]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
mm: pagecache insertion fewer atomics
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
1da177e4 55 /* This context's GFP mask */
6daa0e28 56 gfp_t gfp_mask;
1da177e4
LT
57
58 int may_writepage;
59
f1fd1067
CL
60 /* Can pages be swapped as part of reclaim? */
61 int may_swap;
62
1da177e4
LT
63 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
64 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
65 * In this context, it doesn't matter that we scan the
66 * whole list at once. */
67 int swap_cluster_max;
d6277db4
RW
68
69 int swappiness;
408d8544
NP
70
71 int all_unreclaimable;
5ad333eb
AW
72
73 int order;
66e1707b
BS
74
75 /* Which cgroup do we reclaim from */
76 struct mem_cgroup *mem_cgroup;
77
78 /* Pluggable isolate pages callback */
79 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
80 unsigned long *scanned, int order, int mode,
81 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 82 int active, int file);
1da177e4
LT
83};
84
1da177e4
LT
85#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86
87#ifdef ARCH_HAS_PREFETCH
88#define prefetch_prev_lru_page(_page, _base, _field) \
89 do { \
90 if ((_page)->lru.prev != _base) { \
91 struct page *prev; \
92 \
93 prev = lru_to_page(&(_page->lru)); \
94 prefetch(&prev->_field); \
95 } \
96 } while (0)
97#else
98#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
99#endif
100
101#ifdef ARCH_HAS_PREFETCHW
102#define prefetchw_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetchw(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115/*
116 * From 0 .. 100. Higher means more swappy.
117 */
118int vm_swappiness = 60;
bd1e22b8 119long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
120
121static LIST_HEAD(shrinker_list);
122static DECLARE_RWSEM(shrinker_rwsem);
123
00f0b825 124#ifdef CONFIG_CGROUP_MEM_RES_CTLR
91a45470
KH
125#define scan_global_lru(sc) (!(sc)->mem_cgroup)
126#else
127#define scan_global_lru(sc) (1)
128#endif
129
1da177e4
LT
130/*
131 * Add a shrinker callback to be called from the vm
132 */
8e1f936b 133void register_shrinker(struct shrinker *shrinker)
1da177e4 134{
8e1f936b
RR
135 shrinker->nr = 0;
136 down_write(&shrinker_rwsem);
137 list_add_tail(&shrinker->list, &shrinker_list);
138 up_write(&shrinker_rwsem);
1da177e4 139}
8e1f936b 140EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
141
142/*
143 * Remove one
144 */
8e1f936b 145void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
146{
147 down_write(&shrinker_rwsem);
148 list_del(&shrinker->list);
149 up_write(&shrinker_rwsem);
1da177e4 150}
8e1f936b 151EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
152
153#define SHRINK_BATCH 128
154/*
155 * Call the shrink functions to age shrinkable caches
156 *
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
161 *
183ff22b 162 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
163 * slab to avoid swapping.
164 *
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 *
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
b15e0905
AM
170 *
171 * Returns the number of slab objects which we shrunk.
1da177e4 172 */
69e05944
AM
173unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
174 unsigned long lru_pages)
1da177e4
LT
175{
176 struct shrinker *shrinker;
69e05944 177 unsigned long ret = 0;
1da177e4
LT
178
179 if (scanned == 0)
180 scanned = SWAP_CLUSTER_MAX;
181
182 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 183 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
184
185 list_for_each_entry(shrinker, &shrinker_list, list) {
186 unsigned long long delta;
187 unsigned long total_scan;
8e1f936b 188 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
189
190 delta = (4 * scanned) / shrinker->seeks;
ea164d73 191 delta *= max_pass;
1da177e4
LT
192 do_div(delta, lru_pages + 1);
193 shrinker->nr += delta;
ea164d73
AA
194 if (shrinker->nr < 0) {
195 printk(KERN_ERR "%s: nr=%ld\n",
d40cee24 196 __func__, shrinker->nr);
ea164d73
AA
197 shrinker->nr = max_pass;
198 }
199
200 /*
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
203 * freeable entries.
204 */
205 if (shrinker->nr > max_pass * 2)
206 shrinker->nr = max_pass * 2;
1da177e4
LT
207
208 total_scan = shrinker->nr;
209 shrinker->nr = 0;
210
211 while (total_scan >= SHRINK_BATCH) {
212 long this_scan = SHRINK_BATCH;
213 int shrink_ret;
b15e0905 214 int nr_before;
1da177e4 215
8e1f936b
RR
216 nr_before = (*shrinker->shrink)(0, gfp_mask);
217 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
218 if (shrink_ret == -1)
219 break;
b15e0905
AM
220 if (shrink_ret < nr_before)
221 ret += nr_before - shrink_ret;
f8891e5e 222 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
223 total_scan -= this_scan;
224
225 cond_resched();
226 }
227
228 shrinker->nr += total_scan;
229 }
230 up_read(&shrinker_rwsem);
b15e0905 231 return ret;
1da177e4
LT
232}
233
234/* Called without lock on whether page is mapped, so answer is unstable */
235static inline int page_mapping_inuse(struct page *page)
236{
237 struct address_space *mapping;
238
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page))
241 return 1;
242
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page))
245 return 1;
246
247 mapping = page_mapping(page);
248 if (!mapping)
249 return 0;
250
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping);
253}
254
255static inline int is_page_cache_freeable(struct page *page)
256{
257 return page_count(page) - !!PagePrivate(page) == 2;
258}
259
260static int may_write_to_queue(struct backing_dev_info *bdi)
261{
930d9152 262 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
263 return 1;
264 if (!bdi_write_congested(bdi))
265 return 1;
266 if (bdi == current->backing_dev_info)
267 return 1;
268 return 0;
269}
270
271/*
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
275 *
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
279 *
280 * We're allowed to run sleeping lock_page() here because we know the caller has
281 * __GFP_FS.
282 */
283static void handle_write_error(struct address_space *mapping,
284 struct page *page, int error)
285{
286 lock_page(page);
3e9f45bd
GC
287 if (page_mapping(page) == mapping)
288 mapping_set_error(mapping, error);
1da177e4
LT
289 unlock_page(page);
290}
291
c661b078
AW
292/* Request for sync pageout. */
293enum pageout_io {
294 PAGEOUT_IO_ASYNC,
295 PAGEOUT_IO_SYNC,
296};
297
04e62a29
CL
298/* possible outcome of pageout() */
299typedef enum {
300 /* failed to write page out, page is locked */
301 PAGE_KEEP,
302 /* move page to the active list, page is locked */
303 PAGE_ACTIVATE,
304 /* page has been sent to the disk successfully, page is unlocked */
305 PAGE_SUCCESS,
306 /* page is clean and locked */
307 PAGE_CLEAN,
308} pageout_t;
309
1da177e4 310/*
1742f19f
AM
311 * pageout is called by shrink_page_list() for each dirty page.
312 * Calls ->writepage().
1da177e4 313 */
c661b078
AW
314static pageout_t pageout(struct page *page, struct address_space *mapping,
315 enum pageout_io sync_writeback)
1da177e4
LT
316{
317 /*
318 * If the page is dirty, only perform writeback if that write
319 * will be non-blocking. To prevent this allocation from being
320 * stalled by pagecache activity. But note that there may be
321 * stalls if we need to run get_block(). We could test
322 * PagePrivate for that.
323 *
324 * If this process is currently in generic_file_write() against
325 * this page's queue, we can perform writeback even if that
326 * will block.
327 *
328 * If the page is swapcache, write it back even if that would
329 * block, for some throttling. This happens by accident, because
330 * swap_backing_dev_info is bust: it doesn't reflect the
331 * congestion state of the swapdevs. Easy to fix, if needed.
332 * See swapfile.c:page_queue_congested().
333 */
334 if (!is_page_cache_freeable(page))
335 return PAGE_KEEP;
336 if (!mapping) {
337 /*
338 * Some data journaling orphaned pages can have
339 * page->mapping == NULL while being dirty with clean buffers.
340 */
323aca6c 341 if (PagePrivate(page)) {
1da177e4
LT
342 if (try_to_free_buffers(page)) {
343 ClearPageDirty(page);
d40cee24 344 printk("%s: orphaned page\n", __func__);
1da177e4
LT
345 return PAGE_CLEAN;
346 }
347 }
348 return PAGE_KEEP;
349 }
350 if (mapping->a_ops->writepage == NULL)
351 return PAGE_ACTIVATE;
352 if (!may_write_to_queue(mapping->backing_dev_info))
353 return PAGE_KEEP;
354
355 if (clear_page_dirty_for_io(page)) {
356 int res;
357 struct writeback_control wbc = {
358 .sync_mode = WB_SYNC_NONE,
359 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
360 .range_start = 0,
361 .range_end = LLONG_MAX,
1da177e4
LT
362 .nonblocking = 1,
363 .for_reclaim = 1,
364 };
365
366 SetPageReclaim(page);
367 res = mapping->a_ops->writepage(page, &wbc);
368 if (res < 0)
369 handle_write_error(mapping, page, res);
994fc28c 370 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
371 ClearPageReclaim(page);
372 return PAGE_ACTIVATE;
373 }
c661b078
AW
374
375 /*
376 * Wait on writeback if requested to. This happens when
377 * direct reclaiming a large contiguous area and the
378 * first attempt to free a range of pages fails.
379 */
380 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
381 wait_on_page_writeback(page);
382
1da177e4
LT
383 if (!PageWriteback(page)) {
384 /* synchronous write or broken a_ops? */
385 ClearPageReclaim(page);
386 }
e129b5c2 387 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
388 return PAGE_SUCCESS;
389 }
390
391 return PAGE_CLEAN;
392}
393
a649fd92 394/*
e286781d
NP
395 * Same as remove_mapping, but if the page is removed from the mapping, it
396 * gets returned with a refcount of 0.
a649fd92 397 */
e286781d 398static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 399{
28e4d965
NP
400 BUG_ON(!PageLocked(page));
401 BUG_ON(mapping != page_mapping(page));
49d2e9cc 402
19fd6231 403 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 404 /*
0fd0e6b0
NP
405 * The non racy check for a busy page.
406 *
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
411 *
412 * get_user_pages(&page);
413 * [user mapping goes away]
414 * write_to(page);
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
417 * put_page(page);
418 * !page_count(page) [good, discard it]
419 *
420 * [oops, our write_to data is lost]
421 *
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
425 *
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 428 */
e286781d 429 if (!page_freeze_refs(page, 2))
49d2e9cc 430 goto cannot_free;
e286781d
NP
431 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
432 if (unlikely(PageDirty(page))) {
433 page_unfreeze_refs(page, 2);
49d2e9cc 434 goto cannot_free;
e286781d 435 }
49d2e9cc
CL
436
437 if (PageSwapCache(page)) {
438 swp_entry_t swap = { .val = page_private(page) };
439 __delete_from_swap_cache(page);
19fd6231 440 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc 441 swap_free(swap);
e286781d
NP
442 } else {
443 __remove_from_page_cache(page);
19fd6231 444 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
445 }
446
49d2e9cc
CL
447 return 1;
448
449cannot_free:
19fd6231 450 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
451 return 0;
452}
453
e286781d
NP
454/*
455 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
456 * someone else has a ref on the page, abort and return 0. If it was
457 * successfully detached, return 1. Assumes the caller has a single ref on
458 * this page.
