]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
fs: introduce some page/buffer invariants
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include <asm/div64.h>
43
44#include <linux/swapops.h>
45
0f8053a5
NP
46#include "internal.h"
47
1da177e4 48struct scan_control {
1da177e4
LT
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned;
51
1da177e4 52 /* This context's GFP mask */
6daa0e28 53 gfp_t gfp_mask;
1da177e4
LT
54
55 int may_writepage;
56
f1fd1067
CL
57 /* Can pages be swapped as part of reclaim? */
58 int may_swap;
59
1da177e4
LT
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
64 int swap_cluster_max;
d6277db4
RW
65
66 int swappiness;
408d8544
NP
67
68 int all_unreclaimable;
5ad333eb
AW
69
70 int order;
1da177e4
LT
71};
72
1da177e4
LT
73#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
74
75#ifdef ARCH_HAS_PREFETCH
76#define prefetch_prev_lru_page(_page, _base, _field) \
77 do { \
78 if ((_page)->lru.prev != _base) { \
79 struct page *prev; \
80 \
81 prev = lru_to_page(&(_page->lru)); \
82 prefetch(&prev->_field); \
83 } \
84 } while (0)
85#else
86#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
87#endif
88
89#ifdef ARCH_HAS_PREFETCHW
90#define prefetchw_prev_lru_page(_page, _base, _field) \
91 do { \
92 if ((_page)->lru.prev != _base) { \
93 struct page *prev; \
94 \
95 prev = lru_to_page(&(_page->lru)); \
96 prefetchw(&prev->_field); \
97 } \
98 } while (0)
99#else
100#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
101#endif
102
103/*
104 * From 0 .. 100. Higher means more swappy.
105 */
106int vm_swappiness = 60;
bd1e22b8 107long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
108
109static LIST_HEAD(shrinker_list);
110static DECLARE_RWSEM(shrinker_rwsem);
111
112/*
113 * Add a shrinker callback to be called from the vm
114 */
8e1f936b 115void register_shrinker(struct shrinker *shrinker)
1da177e4 116{
8e1f936b
RR
117 shrinker->nr = 0;
118 down_write(&shrinker_rwsem);
119 list_add_tail(&shrinker->list, &shrinker_list);
120 up_write(&shrinker_rwsem);
1da177e4 121}
8e1f936b 122EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
123
124/*
125 * Remove one
126 */
8e1f936b 127void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
128{
129 down_write(&shrinker_rwsem);
130 list_del(&shrinker->list);
131 up_write(&shrinker_rwsem);
1da177e4 132}
8e1f936b 133EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
134
135#define SHRINK_BATCH 128
136/*
137 * Call the shrink functions to age shrinkable caches
138 *
139 * Here we assume it costs one seek to replace a lru page and that it also
140 * takes a seek to recreate a cache object. With this in mind we age equal
141 * percentages of the lru and ageable caches. This should balance the seeks
142 * generated by these structures.
143 *
144 * If the vm encounted mapped pages on the LRU it increase the pressure on
145 * slab to avoid swapping.
146 *
147 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
148 *
149 * `lru_pages' represents the number of on-LRU pages in all the zones which
150 * are eligible for the caller's allocation attempt. It is used for balancing
151 * slab reclaim versus page reclaim.
b15e0905
AM
152 *
153 * Returns the number of slab objects which we shrunk.
1da177e4 154 */
69e05944
AM
155unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
156 unsigned long lru_pages)
1da177e4
LT
157{
158 struct shrinker *shrinker;
69e05944 159 unsigned long ret = 0;
1da177e4
LT
160
161 if (scanned == 0)
162 scanned = SWAP_CLUSTER_MAX;
163
164 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 165 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
166
167 list_for_each_entry(shrinker, &shrinker_list, list) {
168 unsigned long long delta;
169 unsigned long total_scan;
8e1f936b 170 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
171
172 delta = (4 * scanned) / shrinker->seeks;
ea164d73 173 delta *= max_pass;
1da177e4
LT
174 do_div(delta, lru_pages + 1);
175 shrinker->nr += delta;
ea164d73
AA
176 if (shrinker->nr < 0) {
177 printk(KERN_ERR "%s: nr=%ld\n",
178 __FUNCTION__, shrinker->nr);
179 shrinker->nr = max_pass;
180 }
181
182 /*
183 * Avoid risking looping forever due to too large nr value:
184 * never try to free more than twice the estimate number of
185 * freeable entries.
186 */
187 if (shrinker->nr > max_pass * 2)
188 shrinker->nr = max_pass * 2;
1da177e4
LT
189
190 total_scan = shrinker->nr;
191 shrinker->nr = 0;
192
193 while (total_scan >= SHRINK_BATCH) {
194 long this_scan = SHRINK_BATCH;
195 int shrink_ret;
b15e0905 196 int nr_before;
1da177e4 197
8e1f936b
RR
198 nr_before = (*shrinker->shrink)(0, gfp_mask);
199 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
200 if (shrink_ret == -1)
201 break;
b15e0905
AM
202 if (shrink_ret < nr_before)
203 ret += nr_before - shrink_ret;
f8891e5e 204 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
205 total_scan -= this_scan;
206
207 cond_resched();
208 }
209
210 shrinker->nr += total_scan;
211 }
212 up_read(&shrinker_rwsem);
b15e0905 213 return ret;
1da177e4
LT
214}
215
216/* Called without lock on whether page is mapped, so answer is unstable */
217static inline int page_mapping_inuse(struct page *page)
218{
219 struct address_space *mapping;
220
221 /* Page is in somebody's page tables. */
222 if (page_mapped(page))
223 return 1;
224
225 /* Be more reluctant to reclaim swapcache than pagecache */
226 if (PageSwapCache(page))
227 return 1;
228
229 mapping = page_mapping(page);
230 if (!mapping)
231 return 0;
232
233 /* File is mmap'd by somebody? */
234 return mapping_mapped(mapping);
235}
236
237static inline int is_page_cache_freeable(struct page *page)
238{
239 return page_count(page) - !!PagePrivate(page) == 2;
240}
241
242static int may_write_to_queue(struct backing_dev_info *bdi)
243{
930d9152 244 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
245 return 1;
246 if (!bdi_write_congested(bdi))
247 return 1;
248 if (bdi == current->backing_dev_info)
249 return 1;
250 return 0;
251}
252
253/*
254 * We detected a synchronous write error writing a page out. Probably
255 * -ENOSPC. We need to propagate that into the address_space for a subsequent
256 * fsync(), msync() or close().
257 *
258 * The tricky part is that after writepage we cannot touch the mapping: nothing
259 * prevents it from being freed up. But we have a ref on the page and once
260 * that page is locked, the mapping is pinned.
