]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/sock.c
[NET] CORE: Fix whitespace errors.
[net-next-2.6.git] / net / core / sock.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
02c30a84 12 * Authors: Ross Biro
1da177e4
LT
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
4ec93edb 37 * code. The ACK stuff can wait and needs major
1da177e4
LT
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
92 */
93
4fc268d2 94#include <linux/capability.h>
1da177e4
LT
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
1da177e4
LT
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
a1f8e7f7 114#include <linux/highmem.h>
1da177e4
LT
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
2e6599cb 122#include <net/request_sock.h>
1da177e4
LT
123#include <net/sock.h>
124#include <net/xfrm.h>
125#include <linux/ipsec.h>
126
127#include <linux/filter.h>
128
129#ifdef CONFIG_INET
130#include <net/tcp.h>
131#endif
132
da21f24d
IM
133/*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
a5b5bb9a
IM
137static struct lock_class_key af_family_keys[AF_MAX];
138static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140#ifdef CONFIG_DEBUG_LOCK_ALLOC
141/*
142 * Make lock validator output more readable. (we pre-construct these
143 * strings build-time, so that runtime initialization of socket
144 * locks is fast):
145 */
146static const char *af_family_key_strings[AF_MAX+1] = {
147 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
148 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
149 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
150 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
151 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
152 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
153 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
154 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
155 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
156 "sk_lock-27" , "sk_lock-28" , "sk_lock-29" ,
157 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-AF_MAX"
158};
159static const char *af_family_slock_key_strings[AF_MAX+1] = {
160 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
161 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
162 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
163 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
164 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
165 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
166 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
167 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
168 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
169 "slock-27" , "slock-28" , "slock-29" ,
170 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_MAX"
171};
172#endif
da21f24d
IM
173
174/*
175 * sk_callback_lock locking rules are per-address-family,
176 * so split the lock classes by using a per-AF key:
177 */
178static struct lock_class_key af_callback_keys[AF_MAX];
179
1da177e4
LT
180/* Take into consideration the size of the struct sk_buff overhead in the
181 * determination of these values, since that is non-constant across
182 * platforms. This makes socket queueing behavior and performance
183 * not depend upon such differences.
184 */
185#define _SK_MEM_PACKETS 256
186#define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
187#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
188#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
189
190/* Run time adjustable parameters. */
ab32ea5d
BH
191__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
192__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
193__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
194__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
1da177e4
LT
195
196/* Maximal space eaten by iovec or ancilliary data plus some space */
ab32ea5d 197int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
1da177e4
LT
198
199static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
200{
201 struct timeval tv;
202
203 if (optlen < sizeof(tv))
204 return -EINVAL;
205 if (copy_from_user(&tv, optval, sizeof(tv)))
206 return -EFAULT;
207
208 *timeo_p = MAX_SCHEDULE_TIMEOUT;
209 if (tv.tv_sec == 0 && tv.tv_usec == 0)
210 return 0;
211 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
212 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
213 return 0;
214}
215
216static void sock_warn_obsolete_bsdism(const char *name)
217{
218 static int warned;
219 static char warncomm[TASK_COMM_LEN];
4ec93edb
YH
220 if (strcmp(warncomm, current->comm) && warned < 5) {
221 strcpy(warncomm, current->comm);
1da177e4
LT
222 printk(KERN_WARNING "process `%s' is using obsolete "
223 "%s SO_BSDCOMPAT\n", warncomm, name);
224 warned++;
225 }
226}
227
228static void sock_disable_timestamp(struct sock *sk)
4ec93edb
YH
229{
230 if (sock_flag(sk, SOCK_TIMESTAMP)) {
1da177e4
LT
231 sock_reset_flag(sk, SOCK_TIMESTAMP);
232 net_disable_timestamp();
233 }
234}
235
236
f0088a50
DV
237int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
238{
239 int err = 0;
240 int skb_len;
241
242 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
243 number of warnings when compiling with -W --ANK
244 */
245 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
246 (unsigned)sk->sk_rcvbuf) {
247 err = -ENOMEM;
248 goto out;
249 }
250
fda9ef5d 251 err = sk_filter(sk, skb);
f0088a50
DV
252 if (err)
253 goto out;
254
255 skb->dev = NULL;
256 skb_set_owner_r(skb, sk);
257
258 /* Cache the SKB length before we tack it onto the receive
259 * queue. Once it is added it no longer belongs to us and
260 * may be freed by other threads of control pulling packets
261 * from the queue.
262 */
263 skb_len = skb->len;
264
265 skb_queue_tail(&sk->sk_receive_queue, skb);
266
267 if (!sock_flag(sk, SOCK_DEAD))
268 sk->sk_data_ready(sk, skb_len);
269out:
270 return err;
271}
272EXPORT_SYMBOL(sock_queue_rcv_skb);
273
58a5a7b9 274int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
f0088a50
DV
275{
276 int rc = NET_RX_SUCCESS;
277
fda9ef5d 278 if (sk_filter(sk, skb))
f0088a50
DV
279 goto discard_and_relse;
280
281 skb->dev = NULL;
282
58a5a7b9
ACM
283 if (nested)
284 bh_lock_sock_nested(sk);
285 else
286 bh_lock_sock(sk);
a5b5bb9a
IM
287 if (!sock_owned_by_user(sk)) {
288 /*
289 * trylock + unlock semantics:
290 */
291 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
292
f0088a50 293 rc = sk->sk_backlog_rcv(sk, skb);
a5b5bb9a
IM
294
295 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
296 } else
f0088a50
DV
297 sk_add_backlog(sk, skb);
298 bh_unlock_sock(sk);
299out:
300 sock_put(sk);
301 return rc;
302discard_and_relse:
303 kfree_skb(skb);
304 goto out;
305}
306EXPORT_SYMBOL(sk_receive_skb);
307
308struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
309{
310 struct dst_entry *dst = sk->sk_dst_cache;
311
312 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
313 sk->sk_dst_cache = NULL;
314 dst_release(dst);
315 return NULL;
316 }
317
318 return dst;
319}
320EXPORT_SYMBOL(__sk_dst_check);
321
322struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
323{
324 struct dst_entry *dst = sk_dst_get(sk);
325
326 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
327 sk_dst_reset(sk);
328 dst_release(dst);
329 return NULL;
330 }
331
332 return dst;
333}
334EXPORT_SYMBOL(sk_dst_check);
335
1da177e4
LT
336/*
337 * This is meant for all protocols to use and covers goings on
338 * at the socket level. Everything here is generic.