459 */
460int remove_mapping(struct address_space *mapping, struct page *page)
461{
462 if (__remove_mapping(mapping, page)) {
463 /*
464 * Unfreezing the refcount with 1 rather than 2 effectively
465 * drops the pagecache ref for us without requiring another
466 * atomic operation.
467 */
468 page_unfreeze_refs(page, 1);
469 return 1;
470 }
471 return 0;
472}
473
894bc310
LS
474/**
475 * putback_lru_page - put previously isolated page onto appropriate LRU list
476 * @page: page to be put back to appropriate lru list
477 *
478 * Add previously isolated @page to appropriate LRU list.
479 * Page may still be unevictable for other reasons.
480 *
481 * lru_lock must not be held, interrupts must be enabled.
482 */
483#ifdef CONFIG_UNEVICTABLE_LRU
484void putback_lru_page(struct page *page)
485{
486 int lru;
487 int active = !!TestClearPageActive(page);
bbfd28ee 488 int was_unevictable = PageUnevictable(page);
894bc310
LS
489
490 VM_BUG_ON(PageLRU(page));
491
492redo:
493 ClearPageUnevictable(page);
494
495 if (page_evictable(page, NULL)) {
496 /*
497 * For evictable pages, we can use the cache.
498 * In event of a race, worst case is we end up with an
499 * unevictable page on [in]active list.
500 * We know how to handle that.
501 */
502 lru = active + page_is_file_cache(page);
503 lru_cache_add_lru(page, lru);
504 } else {
505 /*
506 * Put unevictable pages directly on zone's unevictable
507 * list.
508 */
509 lru = LRU_UNEVICTABLE;
510 add_page_to_unevictable_list(page);
511 }
512 mem_cgroup_move_lists(page, lru);
513
514 /*
515 * page's status can change while we move it among lru. If an evictable
516 * page is on unevictable list, it never be freed. To avoid that,
517 * check after we added it to the list, again.
518 */
519 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
520 if (!isolate_lru_page(page)) {
521 put_page(page);
522 goto redo;
523 }
524 /* This means someone else dropped this page from LRU
525 * So, it will be freed or putback to LRU again. There is
526 * nothing to do here.
527 */
528 }
529
bbfd28ee
LS
530 if (was_unevictable && lru != LRU_UNEVICTABLE)
531 count_vm_event(UNEVICTABLE_PGRESCUED);
532 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
533 count_vm_event(UNEVICTABLE_PGCULLED);
534
894bc310
LS
535 put_page(page); /* drop ref from isolate */
536}
537
538#else /* CONFIG_UNEVICTABLE_LRU */
539
540void putback_lru_page(struct page *page)
541{
542 int lru;
543 VM_BUG_ON(PageLRU(page));
544
545 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
546 lru_cache_add_lru(page, lru);
547 mem_cgroup_move_lists(page, lru);
548 put_page(page);
549}
550#endif /* CONFIG_UNEVICTABLE_LRU */
551
552
1da177e4 553/*
1742f19f 554 * shrink_page_list() returns the number of reclaimed pages
1da177e4 555 */
1742f19f 556static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
557 struct scan_control *sc,
558 enum pageout_io sync_writeback)
1da177e4
LT
559{
560 LIST_HEAD(ret_pages);
561 struct pagevec freed_pvec;
562 int pgactivate = 0;
05ff5137 563 unsigned long nr_reclaimed = 0;
1da177e4
LT
564
565 cond_resched();
566
567 pagevec_init(&freed_pvec, 1);
568 while (!list_empty(page_list)) {
569 struct address_space *mapping;
570 struct page *page;
571 int may_enter_fs;
572 int referenced;
573
574 cond_resched();
575
576 page = lru_to_page(page_list);
577 list_del(&page->lru);
578
529ae9aa 579 if (!trylock_page(page))
1da177e4
LT
580 goto keep;
581
725d704e 582 VM_BUG_ON(PageActive(page));
1da177e4
LT
583
584 sc->nr_scanned++;
80e43426 585
b291f000
NP
586 if (unlikely(!page_evictable(page, NULL)))
587 goto cull_mlocked;
894bc310 588
80e43426
CL
589 if (!sc->may_swap && page_mapped(page))
590 goto keep_locked;
591
1da177e4
LT
592 /* Double the slab pressure for mapped and swapcache pages */
593 if (page_mapped(page) || PageSwapCache(page))
594 sc->nr_scanned++;
595
c661b078
AW
596 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
597 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
598
599 if (PageWriteback(page)) {
600 /*
601 * Synchronous reclaim is performed in two passes,
602 * first an asynchronous pass over the list to
603 * start parallel writeback, and a second synchronous
604 * pass to wait for the IO to complete. Wait here
605 * for any page for which writeback has already
606 * started.
607 */
608 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
609 wait_on_page_writeback(page);
4dd4b920 610 else
c661b078
AW
611 goto keep_locked;
612 }
1da177e4 613
bed7161a 614 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 615 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
616 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
617 referenced && page_mapping_inuse(page))
1da177e4
LT
618 goto activate_locked;
619
620#ifdef CONFIG_SWAP
621 /*
622 * Anonymous process memory has backing store?
623 * Try to allocate it some swap space here.
624 */
b291f000
NP
625 if (PageAnon(page) && !PageSwapCache(page)) {
626 switch (try_to_munlock(page)) {
627 case SWAP_FAIL: /* shouldn't happen */
628 case SWAP_AGAIN:
629 goto keep_locked;
630 case SWAP_MLOCK:
631 goto cull_mlocked;
632 case SWAP_SUCCESS:
633 ; /* fall thru'; add to swap cache */
634 }
1480a540 635 if (!add_to_swap(page, GFP_ATOMIC))
1da177e4 636 goto activate_locked;
b291f000 637 }
1da177e4
LT
638#endif /* CONFIG_SWAP */
639
640 mapping = page_mapping(page);
1da177e4
LT
641
642 /*
643 * The page is mapped into the page tables of one or more
644 * processes. Try to unmap it here.
645 */
646 if (page_mapped(page) && mapping) {
a48d07af 647 switch (try_to_unmap(page, 0)) {
1da177e4
LT
648 case SWAP_FAIL:
649 goto activate_locked;
650 case SWAP_AGAIN:
651 goto keep_locked;
b291f000
NP
652 case SWAP_MLOCK:
653 goto cull_mlocked;
1da177e4
LT
654 case SWAP_SUCCESS:
655 ; /* try to free the page below */
656 }
657 }
658
659 if (PageDirty(page)) {
5ad333eb 660 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 661 goto keep_locked;
4dd4b920 662 if (!may_enter_fs)
1da177e4 663 goto keep_locked;
52a8363e 664 if (!sc->may_writepage)
1da177e4
LT
665 goto keep_locked;
666
667 /* Page is dirty, try to write it out here */
c661b078 668 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
669 case PAGE_KEEP:
670 goto keep_locked;
671 case PAGE_ACTIVATE:
672 goto activate_locked;
673 case PAGE_SUCCESS:
4dd4b920 674 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
675 goto keep;
676 /*
677 * A synchronous write - probably a ramdisk. Go
678 * ahead and try to reclaim the page.
679 */
529ae9aa 680 if (!trylock_page(page))
1da177e4
LT
681 goto keep;
682 if (PageDirty(page) || PageWriteback(page))
683 goto keep_locked;
684 mapping = page_mapping(page);
685 case PAGE_CLEAN:
686 ; /* try to free the page below */
687 }
688 }
689
690 /*
691 * If the page has buffers, try to free the buffer mappings
692 * associated with this page. If we succeed we try to free
693 * the page as well.
694 *
695 * We do this even if the page is PageDirty().
696 * try_to_release_page() does not perform I/O, but it is
697 * possible for a page to have PageDirty set, but it is actually
698 * clean (all its buffers are clean). This happens if the
699 * buffers were written out directly, with submit_bh(). ext3
894bc310 700 * will do this, as well as the blockdev mapping.
1da177e4
LT
701 * try_to_release_page() will discover that cleanness and will
702 * drop the buffers and mark the page clean - it can be freed.
703 *
704 * Rarely, pages can have buffers and no ->mapping. These are
705 * the pages which were not successfully invalidated in
706 * truncate_complete_page(). We try to drop those buffers here
707 * and if that worked, and the page is no longer mapped into
708 * process address space (page_count == 1) it can be freed.
709 * Otherwise, leave the page on the LRU so it is swappable.
710 */
711 if (PagePrivate(page)) {
712 if (!try_to_release_page(page, sc->gfp_mask))
713 goto activate_locked;
e286781d
NP
714 if (!mapping && page_count(page) == 1) {
715 unlock_page(page);
716 if (put_page_testzero(page))
717 goto free_it;
718 else {
719 /*
720 * rare race with speculative reference.
721 * the speculative reference will free
722 * this page shortly, so we may
723 * increment nr_reclaimed here (and
724 * leave it off the LRU).
725 */
726 nr_reclaimed++;
727 continue;
728 }
729 }
1da177e4
LT
730 }
731
e286781d 732 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 733 goto keep_locked;
1da177e4 734
1da177e4 735 unlock_page(page);
e286781d 736free_it:
05ff5137 737 nr_reclaimed++;
e286781d
NP
738 if (!pagevec_add(&freed_pvec, page)) {
739 __pagevec_free(&freed_pvec);
740 pagevec_reinit(&freed_pvec);
741 }
1da177e4
LT
742 continue;
743
b291f000
NP
744cull_mlocked:
745 unlock_page(page);
746 putback_lru_page(page);
747 continue;
748
1da177e4 749activate_locked:
68a22394
RR
750 /* Not a candidate for swapping, so reclaim swap space. */
751 if (PageSwapCache(page) && vm_swap_full())
752 remove_exclusive_swap_page_ref(page);
894bc310 753 VM_BUG_ON(PageActive(page));
1da177e4
LT
754 SetPageActive(page);
755 pgactivate++;
756keep_locked:
757 unlock_page(page);
758keep:
759 list_add(&page->lru, &ret_pages);
b291f000 760 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
761 }
762 list_splice(&ret_pages, page_list);
763 if (pagevec_count(&freed_pvec))
e286781d 764 __pagevec_free(&freed_pvec);
f8891e5e 765 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 766 return nr_reclaimed;
1da177e4
LT
767}
768
5ad333eb
AW
769/* LRU Isolation modes. */
770#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
771#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
772#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
773
774/*
775 * Attempt to remove the specified page from its LRU. Only take this page
776 * if it is of the appropriate PageActive status. Pages which are being
777 * freed elsewhere are also ignored.