261 *
262 * We're allowed to run sleeping lock_page() here because we know the caller has
263 * __GFP_FS.
264 */
265static void handle_write_error(struct address_space *mapping,
266 struct page *page, int error)
267{
268 lock_page(page);
3e9f45bd
GC
269 if (page_mapping(page) == mapping)
270 mapping_set_error(mapping, error);
1da177e4
LT
271 unlock_page(page);
272}
273
04e62a29
CL
274/* possible outcome of pageout() */
275typedef enum {
276 /* failed to write page out, page is locked */
277 PAGE_KEEP,
278 /* move page to the active list, page is locked */
279 PAGE_ACTIVATE,
280 /* page has been sent to the disk successfully, page is unlocked */
281 PAGE_SUCCESS,
282 /* page is clean and locked */
283 PAGE_CLEAN,
284} pageout_t;
285
1da177e4 286/*
1742f19f
AM
287 * pageout is called by shrink_page_list() for each dirty page.
288 * Calls ->writepage().
1da177e4 289 */
04e62a29 290static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
291{
292 /*
293 * If the page is dirty, only perform writeback if that write
294 * will be non-blocking. To prevent this allocation from being
295 * stalled by pagecache activity. But note that there may be
296 * stalls if we need to run get_block(). We could test
297 * PagePrivate for that.
298 *
299 * If this process is currently in generic_file_write() against
300 * this page's queue, we can perform writeback even if that
301 * will block.
302 *
303 * If the page is swapcache, write it back even if that would
304 * block, for some throttling. This happens by accident, because
305 * swap_backing_dev_info is bust: it doesn't reflect the
306 * congestion state of the swapdevs. Easy to fix, if needed.
307 * See swapfile.c:page_queue_congested().
308 */
309 if (!is_page_cache_freeable(page))
310 return PAGE_KEEP;
311 if (!mapping) {
312 /*
313 * Some data journaling orphaned pages can have
314 * page->mapping == NULL while being dirty with clean buffers.
315 */
323aca6c 316 if (PagePrivate(page)) {
1da177e4
LT
317 if (try_to_free_buffers(page)) {
318 ClearPageDirty(page);
319 printk("%s: orphaned page\n", __FUNCTION__);
320 return PAGE_CLEAN;
321 }
322 }
323 return PAGE_KEEP;
324 }
325 if (mapping->a_ops->writepage == NULL)
326 return PAGE_ACTIVATE;
327 if (!may_write_to_queue(mapping->backing_dev_info))
328 return PAGE_KEEP;
329
330 if (clear_page_dirty_for_io(page)) {
331 int res;
332 struct writeback_control wbc = {
333 .sync_mode = WB_SYNC_NONE,
334 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
335 .range_start = 0,
336 .range_end = LLONG_MAX,
1da177e4
LT
337 .nonblocking = 1,
338 .for_reclaim = 1,
339 };
340
341 SetPageReclaim(page);
342 res = mapping->a_ops->writepage(page, &wbc);
343 if (res < 0)
344 handle_write_error(mapping, page, res);
994fc28c 345 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
346 ClearPageReclaim(page);
347 return PAGE_ACTIVATE;
348 }
349 if (!PageWriteback(page)) {
350 /* synchronous write or broken a_ops? */
351 ClearPageReclaim(page);
352 }
e129b5c2 353 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
354 return PAGE_SUCCESS;
355 }
356
357 return PAGE_CLEAN;
358}
359
a649fd92
AM
360/*
361 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
362 * someone else has a ref on the page, abort and return 0. If it was
363 * successfully detached, return 1. Assumes the caller has a single ref on
364 * this page.
365 */
b20a3503 366int remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 367{
28e4d965
NP
368 BUG_ON(!PageLocked(page));
369 BUG_ON(mapping != page_mapping(page));
49d2e9cc
CL
370
371 write_lock_irq(&mapping->tree_lock);
49d2e9cc 372 /*
0fd0e6b0
NP
373 * The non racy check for a busy page.
374 *
375 * Must be careful with the order of the tests. When someone has
376 * a ref to the page, it may be possible that they dirty it then
377 * drop the reference. So if PageDirty is tested before page_count
378 * here, then the following race may occur:
379 *
380 * get_user_pages(&page);
381 * [user mapping goes away]
382 * write_to(page);
383 * !PageDirty(page) [good]
384 * SetPageDirty(page);
385 * put_page(page);
386 * !page_count(page) [good, discard it]
387 *
388 * [oops, our write_to data is lost]
389 *
390 * Reversing the order of the tests ensures such a situation cannot
391 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
392 * load is not satisfied before that of page->_count.
393 *
394 * Note that if SetPageDirty is always performed via set_page_dirty,
395 * and thus under tree_lock, then this ordering is not required.
49d2e9cc
CL
396 */
397 if (unlikely(page_count(page) != 2))
398 goto cannot_free;
399 smp_rmb();
400 if (unlikely(PageDirty(page)))
401 goto cannot_free;
402
403 if (PageSwapCache(page)) {
404 swp_entry_t swap = { .val = page_private(page) };
405 __delete_from_swap_cache(page);
406 write_unlock_irq(&mapping->tree_lock);
407 swap_free(swap);
408 __put_page(page); /* The pagecache ref */
409 return 1;
410 }
411
412 __remove_from_page_cache(page);
413 write_unlock_irq(&mapping->tree_lock);
414 __put_page(page);
415 return 1;
416
417cannot_free:
418 write_unlock_irq(&mapping->tree_lock);
419 return 0;
420}
421
1da177e4 422/*
1742f19f 423 * shrink_page_list() returns the number of reclaimed pages
1da177e4 424 */
1742f19f
AM
425static unsigned long shrink_page_list(struct list_head *page_list,
426 struct scan_control *sc)
1da177e4
LT
427{
428 LIST_HEAD(ret_pages);
429 struct pagevec freed_pvec;
430 int pgactivate = 0;
05ff5137 431 unsigned long nr_reclaimed = 0;
1da177e4
LT
432
433 cond_resched();
434
435 pagevec_init(&freed_pvec, 1);
436 while (!list_empty(page_list)) {
437 struct address_space *mapping;
438 struct page *page;
439 int may_enter_fs;
440 int referenced;
441
442 cond_resched();
443
444 page = lru_to_page(page_list);
445 list_del(&page->lru);
446
447 if (TestSetPageLocked(page))
448 goto keep;
449
725d704e 450 VM_BUG_ON(PageActive(page));
1da177e4
LT
451
452 sc->nr_scanned++;
80e43426
CL
453
454 if (!sc->may_swap && page_mapped(page))
455 goto keep_locked;
456
1da177e4
LT
457 /* Double the slab pressure for mapped and swapcache pages */
458 if (page_mapped(page) || PageSwapCache(page))
459 sc->nr_scanned++;
460
461 if (PageWriteback(page))
462 goto keep_locked;
463
f7b7fd8f 464 referenced = page_referenced(page, 1);
1da177e4 465 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
466 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
467 referenced && page_mapping_inuse(page))
1da177e4
LT
468 goto activate_locked;
469
470#ifdef CONFIG_SWAP
471 /*
472 * Anonymous process memory has backing store?