339 */
340
341int sock_setsockopt(struct socket *sock, int level, int optname,
342 char __user *optval, int optlen)
343{
344 struct sock *sk=sock->sk;
345 struct sk_filter *filter;
346 int val;
347 int valbool;
348 struct linger ling;
349 int ret = 0;
4ec93edb 350
1da177e4
LT
351 /*
352 * Options without arguments
353 */
354
355#ifdef SO_DONTLINGER /* Compatibility item... */
a77be819
KM
356 if (optname == SO_DONTLINGER) {
357 lock_sock(sk);
358 sock_reset_flag(sk, SOCK_LINGER);
359 release_sock(sk);
360 return 0;
1da177e4 361 }
a77be819 362#endif
4ec93edb
YH
363
364 if(optlen<sizeof(int))
365 return(-EINVAL);
366
1da177e4
LT
367 if (get_user(val, (int __user *)optval))
368 return -EFAULT;
4ec93edb
YH
369
370 valbool = val?1:0;
1da177e4
LT
371
372 lock_sock(sk);
373
4ec93edb
YH
374 switch(optname)
375 {
376 case SO_DEBUG:
1da177e4
LT
377 if(val && !capable(CAP_NET_ADMIN))
378 {
379 ret = -EACCES;
380 }
381 else if (valbool)
382 sock_set_flag(sk, SOCK_DBG);
383 else
384 sock_reset_flag(sk, SOCK_DBG);
385 break;
386 case SO_REUSEADDR:
387 sk->sk_reuse = valbool;
388 break;
389 case SO_TYPE:
390 case SO_ERROR:
391 ret = -ENOPROTOOPT;
4ec93edb 392 break;
1da177e4
LT
393 case SO_DONTROUTE:
394 if (valbool)
395 sock_set_flag(sk, SOCK_LOCALROUTE);
396 else
397 sock_reset_flag(sk, SOCK_LOCALROUTE);
398 break;
399 case SO_BROADCAST:
400 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
401 break;
402 case SO_SNDBUF:
403 /* Don't error on this BSD doesn't and if you think
404 about it this is right. Otherwise apps have to
405 play 'guess the biggest size' games. RCVBUF/SNDBUF
406 are treated in BSD as hints */
4ec93edb 407
1da177e4
LT
408 if (val > sysctl_wmem_max)
409 val = sysctl_wmem_max;
b0573dea 410set_sndbuf:
1da177e4
LT
411 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
412 if ((val * 2) < SOCK_MIN_SNDBUF)
413 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
414 else
415 sk->sk_sndbuf = val * 2;
416
417 /*
418 * Wake up sending tasks if we
419 * upped the value.
420 */
421 sk->sk_write_space(sk);
422 break;
423
b0573dea
PM
424 case SO_SNDBUFFORCE:
425 if (!capable(CAP_NET_ADMIN)) {
426 ret = -EPERM;
427 break;
428 }
429 goto set_sndbuf;
430
1da177e4
LT
431 case SO_RCVBUF:
432 /* Don't error on this BSD doesn't and if you think
433 about it this is right. Otherwise apps have to
434 play 'guess the biggest size' games. RCVBUF/SNDBUF
435 are treated in BSD as hints */
4ec93edb 436
1da177e4
LT
437 if (val > sysctl_rmem_max)
438 val = sysctl_rmem_max;
b0573dea 439set_rcvbuf:
1da177e4 440 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
c08e4961
AM
441 /*
442 * We double it on the way in to account for
443 * "struct sk_buff" etc. overhead. Applications
444 * assume that the SO_RCVBUF setting they make will
445 * allow that much actual data to be received on that
446 * socket.
447 *
448 * Applications are unaware that "struct sk_buff" and
449 * other overheads allocate from the receive buffer
450 * during socket buffer allocation.
451 *
452 * And after considering the possible alternatives,
453 * returning the value we actually used in getsockopt
454 * is the most desirable behavior.
455 */
1da177e4
LT
456 if ((val * 2) < SOCK_MIN_RCVBUF)
457 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
458 else
459 sk->sk_rcvbuf = val * 2;
460 break;
461
b0573dea
PM
462 case SO_RCVBUFFORCE:
463 if (!capable(CAP_NET_ADMIN)) {
464 ret = -EPERM;
465 break;
466 }
467 goto set_rcvbuf;
468
1da177e4
LT
469 case SO_KEEPALIVE:
470#ifdef CONFIG_INET
471 if (sk->sk_protocol == IPPROTO_TCP)
472 tcp_set_keepalive(sk, valbool);
473#endif
474 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
475 break;
476
4ec93edb 477 case SO_OOBINLINE:
1da177e4
LT
478 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
479 break;
480
4ec93edb 481 case SO_NO_CHECK:
1da177e4
LT
482 sk->sk_no_check = valbool;
483 break;
484
485 case SO_PRIORITY:
4ec93edb 486 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
1da177e4
LT
487 sk->sk_priority = val;
488 else
489 ret = -EPERM;
490 break;
491
492 case SO_LINGER:
493 if(optlen<sizeof(ling)) {
494 ret = -EINVAL; /* 1003.1g */
495 break;
496 }
497 if (copy_from_user(&ling,optval,sizeof(ling))) {
498 ret = -EFAULT;
499 break;
500 }
501 if (!ling.l_onoff)
502 sock_reset_flag(sk, SOCK_LINGER);
503 else {
504#if (BITS_PER_LONG == 32)
9261c9b0 505 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1da177e4
LT
506 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
507 else
508#endif
9261c9b0 509 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1da177e4
LT
510 sock_set_flag(sk, SOCK_LINGER);
511 }
512 break;
513
514 case SO_BSDCOMPAT:
515 sock_warn_obsolete_bsdism("setsockopt");
516 break;
517
518 case SO_PASSCRED:
519 if (valbool)
520 set_bit(SOCK_PASSCRED, &sock->flags);
521 else
522 clear_bit(SOCK_PASSCRED, &sock->flags);
523 break;
524
525 case SO_TIMESTAMP:
526 if (valbool) {
527 sock_set_flag(sk, SOCK_RCVTSTAMP);
528 sock_enable_timestamp(sk);
529 } else
530 sock_reset_flag(sk, SOCK_RCVTSTAMP);
531 break;
532
533 case SO_RCVLOWAT:
534 if (val < 0)
535 val = INT_MAX;
536 sk->sk_rcvlowat = val ? : 1;
537 break;
538
539 case SO_RCVTIMEO:
540 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
541 break;
542
543 case SO_SNDTIMEO:
544 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
545 break;
546
547#ifdef CONFIG_NETDEVICES
548 case SO_BINDTODEVICE:
549 {
4ec93edb 550 char devname[IFNAMSIZ];
1da177e4 551
4ec93edb 552 /* Sorry... */
1da177e4
LT
553 if (!capable(CAP_NET_RAW)) {
554 ret = -EPERM;
555 break;
556 }
557
558 /* Bind this socket to a particular device like "eth0",
559 * as specified in the passed interface name. If the
4ec93edb
YH
560 * name is "" or the option length is zero the socket
561 * is not bound.