778 *
779 * page: page to consider
780 * mode: one of the LRU isolation modes defined above
781 *
782 * returns 0 on success, -ve errno on failure.
783 */
4f98a2fe 784int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
785{
786 int ret = -EINVAL;
787
788 /* Only take pages on the LRU. */
789 if (!PageLRU(page))
790 return ret;
791
792 /*
793 * When checking the active state, we need to be sure we are
794 * dealing with comparible boolean values. Take the logical not
795 * of each.
796 */
797 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
798 return ret;
799
4f98a2fe
RR
800 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
801 return ret;
802
894bc310
LS
803 /*
804 * When this function is being called for lumpy reclaim, we
805 * initially look into all LRU pages, active, inactive and
806 * unevictable; only give shrink_page_list evictable pages.
807 */
808 if (PageUnevictable(page))
809 return ret;
810
5ad333eb
AW
811 ret = -EBUSY;
812 if (likely(get_page_unless_zero(page))) {
813 /*
814 * Be careful not to clear PageLRU until after we're
815 * sure the page is not being freed elsewhere -- the
816 * page release code relies on it.
817 */
818 ClearPageLRU(page);
819 ret = 0;
820 }
821
822 return ret;
823}
824
1da177e4
LT
825/*
826 * zone->lru_lock is heavily contended. Some of the functions that
827 * shrink the lists perform better by taking out a batch of pages
828 * and working on them outside the LRU lock.
829 *
830 * For pagecache intensive workloads, this function is the hottest
831 * spot in the kernel (apart from copy_*_user functions).
832 *
833 * Appropriate locks must be held before calling this function.
834 *
835 * @nr_to_scan: The number of pages to look through on the list.
836 * @src: The LRU list to pull pages off.
837 * @dst: The temp list to put pages on to.
838 * @scanned: The number of pages that were scanned.
5ad333eb
AW
839 * @order: The caller's attempted allocation order
840 * @mode: One of the LRU isolation modes
4f98a2fe 841 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
842 *
843 * returns how many pages were moved onto *@dst.
844 */
69e05944
AM
845static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
846 struct list_head *src, struct list_head *dst,
4f98a2fe 847 unsigned long *scanned, int order, int mode, int file)
1da177e4 848{
69e05944 849 unsigned long nr_taken = 0;
c9b02d97 850 unsigned long scan;
1da177e4 851
c9b02d97 852 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
853 struct page *page;
854 unsigned long pfn;
855 unsigned long end_pfn;
856 unsigned long page_pfn;
857 int zone_id;
858
1da177e4
LT
859 page = lru_to_page(src);
860 prefetchw_prev_lru_page(page, src, flags);
861
725d704e 862 VM_BUG_ON(!PageLRU(page));
8d438f96 863
4f98a2fe 864 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
865 case 0:
866 list_move(&page->lru, dst);
7c8ee9a8 867 nr_taken++;
5ad333eb
AW
868 break;
869
870 case -EBUSY:
871 /* else it is being freed elsewhere */
872 list_move(&page->lru, src);
873 continue;
46453a6e 874
5ad333eb
AW
875 default:
876 BUG();
877 }
878
879 if (!order)
880 continue;
881
882 /*
883 * Attempt to take all pages in the order aligned region
884 * surrounding the tag page. Only take those pages of
885 * the same active state as that tag page. We may safely
886 * round the target page pfn down to the requested order
887 * as the mem_map is guarenteed valid out to MAX_ORDER,
888 * where that page is in a different zone we will detect
889 * it from its zone id and abort this block scan.
890 */
891 zone_id = page_zone_id(page);
892 page_pfn = page_to_pfn(page);
893 pfn = page_pfn & ~((1 << order) - 1);
894 end_pfn = pfn + (1 << order);
895 for (; pfn < end_pfn; pfn++) {
896 struct page *cursor_page;
897
898 /* The target page is in the block, ignore it. */
899 if (unlikely(pfn == page_pfn))
900 continue;
901
902 /* Avoid holes within the zone. */
903 if (unlikely(!pfn_valid_within(pfn)))
904 break;
905
906 cursor_page = pfn_to_page(pfn);
4f98a2fe 907
5ad333eb
AW
908 /* Check that we have not crossed a zone boundary. */
909 if (unlikely(page_zone_id(cursor_page) != zone_id))
910 continue;
4f98a2fe 911 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
912 case 0:
913 list_move(&cursor_page->lru, dst);
914 nr_taken++;
915 scan++;
916 break;
917
918 case -EBUSY:
919 /* else it is being freed elsewhere */
920 list_move(&cursor_page->lru, src);
921 default:
894bc310 922 break; /* ! on LRU or wrong list */
5ad333eb
AW
923 }
924 }
1da177e4
LT
925 }
926
927 *scanned = scan;
928 return nr_taken;
929}
930
66e1707b
BS
931static unsigned long isolate_pages_global(unsigned long nr,
932 struct list_head *dst,
933 unsigned long *scanned, int order,
934 int mode, struct zone *z,
935 struct mem_cgroup *mem_cont,
4f98a2fe 936 int active, int file)
66e1707b 937{
4f98a2fe 938 int lru = LRU_BASE;
66e1707b 939 if (active)
4f98a2fe
RR
940 lru += LRU_ACTIVE;
941 if (file)
942 lru += LRU_FILE;
943 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
944 mode, !!file);
66e1707b
BS
945}
946
5ad333eb
AW
947/*
948 * clear_active_flags() is a helper for shrink_active_list(), clearing
949 * any active bits from the pages in the list.
950 */
4f98a2fe
RR
951static unsigned long clear_active_flags(struct list_head *page_list,
952 unsigned int *count)
5ad333eb
AW
953{
954 int nr_active = 0;
4f98a2fe 955 int lru;
5ad333eb
AW
956 struct page *page;
957
4f98a2fe
RR
958 list_for_each_entry(page, page_list, lru) {
959 lru = page_is_file_cache(page);
5ad333eb 960 if (PageActive(page)) {
4f98a2fe 961 lru += LRU_ACTIVE;
5ad333eb
AW
962 ClearPageActive(page);
963 nr_active++;
964 }
4f98a2fe
RR
965 count[lru]++;
966 }
5ad333eb
AW
967
968 return nr_active;
969}
970
62695a84
NP
971/**
972 * isolate_lru_page - tries to isolate a page from its LRU list
973 * @page: page to isolate from its LRU list
974 *
975 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
976 * vmstat statistic corresponding to whatever LRU list the page was on.
977 *
978 * Returns 0 if the page was removed from an LRU list.
979 * Returns -EBUSY if the page was not on an LRU list.
980 *
981 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
982 * the active list, it will have PageActive set. If it was found on
983 * the unevictable list, it will have the PageUnevictable bit set. That flag
984 * may need to be cleared by the caller before letting the page go.
62695a84
NP
985 *
986 * The vmstat statistic corresponding to the list on which the page was
987 * found will be decremented.
988 *
989 * Restrictions:
990 * (1) Must be called with an elevated refcount on the page. This is a
991 * fundamentnal difference from isolate_lru_pages (which is called
992 * without a stable reference).
993 * (2) the lru_lock must not be held.
994 * (3) interrupts must be enabled.
995 */
996int isolate_lru_page(struct page *page)
997{
998 int ret = -EBUSY;
999
1000 if (PageLRU(page)) {
1001 struct zone *zone = page_zone(page);
1002
1003 spin_lock_irq(&zone->lru_lock);
1004 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1005 int lru = page_lru(page);
62695a84
NP
1006 ret = 0;
1007 ClearPageLRU(page);
4f98a2fe 1008
4f98a2fe 1009 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1010 }
1011 spin_unlock_irq(&zone->lru_lock);
1012 }
1013 return ret;
1014}
1015
1da177e4 1016/*
1742f19f
AM
1017 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1018 * of reclaimed pages
1da177e4 1019 */
1742f19f 1020static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1021 struct zone *zone, struct scan_control *sc,
1022 int priority, int file)
1da177e4
LT
1023{
1024 LIST_HEAD(page_list);
1025 struct pagevec pvec;
69e05944 1026 unsigned long nr_scanned = 0;
05ff5137 1027 unsigned long nr_reclaimed = 0;
1da177e4
LT
1028
1029 pagevec_init(&pvec, 1);
1030
1031 lru_add_drain();
1032 spin_lock_irq(&zone->lru_lock);
69e05944 1033 do {
1da177e4 1034 struct page *page;
69e05944
AM
1035 unsigned long nr_taken;
1036 unsigned long nr_scan;
1037 unsigned long nr_freed;
5ad333eb 1038 unsigned long nr_active;
4f98a2fe 1039 unsigned int count[NR_LRU_LISTS] = { 0, };
33c120ed
RR
1040 int mode = ISOLATE_INACTIVE;
1041
1042 /*
1043 * If we need a large contiguous chunk of memory, or have
1044 * trouble getting a small set of contiguous pages, we
1045 * will reclaim both active and inactive pages.
1046 *
1047 * We use the same threshold as pageout congestion_wait below.
1048 */
1049 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1050 mode = ISOLATE_BOTH;
1051 else if (sc->order && priority < DEF_PRIORITY - 2)
1052 mode = ISOLATE_BOTH;
1da177e4 1053
66e1707b 1054 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1055 &page_list, &nr_scan, sc->order, mode,
1056 zone, sc->mem_cgroup, 0, file);
1057 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1058 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1059
4f98a2fe
RR
1060 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1061 -count[LRU_ACTIVE_FILE]);
1062 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1063 -count[LRU_INACTIVE_FILE]);
1064 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1065 -count[LRU_ACTIVE_ANON]);
1066 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1067 -count[LRU_INACTIVE_ANON]);
1068
1069 if (scan_global_lru(sc)) {
1cfb419b 1070 zone->pages_scanned += nr_scan;
4f98a2fe
RR
1071 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1072 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1073 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1074 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1075 }
1da177e4
LT
1076 spin_unlock_irq(&zone->lru_lock);
1077
69e05944 1078 nr_scanned += nr_scan;
c661b078
AW
1079 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1080
1081 /*
1082 * If we are direct reclaiming for contiguous pages and we do
1083 * not reclaim everything in the list, try again and wait
1084 * for IO to complete. This will stall high-order allocations
1085 * but that should be acceptable to the caller
1086 */
1087 if (nr_freed < nr_taken && !current_is_kswapd() &&
1088 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1089 congestion_wait(WRITE, HZ/10);
1090
1091 /*
1092 * The attempt at page out may have made some
1093 * of the pages active, mark them inactive again.