473 * Try to allocate it some swap space here.
474 */
6e5ef1a9 475 if (PageAnon(page) && !PageSwapCache(page))
1480a540 476 if (!add_to_swap(page, GFP_ATOMIC))
1da177e4 477 goto activate_locked;
1da177e4
LT
478#endif /* CONFIG_SWAP */
479
480 mapping = page_mapping(page);
481 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
482 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
483
484 /*
485 * The page is mapped into the page tables of one or more
486 * processes. Try to unmap it here.
487 */
488 if (page_mapped(page) && mapping) {
a48d07af 489 switch (try_to_unmap(page, 0)) {
1da177e4
LT
490 case SWAP_FAIL:
491 goto activate_locked;
492 case SWAP_AGAIN:
493 goto keep_locked;
494 case SWAP_SUCCESS:
495 ; /* try to free the page below */
496 }
497 }
498
499 if (PageDirty(page)) {
5ad333eb 500 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4
LT
501 goto keep_locked;
502 if (!may_enter_fs)
503 goto keep_locked;
52a8363e 504 if (!sc->may_writepage)
1da177e4
LT
505 goto keep_locked;
506
507 /* Page is dirty, try to write it out here */
508 switch(pageout(page, mapping)) {
509 case PAGE_KEEP:
510 goto keep_locked;
511 case PAGE_ACTIVATE:
512 goto activate_locked;
513 case PAGE_SUCCESS:
514 if (PageWriteback(page) || PageDirty(page))
515 goto keep;
516 /*
517 * A synchronous write - probably a ramdisk. Go
518 * ahead and try to reclaim the page.
519 */
520 if (TestSetPageLocked(page))
521 goto keep;
522 if (PageDirty(page) || PageWriteback(page))
523 goto keep_locked;
524 mapping = page_mapping(page);
525 case PAGE_CLEAN:
526 ; /* try to free the page below */
527 }
528 }
529
530 /*
531 * If the page has buffers, try to free the buffer mappings
532 * associated with this page. If we succeed we try to free
533 * the page as well.
534 *
535 * We do this even if the page is PageDirty().
536 * try_to_release_page() does not perform I/O, but it is
537 * possible for a page to have PageDirty set, but it is actually
538 * clean (all its buffers are clean). This happens if the
539 * buffers were written out directly, with submit_bh(). ext3
540 * will do this, as well as the blockdev mapping.
541 * try_to_release_page() will discover that cleanness and will
542 * drop the buffers and mark the page clean - it can be freed.
543 *
544 * Rarely, pages can have buffers and no ->mapping. These are
545 * the pages which were not successfully invalidated in
546 * truncate_complete_page(). We try to drop those buffers here
547 * and if that worked, and the page is no longer mapped into
548 * process address space (page_count == 1) it can be freed.
549 * Otherwise, leave the page on the LRU so it is swappable.
550 */
551 if (PagePrivate(page)) {
552 if (!try_to_release_page(page, sc->gfp_mask))
553 goto activate_locked;
554 if (!mapping && page_count(page) == 1)
555 goto free_it;
556 }
557
28e4d965 558 if (!mapping || !remove_mapping(mapping, page))
49d2e9cc 559 goto keep_locked;
1da177e4
LT
560
561free_it:
562 unlock_page(page);
05ff5137 563 nr_reclaimed++;
1da177e4
LT
564 if (!pagevec_add(&freed_pvec, page))
565 __pagevec_release_nonlru(&freed_pvec);
566 continue;
567
568activate_locked:
569 SetPageActive(page);
570 pgactivate++;
571keep_locked:
572 unlock_page(page);
573keep:
574 list_add(&page->lru, &ret_pages);
725d704e 575 VM_BUG_ON(PageLRU(page));
1da177e4
LT
576 }
577 list_splice(&ret_pages, page_list);
578 if (pagevec_count(&freed_pvec))
579 __pagevec_release_nonlru(&freed_pvec);
f8891e5e 580 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 581 return nr_reclaimed;
1da177e4
LT
582}
583
5ad333eb
AW
584/* LRU Isolation modes. */
585#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
586#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
587#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
588
589/*
590 * Attempt to remove the specified page from its LRU. Only take this page
591 * if it is of the appropriate PageActive status. Pages which are being
592 * freed elsewhere are also ignored.
593 *
594 * page: page to consider
595 * mode: one of the LRU isolation modes defined above
596 *
597 * returns 0 on success, -ve errno on failure.
598 */
599static int __isolate_lru_page(struct page *page, int mode)
600{
601 int ret = -EINVAL;
602
603 /* Only take pages on the LRU. */
604 if (!PageLRU(page))
605 return ret;
606
607 /*
608 * When checking the active state, we need to be sure we are
609 * dealing with comparible boolean values. Take the logical not
610 * of each.
611 */
612 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
613 return ret;
614
615 ret = -EBUSY;
616 if (likely(get_page_unless_zero(page))) {
617 /*
618 * Be careful not to clear PageLRU until after we're
619 * sure the page is not being freed elsewhere -- the
620 * page release code relies on it.
621 */
622 ClearPageLRU(page);
623 ret = 0;
624 }
625
626 return ret;
627}
628
1da177e4
LT
629/*
630 * zone->lru_lock is heavily contended. Some of the functions that
631 * shrink the lists perform better by taking out a batch of pages
632 * and working on them outside the LRU lock.
633 *
634 * For pagecache intensive workloads, this function is the hottest
635 * spot in the kernel (apart from copy_*_user functions).
636 *
637 * Appropriate locks must be held before calling this function.
638 *
639 * @nr_to_scan: The number of pages to look through on the list.
640 * @src: The LRU list to pull pages off.
641 * @dst: The temp list to put pages on to.
642 * @scanned: The number of pages that were scanned.
5ad333eb
AW
643 * @order: The caller's attempted allocation order
644 * @mode: One of the LRU isolation modes
1da177e4
LT
645 *
646 * returns how many pages were moved onto *@dst.