562 */
1da177e4
LT
563
564 if (!valbool) {
565 sk->sk_bound_dev_if = 0;
566 } else {
f67ed26f
DM
567 if (optlen > IFNAMSIZ - 1)
568 optlen = IFNAMSIZ - 1;
569 memset(devname, 0, sizeof(devname));
1da177e4
LT
570 if (copy_from_user(devname, optval, optlen)) {
571 ret = -EFAULT;
572 break;
573 }
574
575 /* Remove any cached route for this socket. */
576 sk_dst_reset(sk);
577
578 if (devname[0] == '\0') {
579 sk->sk_bound_dev_if = 0;
580 } else {
581 struct net_device *dev = dev_get_by_name(devname);
582 if (!dev) {
583 ret = -ENODEV;
584 break;
585 }
586 sk->sk_bound_dev_if = dev->ifindex;
587 dev_put(dev);
588 }
589 }
590 break;
591 }
592#endif
593
594
595 case SO_ATTACH_FILTER:
596 ret = -EINVAL;
597 if (optlen == sizeof(struct sock_fprog)) {
598 struct sock_fprog fprog;
599
600 ret = -EFAULT;
601 if (copy_from_user(&fprog, optval, sizeof(fprog)))
602 break;
603
604 ret = sk_attach_filter(&fprog, sk);
605 }
606 break;
607
608 case SO_DETACH_FILTER:
fda9ef5d
DM
609 rcu_read_lock_bh();
610 filter = rcu_dereference(sk->sk_filter);
4ec93edb 611 if (filter) {
fda9ef5d 612 rcu_assign_pointer(sk->sk_filter, NULL);
1da177e4 613 sk_filter_release(sk, filter);
fda9ef5d 614 rcu_read_unlock_bh();
1da177e4
LT
615 break;
616 }
fda9ef5d 617 rcu_read_unlock_bh();
1da177e4
LT
618 ret = -ENONET;
619 break;
620
877ce7c1
CZ
621 case SO_PASSSEC:
622 if (valbool)
623 set_bit(SOCK_PASSSEC, &sock->flags);
624 else
625 clear_bit(SOCK_PASSSEC, &sock->flags);
626 break;
627
1da177e4
LT
628 /* We implement the SO_SNDLOWAT etc to
629 not be settable (1003.1g 5.3) */
630 default:
4ec93edb 631 ret = -ENOPROTOOPT;
1da177e4 632 break;
4ec93edb 633 }
1da177e4
LT
634 release_sock(sk);
635 return ret;
636}
637
638
639int sock_getsockopt(struct socket *sock, int level, int optname,
640 char __user *optval, int __user *optlen)
641{
642 struct sock *sk = sock->sk;
4ec93edb 643
1da177e4
LT
644 union
645 {
4ec93edb
YH
646 int val;
647 struct linger ling;
1da177e4
LT
648 struct timeval tm;
649 } v;
4ec93edb 650
1da177e4
LT
651 unsigned int lv = sizeof(int);
652 int len;
4ec93edb
YH
653
654 if(get_user(len,optlen))
655 return -EFAULT;
1da177e4
LT
656 if(len < 0)
657 return -EINVAL;
4ec93edb
YH
658
659 switch(optname)
660 {
661 case SO_DEBUG:
1da177e4
LT
662 v.val = sock_flag(sk, SOCK_DBG);
663 break;
4ec93edb 664
1da177e4
LT
665 case SO_DONTROUTE:
666 v.val = sock_flag(sk, SOCK_LOCALROUTE);
667 break;
4ec93edb 668
1da177e4
LT
669 case SO_BROADCAST:
670 v.val = !!sock_flag(sk, SOCK_BROADCAST);
671 break;
672
673 case SO_SNDBUF:
674 v.val = sk->sk_sndbuf;
675 break;
4ec93edb 676
1da177e4
LT
677 case SO_RCVBUF:
678 v.val = sk->sk_rcvbuf;
679 break;
680
681 case SO_REUSEADDR:
682 v.val = sk->sk_reuse;
683 break;
684
685 case SO_KEEPALIVE:
686 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
687 break;
688
689 case SO_TYPE:
4ec93edb 690 v.val = sk->sk_type;
1da177e4
LT
691 break;
692
693 case SO_ERROR:
694 v.val = -sock_error(sk);
695 if(v.val==0)
696 v.val = xchg(&sk->sk_err_soft, 0);
697 break;
698
699 case SO_OOBINLINE:
700 v.val = !!sock_flag(sk, SOCK_URGINLINE);
701 break;
4ec93edb 702
1da177e4
LT
703 case SO_NO_CHECK:
704 v.val = sk->sk_no_check;
705 break;
706
707 case SO_PRIORITY:
708 v.val = sk->sk_priority;
709 break;
4ec93edb
YH
710
711 case SO_LINGER:
1da177e4
LT
712 lv = sizeof(v.ling);
713 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
4ec93edb 714 v.ling.l_linger = sk->sk_lingertime / HZ;
1da177e4 715 break;
4ec93edb 716
1da177e4
LT
717 case SO_BSDCOMPAT:
718 sock_warn_obsolete_bsdism("getsockopt");
719 break;
720
721 case SO_TIMESTAMP:
722 v.val = sock_flag(sk, SOCK_RCVTSTAMP);
723 break;
724
725 case SO_RCVTIMEO:
726 lv=sizeof(struct timeval);
727 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
728 v.tm.tv_sec = 0;
729 v.tm.tv_usec = 0;
730 } else {
731 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
732 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
733 }
734 break;
735
736 case SO_SNDTIMEO:
737 lv=sizeof(struct timeval);
738 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
739 v.tm.tv_sec = 0;
740 v.tm.tv_usec = 0;
741 } else {
742 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
743 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
744 }
745 break;
746
747 case SO_RCVLOWAT:
748 v.val = sk->sk_rcvlowat;
749 break;
750
751 case SO_SNDLOWAT:
752 v.val=1;
4ec93edb 753 break;
1da177e4
LT
754
755 case SO_PASSCRED:
756 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
757 break;
758
759 case SO_PEERCRED:
760 if (len > sizeof(sk->sk_peercred))
761 len = sizeof(sk->sk_peercred);
762 if (copy_to_user(optval, &sk->sk_peercred, len))
763 return -EFAULT;
764 goto lenout;
765
766 case SO_PEERNAME:
767 {
768 char address[128];
769
770 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
771 return -ENOTCONN;
772 if (lv < len)
773 return -EINVAL;
774 if (copy_to_user(optval, address, len))
775 return -EFAULT;
776 goto lenout;
777 }
778
779 /* Dubious BSD thing... Probably nobody even uses it, but
780 * the UNIX standard wants it for whatever reason... -DaveM
781 */
782 case SO_ACCEPTCONN:
783 v.val = sk->sk_state == TCP_LISTEN;
784 break;
785
877ce7c1
CZ
786 case SO_PASSSEC:
787 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
788 break;
789
1da177e4 790 case SO_PEERSEC:
2c7946a7 791 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1da177e4
LT
792
793 default:
794 return(-ENOPROTOOPT);
795 }
796 if (len > lv)
797 len = lv;
798 if (copy_to_user(optval, &v, len))
799 return -EFAULT;
800lenout:
4ec93edb
YH
801 if (put_user(len, optlen))
802 return -EFAULT;
803 return 0;
1da177e4
LT
804}
805
a5b5bb9a
IM
806/*
807 * Initialize an sk_lock.
808 *
809 * (We also register the sk_lock with the lock validator.)