1094 */
4f98a2fe 1095 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1096 count_vm_events(PGDEACTIVATE, nr_active);
1097
1098 nr_freed += shrink_page_list(&page_list, sc,
1099 PAGEOUT_IO_SYNC);
1100 }
1101
05ff5137 1102 nr_reclaimed += nr_freed;
a74609fa
NP
1103 local_irq_disable();
1104 if (current_is_kswapd()) {
f8891e5e
CL
1105 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1106 __count_vm_events(KSWAPD_STEAL, nr_freed);
1cfb419b 1107 } else if (scan_global_lru(sc))
f8891e5e 1108 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1109
918d3f90 1110 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1111
fb8d14e1
WF
1112 if (nr_taken == 0)
1113 goto done;
1114
a74609fa 1115 spin_lock(&zone->lru_lock);
1da177e4
LT
1116 /*
1117 * Put back any unfreeable pages.
1118 */
1119 while (!list_empty(&page_list)) {
894bc310 1120 int lru;
1da177e4 1121 page = lru_to_page(&page_list);
725d704e 1122 VM_BUG_ON(PageLRU(page));
1da177e4 1123 list_del(&page->lru);
894bc310
LS
1124 if (unlikely(!page_evictable(page, NULL))) {
1125 spin_unlock_irq(&zone->lru_lock);
1126 putback_lru_page(page);
1127 spin_lock_irq(&zone->lru_lock);
1128 continue;
1129 }
1130 SetPageLRU(page);
1131 lru = page_lru(page);
1132 add_page_to_lru_list(zone, page, lru);
1133 mem_cgroup_move_lists(page, lru);
4f98a2fe
RR
1134 if (PageActive(page) && scan_global_lru(sc)) {
1135 int file = !!page_is_file_cache(page);
1136 zone->recent_rotated[file]++;
1137 }
1da177e4
LT
1138 if (!pagevec_add(&pvec, page)) {
1139 spin_unlock_irq(&zone->lru_lock);
1140 __pagevec_release(&pvec);
1141 spin_lock_irq(&zone->lru_lock);
1142 }
1143 }
69e05944 1144 } while (nr_scanned < max_scan);
fb8d14e1 1145 spin_unlock(&zone->lru_lock);
1da177e4 1146done:
fb8d14e1 1147 local_irq_enable();
1da177e4 1148 pagevec_release(&pvec);
05ff5137 1149 return nr_reclaimed;
1da177e4
LT
1150}
1151
3bb1a852
MB
1152/*
1153 * We are about to scan this zone at a certain priority level. If that priority
1154 * level is smaller (ie: more urgent) than the previous priority, then note
1155 * that priority level within the zone. This is done so that when the next
1156 * process comes in to scan this zone, it will immediately start out at this
1157 * priority level rather than having to build up its own scanning priority.
1158 * Here, this priority affects only the reclaim-mapped threshold.
1159 */
1160static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1161{
1162 if (priority < zone->prev_priority)
1163 zone->prev_priority = priority;
1164}
1165
4ff1ffb4
NP
1166static inline int zone_is_near_oom(struct zone *zone)
1167{
4f98a2fe 1168 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1cfb419b
KH
1169}
1170
1da177e4
LT
1171/*
1172 * This moves pages from the active list to the inactive list.
1173 *
1174 * We move them the other way if the page is referenced by one or more
1175 * processes, from rmap.
1176 *
1177 * If the pages are mostly unmapped, the processing is fast and it is
1178 * appropriate to hold zone->lru_lock across the whole operation. But if
1179 * the pages are mapped, the processing is slow (page_referenced()) so we
1180 * should drop zone->lru_lock around each page. It's impossible to balance
1181 * this, so instead we remove the pages from the LRU while processing them.
1182 * It is safe to rely on PG_active against the non-LRU pages in here because
1183 * nobody will play with that bit on a non-LRU page.
1184 *
1185 * The downside is that we have to touch page->_count against each page.
1186 * But we had to alter page->flags anyway.
1187 */
1cfb419b
KH
1188
1189
1742f19f 1190static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1191 struct scan_control *sc, int priority, int file)
1da177e4 1192{
69e05944 1193 unsigned long pgmoved;
1da177e4 1194 int pgdeactivate = 0;
69e05944 1195 unsigned long pgscanned;
1da177e4 1196 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1197 LIST_HEAD(l_inactive);
1da177e4
LT
1198 struct page *page;
1199 struct pagevec pvec;
4f98a2fe 1200 enum lru_list lru;
1da177e4
LT
1201
1202 lru_add_drain();
1203 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1204 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1205 ISOLATE_ACTIVE, zone,
4f98a2fe 1206 sc->mem_cgroup, 1, file);
1cfb419b
KH
1207 /*
1208 * zone->pages_scanned is used for detect zone's oom
1209 * mem_cgroup remembers nr_scan by itself.
1210 */
4f98a2fe 1211 if (scan_global_lru(sc)) {
1cfb419b 1212 zone->pages_scanned += pgscanned;
4f98a2fe
RR
1213 zone->recent_scanned[!!file] += pgmoved;
1214 }
1cfb419b 1215
4f98a2fe
RR
1216 if (file)
1217 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1218 else
1219 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1220 spin_unlock_irq(&zone->lru_lock);
1221
556adecb 1222 pgmoved = 0;
1da177e4
LT
1223 while (!list_empty(&l_hold)) {
1224 cond_resched();
1225 page = lru_to_page(&l_hold);
1226 list_del(&page->lru);
7e9cd484 1227
894bc310
LS
1228 if (unlikely(!page_evictable(page, NULL))) {
1229 putback_lru_page(page);
1230 continue;
1231 }
1232
7e9cd484
RR
1233 /* page_referenced clears PageReferenced */
1234 if (page_mapping_inuse(page) &&
1235 page_referenced(page, 0, sc->mem_cgroup))
1236 pgmoved++;
1237
1da177e4
LT
1238 list_add(&page->lru, &l_inactive);
1239 }
1240
556adecb 1241 /*
7e9cd484
RR
1242 * Count referenced pages from currently used mappings as
1243 * rotated, even though they are moved to the inactive list.
1244 * This helps balance scan pressure between file and anonymous
1245 * pages in get_scan_ratio.
1246 */
556adecb
RR
1247 zone->recent_rotated[!!file] += pgmoved;
1248
4f98a2fe 1249 /*
7e9cd484 1250 * Move the pages to the [file or anon] inactive list.
4f98a2fe 1251 */
1da177e4 1252 pagevec_init(&pvec, 1);
7e9cd484 1253
1da177e4 1254 pgmoved = 0;
4f98a2fe 1255 lru = LRU_BASE + file * LRU_FILE;
1da177e4
LT
1256 spin_lock_irq(&zone->lru_lock);
1257 while (!list_empty(&l_inactive)) {
1258 page = lru_to_page(&l_inactive);
1259 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1260 VM_BUG_ON(PageLRU(page));
8d438f96 1261 SetPageLRU(page);
725d704e 1262 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1263 ClearPageActive(page);
1264
4f98a2fe 1265 list_move(&page->lru, &zone->lru[lru].list);
894bc310 1266 mem_cgroup_move_lists(page, lru);
1da177e4
LT
1267 pgmoved++;
1268 if (!pagevec_add(&pvec, page)) {
4f98a2fe 1269 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1270 spin_unlock_irq(&zone->lru_lock);
1271 pgdeactivate += pgmoved;
1272 pgmoved = 0;
1273 if (buffer_heads_over_limit)
1274 pagevec_strip(&pvec);
1275 __pagevec_release(&pvec);
1276 spin_lock_irq(&zone->lru_lock);
1277 }
1278 }
4f98a2fe 1279 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1280 pgdeactivate += pgmoved;
1281 if (buffer_heads_over_limit) {
1282 spin_unlock_irq(&zone->lru_lock);
1283 pagevec_strip(&pvec);
1284 spin_lock_irq(&zone->lru_lock);
1285 }
f8891e5e
CL
1286 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1287 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1288 spin_unlock_irq(&zone->lru_lock);
68a22394
RR
1289 if (vm_swap_full())
1290 pagevec_swap_free(&pvec);
1da177e4 1291
a74609fa 1292 pagevec_release(&pvec);
1da177e4
LT
1293}
1294
4f98a2fe 1295static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1296 struct zone *zone, struct scan_control *sc, int priority)
1297{
4f98a2fe
RR
1298 int file = is_file_lru(lru);
1299
556adecb
RR
1300 if (lru == LRU_ACTIVE_FILE) {
1301 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1302 return 0;
1303 }
1304
1305 if (lru == LRU_ACTIVE_ANON &&
1306 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
4f98a2fe 1307 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1308 return 0;
1309 }
33c120ed 1310 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1311}
1312
1313/*
1314 * Determine how aggressively the anon and file LRU lists should be
1315 * scanned. The relative value of each set of LRU lists is determined
1316 * by looking at the fraction of the pages scanned we did rotate back
1317 * onto the active list instead of evict.
1318 *
1319 * percent[0] specifies how much pressure to put on ram/swap backed
1320 * memory, while percent[1] determines pressure on the file LRUs.
1321 */
1322static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1323 unsigned long *percent)
1324{
1325 unsigned long anon, file, free;
1326 unsigned long anon_prio, file_prio;
1327 unsigned long ap, fp;
1328
1329 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1330 zone_page_state(zone, NR_INACTIVE_ANON);
1331 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1332 zone_page_state(zone, NR_INACTIVE_FILE);
1333 free = zone_page_state(zone, NR_FREE_PAGES);
1334
1335 /* If we have no swap space, do not bother scanning anon pages. */
1336 if (nr_swap_pages <= 0) {
1337 percent[0] = 0;
1338 percent[1] = 100;
1339 return;
1340 }
1341
1342 /* If we have very few page cache pages, force-scan anon pages. */
1343 if (unlikely(file + free <= zone->pages_high)) {
1344 percent[0] = 100;
1345 percent[1] = 0;
1346 return;
1347 }
1348
1349 /*
1350 * OK, so we have swap space and a fair amount of page cache
1351 * pages. We use the recently rotated / recently scanned
1352 * ratios to determine how valuable each cache is.
1353 *
1354 * Because workloads change over time (and to avoid overflow)
1355 * we keep these statistics as a floating average, which ends
1356 * up weighing recent references more than old ones.
