefix present. Here we can only check the skipped
1448 * bits. Remember, since we have already indexed into the
1449 * parent's child array, we know that the bits we chopped of
1450 * *are* zero.
1451 */
19baf839 1452
a07f5f50
SH
1453 /* NOTA BENE: Checking only skipped bits
1454 for the new node here */
19baf839 1455
91b9a277
OJ
1456 if (current_prefix_length < pos+bits) {
1457 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1458 cn->pos - current_prefix_length)
1459 || !(cn->child[0]))
91b9a277
OJ
1460 goto backtrace;
1461 }
19baf839 1462
91b9a277
OJ
1463 /*
1464 * If chopped_off=0, the index is fully validated and we
1465 * only need to look at the skipped bits for this, the new,
1466 * tnode. What we actually want to do is to find out if
1467 * these skipped bits match our key perfectly, or if we will
1468 * have to count on finding a matching prefix further down,
1469 * because if we do, we would like to have some way of
1470 * verifying the existence of such a prefix at this point.
1471 */
19baf839 1472
91b9a277
OJ
1473 /* The only thing we can do at this point is to verify that
1474 * any such matching prefix can indeed be a prefix to our
1475 * key, and if the bits in the node we are inspecting that
1476 * do not match our key are not ZERO, this cannot be true.
1477 * Thus, find out where there is a mismatch (before cn->pos)
1478 * and verify that all the mismatching bits are zero in the
1479 * new tnode's key.
1480 */
19baf839 1481
a07f5f50
SH
1482 /*
1483 * Note: We aren't very concerned about the piece of
1484 * the key that precede pn->pos+pn->bits, since these
1485 * have already been checked. The bits after cn->pos
1486 * aren't checked since these are by definition
1487 * "unknown" at this point. Thus, what we want to see
1488 * is if we are about to enter the "prefix matching"
1489 * state, and in that case verify that the skipped
1490 * bits that will prevail throughout this subtree are
1491 * zero, as they have to be if we are to find a
1492 * matching prefix.
91b9a277
OJ
1493 */
1494
ab66b4a7
SH
1495 node_prefix = mask_pfx(cn->key, cn->pos);
1496 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1497 pref_mismatch = key_prefix^node_prefix;
1498 mp = 0;
1499
a07f5f50
SH
1500 /*
1501 * In short: If skipped bits in this node do not match
1502 * the search key, enter the "prefix matching"
1503 * state.directly.
91b9a277
OJ
1504 */
1505 if (pref_mismatch) {
1506 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1507 mp++;
a07f5f50 1508 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1509 }
1510 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1511
1512 if (key_prefix != 0)
1513 goto backtrace;
1514
1515 if (current_prefix_length >= cn->pos)
1516 current_prefix_length = mp;
c877efb2 1517 }
a07f5f50 1518
91b9a277
OJ
1519 pn = (struct tnode *)n; /* Descend */
1520 chopped_off = 0;
1521 continue;
1522
19baf839
RO
1523backtrace:
1524 chopped_off++;
1525
1526 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1527 while ((chopped_off <= pn->bits)
1528 && !(cindex & (1<<(chopped_off-1))))
19baf839 1529 chopped_off++;
19baf839
RO
1530
1531 /* Decrease current_... with bits chopped off */
1532 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1533 current_prefix_length = pn->pos + pn->bits
1534 - chopped_off;
91b9a277 1535
19baf839 1536 /*
c877efb2 1537 * Either we do the actual chop off according or if we have
19baf839
RO
1538 * chopped off all bits in this tnode walk up to our parent.
1539 */
1540
91b9a277 1541 if (chopped_off <= pn->bits) {
19baf839 1542 cindex &= ~(1 << (chopped_off-1));
91b9a277 1543 } else {
06801916
SH
1544 struct tnode *parent = node_parent((struct node *) pn);
1545 if (!parent)
19baf839 1546 goto failed;
91b9a277 1547
19baf839 1548 /* Get Child's index */
06801916
SH
1549 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1550 pn = parent;
19baf839
RO
1551 chopped_off = 0;
1552
1553#ifdef CONFIG_IP_FIB_TRIE_STATS
1554 t->stats.backtrack++;
1555#endif
1556 goto backtrace;
c877efb2 1557 }
19baf839
RO
1558 }
1559failed:
c877efb2 1560 ret = 1;
19baf839 1561found:
2373ce1c 1562 rcu_read_unlock();
19baf839
RO
1563 return ret;
1564}
1565
9195bef7
SH
1566/*
1567 * Remove the leaf and return parent.
1568 */
1569static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1570{
9195bef7 1571 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1572
9195bef7 1573 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1574
c877efb2 1575 if (tp) {
9195bef7 1576 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1577 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1578 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1579 } else
2373ce1c 1580 rcu_assign_pointer(t->trie, NULL);
19baf839 1581
387a5487 1582 free_leaf(l);
19baf839
RO
1583}
1584
d562f1f8
RO
1585/*
1586 * Caller must hold RTNL.