647 */
69e05944
AM
648static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
649 struct list_head *src, struct list_head *dst,
5ad333eb 650 unsigned long *scanned, int order, int mode)
1da177e4 651{
69e05944 652 unsigned long nr_taken = 0;
c9b02d97 653 unsigned long scan;
1da177e4 654
c9b02d97 655 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
656 struct page *page;
657 unsigned long pfn;
658 unsigned long end_pfn;
659 unsigned long page_pfn;
660 int zone_id;
661
1da177e4
LT
662 page = lru_to_page(src);
663 prefetchw_prev_lru_page(page, src, flags);
664
725d704e 665 VM_BUG_ON(!PageLRU(page));
8d438f96 666
5ad333eb
AW
667 switch (__isolate_lru_page(page, mode)) {
668 case 0:
669 list_move(&page->lru, dst);
7c8ee9a8 670 nr_taken++;
5ad333eb
AW
671 break;
672
673 case -EBUSY:
674 /* else it is being freed elsewhere */
675 list_move(&page->lru, src);
676 continue;
46453a6e 677
5ad333eb
AW
678 default:
679 BUG();
680 }
681
682 if (!order)
683 continue;
684
685 /*
686 * Attempt to take all pages in the order aligned region
687 * surrounding the tag page. Only take those pages of
688 * the same active state as that tag page. We may safely
689 * round the target page pfn down to the requested order
690 * as the mem_map is guarenteed valid out to MAX_ORDER,
691 * where that page is in a different zone we will detect
692 * it from its zone id and abort this block scan.
693 */
694 zone_id = page_zone_id(page);
695 page_pfn = page_to_pfn(page);
696 pfn = page_pfn & ~((1 << order) - 1);
697 end_pfn = pfn + (1 << order);
698 for (; pfn < end_pfn; pfn++) {
699 struct page *cursor_page;
700
701 /* The target page is in the block, ignore it. */
702 if (unlikely(pfn == page_pfn))
703 continue;
704
705 /* Avoid holes within the zone. */
706 if (unlikely(!pfn_valid_within(pfn)))
707 break;
708
709 cursor_page = pfn_to_page(pfn);
710 /* Check that we have not crossed a zone boundary. */
711 if (unlikely(page_zone_id(cursor_page) != zone_id))
712 continue;
713 switch (__isolate_lru_page(cursor_page, mode)) {
714 case 0:
715 list_move(&cursor_page->lru, dst);
716 nr_taken++;
717 scan++;
718 break;
719
720 case -EBUSY:
721 /* else it is being freed elsewhere */
722 list_move(&cursor_page->lru, src);
723 default:
724 break;
725 }
726 }
1da177e4
LT
727 }
728
729 *scanned = scan;
730 return nr_taken;
731}
732
5ad333eb
AW
733/*
734 * clear_active_flags() is a helper for shrink_active_list(), clearing
735 * any active bits from the pages in the list.
736 */
737static unsigned long clear_active_flags(struct list_head *page_list)
738{
739 int nr_active = 0;
740 struct page *page;
741
742 list_for_each_entry(page, page_list, lru)
743 if (PageActive(page)) {
744 ClearPageActive(page);
745 nr_active++;
746 }
747
748 return nr_active;
749}
750
1da177e4 751/*
1742f19f
AM
752 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
753 * of reclaimed pages
1da177e4 754 */
1742f19f
AM
755static unsigned long shrink_inactive_list(unsigned long max_scan,
756 struct zone *zone, struct scan_control *sc)
1da177e4
LT
757{
758 LIST_HEAD(page_list);
759 struct pagevec pvec;
69e05944 760 unsigned long nr_scanned = 0;
05ff5137 761 unsigned long nr_reclaimed = 0;
1da177e4
LT
762
763 pagevec_init(&pvec, 1);
764
765 lru_add_drain();
766 spin_lock_irq(&zone->lru_lock);
69e05944 767 do {
1da177e4 768 struct page *page;
69e05944
AM
769 unsigned long nr_taken;
770 unsigned long nr_scan;
771 unsigned long nr_freed;
5ad333eb 772 unsigned long nr_active;
1da177e4
LT
773
774 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
5ad333eb
AW
775 &zone->inactive_list,
776 &page_list, &nr_scan, sc->order,
777 (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
778 ISOLATE_BOTH : ISOLATE_INACTIVE);
779 nr_active = clear_active_flags(&page_list);
780
781 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
782 __mod_zone_page_state(zone, NR_INACTIVE,
783 -(nr_taken - nr_active));
1da177e4
LT
784 zone->pages_scanned += nr_scan;
785 spin_unlock_irq(&zone->lru_lock);
786
69e05944 787 nr_scanned += nr_scan;
1742f19f 788 nr_freed = shrink_page_list(&page_list, sc);
05ff5137 789 nr_reclaimed += nr_freed;
a74609fa
NP
790 local_irq_disable();
791 if (current_is_kswapd()) {
f8891e5e
CL
792 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
793 __count_vm_events(KSWAPD_STEAL, nr_freed);
a74609fa 794 } else
f8891e5e 795 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
918d3f90 796 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 797
fb8d14e1
WF
798 if (nr_taken == 0)
799 goto done;
800
a74609fa 801 spin_lock(&zone->lru_lock);
1da177e4
LT
802 /*
803 * Put back any unfreeable pages.
804 */
805 while (!list_empty(&page_list)) {
806 page = lru_to_page(&page_list);
725d704e 807 VM_BUG_ON(PageLRU(page));
8d438f96 808 SetPageLRU(page);
1da177e4
LT
809 list_del(&page->lru);
810 if (PageActive(page))
811 add_page_to_active_list(zone, page);
812 else
813 add_page_to_inactive_list(zone, page);
814 if (!pagevec_add(&pvec, page)) {
815 spin_unlock_irq(&zone->lru_lock);
816 __pagevec_release(&pvec);
817 spin_lock_irq(&zone->lru_lock);
818 }
819 }
69e05944 820 } while (nr_scanned < max_scan);
fb8d14e1 821 spin_unlock(&zone->lru_lock);
1da177e4 822done:
fb8d14e1 823 local_irq_enable();
1da177e4 824 pagevec_release(&pvec);
05ff5137 825 return nr_reclaimed;
1da177e4
LT
826}
827
3bb1a852
MB
828/*
829 * We are about to scan this zone at a certain priority level. If that priority
830 * level is smaller (ie: more urgent) than the previous priority, then note
831 * that priority level within the zone. This is done so that when the next
832 * process comes in to scan this zone, it will immediately start out at this
833 * priority level rather than having to build up its own scanning priority.
834 * Here, this priority affects only the reclaim-mapped threshold.
835 */
836static inline void note_zone_scanning_priority(struct zone *zone, int priority)
837{
838 if (priority < zone->prev_priority)
839 zone->prev_priority = priority;
840}
841
4ff1ffb4
NP
842static inline int zone_is_near_oom(struct zone *zone)
843{
c8785385
CL
844 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
845 + zone_page_state(zone, NR_INACTIVE))*3;
4ff1ffb4
NP
846}
847
1da177e4
LT
848/*
849 * This moves pages from the active list to the inactive list.