1357 *
1358 * anon in [0], file in [1]
1359 */
1360 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1361 spin_lock_irq(&zone->lru_lock);
1362 zone->recent_scanned[0] /= 2;
1363 zone->recent_rotated[0] /= 2;
1364 spin_unlock_irq(&zone->lru_lock);
1365 }
1366
1367 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1368 spin_lock_irq(&zone->lru_lock);
1369 zone->recent_scanned[1] /= 2;
1370 zone->recent_rotated[1] /= 2;
1371 spin_unlock_irq(&zone->lru_lock);
1372 }
1373
1374 /*
1375 * With swappiness at 100, anonymous and file have the same priority.
1376 * This scanning priority is essentially the inverse of IO cost.
1377 */
1378 anon_prio = sc->swappiness;
1379 file_prio = 200 - sc->swappiness;
1380
1381 /*
1382 * anon recent_rotated[0]
1383 * %anon = 100 * ----------- / ----------------- * IO cost
1384 * anon + file rotate_sum
1385 */
1386 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1387 ap /= zone->recent_rotated[0] + 1;
1388
1389 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1390 fp /= zone->recent_rotated[1] + 1;
1391
1392 /* Normalize to percentages */
1393 percent[0] = 100 * ap / (ap + fp + 1);
1394 percent[1] = 100 - percent[0];
b69408e8
CL
1395}
1396
4f98a2fe 1397
1da177e4
LT
1398/*
1399 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1400 */
05ff5137
AM
1401static unsigned long shrink_zone(int priority, struct zone *zone,
1402 struct scan_control *sc)
1da177e4 1403{
b69408e8 1404 unsigned long nr[NR_LRU_LISTS];
8695949a 1405 unsigned long nr_to_scan;
05ff5137 1406 unsigned long nr_reclaimed = 0;
4f98a2fe 1407 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1408 enum lru_list l;
1da177e4 1409
4f98a2fe
RR
1410 get_scan_ratio(zone, sc, percent);
1411
894bc310 1412 for_each_evictable_lru(l) {
4f98a2fe
RR
1413 if (scan_global_lru(sc)) {
1414 int file = is_file_lru(l);
1415 int scan;
e0f79b8f 1416
4f98a2fe
RR
1417 scan = zone_page_state(zone, NR_LRU_BASE + l);
1418 if (priority) {
1419 scan >>= priority;
1420 scan = (scan * percent[file]) / 100;
1421 }
e0f79b8f 1422 zone->lru[l].nr_scan += scan;
b69408e8
CL
1423 nr[l] = zone->lru[l].nr_scan;
1424 if (nr[l] >= sc->swap_cluster_max)
1425 zone->lru[l].nr_scan = 0;
1426 else
1427 nr[l] = 0;
4f98a2fe
RR
1428 } else {
1429 /*
1430 * This reclaim occurs not because zone memory shortage
1431 * but because memory controller hits its limit.
1432 * Don't modify zone reclaim related data.
1433 */
1434 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1435 priority, l);
b69408e8 1436 }
1cfb419b 1437 }
1da177e4 1438
556adecb
RR
1439 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1440 nr[LRU_INACTIVE_FILE]) {
894bc310 1441 for_each_evictable_lru(l) {
b69408e8
CL
1442 if (nr[l]) {
1443 nr_to_scan = min(nr[l],
1da177e4 1444 (unsigned long)sc->swap_cluster_max);
b69408e8 1445 nr[l] -= nr_to_scan;
1da177e4 1446
b69408e8
CL
1447 nr_reclaimed += shrink_list(l, nr_to_scan,
1448 zone, sc, priority);
1449 }
1da177e4
LT
1450 }
1451 }
1452
556adecb
RR
1453 /*
1454 * Even if we did not try to evict anon pages at all, we want to
1455 * rebalance the anon lru active/inactive ratio.
1456 */
1457 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1458 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1459 else if (!scan_global_lru(sc))
1460 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1461
232ea4d6 1462 throttle_vm_writeout(sc->gfp_mask);
05ff5137 1463 return nr_reclaimed;
1da177e4
LT
1464}
1465
1466/*
1467 * This is the direct reclaim path, for page-allocating processes. We only
1468 * try to reclaim pages from zones which will satisfy the caller's allocation
1469 * request.
1470 *
1471 * We reclaim from a zone even if that zone is over pages_high. Because:
1472 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1473 * allocation or
1474 * b) The zones may be over pages_high but they must go *over* pages_high to
1475 * satisfy the `incremental min' zone defense algorithm.
1476 *
1477 * Returns the number of reclaimed pages.
1478 *
1479 * If a zone is deemed to be full of pinned pages then just give it a light
1480 * scan then give up on it.
1481 */
dac1d27b 1482static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1483 struct scan_control *sc)
1da177e4 1484{
54a6eb5c 1485 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
05ff5137 1486 unsigned long nr_reclaimed = 0;
dd1a239f 1487 struct zoneref *z;
54a6eb5c 1488 struct zone *zone;
1cfb419b 1489
408d8544 1490 sc->all_unreclaimable = 1;
54a6eb5c 1491 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
f3fe6512 1492 if (!populated_zone(zone))
1da177e4 1493 continue;
1cfb419b
KH
1494 /*
1495 * Take care memory controller reclaiming has small influence
1496 * to global LRU.
1497 */
1498 if (scan_global_lru(sc)) {
1499 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1500 continue;
1501 note_zone_scanning_priority(zone, priority);
1da177e4 1502
1cfb419b
KH
1503 if (zone_is_all_unreclaimable(zone) &&
1504 priority != DEF_PRIORITY)
1505 continue; /* Let kswapd poll it */
1506 sc->all_unreclaimable = 0;
1507 } else {
1508 /*
1509 * Ignore cpuset limitation here. We just want to reduce
1510 * # of used pages by us regardless of memory shortage.
1511 */
1512 sc->all_unreclaimable = 0;
1513 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1514 priority);
1515 }
408d8544 1516
05ff5137 1517 nr_reclaimed += shrink_zone(priority, zone, sc);
1da177e4 1518 }
1cfb419b 1519
05ff5137 1520 return nr_reclaimed;
1da177e4 1521}
4f98a2fe 1522
1da177e4
LT
1523/*
1524 * This is the main entry point to direct page reclaim.
1525 *
1526 * If a full scan of the inactive list fails to free enough memory then we
1527 * are "out of memory" and something needs to be killed.
1528 *
1529 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1530 * high - the zone may be full of dirty or under-writeback pages, which this
1531 * caller can't do much about. We kick pdflush and take explicit naps in the
1532 * hope that some of these pages can be written. But if the allocating task
1533 * holds filesystem locks which prevent writeout this might not work, and the
1534 * allocation attempt will fail.
a41f24ea
NA
1535 *
1536 * returns: 0, if no pages reclaimed
1537 * else, the number of pages reclaimed
1da177e4 1538 */
dac1d27b 1539static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1540 struct scan_control *sc)
1da177e4
LT
1541{
1542 int priority;
c700be3d 1543 unsigned long ret = 0;
69e05944 1544 unsigned long total_scanned = 0;
05ff5137 1545 unsigned long nr_reclaimed = 0;
1da177e4 1546 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1547 unsigned long lru_pages = 0;
dd1a239f 1548 struct zoneref *z;
54a6eb5c 1549 struct zone *zone;
dd1a239f 1550 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1551
873b4771
KK
1552 delayacct_freepages_start();
1553
1cfb419b
KH
1554 if (scan_global_lru(sc))
1555 count_vm_event(ALLOCSTALL);
1556 /*
1557 * mem_cgroup will not do shrink_slab.
1558 */
1559 if (scan_global_lru(sc)) {
54a6eb5c 1560 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1561
1cfb419b
KH
1562 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1563 continue;
1da177e4 1564
4f98a2fe 1565 lru_pages += zone_lru_pages(zone);
1cfb419b 1566 }
1da177e4
LT
1567 }
1568
1569 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1570 sc->nr_scanned = 0;
f7b7fd8f
RR
1571 if (!priority)
1572 disable_swap_token();
dac1d27b 1573 nr_reclaimed += shrink_zones(priority, zonelist, sc);
66e1707b
BS
1574 /*
1575 * Don't shrink slabs when reclaiming memory from
1576 * over limit cgroups
1577 */
91a45470 1578 if (scan_global_lru(sc)) {
dd1a239f 1579 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470
KH
1580 if (reclaim_state) {
1581 nr_reclaimed += reclaim_state->reclaimed_slab;
1582 reclaim_state->reclaimed_slab = 0;
1583 }
1da177e4 1584 }
66e1707b
BS
1585 total_scanned += sc->nr_scanned;
1586 if (nr_reclaimed >= sc->swap_cluster_max) {
a41f24ea 1587 ret = nr_reclaimed;
1da177e4
LT
1588 goto out;
1589 }
1590
1591 /*
1592 * Try to write back as many pages as we just scanned. This
1593 * tends to cause slow streaming writers to write data to the
1594 * disk smoothly, at the dirtying rate, which is nice. But
1595 * that's undesirable in laptop mode, where we *want* lumpy
1596 * writeout. So in laptop mode, write out the whole world.
1597 */
66e1707b
BS
1598 if (total_scanned > sc->swap_cluster_max +
1599 sc->swap_cluster_max / 2) {
687a21ce 1600 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1601 sc->may_writepage = 1;
1da177e4
LT
1602 }
1603
1604 /* Take a nap, wait for some writeback to complete */
4dd4b920 1605 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1606 congestion_wait(WRITE, HZ/10);
1da177e4 1607 }
87547ee9 1608 /* top priority shrink_zones still had more to do? don't OOM, then */
91a45470 1609 if (!sc->all_unreclaimable && scan_global_lru(sc))
a41f24ea 1610 ret = nr_reclaimed;
1da177e4 1611out:
3bb1a852
MB
1612 /*
1613 * Now that we've scanned all the zones at this priority level, note
1614 * that level within the zone so that the next thread which performs
1615 * scanning of this zone will immediately start out at this priority
1616 * level. This affects only the decision whether or not to bring
1617 * mapped pages onto the inactive list.