1587 */
4e902c57 1588static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1589{
1590 struct trie *t = (struct trie *) tb->tb_data;
1591 u32 key, mask;
4e902c57
TG
1592 int plen = cfg->fc_dst_len;
1593 u8 tos = cfg->fc_tos;
19baf839
RO
1594 struct fib_alias *fa, *fa_to_delete;
1595 struct list_head *fa_head;
1596 struct leaf *l;
91b9a277
OJ
1597 struct leaf_info *li;
1598
c877efb2 1599 if (plen > 32)
19baf839
RO
1600 return -EINVAL;
1601
4e902c57 1602 key = ntohl(cfg->fc_dst);
91b9a277 1603 mask = ntohl(inet_make_mask(plen));
19baf839 1604
c877efb2 1605 if (key & ~mask)
19baf839
RO
1606 return -EINVAL;
1607
1608 key = key & mask;
1609 l = fib_find_node(t, key);
1610
c877efb2 1611 if (!l)
19baf839
RO
1612 return -ESRCH;
1613
1614 fa_head = get_fa_head(l, plen);
1615 fa = fib_find_alias(fa_head, tos, 0);
1616
1617 if (!fa)
1618 return -ESRCH;
1619
0c7770c7 1620 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1621
1622 fa_to_delete = NULL;
936f6f8e
JA
1623 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1624 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1625 struct fib_info *fi = fa->fa_info;
1626
1627 if (fa->fa_tos != tos)
1628 break;
1629
4e902c57
TG
1630 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1631 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1632 fa->fa_scope == cfg->fc_scope) &&
1633 (!cfg->fc_protocol ||
1634 fi->fib_protocol == cfg->fc_protocol) &&
1635 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1636 fa_to_delete = fa;
1637 break;
1638 }
1639 }
1640
91b9a277
OJ
1641 if (!fa_to_delete)
1642 return -ESRCH;
19baf839 1643
91b9a277 1644 fa = fa_to_delete;
4e902c57 1645 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1646 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1647
1648 l = fib_find_node(t, key);
772cb712 1649 li = find_leaf_info(l, plen);
19baf839 1650
2373ce1c 1651 list_del_rcu(&fa->fa_list);
19baf839 1652
91b9a277 1653 if (list_empty(fa_head)) {
2373ce1c 1654 hlist_del_rcu(&li->hlist);
91b9a277 1655 free_leaf_info(li);
2373ce1c 1656 }
19baf839 1657
91b9a277 1658 if (hlist_empty(&l->list))
9195bef7 1659 trie_leaf_remove(t, l);
19baf839 1660
91b9a277 1661 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1662 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1663
2373ce1c
RO
1664 fib_release_info(fa->fa_info);
1665 alias_free_mem_rcu(fa);
91b9a277 1666 return 0;
19baf839
RO
1667}
1668
ef3660ce 1669static int trie_flush_list(struct list_head *head)
19baf839
RO
1670{
1671 struct fib_alias *fa, *fa_node;
1672 int found = 0;
1673
1674 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1675 struct fib_info *fi = fa->fa_info;
19baf839 1676
2373ce1c
RO
1677 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1678 list_del_rcu(&fa->fa_list);
1679 fib_release_info(fa->fa_info);
1680 alias_free_mem_rcu(fa);
19baf839
RO
1681 found++;
1682 }
1683 }
1684 return found;
1685}
1686
ef3660ce 1687static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1688{
1689 int found = 0;
1690 struct hlist_head *lih = &l->list;
1691 struct hlist_node *node, *tmp;
1692 struct leaf_info *li = NULL;
1693
1694 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1695 found += trie_flush_list(&li->falh);
19baf839
RO
1696
1697 if (list_empty(&li->falh)) {
2373ce1c 1698 hlist_del_rcu(&li->hlist);
19baf839
RO
1699 free_leaf_info(li);
1700 }
1701 }
1702 return found;
1703}
1704
82cfbb00
SH
1705/*
1706 * Scan for the next right leaf starting at node p->child[idx]
1707 * Since we have back pointer, no recursion necessary.
1708 */
1709static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1710{
82cfbb00
SH
1711 do {
1712 t_key idx;
c877efb2 1713
c877efb2 1714 if (c)
82cfbb00 1715 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1716 else
82cfbb00 1717 idx = 0;
2373ce1c 1718
82cfbb00
SH
1719 while (idx < 1u << p->bits) {
1720 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1721 if (!c)
91b9a277
OJ
1722 continue;
1723
82cfbb00
SH
1724 if (IS_LEAF(c)) {
1725 prefetch(p->child[idx]);
1726 return (struct leaf *) c;
19baf839 1727 }
82cfbb00
SH
1728
1729 /* Rescan start scanning in new node */
1730 p = (struct tnode *) c;
1731 idx = 0;
19baf839 1732 }
82cfbb00
SH
1733
1734 /* Node empty, walk back up to parent */
91b9a277 1735 c = (struct node *) p;
82cfbb00
SH
1736 } while ( (p = node_parent_rcu(c)) != NULL);
1737
1738 return NULL; /* Root of trie */
1739}
1740
82cfbb00
SH
1741static struct leaf *trie_firstleaf(struct trie *t)
1742{
1743 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1744
1745 if (!n)
1746 return NULL;
1747
1748 if (IS_LEAF(n)) /* trie is just a leaf */
1749 return (struct leaf *) n;
1750
1751 return leaf_walk_rcu(n, NULL);
1752}
1753
1754static struct leaf *trie_nextleaf(struct leaf *l)
1755{
1756 struct node *c = (struct node *) l;
1757 struct tnode *p = node_parent(c);
1758
1759 if (!p)
1760 return NULL; /* trie with just one leaf */
1761
1762 return leaf_walk_rcu(p, c);
19baf839
RO
1763}
1764
71d67e66
SH
1765static struct leaf *trie_leafindex(struct trie *t, int index)
1766{
1767 struct leaf *l = trie_firstleaf(t);
1768
ec28cf73 1769 while (l && index-- > 0)
71d67e66 1770 l = trie_nextleaf(l);
ec28cf73 1771
71d67e66
SH
1772 return l;
1773}
1774
1775
d562f1f8
RO
1776/*
1777 * Caller must hold RTNL.
