]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
[PATCH] SwapMig: CONFIG_MIGRATION fixes
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36
37#include <asm/tlbflush.h>
38#include <asm/div64.h>
39
40#include <linux/swapops.h>
41
42/* possible outcome of pageout() */
43typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52} pageout_t;
53
54struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
57
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
63
64 unsigned long nr_mapped; /* From page_state */
65
1da177e4
LT
66 /* Ask shrink_caches, or shrink_zone to scan at this priority */
67 unsigned int priority;
68
69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
74 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
75 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76 * In this context, it doesn't matter that we scan the
77 * whole list at once. */
78 int swap_cluster_max;
79};
80
81/*
82 * The list of shrinker callbacks used by to apply pressure to
83 * ageable caches.
84 */
85struct shrinker {
86 shrinker_t shrinker;
87 struct list_head list;
88 int seeks; /* seeks to recreate an obj */
89 long nr; /* objs pending delete */
90};
91
92#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
93
94#ifdef ARCH_HAS_PREFETCH
95#define prefetch_prev_lru_page(_page, _base, _field) \
96 do { \
97 if ((_page)->lru.prev != _base) { \
98 struct page *prev; \
99 \
100 prev = lru_to_page(&(_page->lru)); \
101 prefetch(&prev->_field); \
102 } \
103 } while (0)
104#else
105#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106#endif
107
108#ifdef ARCH_HAS_PREFETCHW
109#define prefetchw_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetchw(&prev->_field); \
116 } \
117 } while (0)
118#else
119#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122/*
123 * From 0 .. 100. Higher means more swappy.
124 */
125int vm_swappiness = 60;
126static long total_memory;
127
128static LIST_HEAD(shrinker_list);
129static DECLARE_RWSEM(shrinker_rwsem);
130
131/*
132 * Add a shrinker callback to be called from the vm
133 */
134struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
135{
136 struct shrinker *shrinker;
137
138 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
139 if (shrinker) {
140 shrinker->shrinker = theshrinker;
141 shrinker->seeks = seeks;
142 shrinker->nr = 0;
143 down_write(&shrinker_rwsem);
144 list_add_tail(&shrinker->list, &shrinker_list);
145 up_write(&shrinker_rwsem);
146 }
147 return shrinker;
148}
149EXPORT_SYMBOL(set_shrinker);
150
151/*
152 * Remove one
153 */
154void remove_shrinker(struct shrinker *shrinker)
155{
156 down_write(&shrinker_rwsem);
157 list_del(&shrinker->list);
158 up_write(&shrinker_rwsem);
159 kfree(shrinker);
160}
161EXPORT_SYMBOL(remove_shrinker);
162
163#define SHRINK_BATCH 128
164/*
165 * Call the shrink functions to age shrinkable caches
166 *
167 * Here we assume it costs one seek to replace a lru page and that it also
168 * takes a seek to recreate a cache object. With this in mind we age equal
169 * percentages of the lru and ageable caches. This should balance the seeks
170 * generated by these structures.
171 *
172 * If the vm encounted mapped pages on the LRU it increase the pressure on
173 * slab to avoid swapping.
174 *
175 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
176 *
177 * `lru_pages' represents the number of on-LRU pages in all the zones which
178 * are eligible for the caller's allocation attempt. It is used for balancing
179 * slab reclaim versus page reclaim.
b15e0905
AM
180 *
181 * Returns the number of slab objects which we shrunk.
1da177e4 182 */
9d0243bc 183int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
1da177e4
LT
184{
185 struct shrinker *shrinker;
b15e0905 186 int ret = 0;
1da177e4
LT
187
188 if (scanned == 0)
189 scanned = SWAP_CLUSTER_MAX;
190
191 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 192 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
193
194 list_for_each_entry(shrinker, &shrinker_list, list) {
195 unsigned long long delta;
196 unsigned long total_scan;
ea164d73 197 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
1da177e4
LT
198
199 delta = (4 * scanned) / shrinker->seeks;
ea164d73 200 delta *= max_pass;
1da177e4
LT
201 do_div(delta, lru_pages + 1);
202 shrinker->nr += delta;
ea164d73
AA
203 if (shrinker->nr < 0) {
204 printk(KERN_ERR "%s: nr=%ld\n",
205 __FUNCTION__, shrinker->nr);
206 shrinker->nr = max_pass;
207 }
208
209 /*
210 * Avoid risking looping forever due to too large nr value:
211 * never try to free more than twice the estimate number of
212 * freeable entries.
213 */
214 if (shrinker->nr > max_pass * 2)
215 shrinker->nr = max_pass * 2;
1da177e4
LT
216
217 total_scan = shrinker->nr;
218 shrinker->nr = 0;
219
220 while (total_scan >= SHRINK_BATCH) {
221 long this_scan = SHRINK_BATCH;
222 int shrink_ret;
b15e0905 223 int nr_before;
1da177e4 224
b15e0905 225 nr_before = (*shrinker->shrinker)(0, gfp_mask);
1da177e4
LT
226 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
227 if (shrink_ret == -1)
228 break;
b15e0905
AM
229 if (shrink_ret < nr_before)
230 ret += nr_before - shrink_ret;
1da177e4
LT
231 mod_page_state(slabs_scanned, this_scan);
232 total_scan -= this_scan;
233
234 cond_resched();
235 }
236
237 shrinker->nr += total_scan;
238 }
239 up_read(&shrinker_rwsem);
b15e0905 240 return ret;
1da177e4
LT
241}
242
243/* Called without lock on whether page is mapped, so answer is unstable */
244static inline int page_mapping_inuse(struct page *page)
245{
246 struct address_space *mapping;
247
248 /* Page is in somebody's page tables. */
249 if (page_mapped(page))
250 return 1;
251
252 /* Be more reluctant to reclaim swapcache than pagecache */
253 if (PageSwapCache(page))
254 return 1;
255
256 mapping = page_mapping(page);
257 if (!mapping)
258 return 0;
259
260 /* File is mmap'd by somebody? */
261 return mapping_mapped(mapping);
262}
263
264static inline int is_page_cache_freeable(struct page *page)
265{
266 return page_count(page) - !!PagePrivate(page) == 2;
267}
268
269static int may_write_to_queue(struct backing_dev_info *bdi)
270{
930d9152 271 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
272 return 1;
273 if (!bdi_write_congested(bdi))
274 return 1;
275 if (bdi == current->backing_dev_info)
276 return 1;
277 return 0;
278}
279
280/*
281 * We detected a synchronous write error writing a page out. Probably
282 * -ENOSPC. We need to propagate that into the address_space for a subsequent
283 * fsync(), msync() or close().