810 */
811static void inline sock_lock_init(struct sock *sk)
812{
ed07536e
PZ
813 sock_lock_init_class_and_name(sk,
814 af_family_slock_key_strings[sk->sk_family],
815 af_family_slock_keys + sk->sk_family,
816 af_family_key_strings[sk->sk_family],
817 af_family_keys + sk->sk_family);
a5b5bb9a
IM
818}
819
1da177e4
LT
820/**
821 * sk_alloc - All socket objects are allocated here
4dc3b16b
PP
822 * @family: protocol family
823 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
824 * @prot: struct proto associated with this new sock instance
825 * @zero_it: if we should zero the newly allocated sock
1da177e4 826 */
dd0fc66f 827struct sock *sk_alloc(int family, gfp_t priority,
86a76caf 828 struct proto *prot, int zero_it)
1da177e4
LT
829{
830 struct sock *sk = NULL;
e18b890b 831 struct kmem_cache *slab = prot->slab;
1da177e4
LT
832
833 if (slab != NULL)
834 sk = kmem_cache_alloc(slab, priority);
835 else
836 sk = kmalloc(prot->obj_size, priority);
837
838 if (sk) {
839 if (zero_it) {
840 memset(sk, 0, prot->obj_size);
841 sk->sk_family = family;
476e19cf
ACM
842 /*
843 * See comment in struct sock definition to understand
844 * why we need sk_prot_creator -acme
845 */
846 sk->sk_prot = sk->sk_prot_creator = prot;
1da177e4
LT
847 sock_lock_init(sk);
848 }
4ec93edb 849
a79af59e
FF
850 if (security_sk_alloc(sk, family, priority))
851 goto out_free;
852
853 if (!try_module_get(prot->owner))
854 goto out_free;
1da177e4
LT
855 }
856 return sk;
a79af59e
FF
857
858out_free:
859 if (slab != NULL)
860 kmem_cache_free(slab, sk);
861 else
862 kfree(sk);
863 return NULL;
1da177e4
LT
864}
865
866void sk_free(struct sock *sk)
867{
868 struct sk_filter *filter;
476e19cf 869 struct module *owner = sk->sk_prot_creator->owner;
1da177e4
LT
870
871 if (sk->sk_destruct)
872 sk->sk_destruct(sk);
873
fda9ef5d 874 filter = rcu_dereference(sk->sk_filter);
1da177e4
LT
875 if (filter) {
876 sk_filter_release(sk, filter);
fda9ef5d 877 rcu_assign_pointer(sk->sk_filter, NULL);
1da177e4
LT
878 }
879
880 sock_disable_timestamp(sk);
881
882 if (atomic_read(&sk->sk_omem_alloc))
883 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
884 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
885
886 security_sk_free(sk);
476e19cf
ACM
887 if (sk->sk_prot_creator->slab != NULL)
888 kmem_cache_free(sk->sk_prot_creator->slab, sk);
1da177e4
LT
889 else
890 kfree(sk);
891 module_put(owner);
892}
893
dd0fc66f 894struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
87d11ceb
ACM
895{
896 struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
897
898 if (newsk != NULL) {
899 struct sk_filter *filter;
900
892c141e 901 sock_copy(newsk, sk);
87d11ceb
ACM
902
903 /* SANITY */
904 sk_node_init(&newsk->sk_node);
905 sock_lock_init(newsk);
906 bh_lock_sock(newsk);
907
908 atomic_set(&newsk->sk_rmem_alloc, 0);
909 atomic_set(&newsk->sk_wmem_alloc, 0);
910 atomic_set(&newsk->sk_omem_alloc, 0);
911 skb_queue_head_init(&newsk->sk_receive_queue);
912 skb_queue_head_init(&newsk->sk_write_queue);
97fc2f08
CL
913#ifdef CONFIG_NET_DMA
914 skb_queue_head_init(&newsk->sk_async_wait_queue);
915#endif
87d11ceb
ACM
916
917 rwlock_init(&newsk->sk_dst_lock);
918 rwlock_init(&newsk->sk_callback_lock);
da21f24d
IM
919 lockdep_set_class(&newsk->sk_callback_lock,
920 af_callback_keys + newsk->sk_family);
87d11ceb
ACM
921
922 newsk->sk_dst_cache = NULL;
923 newsk->sk_wmem_queued = 0;
924 newsk->sk_forward_alloc = 0;
925 newsk->sk_send_head = NULL;
926 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
927 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
928
929 sock_reset_flag(newsk, SOCK_DONE);
930 skb_queue_head_init(&newsk->sk_error_queue);
931
932 filter = newsk->sk_filter;
933 if (filter != NULL)
934 sk_filter_charge(newsk, filter);
935
936 if (unlikely(xfrm_sk_clone_policy(newsk))) {
937 /* It is still raw copy of parent, so invalidate
938 * destructor and make plain sk_free() */
939 newsk->sk_destruct = NULL;
940 sk_free(newsk);
941 newsk = NULL;
942 goto out;
943 }
944
945 newsk->sk_err = 0;
946 newsk->sk_priority = 0;
947 atomic_set(&newsk->sk_refcnt, 2);
948
949 /*
950 * Increment the counter in the same struct proto as the master
951 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
952 * is the same as sk->sk_prot->socks, as this field was copied
953 * with memcpy).
954 *
955 * This _changes_ the previous behaviour, where
956 * tcp_create_openreq_child always was incrementing the
957 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
958 * to be taken into account in all callers. -acme
959 */
960 sk_refcnt_debug_inc(newsk);
961 newsk->sk_socket = NULL;
962 newsk->sk_sleep = NULL;
963
964 if (newsk->sk_prot->sockets_allocated)
965 atomic_inc(newsk->sk_prot->sockets_allocated);
966 }
967out:
968 return newsk;
969}
970
971EXPORT_SYMBOL_GPL(sk_clone);
972
1da177e4
LT
973void __init sk_init(void)
974{
975 if (num_physpages <= 4096) {
976 sysctl_wmem_max = 32767;
977 sysctl_rmem_max = 32767;
978 sysctl_wmem_default = 32767;
979 sysctl_rmem_default = 32767;
980 } else if (num_physpages >= 131072) {
981 sysctl_wmem_max = 131071;
982 sysctl_rmem_max = 131071;
983 }
984}
985
986/*
987 * Simple resource managers for sockets.
988 */
989
990
4ec93edb
YH
991/*
992 * Write buffer destructor automatically called from kfree_skb.
1da177e4
LT
993 */
994void sock_wfree(struct sk_buff *skb)
995{
996 struct sock *sk = skb->sk;
997
998 /* In case it might be waiting for more memory. */
999 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1000 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1001 sk->sk_write_space(sk);
1002 sock_put(sk);
1003}
1004
4ec93edb
YH
1005/*
1006 * Read buffer destructor automatically called from kfree_skb.
1da177e4
LT
1007 */
1008void sock_rfree(struct sk_buff *skb)
1009{
1010 struct sock *sk = skb->sk;
1011
1012 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1013}
1014
1015
1016int sock_i_uid(struct sock *sk)
1017{
1018 int uid;
1019
1020 read_lock(&sk->sk_callback_lock);
1021 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1022 read_unlock(&sk->sk_callback_lock);
1023 return uid;
1024}
1025
1026unsigned long sock_i_ino(struct sock *sk)
1027{
1028 unsigned long ino;
1029
1030 read_lock(&sk->sk_callback_lock);
1031 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1032 read_unlock(&sk->sk_callback_lock);
1033 return ino;
1034}
1035
1036/*
1037 * Allocate a skb from the socket's send buffer.
1038 */
86a76caf 1039struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
dd0fc66f 1040 gfp_t priority)
1da177e4
LT
1041{
1042 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1043 struct sk_buff * skb = alloc_skb(size, priority);
1044 if (skb) {
1045 skb_set_owner_w(skb, sk);
1046 return skb;
1047 }
1048 }
1049 return NULL;
1050}
1051
1052/*
1053 * Allocate a skb from the socket's receive buffer.
4ec93edb 1054 */
86a76caf 1055struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
dd0fc66f 1056 gfp_t priority)
1da177e4
LT
1057{
1058 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1059 struct sk_buff *skb = alloc_skb(size, priority);
1060 if (skb) {
1061 skb_set_owner_r(skb, sk);
1062 return skb;
1063 }
1064 }
1065 return NULL;
1066}
1067
4ec93edb 1068/*
1da177e4 1069 * Allocate a memory block from the socket's option memory buffer.