850 *
851 * We move them the other way if the page is referenced by one or more
852 * processes, from rmap.
853 *
854 * If the pages are mostly unmapped, the processing is fast and it is
855 * appropriate to hold zone->lru_lock across the whole operation. But if
856 * the pages are mapped, the processing is slow (page_referenced()) so we
857 * should drop zone->lru_lock around each page. It's impossible to balance
858 * this, so instead we remove the pages from the LRU while processing them.
859 * It is safe to rely on PG_active against the non-LRU pages in here because
860 * nobody will play with that bit on a non-LRU page.
861 *
862 * The downside is that we have to touch page->_count against each page.
863 * But we had to alter page->flags anyway.
864 */
1742f19f 865static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
bbdb396a 866 struct scan_control *sc, int priority)
1da177e4 867{
69e05944 868 unsigned long pgmoved;
1da177e4 869 int pgdeactivate = 0;
69e05944 870 unsigned long pgscanned;
1da177e4
LT
871 LIST_HEAD(l_hold); /* The pages which were snipped off */
872 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
873 LIST_HEAD(l_active); /* Pages to go onto the active_list */
874 struct page *page;
875 struct pagevec pvec;
876 int reclaim_mapped = 0;
2903fb16 877
6e5ef1a9 878 if (sc->may_swap) {
2903fb16
CL
879 long mapped_ratio;
880 long distress;
881 long swap_tendency;
882
4ff1ffb4
NP
883 if (zone_is_near_oom(zone))
884 goto force_reclaim_mapped;
885
2903fb16
CL
886 /*
887 * `distress' is a measure of how much trouble we're having
888 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
889 */
bbdb396a 890 distress = 100 >> min(zone->prev_priority, priority);
2903fb16
CL
891
892 /*
893 * The point of this algorithm is to decide when to start
894 * reclaiming mapped memory instead of just pagecache. Work out
895 * how much memory
896 * is mapped.
897 */
f3dbd344
CL
898 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
899 global_page_state(NR_ANON_PAGES)) * 100) /
bf02cf4b 900 vm_total_pages;
2903fb16
CL
901
902 /*
903 * Now decide how much we really want to unmap some pages. The
904 * mapped ratio is downgraded - just because there's a lot of
905 * mapped memory doesn't necessarily mean that page reclaim
906 * isn't succeeding.
907 *
908 * The distress ratio is important - we don't want to start
909 * going oom.
910 *
911 * A 100% value of vm_swappiness overrides this algorithm
912 * altogether.
913 */
d6277db4 914 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
2903fb16
CL
915
916 /*
917 * Now use this metric to decide whether to start moving mapped
918 * memory onto the inactive list.
919 */
920 if (swap_tendency >= 100)
4ff1ffb4 921force_reclaim_mapped:
2903fb16
CL
922 reclaim_mapped = 1;
923 }
1da177e4
LT
924
925 lru_add_drain();
926 spin_lock_irq(&zone->lru_lock);
927 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
5ad333eb 928 &l_hold, &pgscanned, sc->order, ISOLATE_ACTIVE);
1da177e4 929 zone->pages_scanned += pgscanned;
c8785385 930 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1da177e4
LT
931 spin_unlock_irq(&zone->lru_lock);
932
1da177e4
LT
933 while (!list_empty(&l_hold)) {
934 cond_resched();
935 page = lru_to_page(&l_hold);
936 list_del(&page->lru);
937 if (page_mapped(page)) {
938 if (!reclaim_mapped ||
939 (total_swap_pages == 0 && PageAnon(page)) ||
f7b7fd8f 940 page_referenced(page, 0)) {
1da177e4
LT
941 list_add(&page->lru, &l_active);
942 continue;
943 }
944 }
945 list_add(&page->lru, &l_inactive);
946 }
947
948 pagevec_init(&pvec, 1);
949 pgmoved = 0;
950 spin_lock_irq(&zone->lru_lock);
951 while (!list_empty(&l_inactive)) {
952 page = lru_to_page(&l_inactive);
953 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 954 VM_BUG_ON(PageLRU(page));
8d438f96 955 SetPageLRU(page);
725d704e 956 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
957 ClearPageActive(page);
958
1da177e4
LT
959 list_move(&page->lru, &zone->inactive_list);
960 pgmoved++;
961 if (!pagevec_add(&pvec, page)) {
c8785385 962 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1da177e4
LT
963 spin_unlock_irq(&zone->lru_lock);
964 pgdeactivate += pgmoved;
965 pgmoved = 0;
966 if (buffer_heads_over_limit)
967 pagevec_strip(&pvec);
968 __pagevec_release(&pvec);
969 spin_lock_irq(&zone->lru_lock);
970 }
971 }
c8785385 972 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1da177e4
LT
973 pgdeactivate += pgmoved;
974 if (buffer_heads_over_limit) {
975 spin_unlock_irq(&zone->lru_lock);
976 pagevec_strip(&pvec);
977 spin_lock_irq(&zone->lru_lock);
978 }
979
980 pgmoved = 0;
981 while (!list_empty(&l_active)) {
982 page = lru_to_page(&l_active);
983 prefetchw_prev_lru_page(page, &l_active, flags);
725d704e 984 VM_BUG_ON(PageLRU(page));
8d438f96 985 SetPageLRU(page);
725d704e 986 VM_BUG_ON(!PageActive(page));
1da177e4
LT
987 list_move(&page->lru, &zone->active_list);
988 pgmoved++;
989 if (!pagevec_add(&pvec, page)) {
c8785385 990 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1da177e4
LT
991 pgmoved = 0;
992 spin_unlock_irq(&zone->lru_lock);
993 __pagevec_release(&pvec);
994 spin_lock_irq(&zone->lru_lock);
995 }
996 }
c8785385 997 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
a74609fa 998
f8891e5e
CL
999 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1000 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1001 spin_unlock_irq(&zone->lru_lock);
1da177e4 1002
a74609fa 1003 pagevec_release(&pvec);
1da177e4
LT
1004}
1005
1006/*
1007 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1008 */
05ff5137
AM
1009static unsigned long shrink_zone(int priority, struct zone *zone,
1010 struct scan_control *sc)
1da177e4
LT
1011{
1012 unsigned long nr_active;
1013 unsigned long nr_inactive;
8695949a 1014 unsigned long nr_to_scan;
05ff5137 1015 unsigned long nr_reclaimed = 0;
1da177e4 1016
53e9a615
MH
1017 atomic_inc(&zone->reclaim_in_progress);
1018
1da177e4
LT
1019 /*
1020 * Add one to `nr_to_scan' just to make sure that the kernel will
1021 * slowly sift through the active list.