1778 */
19baf839
RO
1779static int fn_trie_flush(struct fib_table *tb)
1780{
1781 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1782 struct leaf *l, *ll = NULL;
82cfbb00 1783 int found = 0;
19baf839 1784
82cfbb00 1785 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1786 found += trie_flush_leaf(l);
19baf839
RO
1787
1788 if (ll && hlist_empty(&ll->list))
9195bef7 1789 trie_leaf_remove(t, ll);
19baf839
RO
1790 ll = l;
1791 }
1792
1793 if (ll && hlist_empty(&ll->list))
9195bef7 1794 trie_leaf_remove(t, ll);
19baf839 1795
0c7770c7 1796 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1797 return found;
1798}
1799
a07f5f50
SH
1800static void fn_trie_select_default(struct fib_table *tb,
1801 const struct flowi *flp,
1802 struct fib_result *res)
19baf839
RO
1803{
1804 struct trie *t = (struct trie *) tb->tb_data;
1805 int order, last_idx;
1806 struct fib_info *fi = NULL;
1807 struct fib_info *last_resort;
1808 struct fib_alias *fa = NULL;
1809 struct list_head *fa_head;
1810 struct leaf *l;
1811
1812 last_idx = -1;
1813 last_resort = NULL;
1814 order = -1;
1815
2373ce1c 1816 rcu_read_lock();
c877efb2 1817
19baf839 1818 l = fib_find_node(t, 0);
c877efb2 1819 if (!l)
19baf839
RO
1820 goto out;
1821
1822 fa_head = get_fa_head(l, 0);
c877efb2 1823 if (!fa_head)
19baf839
RO
1824 goto out;
1825
c877efb2 1826 if (list_empty(fa_head))
19baf839
RO
1827 goto out;
1828
2373ce1c 1829 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1830 struct fib_info *next_fi = fa->fa_info;
91b9a277 1831
19baf839
RO
1832 if (fa->fa_scope != res->scope ||
1833 fa->fa_type != RTN_UNICAST)
1834 continue;
91b9a277 1835
19baf839
RO
1836 if (next_fi->fib_priority > res->fi->fib_priority)
1837 break;
1838 if (!next_fi->fib_nh[0].nh_gw ||
1839 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1840 continue;
1841 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1842
19baf839
RO
1843 if (fi == NULL) {
1844 if (next_fi != res->fi)
1845 break;
1846 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1847 &last_idx, tb->tb_default)) {
a2bbe682 1848 fib_result_assign(res, fi);
971b893e 1849 tb->tb_default = order;
19baf839
RO
1850 goto out;
1851 }
1852 fi = next_fi;
1853 order++;
1854 }
1855 if (order <= 0 || fi == NULL) {
971b893e 1856 tb->tb_default = -1;
19baf839
RO
1857 goto out;
1858 }
1859
971b893e
DL
1860 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1861 tb->tb_default)) {
a2bbe682 1862 fib_result_assign(res, fi);
971b893e 1863 tb->tb_default = order;
19baf839
RO
1864 goto out;
1865 }
a2bbe682
DL
1866 if (last_idx >= 0)
1867 fib_result_assign(res, last_resort);
971b893e
DL
1868 tb->tb_default = last_idx;
1869out:
2373ce1c 1870 rcu_read_unlock();
19baf839
RO
1871}
1872
a07f5f50
SH
1873static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1874 struct fib_table *tb,
19baf839
RO
1875 struct sk_buff *skb, struct netlink_callback *cb)
1876{
1877 int i, s_i;
1878 struct fib_alias *fa;
32ab5f80 1879 __be32 xkey = htonl(key);
19baf839 1880
71d67e66 1881 s_i = cb->args[5];
19baf839
RO
1882 i = 0;
1883
2373ce1c
RO
1884 /* rcu_read_lock is hold by caller */
1885
1886 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1887 if (i < s_i) {
1888 i++;
1889 continue;
1890 }
19baf839
RO
1891
1892 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1893 cb->nlh->nlmsg_seq,
1894 RTM_NEWROUTE,
1895 tb->tb_id,
1896 fa->fa_type,
1897 fa->fa_scope,
be403ea1 1898 xkey,
19baf839
RO
1899 plen,
1900 fa->fa_tos,
64347f78 1901 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1902 cb->args[5] = i;
19baf839 1903 return -1;
91b9a277 1904 }
19baf839
RO
1905 i++;
1906 }
71d67e66 1907 cb->args[5] = i;
19baf839
RO
1908 return skb->len;
1909}
1910
a88ee229
SH
1911static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1912 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1913{
a88ee229
SH
1914 struct leaf_info *li;
1915 struct hlist_node *node;
1916 int i, s_i;
19baf839 1917
71d67e66 1918 s_i = cb->args[4];
a88ee229 1919 i = 0;
19baf839 1920
a88ee229
SH
1921 /* rcu_read_lock is hold by caller */
1922 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1923 if (i < s_i) {
1924 i++;
19baf839 1925 continue;
a88ee229 1926 }
91b9a277 1927
a88ee229 1928 if (i > s_i)
71d67e66 1929 cb->args[5] = 0;
19baf839 1930
a88ee229 1931 if (list_empty(&li->falh))
19baf839
RO
1932 continue;
1933
a88ee229 1934 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1935 cb->args[4] = i;
19baf839
RO
1936 return -1;
1937 }
a88ee229 1938 i++;
19baf839 1939 }
a88ee229 1940