4ec93edb 1070 */
dd0fc66f 1071void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1da177e4
LT
1072{
1073 if ((unsigned)size <= sysctl_optmem_max &&
1074 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1075 void *mem;
1076 /* First do the add, to avoid the race if kmalloc
4ec93edb 1077 * might sleep.
1da177e4
LT
1078 */
1079 atomic_add(size, &sk->sk_omem_alloc);
1080 mem = kmalloc(size, priority);
1081 if (mem)
1082 return mem;
1083 atomic_sub(size, &sk->sk_omem_alloc);
1084 }
1085 return NULL;
1086}
1087
1088/*
1089 * Free an option memory block.
1090 */
1091void sock_kfree_s(struct sock *sk, void *mem, int size)
1092{
1093 kfree(mem);
1094 atomic_sub(size, &sk->sk_omem_alloc);
1095}
1096
1097/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1098 I think, these locks should be removed for datagram sockets.
1099 */
1100static long sock_wait_for_wmem(struct sock * sk, long timeo)
1101{
1102 DEFINE_WAIT(wait);
1103
1104 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1105 for (;;) {
1106 if (!timeo)
1107 break;
1108 if (signal_pending(current))
1109 break;
1110 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1111 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1112 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1113 break;
1114 if (sk->sk_shutdown & SEND_SHUTDOWN)
1115 break;
1116 if (sk->sk_err)
1117 break;
1118 timeo = schedule_timeout(timeo);
1119 }
1120 finish_wait(sk->sk_sleep, &wait);
1121 return timeo;
1122}
1123
1124
1125/*
1126 * Generic send/receive buffer handlers
1127 */
1128
1129static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1130 unsigned long header_len,
1131 unsigned long data_len,
1132 int noblock, int *errcode)
1133{
1134 struct sk_buff *skb;
7d877f3b 1135 gfp_t gfp_mask;
1da177e4
LT
1136 long timeo;
1137 int err;
1138
1139 gfp_mask = sk->sk_allocation;
1140 if (gfp_mask & __GFP_WAIT)
1141 gfp_mask |= __GFP_REPEAT;
1142
1143 timeo = sock_sndtimeo(sk, noblock);
1144 while (1) {
1145 err = sock_error(sk);
1146 if (err != 0)
1147 goto failure;
1148
1149 err = -EPIPE;
1150 if (sk->sk_shutdown & SEND_SHUTDOWN)
1151 goto failure;
1152
1153 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
db38c179 1154 skb = alloc_skb(header_len, gfp_mask);
1da177e4
LT
1155 if (skb) {
1156 int npages;
1157 int i;
1158
1159 /* No pages, we're done... */
1160 if (!data_len)
1161 break;
1162
1163 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1164 skb->truesize += data_len;
1165 skb_shinfo(skb)->nr_frags = npages;
1166 for (i = 0; i < npages; i++) {
1167 struct page *page;
1168 skb_frag_t *frag;
1169
1170 page = alloc_pages(sk->sk_allocation, 0);
1171 if (!page) {
1172 err = -ENOBUFS;
1173 skb_shinfo(skb)->nr_frags = i;
1174 kfree_skb(skb);
1175 goto failure;
1176 }
1177
1178 frag = &skb_shinfo(skb)->frags[i];
1179 frag->page = page;
1180 frag->page_offset = 0;
1181 frag->size = (data_len >= PAGE_SIZE ?
1182 PAGE_SIZE :
1183 data_len);
1184 data_len -= PAGE_SIZE;
1185 }
1186
1187 /* Full success... */
1188 break;
1189 }
1190 err = -ENOBUFS;
1191 goto failure;
1192 }
1193 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1194 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1195 err = -EAGAIN;
1196 if (!timeo)
1197 goto failure;
1198 if (signal_pending(current))
1199 goto interrupted;
1200 timeo = sock_wait_for_wmem(sk, timeo);
1201 }
1202
1203 skb_set_owner_w(skb, sk);
1204 return skb;
1205
1206interrupted:
1207 err = sock_intr_errno(timeo);
1208failure:
1209 *errcode = err;
1210 return NULL;
1211}
1212
4ec93edb 1213struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1da177e4
LT
1214 int noblock, int *errcode)
1215{
1216 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1217}
1218
1219static void __lock_sock(struct sock *sk)
1220{
1221 DEFINE_WAIT(wait);
1222
1223 for(;;) {
1224 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1225 TASK_UNINTERRUPTIBLE);
1226 spin_unlock_bh(&sk->sk_lock.slock);
1227 schedule();
1228 spin_lock_bh(&sk->sk_lock.slock);
1229 if(!sock_owned_by_user(sk))
1230 break;
1231 }
1232 finish_wait(&sk->sk_lock.wq, &wait);
1233}
1234
1235static void __release_sock(struct sock *sk)
1236{
1237 struct sk_buff *skb = sk->sk_backlog.head;
1238
1239 do {
1240 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1241 bh_unlock_sock(sk);
1242
1243 do {
1244 struct sk_buff *next = skb->next;
1245
1246 skb->next = NULL;
1247 sk->sk_backlog_rcv(sk, skb);
1248
1249 /*
1250 * We are in process context here with softirqs
1251 * disabled, use cond_resched_softirq() to preempt.
1252 * This is safe to do because we've taken the backlog
1253 * queue private:
1254 */
1255 cond_resched_softirq();
1256
1257 skb = next;
1258 } while (skb != NULL);
1259
1260 bh_lock_sock(sk);
1261 } while((skb = sk->sk_backlog.head) != NULL);
1262}
1263
1264/**
1265 * sk_wait_data - wait for data to arrive at sk_receive_queue
4dc3b16b
PP
1266 * @sk: sock to wait on
1267 * @timeo: for how long
1da177e4
LT
1268 *
1269 * Now socket state including sk->sk_err is changed only under lock,
1270 * hence we may omit checks after joining wait queue.
1271 * We check receive queue before schedule() only as optimization;
1272 * it is very likely that release_sock() added new data.
1273 */
1274int sk_wait_data(struct sock *sk, long *timeo)
1275{
1276 int rc;
1277 DEFINE_WAIT(wait);
1278
1279 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1280 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1281 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1282 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1283 finish_wait(sk->sk_sleep, &wait);
1284 return rc;
1285}
1286
1287EXPORT_SYMBOL(sk_wait_data);
1288
1289/*
1290 * Set of default routines for initialising struct proto_ops when
1291 * the protocol does not support a particular function. In certain
1292 * cases where it makes no sense for a protocol to have a "do nothing"
1293 * function, some default processing is provided.