284 *
285 * The tricky part is that after writepage we cannot touch the mapping: nothing
286 * prevents it from being freed up. But we have a ref on the page and once
287 * that page is locked, the mapping is pinned.
288 *
289 * We're allowed to run sleeping lock_page() here because we know the caller has
290 * __GFP_FS.
291 */
292static void handle_write_error(struct address_space *mapping,
293 struct page *page, int error)
294{
295 lock_page(page);
296 if (page_mapping(page) == mapping) {
297 if (error == -ENOSPC)
298 set_bit(AS_ENOSPC, &mapping->flags);
299 else
300 set_bit(AS_EIO, &mapping->flags);
301 }
302 unlock_page(page);
303}
304
305/*
306 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
307 */
308static pageout_t pageout(struct page *page, struct address_space *mapping)
309{
310 /*
311 * If the page is dirty, only perform writeback if that write
312 * will be non-blocking. To prevent this allocation from being
313 * stalled by pagecache activity. But note that there may be
314 * stalls if we need to run get_block(). We could test
315 * PagePrivate for that.
316 *
317 * If this process is currently in generic_file_write() against
318 * this page's queue, we can perform writeback even if that
319 * will block.
320 *
321 * If the page is swapcache, write it back even if that would
322 * block, for some throttling. This happens by accident, because
323 * swap_backing_dev_info is bust: it doesn't reflect the
324 * congestion state of the swapdevs. Easy to fix, if needed.
325 * See swapfile.c:page_queue_congested().
326 */
327 if (!is_page_cache_freeable(page))
328 return PAGE_KEEP;
329 if (!mapping) {
330 /*
331 * Some data journaling orphaned pages can have
332 * page->mapping == NULL while being dirty with clean buffers.
333 */
323aca6c 334 if (PagePrivate(page)) {
1da177e4
LT
335 if (try_to_free_buffers(page)) {
336 ClearPageDirty(page);
337 printk("%s: orphaned page\n", __FUNCTION__);
338 return PAGE_CLEAN;
339 }
340 }
341 return PAGE_KEEP;
342 }
343 if (mapping->a_ops->writepage == NULL)
344 return PAGE_ACTIVATE;
345 if (!may_write_to_queue(mapping->backing_dev_info))
346 return PAGE_KEEP;
347
348 if (clear_page_dirty_for_io(page)) {
349 int res;
350 struct writeback_control wbc = {
351 .sync_mode = WB_SYNC_NONE,
352 .nr_to_write = SWAP_CLUSTER_MAX,
353 .nonblocking = 1,
354 .for_reclaim = 1,
355 };
356
357 SetPageReclaim(page);
358 res = mapping->a_ops->writepage(page, &wbc);
359 if (res < 0)
360 handle_write_error(mapping, page, res);
994fc28c 361 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
362 ClearPageReclaim(page);
363 return PAGE_ACTIVATE;
364 }
365 if (!PageWriteback(page)) {
366 /* synchronous write or broken a_ops? */
367 ClearPageReclaim(page);
368 }
369
370 return PAGE_SUCCESS;
371 }
372
373 return PAGE_CLEAN;
374}
375
49d2e9cc
CL
376static int remove_mapping(struct address_space *mapping, struct page *page)
377{
378 if (!mapping)
379 return 0; /* truncate got there first */
380
381 write_lock_irq(&mapping->tree_lock);
382
383 /*
384 * The non-racy check for busy page. It is critical to check
385 * PageDirty _after_ making sure that the page is freeable and
386 * not in use by anybody. (pagecache + us == 2)
387 */
388 if (unlikely(page_count(page) != 2))
389 goto cannot_free;
390 smp_rmb();
391 if (unlikely(PageDirty(page)))
392 goto cannot_free;
393
394 if (PageSwapCache(page)) {
395 swp_entry_t swap = { .val = page_private(page) };
396 __delete_from_swap_cache(page);
397 write_unlock_irq(&mapping->tree_lock);
398 swap_free(swap);
399 __put_page(page); /* The pagecache ref */
400 return 1;
401 }
402
403 __remove_from_page_cache(page);
404 write_unlock_irq(&mapping->tree_lock);
405 __put_page(page);
406 return 1;
407
408cannot_free:
409 write_unlock_irq(&mapping->tree_lock);
410 return 0;
411}
412
1da177e4
LT
413/*
414 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
415 */
416static int shrink_list(struct list_head *page_list, struct scan_control *sc)
417{
418 LIST_HEAD(ret_pages);
419 struct pagevec freed_pvec;
420 int pgactivate = 0;
421 int reclaimed = 0;
422
423 cond_resched();
424
425 pagevec_init(&freed_pvec, 1);
426 while (!list_empty(page_list)) {
427 struct address_space *mapping;
428 struct page *page;
429 int may_enter_fs;
430 int referenced;
431
432 cond_resched();
433
434 page = lru_to_page(page_list);
435 list_del(&page->lru);
436
437 if (TestSetPageLocked(page))
438 goto keep;
439
440 BUG_ON(PageActive(page));
441
442 sc->nr_scanned++;
443 /* Double the slab pressure for mapped and swapcache pages */
444 if (page_mapped(page) || PageSwapCache(page))
445 sc->nr_scanned++;
446
447 if (PageWriteback(page))
448 goto keep_locked;
449
f7b7fd8f 450 referenced = page_referenced(page, 1);
1da177e4
LT
451 /* In active use or really unfreeable? Activate it. */
452 if (referenced && page_mapping_inuse(page))
453 goto activate_locked;
454
455#ifdef CONFIG_SWAP
456 /*
457 * Anonymous process memory has backing store?
458 * Try to allocate it some swap space here.