1022 */
c8785385
CL
1023 zone->nr_scan_active +=
1024 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1da177e4
LT
1025 nr_active = zone->nr_scan_active;
1026 if (nr_active >= sc->swap_cluster_max)
1027 zone->nr_scan_active = 0;
1028 else
1029 nr_active = 0;
1030
c8785385
CL
1031 zone->nr_scan_inactive +=
1032 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1da177e4
LT
1033 nr_inactive = zone->nr_scan_inactive;
1034 if (nr_inactive >= sc->swap_cluster_max)
1035 zone->nr_scan_inactive = 0;
1036 else
1037 nr_inactive = 0;
1038
1da177e4
LT
1039 while (nr_active || nr_inactive) {
1040 if (nr_active) {
8695949a 1041 nr_to_scan = min(nr_active,
1da177e4 1042 (unsigned long)sc->swap_cluster_max);
8695949a 1043 nr_active -= nr_to_scan;
bbdb396a 1044 shrink_active_list(nr_to_scan, zone, sc, priority);
1da177e4
LT
1045 }
1046
1047 if (nr_inactive) {
8695949a 1048 nr_to_scan = min(nr_inactive,
1da177e4 1049 (unsigned long)sc->swap_cluster_max);
8695949a 1050 nr_inactive -= nr_to_scan;
1742f19f
AM
1051 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1052 sc);
1da177e4
LT
1053 }
1054 }
1055
232ea4d6 1056 throttle_vm_writeout(sc->gfp_mask);
53e9a615
MH
1057
1058 atomic_dec(&zone->reclaim_in_progress);
05ff5137 1059 return nr_reclaimed;
1da177e4
LT
1060}
1061
1062/*
1063 * This is the direct reclaim path, for page-allocating processes. We only
1064 * try to reclaim pages from zones which will satisfy the caller's allocation
1065 * request.
1066 *
1067 * We reclaim from a zone even if that zone is over pages_high. Because:
1068 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1069 * allocation or
1070 * b) The zones may be over pages_high but they must go *over* pages_high to
1071 * satisfy the `incremental min' zone defense algorithm.
1072 *
1073 * Returns the number of reclaimed pages.
1074 *
1075 * If a zone is deemed to be full of pinned pages then just give it a light
1076 * scan then give up on it.
1077 */
1742f19f 1078static unsigned long shrink_zones(int priority, struct zone **zones,
05ff5137 1079 struct scan_control *sc)
1da177e4 1080{
05ff5137 1081 unsigned long nr_reclaimed = 0;
1da177e4
LT
1082 int i;
1083
408d8544 1084 sc->all_unreclaimable = 1;
1da177e4
LT
1085 for (i = 0; zones[i] != NULL; i++) {
1086 struct zone *zone = zones[i];
1087
f3fe6512 1088 if (!populated_zone(zone))
1da177e4
LT
1089 continue;
1090
02a0e53d 1091 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4
LT
1092 continue;
1093
3bb1a852 1094 note_zone_scanning_priority(zone, priority);
1da177e4 1095
8695949a 1096 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
1097 continue; /* Let kswapd poll it */
1098
408d8544
NP
1099 sc->all_unreclaimable = 0;
1100
05ff5137 1101 nr_reclaimed += shrink_zone(priority, zone, sc);
1da177e4 1102 }
05ff5137 1103 return nr_reclaimed;
1da177e4
LT
1104}
1105
1106/*
1107 * This is the main entry point to direct page reclaim.
1108 *
1109 * If a full scan of the inactive list fails to free enough memory then we
1110 * are "out of memory" and something needs to be killed.
1111 *
1112 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1113 * high - the zone may be full of dirty or under-writeback pages, which this
1114 * caller can't do much about. We kick pdflush and take explicit naps in the
1115 * hope that some of these pages can be written. But if the allocating task
1116 * holds filesystem locks which prevent writeout this might not work, and the
1117 * allocation attempt will fail.
1118 */
5ad333eb 1119unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1da177e4
LT
1120{
1121 int priority;
1122 int ret = 0;
69e05944 1123 unsigned long total_scanned = 0;
05ff5137 1124 unsigned long nr_reclaimed = 0;
1da177e4 1125 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4
LT
1126 unsigned long lru_pages = 0;
1127 int i;
179e9639
AM
1128 struct scan_control sc = {
1129 .gfp_mask = gfp_mask,
1130 .may_writepage = !laptop_mode,
1131 .swap_cluster_max = SWAP_CLUSTER_MAX,
1132 .may_swap = 1,
d6277db4 1133 .swappiness = vm_swappiness,
5ad333eb 1134 .order = order,
179e9639 1135 };
1da177e4 1136
f8891e5e 1137 count_vm_event(ALLOCSTALL);
1da177e4
LT
1138
1139 for (i = 0; zones[i] != NULL; i++) {
1140 struct zone *zone = zones[i];
1141
02a0e53d 1142 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4
LT
1143 continue;
1144
c8785385
CL
1145 lru_pages += zone_page_state(zone, NR_ACTIVE)
1146 + zone_page_state(zone, NR_INACTIVE);
1da177e4
LT
1147 }
1148
1149 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 1150 sc.nr_scanned = 0;
f7b7fd8f
RR
1151 if (!priority)
1152 disable_swap_token();
1742f19f 1153 nr_reclaimed += shrink_zones(priority, zones, &sc);
1da177e4
LT
1154 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1155 if (reclaim_state) {
05ff5137 1156 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4
LT
1157 reclaim_state->reclaimed_slab = 0;
1158 }
1159 total_scanned += sc.nr_scanned;
05ff5137 1160 if (nr_reclaimed >= sc.swap_cluster_max) {
1da177e4
LT
1161 ret = 1;
1162 goto out;
1163 }
1164
1165 /*
1166 * Try to write back as many pages as we just scanned. This
1167 * tends to cause slow streaming writers to write data to the
1168 * disk smoothly, at the dirtying rate, which is nice. But
1169 * that's undesirable in laptop mode, where we *want* lumpy
1170 * writeout. So in laptop mode, write out the whole world.
1171 */
179e9639
AM
1172 if (total_scanned > sc.swap_cluster_max +
1173 sc.swap_cluster_max / 2) {
687a21ce 1174 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1da177e4
LT
1175 sc.may_writepage = 1;
1176 }
1177
1178 /* Take a nap, wait for some writeback to complete */
1179 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1180 congestion_wait(WRITE, HZ/10);
1da177e4 1181 }
408d8544
NP
1182 /* top priority shrink_caches still had more to do? don't OOM, then */
1183 if (!sc.all_unreclaimable)
1184 ret = 1;
1da177e4 1185out:
3bb1a852
MB
1186 /*
1187 * Now that we've scanned all the zones at this priority level, note
1188 * that level within the zone so that the next thread which performs
1189 * scanning of this zone will immediately start out at this priority
1190 * level. This affects only the decision whether or not to bring
1191 * mapped pages onto the inactive list.