71d67e66 1941 cb->args[4] = i;
19baf839
RO
1942 return skb->len;
1943}
1944
a07f5f50
SH
1945static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1946 struct netlink_callback *cb)
19baf839 1947{
a88ee229 1948 struct leaf *l;
19baf839 1949 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1950 t_key key = cb->args[2];
71d67e66 1951 int count = cb->args[3];
19baf839 1952
2373ce1c 1953 rcu_read_lock();
d5ce8a0e
SH
1954 /* Dump starting at last key.
1955 * Note: 0.0.0.0/0 (ie default) is first key.
1956 */
71d67e66 1957 if (count == 0)
d5ce8a0e
SH
1958 l = trie_firstleaf(t);
1959 else {
71d67e66
SH
1960 /* Normally, continue from last key, but if that is missing
1961 * fallback to using slow rescan
1962 */
d5ce8a0e 1963 l = fib_find_node(t, key);
71d67e66
SH
1964 if (!l)
1965 l = trie_leafindex(t, count);
d5ce8a0e 1966 }
a88ee229 1967
d5ce8a0e
SH
1968 while (l) {
1969 cb->args[2] = l->key;
a88ee229 1970 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1971 cb->args[3] = count;
a88ee229 1972 rcu_read_unlock();
a88ee229 1973 return -1;
19baf839 1974 }
d5ce8a0e 1975
71d67e66 1976 ++count;
d5ce8a0e 1977 l = trie_nextleaf(l);
71d67e66
SH
1978 memset(&cb->args[4], 0,
1979 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1980 }
71d67e66 1981 cb->args[3] = count;
2373ce1c 1982 rcu_read_unlock();
a88ee229 1983
19baf839 1984 return skb->len;
19baf839
RO
1985}
1986
7f9b8052
SH
1987void __init fib_hash_init(void)
1988{
a07f5f50
SH
1989 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1990 sizeof(struct fib_alias),
bc3c8c1e
SH
1991 0, SLAB_PANIC, NULL);
1992
1993 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1994 max(sizeof(struct leaf),
1995 sizeof(struct leaf_info)),
1996 0, SLAB_PANIC, NULL);
7f9b8052 1997}
19baf839 1998
7f9b8052
SH
1999
2000/* Fix more generic FIB names for init later */
2001struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2002{
2003 struct fib_table *tb;
2004 struct trie *t;
2005
19baf839
RO
2006 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2007 GFP_KERNEL);
2008 if (tb == NULL)
2009 return NULL;
2010
2011 tb->tb_id = id;
971b893e 2012 tb->tb_default = -1;
19baf839
RO
2013 tb->tb_lookup = fn_trie_lookup;
2014 tb->tb_insert = fn_trie_insert;
2015 tb->tb_delete = fn_trie_delete;
2016 tb->tb_flush = fn_trie_flush;
2017 tb->tb_select_default = fn_trie_select_default;
2018 tb->tb_dump = fn_trie_dump;
19baf839
RO
2019
2020 t = (struct trie *) tb->tb_data;
c28a1cf4 2021 memset(t, 0, sizeof(*t));
19baf839 2022
19baf839 2023 if (id == RT_TABLE_LOCAL)
a07f5f50 2024 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2025
2026 return tb;
2027}
2028
cb7b593c
SH
2029#ifdef CONFIG_PROC_FS
2030/* Depth first Trie walk iterator */
2031struct fib_trie_iter {
1c340b2f 2032 struct seq_net_private p;
3d3b2d25 2033 struct fib_table *tb;
cb7b593c 2034 struct tnode *tnode;
cb7b593c
SH
2035 unsigned index;
2036 unsigned depth;
2037};
19baf839 2038
cb7b593c 2039static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2040{
cb7b593c
SH
2041 struct tnode *tn = iter->tnode;
2042 unsigned cindex = iter->index;
2043 struct tnode *p;
19baf839 2044
6640e697
EB
2045 /* A single entry routing table */
2046 if (!tn)
2047 return NULL;
2048
cb7b593c
SH
2049 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2050 iter->tnode, iter->index, iter->depth);
2051rescan:
2052 while (cindex < (1<<tn->bits)) {
b59cfbf7 2053 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2054
cb7b593c
SH
2055 if (n) {
2056 if (IS_LEAF(n)) {
2057 iter->tnode = tn;
2058 iter->index = cindex + 1;
2059 } else {
2060 /* push down one level */
2061 iter->tnode = (struct tnode *) n;
2062 iter->index = 0;
2063 ++iter->depth;
2064 }
2065 return n;
2066 }
19baf839 2067
cb7b593c
SH
2068 ++cindex;
2069 }
91b9a277 2070
cb7b593c 2071 /* Current node exhausted, pop back up */
b59cfbf7 2072 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2073 if (p) {
2074 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2075 tn = p;
2076 --iter->depth;
2077 goto rescan;
19baf839 2078 }
cb7b593c
SH
2079
2080 /* got root? */
2081 return NULL;
19baf839
RO
2082}
2083
cb7b593c
SH
2084static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2085 struct trie *t)
19baf839 2086{
3d3b2d25 2087 struct node *n;
5ddf0eb2 2088
132adf54 2089 if (!t)
5ddf0eb2
RO
2090 return NULL;
2091
2092 n = rcu_dereference(t->trie);
3d3b2d25 2093 if (!n)
5ddf0eb2 2094 return NULL;
19baf839 2095
3d3b2d25
SH
2096 if (IS_TNODE(n)) {
2097 iter->tnode = (struct tnode *) n;
2098 iter->index = 0;