1618 */
1619 if (priority < 0)
1620 priority = 0;
1da177e4 1621
1cfb419b 1622 if (scan_global_lru(sc)) {
54a6eb5c 1623 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1624
1625 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1626 continue;
1627
1628 zone->prev_priority = priority;
1629 }
1630 } else
1631 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1632
873b4771
KK
1633 delayacct_freepages_end();
1634
1da177e4
LT
1635 return ret;
1636}
1637
dac1d27b
MG
1638unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1639 gfp_t gfp_mask)
66e1707b
BS
1640{
1641 struct scan_control sc = {
1642 .gfp_mask = gfp_mask,
1643 .may_writepage = !laptop_mode,
1644 .swap_cluster_max = SWAP_CLUSTER_MAX,
1645 .may_swap = 1,
1646 .swappiness = vm_swappiness,
1647 .order = order,
1648 .mem_cgroup = NULL,
1649 .isolate_pages = isolate_pages_global,
1650 };
1651
dd1a239f 1652 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1653}
1654
00f0b825 1655#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1656
e1a1cd59
BS
1657unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1658 gfp_t gfp_mask)
66e1707b
BS
1659{
1660 struct scan_control sc = {
66e1707b
BS
1661 .may_writepage = !laptop_mode,
1662 .may_swap = 1,
1663 .swap_cluster_max = SWAP_CLUSTER_MAX,
1664 .swappiness = vm_swappiness,
1665 .order = 0,
1666 .mem_cgroup = mem_cont,
1667 .isolate_pages = mem_cgroup_isolate_pages,
1668 };
dac1d27b 1669 struct zonelist *zonelist;
66e1707b 1670
dd1a239f
MG
1671 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1672 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1673 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1674 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1675}
1676#endif
1677
1da177e4
LT
1678/*
1679 * For kswapd, balance_pgdat() will work across all this node's zones until
1680 * they are all at pages_high.
1681 *
1da177e4
LT
1682 * Returns the number of pages which were actually freed.
1683 *
1684 * There is special handling here for zones which are full of pinned pages.
1685 * This can happen if the pages are all mlocked, or if they are all used by
1686 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1687 * What we do is to detect the case where all pages in the zone have been
1688 * scanned twice and there has been zero successful reclaim. Mark the zone as
1689 * dead and from now on, only perform a short scan. Basically we're polling
1690 * the zone for when the problem goes away.
1691 *
1692 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1693 * zones which have free_pages > pages_high, but once a zone is found to have
1694 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1695 * of the number of free pages in the lower zones. This interoperates with
1696 * the page allocator fallback scheme to ensure that aging of pages is balanced
1697 * across the zones.
1698 */
d6277db4 1699static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1700{
1da177e4
LT
1701 int all_zones_ok;
1702 int priority;
1703 int i;
69e05944 1704 unsigned long total_scanned;
05ff5137 1705 unsigned long nr_reclaimed;
1da177e4 1706 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1707 struct scan_control sc = {
1708 .gfp_mask = GFP_KERNEL,
1709 .may_swap = 1,
d6277db4
RW
1710 .swap_cluster_max = SWAP_CLUSTER_MAX,
1711 .swappiness = vm_swappiness,
5ad333eb 1712 .order = order,
66e1707b
BS
1713 .mem_cgroup = NULL,
1714 .isolate_pages = isolate_pages_global,
179e9639 1715 };
3bb1a852
MB
1716 /*
1717 * temp_priority is used to remember the scanning priority at which
1718 * this zone was successfully refilled to free_pages == pages_high.
1719 */
1720 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1721
1722loop_again:
1723 total_scanned = 0;
05ff5137 1724 nr_reclaimed = 0;
c0bbbc73 1725 sc.may_writepage = !laptop_mode;
f8891e5e 1726 count_vm_event(PAGEOUTRUN);
1da177e4 1727
3bb1a852
MB
1728 for (i = 0; i < pgdat->nr_zones; i++)
1729 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1730
1731 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1732 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1733 unsigned long lru_pages = 0;
1734
f7b7fd8f
RR
1735 /* The swap token gets in the way of swapout... */
1736 if (!priority)
1737 disable_swap_token();
1738
1da177e4
LT
1739 all_zones_ok = 1;
1740
d6277db4
RW
1741 /*
1742 * Scan in the highmem->dma direction for the highest
1743 * zone which needs scanning
1744 */
1745 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1746 struct zone *zone = pgdat->node_zones + i;
1da177e4 1747
d6277db4
RW
1748 if (!populated_zone(zone))
1749 continue;
1da177e4 1750
e815af95
DR
1751 if (zone_is_all_unreclaimable(zone) &&
1752 priority != DEF_PRIORITY)
d6277db4 1753 continue;
1da177e4 1754
556adecb
RR
1755 /*
1756 * Do some background aging of the anon list, to give
1757 * pages a chance to be referenced before reclaiming.
1758 */
1759 if (inactive_anon_is_low(zone))
1760 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1761 &sc, priority, 0);
1762
d6277db4
RW
1763 if (!zone_watermark_ok(zone, order, zone->pages_high,
1764 0, 0)) {
1765 end_zone = i;
e1dbeda6 1766 break;
1da177e4 1767 }
1da177e4 1768 }
e1dbeda6
AM
1769 if (i < 0)
1770 goto out;
1771
1da177e4
LT
1772 for (i = 0; i <= end_zone; i++) {
1773 struct zone *zone = pgdat->node_zones + i;
1774
4f98a2fe 1775 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1776 }
1777
1778 /*
1779 * Now scan the zone in the dma->highmem direction, stopping
1780 * at the last zone which needs scanning.
1781 *
1782 * We do this because the page allocator works in the opposite
1783 * direction. This prevents the page allocator from allocating
1784 * pages behind kswapd's direction of progress, which would
1785 * cause too much scanning of the lower zones.
1786 */
1787 for (i = 0; i <= end_zone; i++) {
1788 struct zone *zone = pgdat->node_zones + i;
b15e0905 1789 int nr_slab;
1da177e4 1790
f3fe6512 1791 if (!populated_zone(zone))
1da177e4
LT
1792 continue;
1793
e815af95
DR
1794 if (zone_is_all_unreclaimable(zone) &&
1795 priority != DEF_PRIORITY)
1da177e4
LT
1796 continue;
1797
d6277db4
RW
1798 if (!zone_watermark_ok(zone, order, zone->pages_high,
1799 end_zone, 0))
1800 all_zones_ok = 0;
3bb1a852 1801 temp_priority[i] = priority;
1da177e4 1802 sc.nr_scanned = 0;
3bb1a852 1803 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1804 /*
1805 * We put equal pressure on every zone, unless one
1806 * zone has way too many pages free already.
1807 */
1808 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1809 end_zone, 0))
1810 nr_reclaimed += shrink_zone(priority, zone, &sc);
1da177e4 1811 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
1812 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1813 lru_pages);
05ff5137 1814 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1815 total_scanned += sc.nr_scanned;
e815af95 1816 if (zone_is_all_unreclaimable(zone))
1da177e4 1817 continue;
b15e0905 1818 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1819 (zone_lru_pages(zone) * 6))
e815af95
DR
1820 zone_set_flag(zone,
1821 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1822 /*
1823 * If we've done a decent amount of scanning and
1824 * the reclaim ratio is low, start doing writepage
1825 * even in laptop mode
1826 */
1827 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
05ff5137 1828 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1da177e4
LT
1829 sc.may_writepage = 1;
1830 }
1da177e4
LT
1831 if (all_zones_ok)
1832 break; /* kswapd: all done */
1833 /*
1834 * OK, kswapd is getting into trouble. Take a nap, then take
1835 * another pass across the zones.
1836 */
4dd4b920 1837 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1838 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1839
1840 /*
1841 * We do this so kswapd doesn't build up large priorities for
1842 * example when it is freeing in parallel with allocators. It
1843 * matches the direct reclaim path behaviour in terms of impact
1844 * on zone->*_priority.
1845 */
d6277db4 1846 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1847 break;
1848 }
1849out:
3bb1a852
MB
1850 /*
1851 * Note within each zone the priority level at which this zone was
1852 * brought into a happy state. So that the next thread which scans this
1853 * zone will start out at that priority level.
1854 */
1da177e4
LT
1855 for (i = 0; i < pgdat->nr_zones; i++) {
1856 struct zone *zone = pgdat->node_zones + i;
1857
3bb1a852 1858 zone->prev_priority = temp_priority[i];
1da177e4
LT
1859 }
1860 if (!all_zones_ok) {
1861 cond_resched();
8357376d
RW
1862
1863 try_to_freeze();
1864
1da177e4
LT
1865 goto loop_again;
1866 }
1867
05ff5137 1868 return nr_reclaimed;
1da177e4
LT
1869}
1870
1871/*
1872 * The background pageout daemon, started as a kernel thread
4f98a2fe 1873 * from the init process.
1da177e4
LT
1874 *
1875 * This basically trickles out pages so that we have _some_
1876 * free memory available even if there is no other activity
1877 * that frees anything up. This is needed for things like routing
1878 * etc, where we otherwise might have all activity going on in
1879 * asynchronous contexts that cannot page things out.
1880 *
1881 * If there are applications that are active memory-allocators
1882 * (most normal use), this basically shouldn't matter.
1883 */
1884static int kswapd(void *p)
1885{
1886 unsigned long order;
1887 pg_data_t *pgdat = (pg_data_t*)p;
1888 struct task_struct *tsk = current;
1889 DEFINE_WAIT(wait);
1890 struct reclaim_state reclaim_state = {
1891 .reclaimed_slab = 0,
1892 };
c5f59f08 1893 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1da177e4 1894
c5f59f08
MT
1895 if (!cpus_empty(*cpumask))
1896 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
1897 current->reclaim_state = &reclaim_state;
1898
1899 /*
1900 * Tell the memory management that we're a "memory allocator",
1901 * and that if we need more memory we should get access to it
1902 * regardless (see "__alloc_pages()"). "kswapd" should
1903 * never get caught in the normal page freeing logic.
1904 *
1905 * (Kswapd normally doesn't need memory anyway, but sometimes
1906 * you need a small amount of memory in order to be able to
1907 * page out something else, and this flag essentially protects
1908 * us from recursively trying to free more memory as we're
1909 * trying to free the first piece of memory in the first place).
1910 */
930d9152 1911 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 1912 set_freezable();
1da177e4
LT
1913
1914 order = 0;
1915 for ( ; ; ) {
1916 unsigned long new_order;
3e1d1d28 1917
1da177e4
LT
1918 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1919 new_order = pgdat->kswapd_max_order;
1920 pgdat->kswapd_max_order = 0;
1921 if (order < new_order) {
1922 /*
1923 * Don't sleep if someone wants a larger 'order'
1924 * allocation
1925 */
1926 order = new_order;
1927 } else {
b1296cc4
RW
1928 if (!freezing(current))
1929 schedule();
1930
1da177e4
LT
1931 order = pgdat->kswapd_max_order;
1932 }
1933 finish_wait(&pgdat->kswapd_wait, &wait);
1934
b1296cc4
RW
1935 if (!try_to_freeze()) {
1936 /* We can speed up thawing tasks if we don't call
1937 * balance_pgdat after returning from the refrigerator
1938 */
1939 balance_pgdat(pgdat, order);
1940 }
1da177e4
LT
1941 }
1942 return 0;
1943}
1944
1945/*
1946 * A zone is low on free memory, so wake its kswapd task to service it.