459 */
c340010e 460 if (PageAnon(page) && !PageSwapCache(page)) {
1da177e4
LT
461 if (!add_to_swap(page))
462 goto activate_locked;
463 }
464#endif /* CONFIG_SWAP */
465
466 mapping = page_mapping(page);
467 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
468 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
469
470 /*
471 * The page is mapped into the page tables of one or more
472 * processes. Try to unmap it here.
473 */
474 if (page_mapped(page) && mapping) {
475 switch (try_to_unmap(page)) {
476 case SWAP_FAIL:
477 goto activate_locked;
478 case SWAP_AGAIN:
479 goto keep_locked;
480 case SWAP_SUCCESS:
481 ; /* try to free the page below */
482 }
483 }
484
485 if (PageDirty(page)) {
486 if (referenced)
487 goto keep_locked;
488 if (!may_enter_fs)
489 goto keep_locked;
490 if (laptop_mode && !sc->may_writepage)
491 goto keep_locked;
492
493 /* Page is dirty, try to write it out here */
494 switch(pageout(page, mapping)) {
495 case PAGE_KEEP:
496 goto keep_locked;
497 case PAGE_ACTIVATE:
498 goto activate_locked;
499 case PAGE_SUCCESS:
500 if (PageWriteback(page) || PageDirty(page))
501 goto keep;
502 /*
503 * A synchronous write - probably a ramdisk. Go
504 * ahead and try to reclaim the page.
505 */
506 if (TestSetPageLocked(page))
507 goto keep;
508 if (PageDirty(page) || PageWriteback(page))
509 goto keep_locked;
510 mapping = page_mapping(page);
511 case PAGE_CLEAN:
512 ; /* try to free the page below */
513 }
514 }
515
516 /*
517 * If the page has buffers, try to free the buffer mappings
518 * associated with this page. If we succeed we try to free
519 * the page as well.
520 *
521 * We do this even if the page is PageDirty().
522 * try_to_release_page() does not perform I/O, but it is
523 * possible for a page to have PageDirty set, but it is actually
524 * clean (all its buffers are clean). This happens if the
525 * buffers were written out directly, with submit_bh(). ext3
526 * will do this, as well as the blockdev mapping.
527 * try_to_release_page() will discover that cleanness and will
528 * drop the buffers and mark the page clean - it can be freed.
529 *
530 * Rarely, pages can have buffers and no ->mapping. These are
531 * the pages which were not successfully invalidated in
532 * truncate_complete_page(). We try to drop those buffers here
533 * and if that worked, and the page is no longer mapped into
534 * process address space (page_count == 1) it can be freed.
535 * Otherwise, leave the page on the LRU so it is swappable.
536 */
537 if (PagePrivate(page)) {
538 if (!try_to_release_page(page, sc->gfp_mask))
539 goto activate_locked;
540 if (!mapping && page_count(page) == 1)
541 goto free_it;
542 }
543
49d2e9cc
CL
544 if (!remove_mapping(mapping, page))
545 goto keep_locked;
1da177e4
LT
546
547free_it:
548 unlock_page(page);
549 reclaimed++;
550 if (!pagevec_add(&freed_pvec, page))
551 __pagevec_release_nonlru(&freed_pvec);
552 continue;
553
554activate_locked:
555 SetPageActive(page);
556 pgactivate++;
557keep_locked:
558 unlock_page(page);
559keep:
560 list_add(&page->lru, &ret_pages);
561 BUG_ON(PageLRU(page));
562 }
563 list_splice(&ret_pages, page_list);
564 if (pagevec_count(&freed_pvec))
565 __pagevec_release_nonlru(&freed_pvec);
566 mod_page_state(pgactivate, pgactivate);
567 sc->nr_reclaimed += reclaimed;
568 return reclaimed;
569}
570
7cbe34cf 571#ifdef CONFIG_MIGRATION
8419c318
CL
572static inline void move_to_lru(struct page *page)
573{
574 list_del(&page->lru);
575 if (PageActive(page)) {
576 /*
577 * lru_cache_add_active checks that
578 * the PG_active bit is off.
579 */
580 ClearPageActive(page);
581 lru_cache_add_active(page);
582 } else {
583 lru_cache_add(page);
584 }
585 put_page(page);
586}
587
588/*
589 * Add isolated pages on the list back to the LRU
590 *
591 * returns the number of pages put back.
592 */
593int putback_lru_pages(struct list_head *l)
594{
595 struct page *page;
596 struct page *page2;
597 int count = 0;
598
599 list_for_each_entry_safe(page, page2, l, lru) {
600 move_to_lru(page);
601 count++;
602 }
603 return count;
604}
605
49d2e9cc
CL
606/*
607 * swapout a single page
608 * page is locked upon entry, unlocked on exit
609 *
610 * return codes:
611 * 0 = complete
612 * 1 = retry
613 */
614static int swap_page(struct page *page)
615{
616 struct address_space *mapping = page_mapping(page);
617
618 if (page_mapped(page) && mapping)
619 if (try_to_unmap(page) != SWAP_SUCCESS)
620 goto unlock_retry;
621
622 if (PageDirty(page)) {
623 /* Page is dirty, try to write it out here */
624 switch(pageout(page, mapping)) {
625 case PAGE_KEEP:
626 case PAGE_ACTIVATE:
627 goto unlock_retry;
628
629 case PAGE_SUCCESS:
630 goto retry;
631
632 case PAGE_CLEAN:
633 ; /* try to free the page below */
634 }
635 }
636
637 if (PagePrivate(page)) {
638 if (!try_to_release_page(page, GFP_KERNEL) ||
639 (!mapping && page_count(page) == 1))
640 goto unlock_retry;
641 }
642
643 if (remove_mapping(mapping, page)) {
644 /* Success */
645 unlock_page(page);
646 return 0;
647 }
648
649unlock_retry:
650 unlock_page(page);
651
652retry:
653 return 1;
654}
655/*
656 * migrate_pages
657 *
658 * Two lists are passed to this function. The first list
659 * contains the pages isolated from the LRU to be migrated.
660 * The second list contains new pages that the pages isolated
661 * can be moved to. If the second list is NULL then all
662 * pages are swapped out.