2099 iter->depth = 1;
2100 } else {
2101 iter->tnode = NULL;
2102 iter->index = 0;
2103 iter->depth = 0;
91b9a277 2104 }
3d3b2d25
SH
2105
2106 return n;
cb7b593c 2107}
91b9a277 2108
cb7b593c
SH
2109static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2110{
2111 struct node *n;
2112 struct fib_trie_iter iter;
91b9a277 2113
cb7b593c 2114 memset(s, 0, sizeof(*s));
91b9a277 2115
cb7b593c 2116 rcu_read_lock();
3d3b2d25 2117 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2118 if (IS_LEAF(n)) {
93672292
SH
2119 struct leaf *l = (struct leaf *)n;
2120 struct leaf_info *li;
2121 struct hlist_node *tmp;
2122
cb7b593c
SH
2123 s->leaves++;
2124 s->totdepth += iter.depth;
2125 if (iter.depth > s->maxdepth)
2126 s->maxdepth = iter.depth;
93672292
SH
2127
2128 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2129 ++s->prefixes;
cb7b593c
SH
2130 } else {
2131 const struct tnode *tn = (const struct tnode *) n;
2132 int i;
2133
2134 s->tnodes++;
132adf54 2135 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2136 s->nodesizes[tn->bits]++;
2137
cb7b593c
SH
2138 for (i = 0; i < (1<<tn->bits); i++)
2139 if (!tn->child[i])
2140 s->nullpointers++;
19baf839 2141 }
19baf839 2142 }
2373ce1c 2143 rcu_read_unlock();
19baf839
RO
2144}
2145
cb7b593c
SH
2146/*
2147 * This outputs /proc/net/fib_triestats
2148 */
2149static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2150{
cb7b593c 2151 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2152
cb7b593c
SH
2153 if (stat->leaves)
2154 avdepth = stat->totdepth*100 / stat->leaves;
2155 else
2156 avdepth = 0;
91b9a277 2157
a07f5f50
SH
2158 seq_printf(seq, "\tAver depth: %u.%02d\n",
2159 avdepth / 100, avdepth % 100);
cb7b593c 2160 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2161
cb7b593c 2162 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2163 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2164
2165 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2166 bytes += sizeof(struct leaf_info) * stat->prefixes;
2167
187b5188 2168 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2169 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2170
06ef921d
RO
2171 max = MAX_STAT_DEPTH;
2172 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2173 max--;
19baf839 2174
cb7b593c
SH
2175 pointers = 0;
2176 for (i = 1; i <= max; i++)
2177 if (stat->nodesizes[i] != 0) {
187b5188 2178 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2179 pointers += (1<<i) * stat->nodesizes[i];
2180 }
2181 seq_putc(seq, '\n');
187b5188 2182 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2183
cb7b593c 2184 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2185 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2186 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2187}
2373ce1c 2188
cb7b593c 2189#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2190static void trie_show_usage(struct seq_file *seq,
2191 const struct trie_use_stats *stats)
2192{
2193 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2194 seq_printf(seq, "gets = %u\n", stats->gets);
2195 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2196 seq_printf(seq, "semantic match passed = %u\n",
2197 stats->semantic_match_passed);
2198 seq_printf(seq, "semantic match miss = %u\n",
2199 stats->semantic_match_miss);
2200 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2201 seq_printf(seq, "skipped node resize = %u\n\n",
2202 stats->resize_node_skipped);
cb7b593c 2203}
66a2f7fd
SH
2204#endif /* CONFIG_IP_FIB_TRIE_STATS */
2205
3d3b2d25 2206static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2207{
3d3b2d25
SH
2208 if (tb->tb_id == RT_TABLE_LOCAL)
2209 seq_puts(seq, "Local:\n");
2210 else if (tb->tb_id == RT_TABLE_MAIN)
2211 seq_puts(seq, "Main:\n");
2212 else
2213 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2214}
19baf839 2215
3d3b2d25 2216
cb7b593c
SH
2217static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2218{
1c340b2f 2219 struct net *net = (struct net *)seq->private;
3d3b2d25 2220 unsigned int h;
877a9bff 2221
d717a9a6 2222 seq_printf(seq,
a07f5f50
SH
2223 "Basic info: size of leaf:"
2224 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2225 sizeof(struct leaf), sizeof(struct tnode));
2226
3d3b2d25
SH
2227 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2228 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2229 struct hlist_node *node;
2230 struct fib_table *tb;
2231
2232 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2233 struct trie *t = (struct trie *) tb->tb_data;