1947 */
1948void wakeup_kswapd(struct zone *zone, int order)
1949{
1950 pg_data_t *pgdat;
1951
f3fe6512 1952 if (!populated_zone(zone))
1da177e4
LT
1953 return;
1954
1955 pgdat = zone->zone_pgdat;
7fb1d9fc 1956 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1957 return;
1958 if (pgdat->kswapd_max_order < order)
1959 pgdat->kswapd_max_order = order;
02a0e53d 1960 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 1961 return;
8d0986e2 1962 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1963 return;
8d0986e2 1964 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1965}
1966
4f98a2fe
RR
1967unsigned long global_lru_pages(void)
1968{
1969 return global_page_state(NR_ACTIVE_ANON)
1970 + global_page_state(NR_ACTIVE_FILE)
1971 + global_page_state(NR_INACTIVE_ANON)
1972 + global_page_state(NR_INACTIVE_FILE);
1973}
1974
1da177e4
LT
1975#ifdef CONFIG_PM
1976/*
d6277db4
RW
1977 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1978 * from LRU lists system-wide, for given pass and priority, and returns the
1979 * number of reclaimed pages
1980 *
1981 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1982 */
e07aa05b
NC
1983static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1984 int pass, struct scan_control *sc)
d6277db4
RW
1985{
1986 struct zone *zone;
1987 unsigned long nr_to_scan, ret = 0;
b69408e8 1988 enum lru_list l;
d6277db4
RW
1989
1990 for_each_zone(zone) {
1991
1992 if (!populated_zone(zone))
1993 continue;
1994
e815af95 1995 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
1996 continue;
1997
894bc310
LS
1998 for_each_evictable_lru(l) {
1999 /* For pass = 0, we don't shrink the active list */
4f98a2fe
RR
2000 if (pass == 0 &&
2001 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
b69408e8
CL
2002 continue;
2003
2004 zone->lru[l].nr_scan +=
2005 (zone_page_state(zone, NR_LRU_BASE + l)
2006 >> prio) + 1;
2007 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2008 zone->lru[l].nr_scan = 0;
c8785385 2009 nr_to_scan = min(nr_pages,
b69408e8
CL
2010 zone_page_state(zone,
2011 NR_LRU_BASE + l));
2012 ret += shrink_list(l, nr_to_scan, zone,
2013 sc, prio);
2014 if (ret >= nr_pages)
2015 return ret;
d6277db4
RW
2016 }
2017 }
d6277db4
RW
2018 }
2019
2020 return ret;
2021}
2022
2023/*
2024 * Try to free `nr_pages' of memory, system-wide, and return the number of
2025 * freed pages.
2026 *
2027 * Rather than trying to age LRUs the aim is to preserve the overall
2028 * LRU order by reclaiming preferentially
2029 * inactive > active > active referenced > active mapped
1da177e4 2030 */
69e05944 2031unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2032{
d6277db4 2033 unsigned long lru_pages, nr_slab;
69e05944 2034 unsigned long ret = 0;
d6277db4
RW
2035 int pass;
2036 struct reclaim_state reclaim_state;
d6277db4
RW
2037 struct scan_control sc = {
2038 .gfp_mask = GFP_KERNEL,
2039 .may_swap = 0,
2040 .swap_cluster_max = nr_pages,
2041 .may_writepage = 1,
2042 .swappiness = vm_swappiness,
66e1707b 2043 .isolate_pages = isolate_pages_global,
1da177e4
LT
2044 };
2045
2046 current->reclaim_state = &reclaim_state;
69e05944 2047
4f98a2fe 2048 lru_pages = global_lru_pages();
972d1a7b 2049 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2050 /* If slab caches are huge, it's better to hit them first */
2051 while (nr_slab >= lru_pages) {
2052 reclaim_state.reclaimed_slab = 0;
2053 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2054 if (!reclaim_state.reclaimed_slab)
1da177e4 2055 break;
d6277db4
RW
2056
2057 ret += reclaim_state.reclaimed_slab;
2058 if (ret >= nr_pages)
2059 goto out;
2060
2061 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2062 }
d6277db4
RW
2063
2064 /*
2065 * We try to shrink LRUs in 5 passes:
2066 * 0 = Reclaim from inactive_list only
2067 * 1 = Reclaim from active list but don't reclaim mapped
2068 * 2 = 2nd pass of type 1
2069 * 3 = Reclaim mapped (normal reclaim)
2070 * 4 = 2nd pass of type 3
2071 */
2072 for (pass = 0; pass < 5; pass++) {
2073 int prio;
2074
d6277db4
RW
2075 /* Force reclaiming mapped pages in the passes #3 and #4 */
2076 if (pass > 2) {
2077 sc.may_swap = 1;
2078 sc.swappiness = 100;
2079 }
2080
2081 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2082 unsigned long nr_to_scan = nr_pages - ret;
2083
d6277db4 2084 sc.nr_scanned = 0;
d6277db4
RW
2085 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2086 if (ret >= nr_pages)
2087 goto out;
2088
2089 reclaim_state.reclaimed_slab = 0;
76395d37 2090 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2091 global_lru_pages());
d6277db4
RW
2092 ret += reclaim_state.reclaimed_slab;
2093 if (ret >= nr_pages)
2094 goto out;
2095
2096 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2097 congestion_wait(WRITE, HZ / 10);
d6277db4 2098 }
248a0301 2099 }
d6277db4
RW
2100
2101 /*
2102 * If ret = 0, we could not shrink LRUs, but there may be something
2103 * in slab caches
2104 */
76395d37 2105 if (!ret) {
d6277db4
RW
2106 do {
2107 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2108 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d6277db4
RW
2109 ret += reclaim_state.reclaimed_slab;
2110 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
76395d37 2111 }
d6277db4
RW
2112
2113out:
1da177e4 2114 current->reclaim_state = NULL;
d6277db4 2115
1da177e4
LT
2116 return ret;
2117}
2118#endif
2119
1da177e4
LT
2120/* It's optimal to keep kswapds on the same CPUs as their memory, but
2121 not required for correctness. So if the last cpu in a node goes
2122 away, we get changed to run anywhere: as the first one comes back,
2123 restore their cpu bindings. */
9c7b216d 2124static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2125 unsigned long action, void *hcpu)
1da177e4 2126{
58c0a4a7 2127 int nid;
1da177e4 2128
8bb78442 2129 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2130 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08
MT
2131 pg_data_t *pgdat = NODE_DATA(nid);
2132 node_to_cpumask_ptr(mask, pgdat->node_id);
2133
2134 if (any_online_cpu(*mask) < nr_cpu_ids)
1da177e4 2135 /* One of our CPUs online: restore mask */
c5f59f08 2136 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2137 }
2138 }
2139 return NOTIFY_OK;
2140}
1da177e4 2141
3218ae14
YG
2142/*
2143 * This kswapd start function will be called by init and node-hot-add.
2144 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2145 */
2146int kswapd_run(int nid)
2147{
2148 pg_data_t *pgdat = NODE_DATA(nid);
2149 int ret = 0;
2150
2151 if (pgdat->kswapd)
2152 return 0;
2153
2154 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2155 if (IS_ERR(pgdat->kswapd)) {
2156 /* failure at boot is fatal */
2157 BUG_ON(system_state == SYSTEM_BOOTING);
2158 printk("Failed to start kswapd on node %d\n",nid);
2159 ret = -1;
2160 }
2161 return ret;
2162}
2163
1da177e4
LT
2164static int __init kswapd_init(void)
2165{
3218ae14 2166 int nid;
69e05944 2167
1da177e4 2168 swap_setup();
9422ffba 2169 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2170 kswapd_run(nid);
1da177e4
LT
2171 hotcpu_notifier(cpu_callback, 0);
2172 return 0;
2173}
2174
2175module_init(kswapd_init)
9eeff239
CL
2176
2177#ifdef CONFIG_NUMA
2178/*
2179 * Zone reclaim mode
2180 *
2181 * If non-zero call zone_reclaim when the number of free pages falls below
2182 * the watermarks.
9eeff239
CL
2183 */
2184int zone_reclaim_mode __read_mostly;
2185
1b2ffb78 2186#define RECLAIM_OFF 0
7d03431c 2187#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2188#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2189#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2190
a92f7126
CL
2191/*
2192 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2193 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2194 * a zone.
2195 */
2196#define ZONE_RECLAIM_PRIORITY 4
2197
9614634f
CL
2198/*
2199 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2200 * occur.
2201 */
2202int sysctl_min_unmapped_ratio = 1;
2203
0ff38490
CL
2204/*
2205 * If the number of slab pages in a zone grows beyond this percentage then
2206 * slab reclaim needs to occur.
2207 */
2208int sysctl_min_slab_ratio = 5;
2209
9eeff239
CL
2210/*
2211 * Try to free up some pages from this zone through reclaim.
2212 */
179e9639 2213static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2214{
7fb2d46d 2215 /* Minimum pages needed in order to stay on node */
69e05944 2216 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2217 struct task_struct *p = current;
2218 struct reclaim_state reclaim_state;
8695949a 2219 int priority;
05ff5137 2220 unsigned long nr_reclaimed = 0;
179e9639
AM
2221 struct scan_control sc = {
2222 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2223 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
2224 .swap_cluster_max = max_t(unsigned long, nr_pages,
2225 SWAP_CLUSTER_MAX),
179e9639 2226 .gfp_mask = gfp_mask,
d6277db4 2227 .swappiness = vm_swappiness,
66e1707b 2228 .isolate_pages = isolate_pages_global,
179e9639 2229 };
83e33a47 2230 unsigned long slab_reclaimable;
9eeff239
CL
2231
2232 disable_swap_token();
9eeff239 2233 cond_resched();
d4f7796e
CL
2234 /*
2235 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2236 * and we also need to be able to write out pages for RECLAIM_WRITE
2237 * and RECLAIM_SWAP.
2238 */
2239 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2240 reclaim_state.reclaimed_slab = 0;
2241 p->reclaim_state = &reclaim_state;
c84db23c 2242
0ff38490
CL
2243 if (zone_page_state(zone, NR_FILE_PAGES) -
2244 zone_page_state(zone, NR_FILE_MAPPED) >
2245 zone->min_unmapped_pages) {
2246 /*
2247 * Free memory by calling shrink zone with increasing
2248 * priorities until we have enough memory freed.
2249 */
2250 priority = ZONE_RECLAIM_PRIORITY;
2251 do {
3bb1a852 2252 note_zone_scanning_priority(zone, priority);
0ff38490
CL
2253 nr_reclaimed += shrink_zone(priority, zone, &sc);
2254 priority--;
2255 } while (priority >= 0 && nr_reclaimed < nr_pages);
2256 }
c84db23c 2257
83e33a47
CL
2258 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2259 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2260 /*
7fb2d46d 2261 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2262 * many pages were freed in this zone. So we take the current
2263 * number of slab pages and shake the slab until it is reduced
2264 * by the same nr_pages that we used for reclaiming unmapped
2265 * pages.