663 *
664 * The function returns after 10 attempts or if no pages
665 * are movable anymore because t has become empty
666 * or no retryable pages exist anymore.
667 *
668 * SIMPLIFIED VERSION: This implementation of migrate_pages
669 * is only swapping out pages and never touches the second
670 * list. The direct migration patchset
671 * extends this function to avoid the use of swap.
672 */
673int migrate_pages(struct list_head *l, struct list_head *t)
674{
675 int retry;
676 LIST_HEAD(failed);
677 int nr_failed = 0;
678 int pass = 0;
679 struct page *page;
680 struct page *page2;
681 int swapwrite = current->flags & PF_SWAPWRITE;
682
683 if (!swapwrite)
684 current->flags |= PF_SWAPWRITE;
685
686redo:
687 retry = 0;
688
689 list_for_each_entry_safe(page, page2, l, lru) {
690 cond_resched();
691
692 /*
693 * Skip locked pages during the first two passes to give the
7cbe34cf
CL
694 * functions holding the lock time to release the page. Later we
695 * use lock_page() to have a higher chance of acquiring the
696 * lock.
49d2e9cc
CL
697 */
698 if (pass > 2)
699 lock_page(page);
700 else
701 if (TestSetPageLocked(page))
702 goto retry_later;
703
704 /*
705 * Only wait on writeback if we have already done a pass where
706 * we we may have triggered writeouts for lots of pages.
707 */
7cbe34cf 708 if (pass > 0) {
49d2e9cc 709 wait_on_page_writeback(page);
7cbe34cf 710 } else {
49d2e9cc
CL
711 if (PageWriteback(page)) {
712 unlock_page(page);
713 goto retry_later;
714 }
7cbe34cf 715 }
49d2e9cc 716
49d2e9cc
CL
717 if (PageAnon(page) && !PageSwapCache(page)) {
718 if (!add_to_swap(page)) {
719 unlock_page(page);
720 list_move(&page->lru, &failed);
721 nr_failed++;
722 continue;
723 }
724 }
49d2e9cc
CL
725
726 /*
727 * Page is properly locked and writeback is complete.
728 * Try to migrate the page.
729 */
7cbe34cf
CL
730 if (!swap_page(page))
731 continue;
49d2e9cc 732retry_later:
7cbe34cf 733 retry++;
49d2e9cc
CL
734 }
735 if (retry && pass++ < 10)
736 goto redo;
737
738 if (!swapwrite)
739 current->flags &= ~PF_SWAPWRITE;
740
741 if (!list_empty(&failed))
742 list_splice(&failed, l);
743
744 return nr_failed + retry;
745}
8419c318
CL
746
747static void lru_add_drain_per_cpu(void *dummy)
748{
749 lru_add_drain();
750}
751
752/*
753 * Isolate one page from the LRU lists and put it on the
754 * indicated list. Do necessary cache draining if the
755 * page is not on the LRU lists yet.
756 *
757 * Result:
758 * 0 = page not on LRU list
759 * 1 = page removed from LRU list and added to the specified list.
760 * -ENOENT = page is being freed elsewhere.
761 */
762int isolate_lru_page(struct page *page)
763{
764 int rc = 0;
765 struct zone *zone = page_zone(page);
766
767redo:
768 spin_lock_irq(&zone->lru_lock);
769 rc = __isolate_lru_page(page);
770 if (rc == 1) {
771 if (PageActive(page))
772 del_page_from_active_list(zone, page);
773 else
774 del_page_from_inactive_list(zone, page);
775 }
776 spin_unlock_irq(&zone->lru_lock);
777 if (rc == 0) {
778 /*
779 * Maybe this page is still waiting for a cpu to drain it
780 * from one of the lru lists?
781 */
782 rc = schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
783 if (rc == 0 && PageLRU(page))
784 goto redo;
785 }
786 return rc;
787}
7cbe34cf 788#endif
49d2e9cc 789
1da177e4
LT
790/*
791 * zone->lru_lock is heavily contended. Some of the functions that
792 * shrink the lists perform better by taking out a batch of pages
793 * and working on them outside the LRU lock.
794 *
795 * For pagecache intensive workloads, this function is the hottest
796 * spot in the kernel (apart from copy_*_user functions).
797 *
798 * Appropriate locks must be held before calling this function.
799 *
800 * @nr_to_scan: The number of pages to look through on the list.
801 * @src: The LRU list to pull pages off.
802 * @dst: The temp list to put pages on to.
803 * @scanned: The number of pages that were scanned.
804 *
805 * returns how many pages were moved onto *@dst.
806 */
807static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
808 struct list_head *dst, int *scanned)
809{
810 int nr_taken = 0;
811 struct page *page;
812 int scan = 0;
813
814 while (scan++ < nr_to_scan && !list_empty(src)) {
815 page = lru_to_page(src);
816 prefetchw_prev_lru_page(page, src, flags);
817
21eac81f
CL
818 switch (__isolate_lru_page(page)) {
819 case 1:
820 /* Succeeded to isolate page */
821 list_move(&page->lru, dst);
1da177e4 822 nr_taken++;
21eac81f
CL
823 break;
824 case -ENOENT:
825 /* Not possible to isolate */
826 list_move(&page->lru, src);
827 break;
828 default:
829 BUG();
1da177e4
LT
830 }
831 }
832
833 *scanned = scan;
834 return nr_taken;
835}
836
837/*
838 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
839 */
840static void shrink_cache(struct zone *zone, struct scan_control *sc)
841{
842 LIST_HEAD(page_list);
843 struct pagevec pvec;
844 int max_scan = sc->nr_to_scan;
845
846 pagevec_init(&pvec, 1);
847
848 lru_add_drain();
849 spin_lock_irq(&zone->lru_lock);
850 while (max_scan > 0) {
851 struct page *page;
852 int nr_taken;
853 int nr_scan;
854 int nr_freed;
855
856 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
857 &zone->inactive_list,
858 &page_list, &nr_scan);
859 zone->nr_inactive -= nr_taken;
860 zone->pages_scanned += nr_scan;
861 spin_unlock_irq(&zone->lru_lock);
862
863 if (nr_taken == 0)
864 goto done;
865
866 max_scan -= nr_scan;
1da177e4 867 nr_freed = shrink_list(&page_list, sc);
1da177e4 868
a74609fa
NP
869 local_irq_disable();
870 if (current_is_kswapd()) {
871 __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
872 __mod_page_state(kswapd_steal, nr_freed);
873 } else
874 __mod_page_state_zone(zone, pgscan_direct, nr_scan);
875 __mod_page_state_zone(zone, pgsteal, nr_freed);
876
877 spin_lock(&zone->lru_lock);
1da177e4
LT
878 /*
879 * Put back any unfreeable pages.