2234 struct trie_stat stat;
877a9bff 2235
3d3b2d25
SH
2236 if (!t)
2237 continue;
2238
2239 fib_table_print(seq, tb);
2240
2241 trie_collect_stats(t, &stat);
2242 trie_show_stats(seq, &stat);
2243#ifdef CONFIG_IP_FIB_TRIE_STATS
2244 trie_show_usage(seq, &t->stats);
2245#endif
2246 }
2247 }
19baf839 2248
cb7b593c 2249 return 0;
19baf839
RO
2250}
2251
cb7b593c 2252static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2253{
de05c557 2254 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2255}
2256
9a32144e 2257static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2258 .owner = THIS_MODULE,
2259 .open = fib_triestat_seq_open,
2260 .read = seq_read,
2261 .llseek = seq_lseek,
b6fcbdb4 2262 .release = single_release_net,
cb7b593c
SH
2263};
2264
1218854a 2265static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2266{
1218854a
YH
2267 struct fib_trie_iter *iter = seq->private;
2268 struct net *net = seq_file_net(seq);
cb7b593c 2269 loff_t idx = 0;
3d3b2d25 2270 unsigned int h;
cb7b593c 2271
3d3b2d25
SH
2272 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2273 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2274 struct hlist_node *node;
2275 struct fib_table *tb;
cb7b593c 2276
3d3b2d25
SH
2277 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2278 struct node *n;
2279
2280 for (n = fib_trie_get_first(iter,
2281 (struct trie *) tb->tb_data);
2282 n; n = fib_trie_get_next(iter))
2283 if (pos == idx++) {
2284 iter->tb = tb;
2285 return n;
2286 }
2287 }
cb7b593c 2288 }
3d3b2d25 2289
19baf839
RO
2290 return NULL;
2291}
2292
cb7b593c 2293static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2294 __acquires(RCU)
19baf839 2295{
cb7b593c 2296 rcu_read_lock();
1218854a 2297 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2298}
2299
cb7b593c 2300static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2301{
cb7b593c 2302 struct fib_trie_iter *iter = seq->private;
1218854a 2303 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2304 struct fib_table *tb = iter->tb;
2305 struct hlist_node *tb_node;
2306 unsigned int h;
2307 struct node *n;
cb7b593c 2308
19baf839 2309 ++*pos;
3d3b2d25
SH
2310 /* next node in same table */
2311 n = fib_trie_get_next(iter);
2312 if (n)
2313 return n;
19baf839 2314
3d3b2d25
SH
2315 /* walk rest of this hash chain */
2316 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2317 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2318 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2319 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2320 if (n)
2321 goto found;
2322 }
19baf839 2323
3d3b2d25
SH
2324 /* new hash chain */
2325 while (++h < FIB_TABLE_HASHSZ) {
2326 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2327 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2328 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2329 if (n)
2330 goto found;
2331 }
2332 }
cb7b593c 2333 return NULL;
3d3b2d25
SH
2334
2335found:
2336 iter->tb = tb;
2337 return n;
cb7b593c 2338}
19baf839 2339
cb7b593c 2340static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2341 __releases(RCU)
19baf839 2342{
cb7b593c
SH
2343 rcu_read_unlock();
2344}
91b9a277 2345
cb7b593c
SH
2346static void seq_indent(struct seq_file *seq, int n)
2347{
2348 while (n-- > 0) seq_puts(seq, " ");
2349}
19baf839 2350
28d36e37 2351static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2352{
132adf54 2353 switch (s) {
cb7b593c
SH
2354 case RT_SCOPE_UNIVERSE: return "universe";
2355 case RT_SCOPE_SITE: return "site";
2356 case RT_SCOPE_LINK: return "link";
2357 case RT_SCOPE_HOST: return "host";
2358 case RT_SCOPE_NOWHERE: return "nowhere";
2359 default:
28d36e37 2360 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2361 return buf;
2362 }
2363}
19baf839 2364
cb7b593c
SH
2365static const char *rtn_type_names[__RTN_MAX] = {
2366 [RTN_UNSPEC] = "UNSPEC",
2367 [RTN_UNICAST] = "UNICAST",
2368 [RTN_LOCAL] = "LOCAL",
2369 [RTN_BROADCAST] = "BROADCAST",
2370 [RTN_ANYCAST] = "ANYCAST",
2371 [RTN_MULTICAST] = "MULTICAST",
2372 [RTN_BLACKHOLE] = "BLACKHOLE",
2373 [RTN_UNREACHABLE] = "UNREACHABLE",
2374 [RTN_PROHIBIT] = "PROHIBIT",
2375 [RTN_THROW] = "THROW",
2376 [RTN_NAT] = "NAT",
2377 [RTN_XRESOLVE] = "XRESOLVE",
2378};
19baf839 2379
28d36e37 2380static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2381{
cb7b593c
SH
2382 if (t < __RTN_MAX && rtn_type_names[t])
2383 return rtn_type_names[t];
28d36e37 2384 snprintf(buf, len, "type %u", t);
cb7b593c 2385 return buf;
19baf839
RO
2386}
2387