1192 */
1193 if (priority < 0)
1194 priority = 0;
1da177e4
LT
1195 for (i = 0; zones[i] != 0; i++) {
1196 struct zone *zone = zones[i];
1197
02a0e53d 1198 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4
LT
1199 continue;
1200
3bb1a852 1201 zone->prev_priority = priority;
1da177e4
LT
1202 }
1203 return ret;
1204}
1205
1206/*
1207 * For kswapd, balance_pgdat() will work across all this node's zones until
1208 * they are all at pages_high.
1209 *
1da177e4
LT
1210 * Returns the number of pages which were actually freed.
1211 *
1212 * There is special handling here for zones which are full of pinned pages.
1213 * This can happen if the pages are all mlocked, or if they are all used by
1214 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1215 * What we do is to detect the case where all pages in the zone have been
1216 * scanned twice and there has been zero successful reclaim. Mark the zone as
1217 * dead and from now on, only perform a short scan. Basically we're polling
1218 * the zone for when the problem goes away.
1219 *
1220 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1221 * zones which have free_pages > pages_high, but once a zone is found to have
1222 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1223 * of the number of free pages in the lower zones. This interoperates with
1224 * the page allocator fallback scheme to ensure that aging of pages is balanced
1225 * across the zones.
1226 */
d6277db4 1227static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1228{
1da177e4
LT
1229 int all_zones_ok;
1230 int priority;
1231 int i;
69e05944 1232 unsigned long total_scanned;
05ff5137 1233 unsigned long nr_reclaimed;
1da177e4 1234 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1235 struct scan_control sc = {
1236 .gfp_mask = GFP_KERNEL,
1237 .may_swap = 1,
d6277db4
RW
1238 .swap_cluster_max = SWAP_CLUSTER_MAX,
1239 .swappiness = vm_swappiness,
5ad333eb 1240 .order = order,
179e9639 1241 };
3bb1a852
MB
1242 /*
1243 * temp_priority is used to remember the scanning priority at which
1244 * this zone was successfully refilled to free_pages == pages_high.
1245 */
1246 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1247
1248loop_again:
1249 total_scanned = 0;
05ff5137 1250 nr_reclaimed = 0;
c0bbbc73 1251 sc.may_writepage = !laptop_mode;
f8891e5e 1252 count_vm_event(PAGEOUTRUN);
1da177e4 1253
3bb1a852
MB
1254 for (i = 0; i < pgdat->nr_zones; i++)
1255 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1256
1257 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1258 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1259 unsigned long lru_pages = 0;
1260
f7b7fd8f
RR
1261 /* The swap token gets in the way of swapout... */
1262 if (!priority)
1263 disable_swap_token();
1264
1da177e4
LT
1265 all_zones_ok = 1;
1266
d6277db4
RW
1267 /*
1268 * Scan in the highmem->dma direction for the highest
1269 * zone which needs scanning
1270 */
1271 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1272 struct zone *zone = pgdat->node_zones + i;
1da177e4 1273
d6277db4
RW
1274 if (!populated_zone(zone))
1275 continue;
1da177e4 1276
d6277db4
RW
1277 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1278 continue;
1da177e4 1279
d6277db4
RW
1280 if (!zone_watermark_ok(zone, order, zone->pages_high,
1281 0, 0)) {
1282 end_zone = i;
e1dbeda6 1283 break;
1da177e4 1284 }
1da177e4 1285 }
e1dbeda6
AM
1286 if (i < 0)
1287 goto out;
1288
1da177e4
LT
1289 for (i = 0; i <= end_zone; i++) {
1290 struct zone *zone = pgdat->node_zones + i;
1291
c8785385
CL
1292 lru_pages += zone_page_state(zone, NR_ACTIVE)
1293 + zone_page_state(zone, NR_INACTIVE);
1da177e4
LT
1294 }
1295
1296 /*
1297 * Now scan the zone in the dma->highmem direction, stopping
1298 * at the last zone which needs scanning.
1299 *
1300 * We do this because the page allocator works in the opposite
1301 * direction. This prevents the page allocator from allocating
1302 * pages behind kswapd's direction of progress, which would
1303 * cause too much scanning of the lower zones.
1304 */
1305 for (i = 0; i <= end_zone; i++) {
1306 struct zone *zone = pgdat->node_zones + i;
b15e0905 1307 int nr_slab;
1da177e4 1308
f3fe6512 1309 if (!populated_zone(zone))
1da177e4
LT
1310 continue;
1311
1312 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1313 continue;
1314
d6277db4
RW
1315 if (!zone_watermark_ok(zone, order, zone->pages_high,
1316 end_zone, 0))
1317 all_zones_ok = 0;
3bb1a852 1318 temp_priority[i] = priority;
1da177e4 1319 sc.nr_scanned = 0;
3bb1a852 1320 note_zone_scanning_priority(zone, priority);
05ff5137 1321 nr_reclaimed += shrink_zone(priority, zone, &sc);
1da177e4 1322 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
1323 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1324 lru_pages);
05ff5137 1325 nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4
LT
1326 total_scanned += sc.nr_scanned;
1327 if (zone->all_unreclaimable)
1328 continue;
b15e0905 1329 if (nr_slab == 0 && zone->pages_scanned >=
c8785385
CL
1330 (zone_page_state(zone, NR_ACTIVE)
1331 + zone_page_state(zone, NR_INACTIVE)) * 6)
1332 zone->all_unreclaimable = 1;
1da177e4
LT
1333 /*
1334 * If we've done a decent amount of scanning and
1335 * the reclaim ratio is low, start doing writepage
1336 * even in laptop mode
1337 */
1338 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
05ff5137 1339 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1da177e4
LT
1340 sc.may_writepage = 1;
1341 }
1da177e4
LT
1342 if (all_zones_ok)
1343 break; /* kswapd: all done */
1344 /*
1345 * OK, kswapd is getting into trouble. Take a nap, then take
1346 * another pass across the zones.
1347 */
1348 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1349 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1350
1351 /*
1352 * We do this so kswapd doesn't build up large priorities for
1353 * example when it is freeing in parallel with allocators. It
1354 * matches the direct reclaim path behaviour in terms of impact
1355 * on zone->*_priority.
1356 */
d6277db4 1357 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1358 break;
1359 }
1360out:
3bb1a852
MB
1361 /*
1362 * Note within each zone the priority level at which this zone was
1363 * brought into a happy state. So that the next thread which scans this
1364 * zone will start out at that priority level.