880 */
881 while (!list_empty(&page_list)) {
882 page = lru_to_page(&page_list);
883 if (TestSetPageLRU(page))
884 BUG();
885 list_del(&page->lru);
886 if (PageActive(page))
887 add_page_to_active_list(zone, page);
888 else
889 add_page_to_inactive_list(zone, page);
890 if (!pagevec_add(&pvec, page)) {
891 spin_unlock_irq(&zone->lru_lock);
892 __pagevec_release(&pvec);
893 spin_lock_irq(&zone->lru_lock);
894 }
895 }
896 }
897 spin_unlock_irq(&zone->lru_lock);
898done:
899 pagevec_release(&pvec);
900}
901
902/*
903 * This moves pages from the active list to the inactive list.
904 *
905 * We move them the other way if the page is referenced by one or more
906 * processes, from rmap.
907 *
908 * If the pages are mostly unmapped, the processing is fast and it is
909 * appropriate to hold zone->lru_lock across the whole operation. But if
910 * the pages are mapped, the processing is slow (page_referenced()) so we
911 * should drop zone->lru_lock around each page. It's impossible to balance
912 * this, so instead we remove the pages from the LRU while processing them.
913 * It is safe to rely on PG_active against the non-LRU pages in here because
914 * nobody will play with that bit on a non-LRU page.
915 *
916 * The downside is that we have to touch page->_count against each page.
917 * But we had to alter page->flags anyway.
918 */
919static void
920refill_inactive_zone(struct zone *zone, struct scan_control *sc)
921{
922 int pgmoved;
923 int pgdeactivate = 0;
924 int pgscanned;
925 int nr_pages = sc->nr_to_scan;
926 LIST_HEAD(l_hold); /* The pages which were snipped off */
927 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
928 LIST_HEAD(l_active); /* Pages to go onto the active_list */
929 struct page *page;
930 struct pagevec pvec;
931 int reclaim_mapped = 0;
932 long mapped_ratio;
933 long distress;
934 long swap_tendency;
935
936 lru_add_drain();
937 spin_lock_irq(&zone->lru_lock);
938 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
939 &l_hold, &pgscanned);
940 zone->pages_scanned += pgscanned;
941 zone->nr_active -= pgmoved;
942 spin_unlock_irq(&zone->lru_lock);
943
944 /*
945 * `distress' is a measure of how much trouble we're having reclaiming
946 * pages. 0 -> no problems. 100 -> great trouble.
947 */
948 distress = 100 >> zone->prev_priority;
949
950 /*
951 * The point of this algorithm is to decide when to start reclaiming
952 * mapped memory instead of just pagecache. Work out how much memory
953 * is mapped.
954 */
955 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
956
957 /*
958 * Now decide how much we really want to unmap some pages. The mapped
959 * ratio is downgraded - just because there's a lot of mapped memory
960 * doesn't necessarily mean that page reclaim isn't succeeding.
961 *
962 * The distress ratio is important - we don't want to start going oom.
963 *
964 * A 100% value of vm_swappiness overrides this algorithm altogether.
965 */
966 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
967
968 /*
969 * Now use this metric to decide whether to start moving mapped memory
970 * onto the inactive list.
971 */
972 if (swap_tendency >= 100)
973 reclaim_mapped = 1;
974
975 while (!list_empty(&l_hold)) {
976 cond_resched();
977 page = lru_to_page(&l_hold);
978 list_del(&page->lru);
979 if (page_mapped(page)) {
980 if (!reclaim_mapped ||
981 (total_swap_pages == 0 && PageAnon(page)) ||
f7b7fd8f 982 page_referenced(page, 0)) {
1da177e4
LT
983 list_add(&page->lru, &l_active);
984 continue;
985 }
986 }
987 list_add(&page->lru, &l_inactive);
988 }
989
990 pagevec_init(&pvec, 1);
991 pgmoved = 0;
992 spin_lock_irq(&zone->lru_lock);
993 while (!list_empty(&l_inactive)) {
994 page = lru_to_page(&l_inactive);
995 prefetchw_prev_lru_page(page, &l_inactive, flags);
996 if (TestSetPageLRU(page))
997 BUG();
998 if (!TestClearPageActive(page))
999 BUG();
1000 list_move(&page->lru, &zone->inactive_list);
1001 pgmoved++;
1002 if (!pagevec_add(&pvec, page)) {
1003 zone->nr_inactive += pgmoved;
1004 spin_unlock_irq(&zone->lru_lock);
1005 pgdeactivate += pgmoved;
1006 pgmoved = 0;
1007 if (buffer_heads_over_limit)
1008 pagevec_strip(&pvec);
1009 __pagevec_release(&pvec);
1010 spin_lock_irq(&zone->lru_lock);
1011 }
1012 }
1013 zone->nr_inactive += pgmoved;
1014 pgdeactivate += pgmoved;
1015 if (buffer_heads_over_limit) {
1016 spin_unlock_irq(&zone->lru_lock);
1017 pagevec_strip(&pvec);
1018 spin_lock_irq(&zone->lru_lock);
1019 }
1020
1021 pgmoved = 0;
1022 while (!list_empty(&l_active)) {
1023 page = lru_to_page(&l_active);
1024 prefetchw_prev_lru_page(page, &l_active, flags);
1025 if (TestSetPageLRU(page))
1026 BUG();
1027 BUG_ON(!PageActive(page));
1028 list_move(&page->lru, &zone->active_list);
1029 pgmoved++;
1030 if (!pagevec_add(&pvec, page)) {
1031 zone->nr_active += pgmoved;
1032 pgmoved = 0;
1033 spin_unlock_irq(&zone->lru_lock);
1034 __pagevec_release(&pvec);
1035 spin_lock_irq(&zone->lru_lock);
1036 }
1037 }
1038 zone->nr_active += pgmoved;
a74609fa
NP
1039 spin_unlock(&zone->lru_lock);
1040
1041 __mod_page_state_zone(zone, pgrefill, pgscanned);
1042 __mod_page_state(pgdeactivate, pgdeactivate);
1043 local_irq_enable();
1da177e4 1044
a74609fa 1045 pagevec_release(&pvec);
1da177e4
LT
1046}
1047
1048/*
1049 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1050 */
1051static void
1052shrink_zone(struct zone *zone, struct scan_control *sc)
1053{
1054 unsigned long nr_active;
1055 unsigned long nr_inactive;
1056
53e9a615
MH
1057 atomic_inc(&zone->reclaim_in_progress);
1058
1da177e4
LT
1059 /*
1060 * Add one to `nr_to_scan' just to make sure that the kernel will
1061 * slowly sift through the active list.