1294 */
1295
1296int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1297{
1298 return -EOPNOTSUPP;
1299}
1300
4ec93edb 1301int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1da177e4
LT
1302 int len, int flags)
1303{
1304 return -EOPNOTSUPP;
1305}
1306
1307int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1308{
1309 return -EOPNOTSUPP;
1310}
1311
1312int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1313{
1314 return -EOPNOTSUPP;
1315}
1316
4ec93edb 1317int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1da177e4
LT
1318 int *len, int peer)
1319{
1320 return -EOPNOTSUPP;
1321}
1322
1323unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1324{
1325 return 0;
1326}
1327
1328int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1329{
1330 return -EOPNOTSUPP;
1331}
1332
1333int sock_no_listen(struct socket *sock, int backlog)
1334{
1335 return -EOPNOTSUPP;
1336}
1337
1338int sock_no_shutdown(struct socket *sock, int how)
1339{
1340 return -EOPNOTSUPP;
1341}
1342
1343int sock_no_setsockopt(struct socket *sock, int level, int optname,
1344 char __user *optval, int optlen)
1345{
1346 return -EOPNOTSUPP;
1347}
1348
1349int sock_no_getsockopt(struct socket *sock, int level, int optname,
1350 char __user *optval, int __user *optlen)
1351{
1352 return -EOPNOTSUPP;
1353}
1354
1355int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1356 size_t len)
1357{
1358 return -EOPNOTSUPP;
1359}
1360
1361int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1362 size_t len, int flags)
1363{
1364 return -EOPNOTSUPP;
1365}
1366
1367int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1368{
1369 /* Mirror missing mmap method error code */
1370 return -ENODEV;
1371}
1372
1373ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1374{
1375 ssize_t res;
1376 struct msghdr msg = {.msg_flags = flags};
1377 struct kvec iov;
1378 char *kaddr = kmap(page);
1379 iov.iov_base = kaddr + offset;
1380 iov.iov_len = size;
1381 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1382 kunmap(page);
1383 return res;
1384}
1385
1386/*
1387 * Default Socket Callbacks
1388 */
1389
1390static void sock_def_wakeup(struct sock *sk)
1391{
1392 read_lock(&sk->sk_callback_lock);
1393 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1394 wake_up_interruptible_all(sk->sk_sleep);
1395 read_unlock(&sk->sk_callback_lock);
1396}
1397
1398static void sock_def_error_report(struct sock *sk)
1399{
1400 read_lock(&sk->sk_callback_lock);
1401 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1402 wake_up_interruptible(sk->sk_sleep);
4ec93edb 1403 sk_wake_async(sk,0,POLL_ERR);
1da177e4
LT
1404 read_unlock(&sk->sk_callback_lock);
1405}
1406
1407static void sock_def_readable(struct sock *sk, int len)
1408{
1409 read_lock(&sk->sk_callback_lock);
1410 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1411 wake_up_interruptible(sk->sk_sleep);
1412 sk_wake_async(sk,1,POLL_IN);
1413 read_unlock(&sk->sk_callback_lock);
1414}
1415
1416static void sock_def_write_space(struct sock *sk)
1417{
1418 read_lock(&sk->sk_callback_lock);
1419
1420 /* Do not wake up a writer until he can make "significant"
1421 * progress. --DaveM
1422 */
1423 if((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1424 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1425 wake_up_interruptible(sk->sk_sleep);
1426
1427 /* Should agree with poll, otherwise some programs break */
1428 if (sock_writeable(sk))
1429 sk_wake_async(sk, 2, POLL_OUT);
1430 }
1431
1432 read_unlock(&sk->sk_callback_lock);
1433}
1434
1435static void sock_def_destruct(struct sock *sk)
1436{
a51482bd 1437 kfree(sk->sk_protinfo);
1da177e4
LT
1438}
1439
1440void sk_send_sigurg(struct sock *sk)
1441{
1442 if (sk->sk_socket && sk->sk_socket->file)
1443 if (send_sigurg(&sk->sk_socket->file->f_owner))
1444 sk_wake_async(sk, 3, POLL_PRI);
1445}
1446
1447void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1448 unsigned long expires)
1449{
1450 if (!mod_timer(timer, expires))
1451 sock_hold(sk);
1452}
1453
1454EXPORT_SYMBOL(sk_reset_timer);
1455
1456void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1457{
1458 if (timer_pending(timer) && del_timer(timer))
1459 __sock_put(sk);
1460}
1461
1462EXPORT_SYMBOL(sk_stop_timer);
1463
1464void sock_init_data(struct socket *sock, struct sock *sk)
1465{
1466 skb_queue_head_init(&sk->sk_receive_queue);
1467 skb_queue_head_init(&sk->sk_write_queue);
1468 skb_queue_head_init(&sk->sk_error_queue);
97fc2f08
CL
1469#ifdef CONFIG_NET_DMA
1470 skb_queue_head_init(&sk->sk_async_wait_queue);
1471#endif
1da177e4
LT
1472
1473 sk->sk_send_head = NULL;
1474
1475 init_timer(&sk->sk_timer);
4ec93edb 1476
1da177e4
LT
1477 sk->sk_allocation = GFP_KERNEL;
1478 sk->sk_rcvbuf = sysctl_rmem_default;
1479 sk->sk_sndbuf = sysctl_wmem_default;
1480 sk->sk_state = TCP_CLOSE;
1481 sk->sk_socket = sock;
1482
1483 sock_set_flag(sk, SOCK_ZAPPED);
1484
1485 if(sock)
1486 {
1487 sk->sk_type = sock->type;
1488 sk->sk_sleep = &sock->wait;
1489 sock->sk = sk;
1490 } else
1491 sk->sk_sleep = NULL;
1492
1493 rwlock_init(&sk->sk_dst_lock);
1494 rwlock_init(&sk->sk_callback_lock);
da21f24d
IM
1495 lockdep_set_class(&sk->sk_callback_lock,
1496 af_callback_keys + sk->sk_family);
1da177e4
LT
1497
1498 sk->sk_state_change = sock_def_wakeup;
1499 sk->sk_data_ready = sock_def_readable;
1500 sk->sk_write_space = sock_def_write_space;
1501 sk->sk_error_report = sock_def_error_report;
1502 sk->sk_destruct = sock_def_destruct;
1503
1504 sk->sk_sndmsg_page = NULL;
1505 sk->sk_sndmsg_off = 0;
1506
1507 sk->sk_peercred.pid = 0;
1508 sk->sk_peercred.uid = -1;
1509 sk->sk_peercred.gid = -1;
1510 sk->sk_write_pending = 0;
1511 sk->sk_rcvlowat = 1;
1512 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1513 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1514
1515 sk->sk_stamp.tv_sec = -1L;
1516 sk->sk_stamp.tv_usec = -1L;
1517
1518 atomic_set(&sk->sk_refcnt, 1);
1519}
1520
fcc70d5f 1521void fastcall lock_sock_nested(struct sock *sk, int subclass)
1da177e4
LT
1522{
1523 might_sleep();
a5b5bb9a 1524 spin_lock_bh(&sk->sk_lock.slock);
1da177e4
LT
1525 if (sk->sk_lock.owner)
1526 __lock_sock(sk);
1527 sk->sk_lock.owner = (void *)1;
a5b5bb9a
IM
1528 spin_unlock(&sk->sk_lock.slock);
1529 /*
1530 * The sk_lock has mutex_lock() semantics here:
1531 */
fcc70d5f 1532 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
a5b5bb9a 1533 local_bh_enable();
1da177e4
LT
1534}
1535
fcc70d5f 1536EXPORT_SYMBOL(lock_sock_nested);
1da177e4
LT
1537
1538void fastcall release_sock(struct sock *sk)
1539{
a5b5bb9a
IM
1540 /*
1541 * The sk_lock has mutex_unlock() semantics:
1542 */
1543 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1544
1545 spin_lock_bh(&sk->sk_lock.slock);
1da177e4
LT
1546 if (sk->sk_backlog.tail)
1547 __release_sock(sk);
1548 sk->sk_lock.owner = NULL;
a5b5bb9a
IM
1549 if (waitqueue_active(&sk->sk_lock.wq))
1550 wake_up(&sk->sk_lock.wq);
1551 spin_unlock_bh(&sk->sk_lock.slock);
1da177e4
LT
1552}
1553EXPORT_SYMBOL(release_sock);
1554
1555int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
4ec93edb 1556{
1da177e4
LT
1557 if (!sock_flag(sk, SOCK_TIMESTAMP))
1558 sock_enable_timestamp(sk);
4ec93edb 1559 if (sk->sk_stamp.tv_sec == -1)
1da177e4
LT
1560 return -ENOENT;
1561 if (sk->sk_stamp.tv_sec == 0)
1562 do_gettimeofday(&sk->sk_stamp);
1563 return copy_to_user(userstamp, &sk->sk_stamp, sizeof(struct timeval)) ?