cb7b593c
SH
2388/* Pretty print the trie */
2389static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2390{
cb7b593c
SH
2391 const struct fib_trie_iter *iter = seq->private;
2392 struct node *n = v;
c877efb2 2393
3d3b2d25
SH
2394 if (!node_parent_rcu(n))
2395 fib_table_print(seq, iter->tb);
095b8501 2396
cb7b593c
SH
2397 if (IS_TNODE(n)) {
2398 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2399 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2400
1d25cd6c 2401 seq_indent(seq, iter->depth-1);
a7d632b6 2402 seq_printf(seq, " +-- " NIPQUAD_FMT "/%d %d %d %d\n",
e905a9ed 2403 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2404 tn->empty_children);
e905a9ed 2405
cb7b593c
SH
2406 } else {
2407 struct leaf *l = (struct leaf *) n;
1328042e
SH
2408 struct leaf_info *li;
2409 struct hlist_node *node;
32ab5f80 2410 __be32 val = htonl(l->key);
cb7b593c
SH
2411
2412 seq_indent(seq, iter->depth);
a7d632b6 2413 seq_printf(seq, " |-- " NIPQUAD_FMT "\n", NIPQUAD(val));
1328042e
SH
2414
2415 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2416 struct fib_alias *fa;
2417
2418 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2419 char buf1[32], buf2[32];
2420
2421 seq_indent(seq, iter->depth+1);
2422 seq_printf(seq, " /%d %s %s", li->plen,
2423 rtn_scope(buf1, sizeof(buf1),
2424 fa->fa_scope),
2425 rtn_type(buf2, sizeof(buf2),
2426 fa->fa_type));
2427 if (fa->fa_tos)
b9c4d82a 2428 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2429 seq_putc(seq, '\n');
cb7b593c
SH
2430 }
2431 }
19baf839 2432 }
cb7b593c 2433
19baf839
RO
2434 return 0;
2435}
2436
f690808e 2437static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2438 .start = fib_trie_seq_start,
2439 .next = fib_trie_seq_next,
2440 .stop = fib_trie_seq_stop,
2441 .show = fib_trie_seq_show,
19baf839
RO
2442};
2443
cb7b593c 2444static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2445{
1c340b2f
DL
2446 return seq_open_net(inode, file, &fib_trie_seq_ops,
2447 sizeof(struct fib_trie_iter));
19baf839
RO
2448}
2449
9a32144e 2450static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2451 .owner = THIS_MODULE,
2452 .open = fib_trie_seq_open,
2453 .read = seq_read,
2454 .llseek = seq_lseek,
1c340b2f 2455 .release = seq_release_net,
19baf839
RO
2456};
2457
8315f5d8
SH
2458struct fib_route_iter {
2459 struct seq_net_private p;
2460 struct trie *main_trie;
2461 loff_t pos;
2462 t_key key;
2463};
2464
2465static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2466{
2467 struct leaf *l = NULL;
2468 struct trie *t = iter->main_trie;
2469
2470 /* use cache location of last found key */
2471 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2472 pos -= iter->pos;
2473 else {
2474 iter->pos = 0;
2475 l = trie_firstleaf(t);
2476 }
2477
2478 while (l && pos-- > 0) {
2479 iter->pos++;
2480 l = trie_nextleaf(l);
2481 }
2482
2483 if (l)
2484 iter->key = pos; /* remember it */
2485 else
2486 iter->pos = 0; /* forget it */
2487
2488 return l;
2489}
2490
2491static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2492 __acquires(RCU)
2493{
2494 struct fib_route_iter *iter = seq->private;
2495 struct fib_table *tb;
2496
2497 rcu_read_lock();
1218854a 2498 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2499 if (!tb)
2500 return NULL;
2501
2502 iter->main_trie = (struct trie *) tb->tb_data;
2503 if (*pos == 0)
2504 return SEQ_START_TOKEN;
2505 else
2506 return fib_route_get_idx(iter, *pos - 1);
2507}
2508
2509static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2510{
2511 struct fib_route_iter *iter = seq->private;
2512 struct leaf *l = v;
2513
2514 ++*pos;
2515 if (v == SEQ_START_TOKEN) {
2516 iter->pos = 0;
2517 l = trie_firstleaf(iter->main_trie);
2518 } else {
2519 iter->pos++;
2520 l = trie_nextleaf(l);
2521 }
2522
2523 if (l)
2524 iter->key = l->key;
2525 else
2526 iter->pos = 0;
2527 return l;
2528}
2529
2530static void fib_route_seq_stop(struct seq_file *seq, void *v)
2531 __releases(RCU)
2532{
2533 rcu_read_unlock();
2534}
2535
32ab5f80 2536static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2537{
cb7b593c
SH
2538 static unsigned type2flags[RTN_MAX + 1] = {
2539 [7] = RTF_REJECT, [8] = RTF_REJECT,
2540 };
2541 unsigned flags = type2flags[type];
19baf839 2542
cb7b593c
SH
2543 if (fi && fi->fib_nh->nh_gw)
2544 flags |= RTF_GATEWAY;
32ab5f80 2545 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2546 flags |= RTF_HOST;
2547 flags |= RTF_UP;
2548 return flags;
19baf839
RO
2549}
2550
cb7b593c
SH
2551/*
2552 * This outputs /proc/net/route.