1062 */
1063 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1064 nr_active = zone->nr_scan_active;
1065 if (nr_active >= sc->swap_cluster_max)
1066 zone->nr_scan_active = 0;
1067 else
1068 nr_active = 0;
1069
1070 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1071 nr_inactive = zone->nr_scan_inactive;
1072 if (nr_inactive >= sc->swap_cluster_max)
1073 zone->nr_scan_inactive = 0;
1074 else
1075 nr_inactive = 0;
1076
1da177e4
LT
1077 while (nr_active || nr_inactive) {
1078 if (nr_active) {
1079 sc->nr_to_scan = min(nr_active,
1080 (unsigned long)sc->swap_cluster_max);
1081 nr_active -= sc->nr_to_scan;
1082 refill_inactive_zone(zone, sc);
1083 }
1084
1085 if (nr_inactive) {
1086 sc->nr_to_scan = min(nr_inactive,
1087 (unsigned long)sc->swap_cluster_max);
1088 nr_inactive -= sc->nr_to_scan;
1089 shrink_cache(zone, sc);
1da177e4
LT
1090 }
1091 }
1092
1093 throttle_vm_writeout();
53e9a615
MH
1094
1095 atomic_dec(&zone->reclaim_in_progress);
1da177e4
LT
1096}
1097
1098/*
1099 * This is the direct reclaim path, for page-allocating processes. We only
1100 * try to reclaim pages from zones which will satisfy the caller's allocation
1101 * request.
1102 *
1103 * We reclaim from a zone even if that zone is over pages_high. Because:
1104 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1105 * allocation or
1106 * b) The zones may be over pages_high but they must go *over* pages_high to
1107 * satisfy the `incremental min' zone defense algorithm.
1108 *
1109 * Returns the number of reclaimed pages.
1110 *
1111 * If a zone is deemed to be full of pinned pages then just give it a light
1112 * scan then give up on it.
1113 */
1114static void
1115shrink_caches(struct zone **zones, struct scan_control *sc)
1116{
1117 int i;
1118
1119 for (i = 0; zones[i] != NULL; i++) {
1120 struct zone *zone = zones[i];
1121
f3fe6512 1122 if (!populated_zone(zone))
1da177e4
LT
1123 continue;
1124
9bf2229f 1125 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
1126 continue;
1127
1128 zone->temp_priority = sc->priority;
1129 if (zone->prev_priority > sc->priority)
1130 zone->prev_priority = sc->priority;
1131
1132 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1133 continue; /* Let kswapd poll it */
1134
1135 shrink_zone(zone, sc);
1136 }
1137}
1138
1139/*
1140 * This is the main entry point to direct page reclaim.
1141 *
1142 * If a full scan of the inactive list fails to free enough memory then we
1143 * are "out of memory" and something needs to be killed.
1144 *
1145 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1146 * high - the zone may be full of dirty or under-writeback pages, which this
1147 * caller can't do much about. We kick pdflush and take explicit naps in the
1148 * hope that some of these pages can be written. But if the allocating task
1149 * holds filesystem locks which prevent writeout this might not work, and the
1150 * allocation attempt will fail.
1151 */
6daa0e28 1152int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1da177e4
LT
1153{
1154 int priority;
1155 int ret = 0;
1156 int total_scanned = 0, total_reclaimed = 0;
1157 struct reclaim_state *reclaim_state = current->reclaim_state;
1158 struct scan_control sc;
1159 unsigned long lru_pages = 0;
1160 int i;
1161
1162 sc.gfp_mask = gfp_mask;
1163 sc.may_writepage = 0;
1164
1165 inc_page_state(allocstall);
1166
1167 for (i = 0; zones[i] != NULL; i++) {
1168 struct zone *zone = zones[i];
1169
9bf2229f 1170 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
1171 continue;
1172
1173 zone->temp_priority = DEF_PRIORITY;
1174 lru_pages += zone->nr_active + zone->nr_inactive;
1175 }
1176
1177 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1178 sc.nr_mapped = read_page_state(nr_mapped);
1179 sc.nr_scanned = 0;
1180 sc.nr_reclaimed = 0;
1181 sc.priority = priority;
1182 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
f7b7fd8f
RR
1183 if (!priority)
1184 disable_swap_token();
1da177e4
LT
1185 shrink_caches(zones, &sc);
1186 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1187 if (reclaim_state) {
1188 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1189 reclaim_state->reclaimed_slab = 0;
1190 }
1191 total_scanned += sc.nr_scanned;
1192 total_reclaimed += sc.nr_reclaimed;
1193 if (total_reclaimed >= sc.swap_cluster_max) {
1194 ret = 1;
1195 goto out;
1196 }
1197
1198 /*
1199 * Try to write back as many pages as we just scanned. This
1200 * tends to cause slow streaming writers to write data to the
1201 * disk smoothly, at the dirtying rate, which is nice. But
1202 * that's undesirable in laptop mode, where we *want* lumpy
1203 * writeout. So in laptop mode, write out the whole world.