2a16e3f4 2266 *
0ff38490
CL
2267 * Note that shrink_slab will free memory on all zones and may
2268 * take a long time.
2a16e3f4 2269 */
0ff38490 2270 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2271 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2272 slab_reclaimable - nr_pages)
0ff38490 2273 ;
83e33a47
CL
2274
2275 /*
2276 * Update nr_reclaimed by the number of slab pages we
2277 * reclaimed from this zone.
2278 */
2279 nr_reclaimed += slab_reclaimable -
2280 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2281 }
2282
9eeff239 2283 p->reclaim_state = NULL;
d4f7796e 2284 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
05ff5137 2285 return nr_reclaimed >= nr_pages;
9eeff239 2286}
179e9639
AM
2287
2288int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2289{
179e9639 2290 int node_id;
d773ed6b 2291 int ret;
179e9639
AM
2292
2293 /*
0ff38490
CL
2294 * Zone reclaim reclaims unmapped file backed pages and
2295 * slab pages if we are over the defined limits.
34aa1330 2296 *
9614634f
CL
2297 * A small portion of unmapped file backed pages is needed for
2298 * file I/O otherwise pages read by file I/O will be immediately
2299 * thrown out if the zone is overallocated. So we do not reclaim
2300 * if less than a specified percentage of the zone is used by
2301 * unmapped file backed pages.
179e9639 2302 */
34aa1330 2303 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2304 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2305 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2306 <= zone->min_slab_pages)
9614634f 2307 return 0;
179e9639 2308
d773ed6b
DR
2309 if (zone_is_all_unreclaimable(zone))
2310 return 0;
2311
179e9639 2312 /*
d773ed6b 2313 * Do not scan if the allocation should not be delayed.
179e9639 2314 */
d773ed6b 2315 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2316 return 0;
2317
2318 /*
2319 * Only run zone reclaim on the local zone or on zones that do not
2320 * have associated processors. This will favor the local processor
2321 * over remote processors and spread off node memory allocations
2322 * as wide as possible.
2323 */
89fa3024 2324 node_id = zone_to_nid(zone);
37c0708d 2325 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2326 return 0;
d773ed6b
DR
2327
2328 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2329 return 0;
2330 ret = __zone_reclaim(zone, gfp_mask, order);
2331 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2332
2333 return ret;
179e9639 2334}
9eeff239 2335#endif
894bc310
LS
2336
2337#ifdef CONFIG_UNEVICTABLE_LRU
2338/*
2339 * page_evictable - test whether a page is evictable
2340 * @page: the page to test
2341 * @vma: the VMA in which the page is or will be mapped, may be NULL
2342 *
2343 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2344 * lists vs unevictable list. The vma argument is !NULL when called from the
2345 * fault path to determine how to instantate a new page.
894bc310
LS
2346 *
2347 * Reasons page might not be evictable:
ba9ddf49 2348 * (1) page's mapping marked unevictable
b291f000 2349 * (2) page is part of an mlocked VMA
ba9ddf49 2350 *
894bc310
LS
2351 */
2352int page_evictable(struct page *page, struct vm_area_struct *vma)
2353{
2354
ba9ddf49
LS
2355 if (mapping_unevictable(page_mapping(page)))
2356 return 0;
2357
b291f000
NP
2358 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2359 return 0;
894bc310
LS
2360
2361 return 1;
2362}
89e004ea 2363
af936a16
LS
2364static void show_page_path(struct page *page)
2365{
2366 char buf[256];
2367 if (page_is_file_cache(page)) {
2368 struct address_space *mapping = page->mapping;
2369 struct dentry *dentry;
2370 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
2371
2372 spin_lock(&mapping->i_mmap_lock);
2373 dentry = d_find_alias(mapping->host);
2374 printk(KERN_INFO "rescued: %s %lu\n",
2375 dentry_path(dentry, buf, 256), pgoff);
2376 spin_unlock(&mapping->i_mmap_lock);
2377 } else {
2378#if defined(CONFIG_MM_OWNER) && defined(CONFIG_MMU)
2379 struct anon_vma *anon_vma;
2380 struct vm_area_struct *vma;
2381
2382 anon_vma = page_lock_anon_vma(page);
2383 if (!anon_vma)
2384 return;
2385
2386 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
2387 printk(KERN_INFO "rescued: anon %s\n",
2388 vma->vm_mm->owner->comm);
2389 break;
2390 }
2391 page_unlock_anon_vma(anon_vma);
2392#endif
2393 }
2394}
2395
2396
89e004ea
LS
2397/**
2398 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2399 * @page: page to check evictability and move to appropriate lru list
2400 * @zone: zone page is in
2401 *
2402 * Checks a page for evictability and moves the page to the appropriate
2403 * zone lru list.
2404 *
2405 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2406 * have PageUnevictable set.
2407 */
2408static void check_move_unevictable_page(struct page *page, struct zone *zone)
2409{
2410 VM_BUG_ON(PageActive(page));
2411
2412retry:
2413 ClearPageUnevictable(page);
2414 if (page_evictable(page, NULL)) {
2415 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16
LS
2416
2417 show_page_path(page);
2418
89e004ea
LS
2419 __dec_zone_state(zone, NR_UNEVICTABLE);
2420 list_move(&page->lru, &zone->lru[l].list);
2421 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2422 __count_vm_event(UNEVICTABLE_PGRESCUED);
2423 } else {
2424 /*
2425 * rotate unevictable list
2426 */
2427 SetPageUnevictable(page);
2428 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2429 if (page_evictable(page, NULL))
2430 goto retry;
2431 }
2432}
2433
2434/**
2435 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2436 * @mapping: struct address_space to scan for evictable pages
2437 *
2438 * Scan all pages in mapping. Check unevictable pages for
2439 * evictability and move them to the appropriate zone lru list.
2440 */
2441void scan_mapping_unevictable_pages(struct address_space *mapping)
2442{
2443 pgoff_t next = 0;
2444 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2445 PAGE_CACHE_SHIFT;
2446 struct zone *zone;
2447 struct pagevec pvec;
2448
2449 if (mapping->nrpages == 0)
2450 return;
2451
2452 pagevec_init(&pvec, 0);
2453 while (next < end &&
2454 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2455 int i;
2456 int pg_scanned = 0;
2457
2458 zone = NULL;
2459
2460 for (i = 0; i < pagevec_count(&pvec); i++) {
2461 struct page *page = pvec.pages[i];
2462 pgoff_t page_index = page->index;
2463 struct zone *pagezone = page_zone(page);
2464
2465 pg_scanned++;
2466 if (page_index > next)
2467 next = page_index;
2468 next++;
2469
2470 if (pagezone != zone) {
2471 if (zone)
2472 spin_unlock_irq(&zone->lru_lock);
2473 zone = pagezone;
2474 spin_lock_irq(&zone->lru_lock);
2475 }
2476
2477 if (PageLRU(page) && PageUnevictable(page))
2478 check_move_unevictable_page(page, zone);
2479 }
2480 if (zone)
2481 spin_unlock_irq(&zone->lru_lock);
2482 pagevec_release(&pvec);
2483
2484 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2485 }
2486
2487}
af936a16
LS
2488
2489/**
2490 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2491 * @zone - zone of which to scan the unevictable list
2492 *
2493 * Scan @zone's unevictable LRU lists to check for pages that have become
2494 * evictable. Move those that have to @zone's inactive list where they
2495 * become candidates for reclaim, unless shrink_inactive_zone() decides
2496 * to reactivate them. Pages that are still unevictable are rotated
2497 * back onto @zone's unevictable list.
2498 */
2499#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2500void scan_zone_unevictable_pages(struct zone *zone)
2501{
2502 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2503 unsigned long scan;
2504 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2505
2506 while (nr_to_scan > 0) {
2507 unsigned long batch_size = min(nr_to_scan,
2508 SCAN_UNEVICTABLE_BATCH_SIZE);
2509
2510 spin_lock_irq(&zone->lru_lock);
2511 for (scan = 0; scan < batch_size; scan++) {
2512 struct page *page = lru_to_page(l_unevictable);
2513
2514 if (!trylock_page(page))
2515 continue;
2516
2517 prefetchw_prev_lru_page(page, l_unevictable, flags);
2518
2519 if (likely(PageLRU(page) && PageUnevictable(page)))
2520 check_move_unevictable_page(page, zone);
2521
2522 unlock_page(page);
2523 }
2524 spin_unlock_irq(&zone->lru_lock);
2525
2526 nr_to_scan -= batch_size;
2527 }
2528}
2529
2530
2531/**
2532 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2533 *
2534 * A really big hammer: scan all zones' unevictable LRU lists to check for
2535 * pages that have become evictable. Move those back to the zones'
2536 * inactive list where they become candidates for reclaim.
2537 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2538 * and we add swap to the system. As such, it runs in the context of a task
2539 * that has possibly/probably made some previously unevictable pages
2540 * evictable.
2541 */
2542void scan_all_zones_unevictable_pages(void)
2543{
2544 struct zone *zone;
2545
2546 for_each_zone(zone) {
2547 scan_zone_unevictable_pages(zone);
2548 }
2549}
2550
2551/*
2552 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2553 * all nodes' unevictable lists for evictable pages
2554 */
2555unsigned long scan_unevictable_pages;
2556
2557int scan_unevictable_handler(struct ctl_table *table, int write,
2558 struct file *file, void __user *buffer,
2559 size_t *length, loff_t *ppos)
2560{
2561 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2562
2563 if (write && *(unsigned long *)table->data)
2564 scan_all_zones_unevictable_pages();
2565
2566 scan_unevictable_pages = 0;
2567 return 0;
2568}
2569
2570/*
2571 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2572 * a specified node's per zone unevictable lists for evictable pages.
2573 */
2574
2575static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2576 struct sysdev_attribute *attr,
2577 char *buf)
2578{
2579 return sprintf(buf, "0\n"); /* always zero; should fit... */
2580}
2581
2582static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2583 struct sysdev_attribute *attr,
2584 const char *buf, size_t count)
2585{
2586 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2587 struct zone *zone;
2588 unsigned long res;
2589 unsigned long req = strict_strtoul(buf, 10, &res);
2590
2591 if (!req)
2592 return 1; /* zero is no-op */
2593
2594 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2595 if (!populated_zone(zone))
2596 continue;
2597 scan_zone_unevictable_pages(zone);
2598 }
2599 return 1;
2600}
2601
2602
2603static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2604 read_scan_unevictable_node,
2605 write_scan_unevictable_node);
2606
2607int scan_unevictable_register_node(struct node *node)
2608{
2609 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2610}
2611
2612void scan_unevictable_unregister_node(struct node *node)
2613{
2614 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2615}
2616
894bc310 2617#endif