2553 * The format of the file is not supposed to be changed
2554 * and needs to be same as fib_hash output to avoid breaking
2555 * legacy utilities
2556 */
2557static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2558{
cb7b593c 2559 struct leaf *l = v;
1328042e
SH
2560 struct leaf_info *li;
2561 struct hlist_node *node;
19baf839 2562
cb7b593c
SH
2563 if (v == SEQ_START_TOKEN) {
2564 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2565 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2566 "\tWindow\tIRTT");
2567 return 0;
2568 }
19baf839 2569
1328042e 2570 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2571 struct fib_alias *fa;
32ab5f80 2572 __be32 mask, prefix;
91b9a277 2573
cb7b593c
SH
2574 mask = inet_make_mask(li->plen);
2575 prefix = htonl(l->key);
19baf839 2576
cb7b593c 2577 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2578 const struct fib_info *fi = fa->fa_info;
cb7b593c 2579 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2580 int len;
19baf839 2581
cb7b593c
SH
2582 if (fa->fa_type == RTN_BROADCAST
2583 || fa->fa_type == RTN_MULTICAST)
2584 continue;
19baf839 2585
cb7b593c 2586 if (fi)
5e659e4c
PE
2587 seq_printf(seq,
2588 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2589 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2590 fi->fib_dev ? fi->fib_dev->name : "*",
2591 prefix,
2592 fi->fib_nh->nh_gw, flags, 0, 0,
2593 fi->fib_priority,
2594 mask,
a07f5f50
SH
2595 (fi->fib_advmss ?
2596 fi->fib_advmss + 40 : 0),
cb7b593c 2597 fi->fib_window,
5e659e4c 2598 fi->fib_rtt >> 3, &len);
cb7b593c 2599 else
5e659e4c
PE
2600 seq_printf(seq,
2601 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2602 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2603 prefix, 0, flags, 0, 0, 0,
5e659e4c 2604 mask, 0, 0, 0, &len);
19baf839 2605
5e659e4c 2606 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2607 }
19baf839
RO
2608 }
2609
2610 return 0;
2611}
2612
f690808e 2613static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2614 .start = fib_route_seq_start,
2615 .next = fib_route_seq_next,
2616 .stop = fib_route_seq_stop,
cb7b593c 2617 .show = fib_route_seq_show,
19baf839
RO
2618};
2619
cb7b593c 2620static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2621{
1c340b2f 2622 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2623 sizeof(struct fib_route_iter));
19baf839
RO
2624}
2625
9a32144e 2626static const struct file_operations fib_route_fops = {
cb7b593c
SH
2627 .owner = THIS_MODULE,
2628 .open = fib_route_seq_open,
2629 .read = seq_read,
2630 .llseek = seq_lseek,
1c340b2f 2631 .release = seq_release_net,
19baf839
RO
2632};
2633
61a02653 2634int __net_init fib_proc_init(struct net *net)
19baf839 2635{
61a02653 2636 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2637 goto out1;
2638
61a02653
DL
2639 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2640 &fib_triestat_fops))
cb7b593c
SH
2641 goto out2;
2642
61a02653 2643 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2644 goto out3;
2645
19baf839 2646 return 0;
cb7b593c
SH
2647
2648out3:
61a02653 2649 proc_net_remove(net, "fib_triestat");
cb7b593c 2650out2:
61a02653 2651 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2652out1:
2653 return -ENOMEM;
19baf839
RO
2654}
2655
61a02653 2656void __net_exit fib_proc_exit(struct net *net)
19baf839 2657{
61a02653
DL
2658 proc_net_remove(net, "fib_trie");
2659 proc_net_remove(net, "fib_triestat");
2660 proc_net_remove(net, "route");
19baf839
RO
2661}
2662
2663#endif /* CONFIG_PROC_FS */