4ec93edb
YH
1564 -EFAULT : 0;
1565}
1da177e4
LT
1566EXPORT_SYMBOL(sock_get_timestamp);
1567
1568void sock_enable_timestamp(struct sock *sk)
4ec93edb
YH
1569{
1570 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1da177e4
LT
1571 sock_set_flag(sk, SOCK_TIMESTAMP);
1572 net_enable_timestamp();
1573 }
1574}
4ec93edb 1575EXPORT_SYMBOL(sock_enable_timestamp);
1da177e4
LT
1576
1577/*
1578 * Get a socket option on an socket.
1579 *
1580 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1581 * asynchronous errors should be reported by getsockopt. We assume
1582 * this means if you specify SO_ERROR (otherwise whats the point of it).
1583 */
1584int sock_common_getsockopt(struct socket *sock, int level, int optname,
1585 char __user *optval, int __user *optlen)
1586{
1587 struct sock *sk = sock->sk;
1588
1589 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1590}
1591
1592EXPORT_SYMBOL(sock_common_getsockopt);
1593
3fdadf7d 1594#ifdef CONFIG_COMPAT
543d9cfe
ACM
1595int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1596 char __user *optval, int __user *optlen)
3fdadf7d
DM
1597{
1598 struct sock *sk = sock->sk;
1599
543d9cfe
ACM
1600 if (sk->sk_prot->compat_setsockopt != NULL)
1601 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1602 optval, optlen);
3fdadf7d
DM
1603 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1604}
1605EXPORT_SYMBOL(compat_sock_common_getsockopt);
1606#endif
1607
1da177e4
LT
1608int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1609 struct msghdr *msg, size_t size, int flags)
1610{
1611 struct sock *sk = sock->sk;
1612 int addr_len = 0;
1613 int err;
1614
1615 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1616 flags & ~MSG_DONTWAIT, &addr_len);
1617 if (err >= 0)
1618 msg->msg_namelen = addr_len;
1619 return err;
1620}
1621
1622EXPORT_SYMBOL(sock_common_recvmsg);
1623
1624/*
1625 * Set socket options on an inet socket.
1626 */
1627int sock_common_setsockopt(struct socket *sock, int level, int optname,
1628 char __user *optval, int optlen)
1629{
1630 struct sock *sk = sock->sk;
1631
1632 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1633}
1634
1635EXPORT_SYMBOL(sock_common_setsockopt);
1636
3fdadf7d 1637#ifdef CONFIG_COMPAT
543d9cfe
ACM
1638int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1639 char __user *optval, int optlen)
3fdadf7d
DM
1640{
1641 struct sock *sk = sock->sk;
1642
543d9cfe
ACM
1643 if (sk->sk_prot->compat_setsockopt != NULL)
1644 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1645 optval, optlen);
3fdadf7d
DM
1646 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1647}
1648EXPORT_SYMBOL(compat_sock_common_setsockopt);
1649#endif
1650
1da177e4
LT
1651void sk_common_release(struct sock *sk)
1652{
1653 if (sk->sk_prot->destroy)
1654 sk->sk_prot->destroy(sk);
1655
1656 /*
1657 * Observation: when sock_common_release is called, processes have
1658 * no access to socket. But net still has.
1659 * Step one, detach it from networking:
1660 *
1661 * A. Remove from hash tables.
1662 */
1663
1664 sk->sk_prot->unhash(sk);
1665
1666 /*
1667 * In this point socket cannot receive new packets, but it is possible
1668 * that some packets are in flight because some CPU runs receiver and
1669 * did hash table lookup before we unhashed socket. They will achieve
1670 * receive queue and will be purged by socket destructor.
1671 *
1672 * Also we still have packets pending on receive queue and probably,
1673 * our own packets waiting in device queues. sock_destroy will drain
1674 * receive queue, but transmitted packets will delay socket destruction
1675 * until the last reference will be released.
1676 */
1677
1678 sock_orphan(sk);
1679
1680 xfrm_sk_free_policy(sk);
1681
e6848976 1682 sk_refcnt_debug_release(sk);
1da177e4
LT
1683 sock_put(sk);
1684}
1685
1686EXPORT_SYMBOL(sk_common_release);
1687
1688static DEFINE_RWLOCK(proto_list_lock);
1689static LIST_HEAD(proto_list);
1690
1691int proto_register(struct proto *prot, int alloc_slab)
1692{
8feaf0c0
ACM
1693 char *request_sock_slab_name = NULL;
1694 char *timewait_sock_slab_name;
1da177e4
LT
1695 int rc = -ENOBUFS;
1696
1da177e4
LT
1697 if (alloc_slab) {
1698 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1699 SLAB_HWCACHE_ALIGN, NULL, NULL);
1700
1701 if (prot->slab == NULL) {
1702 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1703 prot->name);
2a278051 1704 goto out;
1da177e4 1705 }
2e6599cb
ACM
1706
1707 if (prot->rsk_prot != NULL) {
1708 static const char mask[] = "request_sock_%s";
1709
1710 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1711 if (request_sock_slab_name == NULL)
1712 goto out_free_sock_slab;
1713
1714 sprintf(request_sock_slab_name, mask, prot->name);
1715 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1716 prot->rsk_prot->obj_size, 0,
1717 SLAB_HWCACHE_ALIGN, NULL, NULL);
1718
1719 if (prot->rsk_prot->slab == NULL) {
1720 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1721 prot->name);
1722 goto out_free_request_sock_slab_name;
1723 }
1724 }
8feaf0c0 1725
6d6ee43e 1726 if (prot->twsk_prot != NULL) {
8feaf0c0
ACM
1727 static const char mask[] = "tw_sock_%s";
1728
1729 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1730
1731 if (timewait_sock_slab_name == NULL)
1732 goto out_free_request_sock_slab;
1733
1734 sprintf(timewait_sock_slab_name, mask, prot->name);
6d6ee43e
ACM
1735 prot->twsk_prot->twsk_slab =
1736 kmem_cache_create(timewait_sock_slab_name,
1737 prot->twsk_prot->twsk_obj_size,
1738 0, SLAB_HWCACHE_ALIGN,
1739 NULL, NULL);
1740 if (prot->twsk_prot->twsk_slab == NULL)
8feaf0c0
ACM
1741 goto out_free_timewait_sock_slab_name;
1742 }
1da177e4
LT
1743 }
1744
2a278051 1745 write_lock(&proto_list_lock);
1da177e4 1746 list_add(&prot->node, &proto_list);
1da177e4 1747 write_unlock(&proto_list_lock);
2a278051
ACM
1748 rc = 0;
1749out:
1da177e4 1750 return rc;
8feaf0c0
ACM
1751out_free_timewait_sock_slab_name:
1752 kfree(timewait_sock_slab_name);
1753out_free_request_sock_slab:
1754 if (prot->rsk_prot && prot->rsk_prot->slab) {
1755 kmem_cache_destroy(prot->rsk_prot->slab);
1756 prot->rsk_prot->slab = NULL;
1757 }
2e6599cb
ACM