1204 */
1205 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
687a21ce 1206 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1da177e4
LT
1207 sc.may_writepage = 1;
1208 }
1209
1210 /* Take a nap, wait for some writeback to complete */
1211 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1212 blk_congestion_wait(WRITE, HZ/10);
1213 }
1214out:
1215 for (i = 0; zones[i] != 0; i++) {
1216 struct zone *zone = zones[i];
1217
9bf2229f 1218 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4
LT
1219 continue;
1220
1221 zone->prev_priority = zone->temp_priority;
1222 }
1223 return ret;
1224}
1225
1226/*
1227 * For kswapd, balance_pgdat() will work across all this node's zones until
1228 * they are all at pages_high.
1229 *
1230 * If `nr_pages' is non-zero then it is the number of pages which are to be
1231 * reclaimed, regardless of the zone occupancies. This is a software suspend
1232 * special.
1233 *
1234 * Returns the number of pages which were actually freed.
1235 *
1236 * There is special handling here for zones which are full of pinned pages.
1237 * This can happen if the pages are all mlocked, or if they are all used by
1238 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1239 * What we do is to detect the case where all pages in the zone have been
1240 * scanned twice and there has been zero successful reclaim. Mark the zone as
1241 * dead and from now on, only perform a short scan. Basically we're polling
1242 * the zone for when the problem goes away.
1243 *
1244 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1245 * zones which have free_pages > pages_high, but once a zone is found to have
1246 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1247 * of the number of free pages in the lower zones. This interoperates with
1248 * the page allocator fallback scheme to ensure that aging of pages is balanced
1249 * across the zones.
1250 */
1251static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1252{
1253 int to_free = nr_pages;
1254 int all_zones_ok;
1255 int priority;
1256 int i;
1257 int total_scanned, total_reclaimed;
1258 struct reclaim_state *reclaim_state = current->reclaim_state;
1259 struct scan_control sc;
1260
1261loop_again:
1262 total_scanned = 0;
1263 total_reclaimed = 0;
1264 sc.gfp_mask = GFP_KERNEL;
1265 sc.may_writepage = 0;
1266 sc.nr_mapped = read_page_state(nr_mapped);
1267
1268 inc_page_state(pageoutrun);
1269
1270 for (i = 0; i < pgdat->nr_zones; i++) {
1271 struct zone *zone = pgdat->node_zones + i;
1272
1273 zone->temp_priority = DEF_PRIORITY;
1274 }
1275
1276 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1277 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1278 unsigned long lru_pages = 0;
1279
f7b7fd8f
RR
1280 /* The swap token gets in the way of swapout... */
1281 if (!priority)
1282 disable_swap_token();
1283
1da177e4
LT
1284 all_zones_ok = 1;
1285
1286 if (nr_pages == 0) {
1287 /*
1288 * Scan in the highmem->dma direction for the highest
1289 * zone which needs scanning
1290 */
1291 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1292 struct zone *zone = pgdat->node_zones + i;
1293
f3fe6512 1294 if (!populated_zone(zone))
1da177e4
LT
1295 continue;
1296
1297 if (zone->all_unreclaimable &&
1298 priority != DEF_PRIORITY)
1299 continue;
1300
1301 if (!zone_watermark_ok(zone, order,
7fb1d9fc 1302 zone->pages_high, 0, 0)) {
1da177e4
LT
1303 end_zone = i;
1304 goto scan;
1305 }
1306 }
1307 goto out;
1308 } else {
1309 end_zone = pgdat->nr_zones - 1;
1310 }
1311scan:
1312 for (i = 0; i <= end_zone; i++) {
1313 struct zone *zone = pgdat->node_zones + i;
1314
1315 lru_pages += zone->nr_active + zone->nr_inactive;
1316 }
1317
1318 /*
1319 * Now scan the zone in the dma->highmem direction, stopping
1320 * at the last zone which needs scanning.
1321 *
1322 * We do this because the page allocator works in the opposite
1323 * direction. This prevents the page allocator from allocating
1324 * pages behind kswapd's direction of progress, which would
1325 * cause too much scanning of the lower zones.
1326 */
1327 for (i = 0; i <= end_zone; i++) {
1328 struct zone *zone = pgdat->node_zones + i;
b15e0905 1329 int nr_slab;
1da177e4 1330
f3fe6512 1331 if (!populated_zone(zone))
1da177e4
LT
1332 continue;
1333
1334 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1335 continue;
1336
1337 if (nr_pages == 0) { /* Not software suspend */
1338 if (!zone_watermark_ok(zone, order,
7fb1d9fc 1339 zone->pages_high, end_zone, 0))
1da177e4
LT
1340 all_zones_ok = 0;
1341 }
1342 zone->temp_priority = priority;
1343 if (zone->prev_priority > priority)
1344 zone->prev_priority = priority;
1345 sc.nr_scanned = 0;
1346 sc.nr_reclaimed = 0;
1347 sc.priority = priority;
1348 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1e7e5a90 1349 atomic_inc(&zone->reclaim_in_progress);
1da177e4 1350 shrink_zone(zone, &sc);
1e7e5a90 1351 atomic_dec(&zone->reclaim_in_progress);
1da177e4 1352 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
1353 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1354 lru_pages);
1da177e4
LT
1355 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1356 total_reclaimed += sc.nr_reclaimed;
1357 total_scanned += sc.nr_scanned;
1358 if (zone->all_unreclaimable)
1359 continue;
b15e0905
AM
1360 if (nr_slab == 0 && zone->pages_scanned >=
1361 (zone->nr_active + zone->nr_inactive) * 4)
1da177e4
LT
1362 zone->all_unreclaimable = 1;
1363 /*
1364 * If we've done a decent amount of scanning and
1365 * the reclaim ratio is low, start doing writepage
1366 * even in laptop mode
1367 */
1368 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1369 total_scanned > total_reclaimed+total_reclaimed/2)
1370 sc.may_writepage = 1;
1371 }
1372 if (nr_pages && to_free > total_reclaimed)
1373 continue; /* swsusp: need to do more work */
1374 if (all_zones_ok)
1375 break; /* kswapd: all done */
1376 /*
1377 * OK, kswapd is getting into trouble. Take a nap, then take
1378 * another pass across the zones.