1758out_free_request_sock_slab_name:
1759 kfree(request_sock_slab_name);
1760out_free_sock_slab:
1761 kmem_cache_destroy(prot->slab);
1762 prot->slab = NULL;
1763 goto out;
1da177e4
LT
1764}
1765
1766EXPORT_SYMBOL(proto_register);
1767
1768void proto_unregister(struct proto *prot)
1769{
1770 write_lock(&proto_list_lock);
0a3f4358
PM
1771 list_del(&prot->node);
1772 write_unlock(&proto_list_lock);
1da177e4
LT
1773
1774 if (prot->slab != NULL) {
1775 kmem_cache_destroy(prot->slab);
1776 prot->slab = NULL;
1777 }
1778
2e6599cb
ACM
1779 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1780 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1781
1782 kmem_cache_destroy(prot->rsk_prot->slab);
1783 kfree(name);
1784 prot->rsk_prot->slab = NULL;
1785 }
1786
6d6ee43e
ACM
1787 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1788 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
8feaf0c0 1789
6d6ee43e 1790 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
8feaf0c0 1791 kfree(name);
6d6ee43e 1792 prot->twsk_prot->twsk_slab = NULL;
8feaf0c0 1793 }
1da177e4
LT
1794}
1795
1796EXPORT_SYMBOL(proto_unregister);
1797
1798#ifdef CONFIG_PROC_FS
1799static inline struct proto *__proto_head(void)
1800{
1801 return list_entry(proto_list.next, struct proto, node);
1802}
1803
1804static inline struct proto *proto_head(void)
1805{
1806 return list_empty(&proto_list) ? NULL : __proto_head();
1807}
1808
1809static inline struct proto *proto_next(struct proto *proto)
1810{
1811 return proto->node.next == &proto_list ? NULL :
1812 list_entry(proto->node.next, struct proto, node);
1813}
1814
1815static inline struct proto *proto_get_idx(loff_t pos)
1816{
1817 struct proto *proto;
1818 loff_t i = 0;
1819
1820 list_for_each_entry(proto, &proto_list, node)
1821 if (i++ == pos)
1822 goto out;
1823
1824 proto = NULL;
1825out:
1826 return proto;
1827}
1828
1829static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1830{
1831 read_lock(&proto_list_lock);
1832 return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1833}
1834
1835static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1836{
1837 ++*pos;
1838 return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1839}
1840
1841static void proto_seq_stop(struct seq_file *seq, void *v)
1842{
1843 read_unlock(&proto_list_lock);
1844}
1845
1846static char proto_method_implemented(const void *method)
1847{
1848 return method == NULL ? 'n' : 'y';
1849}
1850
1851static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1852{
1853 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
1854 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1855 proto->name,
1856 proto->obj_size,
1857 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1858 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1859 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1860 proto->max_header,
1861 proto->slab == NULL ? "no" : "yes",
1862 module_name(proto->owner),
1863 proto_method_implemented(proto->close),
1864 proto_method_implemented(proto->connect),
1865 proto_method_implemented(proto->disconnect),
1866 proto_method_implemented(proto->accept),
1867 proto_method_implemented(proto->ioctl),
1868 proto_method_implemented(proto->init),
1869 proto_method_implemented(proto->destroy),
1870 proto_method_implemented(proto->shutdown),
1871 proto_method_implemented(proto->setsockopt),
1872 proto_method_implemented(proto->getsockopt),
1873 proto_method_implemented(proto->sendmsg),
1874 proto_method_implemented(proto->recvmsg),
1875 proto_method_implemented(proto->sendpage),
1876 proto_method_implemented(proto->bind),
1877 proto_method_implemented(proto->backlog_rcv),
1878 proto_method_implemented(proto->hash),
1879 proto_method_implemented(proto->unhash),
1880 proto_method_implemented(proto->get_port),
1881 proto_method_implemented(proto->enter_memory_pressure));
1882}
1883
1884static int proto_seq_show(struct seq_file *seq, void *v)
1885{
1886 if (v == SEQ_START_TOKEN)
1887 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1888 "protocol",
1889 "size",
1890 "sockets",
1891 "memory",
1892 "press",
1893 "maxhdr",
1894 "slab",
1895 "module",
1896 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1897 else
1898 proto_seq_printf(seq, v);
1899 return 0;
1900}
1901
1902static struct seq_operations proto_seq_ops = {
1903 .start = proto_seq_start,
1904 .next = proto_seq_next,
1905 .stop = proto_seq_stop,
1906 .show = proto_seq_show,
1907};
1908
1909static int proto_seq_open(struct inode *inode, struct file *file)
1910{
1911 return seq_open(file, &proto_seq_ops);
1912}
1913
1914static struct file_operations proto_seq_fops = {
1915 .owner = THIS_MODULE,
1916 .open = proto_seq_open,
1917 .read = seq_read,
1918 .llseek = seq_lseek,
1919 .release = seq_release,
1920};
1921
1922static int __init proto_init(void)
1923{
1924 /* register /proc/net/protocols */
1925 return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1926}
1927
1928subsys_initcall(proto_init);
1929
1930#endif /* PROC_FS */
1931
1932EXPORT_SYMBOL(sk_alloc);
1933EXPORT_SYMBOL(sk_free);
1934EXPORT_SYMBOL(sk_send_sigurg);
1935EXPORT_SYMBOL(sock_alloc_send_skb);
1936EXPORT_SYMBOL(sock_init_data);
1937EXPORT_SYMBOL(sock_kfree_s);
1938EXPORT_SYMBOL(sock_kmalloc);
1939EXPORT_SYMBOL(sock_no_accept);
1940EXPORT_SYMBOL(sock_no_bind);
1941EXPORT_SYMBOL(sock_no_connect);
1942EXPORT_SYMBOL(sock_no_getname);
1943EXPORT_SYMBOL(sock_no_getsockopt);
1944EXPORT_SYMBOL(sock_no_ioctl);
1945EXPORT_SYMBOL(sock_no_listen);
1946EXPORT_SYMBOL(sock_no_mmap);
1947EXPORT_SYMBOL(sock_no_poll);
1948EXPORT_SYMBOL(sock_no_recvmsg);
1949EXPORT_SYMBOL(sock_no_sendmsg);
1950EXPORT_SYMBOL(sock_no_sendpage);
1951EXPORT_SYMBOL(sock_no_setsockopt);
1952EXPORT_SYMBOL(sock_no_shutdown);
1953EXPORT_SYMBOL(sock_no_socketpair);
1954EXPORT_SYMBOL(sock_rfree);
1955EXPORT_SYMBOL(sock_setsockopt);
1956EXPORT_SYMBOL(sock_wfree);
1957EXPORT_SYMBOL(sock_wmalloc);
1958EXPORT_SYMBOL(sock_i_uid);
1959EXPORT_SYMBOL(sock_i_ino);
1da177e4 1960EXPORT_SYMBOL(sysctl_optmem_max);
6baf1f41 1961#ifdef CONFIG_SYSCTL
1da177e4
LT
1962EXPORT_SYMBOL(sysctl_rmem_max);
1963EXPORT_SYMBOL(sysctl_wmem_max);
1964#endif