1379 */
1380 if (total_scanned && priority < DEF_PRIORITY - 2)
1381 blk_congestion_wait(WRITE, HZ/10);
1382
1383 /*
1384 * We do this so kswapd doesn't build up large priorities for
1385 * example when it is freeing in parallel with allocators. It
1386 * matches the direct reclaim path behaviour in terms of impact
1387 * on zone->*_priority.
1388 */
1389 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1390 break;
1391 }
1392out:
1393 for (i = 0; i < pgdat->nr_zones; i++) {
1394 struct zone *zone = pgdat->node_zones + i;
1395
1396 zone->prev_priority = zone->temp_priority;
1397 }
1398 if (!all_zones_ok) {
1399 cond_resched();
1400 goto loop_again;
1401 }
1402
1403 return total_reclaimed;
1404}
1405
1406/*
1407 * The background pageout daemon, started as a kernel thread
1408 * from the init process.
1409 *
1410 * This basically trickles out pages so that we have _some_
1411 * free memory available even if there is no other activity
1412 * that frees anything up. This is needed for things like routing
1413 * etc, where we otherwise might have all activity going on in
1414 * asynchronous contexts that cannot page things out.
1415 *
1416 * If there are applications that are active memory-allocators
1417 * (most normal use), this basically shouldn't matter.
1418 */
1419static int kswapd(void *p)
1420{
1421 unsigned long order;
1422 pg_data_t *pgdat = (pg_data_t*)p;
1423 struct task_struct *tsk = current;
1424 DEFINE_WAIT(wait);
1425 struct reclaim_state reclaim_state = {
1426 .reclaimed_slab = 0,
1427 };
1428 cpumask_t cpumask;
1429
1430 daemonize("kswapd%d", pgdat->node_id);
1431 cpumask = node_to_cpumask(pgdat->node_id);
1432 if (!cpus_empty(cpumask))
1433 set_cpus_allowed(tsk, cpumask);
1434 current->reclaim_state = &reclaim_state;
1435
1436 /*
1437 * Tell the memory management that we're a "memory allocator",
1438 * and that if we need more memory we should get access to it
1439 * regardless (see "__alloc_pages()"). "kswapd" should
1440 * never get caught in the normal page freeing logic.
1441 *
1442 * (Kswapd normally doesn't need memory anyway, but sometimes
1443 * you need a small amount of memory in order to be able to
1444 * page out something else, and this flag essentially protects
1445 * us from recursively trying to free more memory as we're
1446 * trying to free the first piece of memory in the first place).
1447 */
930d9152 1448 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1da177e4
LT
1449
1450 order = 0;
1451 for ( ; ; ) {
1452 unsigned long new_order;
3e1d1d28
CL
1453
1454 try_to_freeze();
1da177e4
LT
1455
1456 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1457 new_order = pgdat->kswapd_max_order;
1458 pgdat->kswapd_max_order = 0;
1459 if (order < new_order) {
1460 /*
1461 * Don't sleep if someone wants a larger 'order'
1462 * allocation
1463 */
1464 order = new_order;
1465 } else {
1466 schedule();
1467 order = pgdat->kswapd_max_order;
1468 }
1469 finish_wait(&pgdat->kswapd_wait, &wait);
1470
1471 balance_pgdat(pgdat, 0, order);
1472 }
1473 return 0;
1474}
1475
1476/*
1477 * A zone is low on free memory, so wake its kswapd task to service it.
1478 */
1479void wakeup_kswapd(struct zone *zone, int order)
1480{
1481 pg_data_t *pgdat;
1482
f3fe6512 1483 if (!populated_zone(zone))
1da177e4
LT
1484 return;
1485
1486 pgdat = zone->zone_pgdat;
7fb1d9fc 1487 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1488 return;
1489 if (pgdat->kswapd_max_order < order)
1490 pgdat->kswapd_max_order = order;
9bf2229f 1491 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1da177e4 1492 return;
8d0986e2 1493 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1494 return;
8d0986e2 1495 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1496}
1497
1498#ifdef CONFIG_PM
1499/*
1500 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1501 * pages.
1502 */
1503int shrink_all_memory(int nr_pages)
1504{
1505 pg_data_t *pgdat;
1506 int nr_to_free = nr_pages;
1507 int ret = 0;
1508 struct reclaim_state reclaim_state = {
1509 .reclaimed_slab = 0,
1510 };
1511
1512 current->reclaim_state = &reclaim_state;
1513 for_each_pgdat(pgdat) {
1514 int freed;
1515 freed = balance_pgdat(pgdat, nr_to_free, 0);
1516 ret += freed;
1517 nr_to_free -= freed;
1518 if (nr_to_free <= 0)
1519 break;
1520 }
1521 current->reclaim_state = NULL;
1522 return ret;
1523}
1524#endif
1525
1526#ifdef CONFIG_HOTPLUG_CPU
1527/* It's optimal to keep kswapds on the same CPUs as their memory, but
1528 not required for correctness. So if the last cpu in a node goes
1529 away, we get changed to run anywhere: as the first one comes back,
1530 restore their cpu bindings. */
1531static int __devinit cpu_callback(struct notifier_block *nfb,
1532 unsigned long action,
1533 void *hcpu)
1534{
1535 pg_data_t *pgdat;
1536 cpumask_t mask;
1537
1538 if (action == CPU_ONLINE) {
1539 for_each_pgdat(pgdat) {
1540 mask = node_to_cpumask(pgdat->node_id);
1541 if (any_online_cpu(mask) != NR_CPUS)
1542 /* One of our CPUs online: restore mask */
1543 set_cpus_allowed(pgdat->kswapd, mask);
1544 }
1545 }
1546 return NOTIFY_OK;
1547}
1548#endif /* CONFIG_HOTPLUG_CPU */
1549
1550static int __init kswapd_init(void)
1551{
1552 pg_data_t *pgdat;
1553 swap_setup();
1554 for_each_pgdat(pgdat)
1555 pgdat->kswapd
1556 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1557 total_memory = nr_free_pagecache_pages();
1558 hotcpu_notifier(cpu_callback, 0);
1559 return 0;
1560}
1561
1562module_init(kswapd_init)