1365 */
1da177e4
LT
1366 for (i = 0; i < pgdat->nr_zones; i++) {
1367 struct zone *zone = pgdat->node_zones + i;
1368
3bb1a852 1369 zone->prev_priority = temp_priority[i];
1da177e4
LT
1370 }
1371 if (!all_zones_ok) {
1372 cond_resched();
8357376d
RW
1373
1374 try_to_freeze();
1375
1da177e4
LT
1376 goto loop_again;
1377 }
1378
05ff5137 1379 return nr_reclaimed;
1da177e4
LT
1380}
1381
1382/*
1383 * The background pageout daemon, started as a kernel thread
1384 * from the init process.
1385 *
1386 * This basically trickles out pages so that we have _some_
1387 * free memory available even if there is no other activity
1388 * that frees anything up. This is needed for things like routing
1389 * etc, where we otherwise might have all activity going on in
1390 * asynchronous contexts that cannot page things out.
1391 *
1392 * If there are applications that are active memory-allocators
1393 * (most normal use), this basically shouldn't matter.
1394 */
1395static int kswapd(void *p)
1396{
1397 unsigned long order;
1398 pg_data_t *pgdat = (pg_data_t*)p;
1399 struct task_struct *tsk = current;
1400 DEFINE_WAIT(wait);
1401 struct reclaim_state reclaim_state = {
1402 .reclaimed_slab = 0,
1403 };
1404 cpumask_t cpumask;
1405
1da177e4
LT
1406 cpumask = node_to_cpumask(pgdat->node_id);
1407 if (!cpus_empty(cpumask))
1408 set_cpus_allowed(tsk, cpumask);
1409 current->reclaim_state = &reclaim_state;
1410
1411 /*
1412 * Tell the memory management that we're a "memory allocator",
1413 * and that if we need more memory we should get access to it
1414 * regardless (see "__alloc_pages()"). "kswapd" should
1415 * never get caught in the normal page freeing logic.
1416 *
1417 * (Kswapd normally doesn't need memory anyway, but sometimes
1418 * you need a small amount of memory in order to be able to
1419 * page out something else, and this flag essentially protects
1420 * us from recursively trying to free more memory as we're
1421 * trying to free the first piece of memory in the first place).
1422 */
930d9152 1423 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1da177e4
LT
1424
1425 order = 0;
1426 for ( ; ; ) {
1427 unsigned long new_order;
3e1d1d28 1428
1da177e4
LT
1429 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1430 new_order = pgdat->kswapd_max_order;
1431 pgdat->kswapd_max_order = 0;
1432 if (order < new_order) {
1433 /*
1434 * Don't sleep if someone wants a larger 'order'
1435 * allocation
1436 */
1437 order = new_order;
1438 } else {
b1296cc4
RW
1439 if (!freezing(current))
1440 schedule();
1441
1da177e4
LT
1442 order = pgdat->kswapd_max_order;
1443 }
1444 finish_wait(&pgdat->kswapd_wait, &wait);
1445
b1296cc4
RW
1446 if (!try_to_freeze()) {
1447 /* We can speed up thawing tasks if we don't call
1448 * balance_pgdat after returning from the refrigerator
1449 */
1450 balance_pgdat(pgdat, order);
1451 }
1da177e4
LT
1452 }
1453 return 0;
1454}
1455
1456/*
1457 * A zone is low on free memory, so wake its kswapd task to service it.
1458 */
1459void wakeup_kswapd(struct zone *zone, int order)
1460{
1461 pg_data_t *pgdat;
1462
f3fe6512 1463 if (!populated_zone(zone))
1da177e4
LT
1464 return;
1465
1466 pgdat = zone->zone_pgdat;
7fb1d9fc 1467 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1da177e4
LT
1468 return;
1469 if (pgdat->kswapd_max_order < order)
1470 pgdat->kswapd_max_order = order;
02a0e53d 1471 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 1472 return;
8d0986e2 1473 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 1474 return;
8d0986e2 1475 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
1476}
1477
1478#ifdef CONFIG_PM
1479/*
d6277db4
RW
1480 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1481 * from LRU lists system-wide, for given pass and priority, and returns the
1482 * number of reclaimed pages
1483 *
1484 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1485 */
e07aa05b
NC
1486static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1487 int pass, struct scan_control *sc)
d6277db4
RW
1488{
1489 struct zone *zone;
1490 unsigned long nr_to_scan, ret = 0;
1491
1492 for_each_zone(zone) {
1493
1494 if (!populated_zone(zone))
1495 continue;
1496
1497 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1498 continue;
1499
1500 /* For pass = 0 we don't shrink the active list */
1501 if (pass > 0) {
c8785385
CL
1502 zone->nr_scan_active +=
1503 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
d6277db4
RW
1504 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1505 zone->nr_scan_active = 0;
c8785385
CL
1506 nr_to_scan = min(nr_pages,
1507 zone_page_state(zone, NR_ACTIVE));
bbdb396a 1508 shrink_active_list(nr_to_scan, zone, sc, prio);
d6277db4
RW
1509 }
1510 }
1511
c8785385
CL
1512 zone->nr_scan_inactive +=
1513 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
d6277db4
RW
1514 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1515 zone->nr_scan_inactive = 0;
c8785385
CL
1516 nr_to_scan = min(nr_pages,
1517 zone_page_state(zone, NR_INACTIVE));
d6277db4
RW
1518 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1519 if (ret >= nr_pages)
1520 return ret;
1521 }
1522 }
1523
1524 return ret;
1525}
1526
76395d37
AM
1527static unsigned long count_lru_pages(void)
1528{
c8785385 1529 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
76395d37
AM
1530}
1531
d6277db4
RW
1532/*
1533 * Try to free `nr_pages' of memory, system-wide, and return the number of
1534 * freed pages.
1535 *
1536 * Rather than trying to age LRUs the aim is to preserve the overall
1537 * LRU order by reclaiming preferentially
1538 * inactive > active > active referenced > active mapped
1da177e4 1539 */
69e05944 1540unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 1541{
d6277db4 1542 unsigned long lru_pages, nr_slab;
69e05944 1543 unsigned long ret = 0;
d6277db4
RW
1544 int pass;
1545 struct reclaim_state reclaim_state;
d6277db4
RW
1546 struct scan_control sc = {
1547 .gfp_mask = GFP_KERNEL,
1548 .may_swap = 0,
1549 .swap_cluster_max = nr_pages,
1550 .may_writepage = 1,
1551 .swappiness = vm_swappiness,
1da177e4
LT
1552 };
1553
1554 current->reclaim_state = &reclaim_state;
69e05944 1555
76395d37 1556 lru_pages = count_lru_pages();
972d1a7b 1557 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
1558 /* If slab caches are huge, it's better to hit them first */
1559 while (nr_slab >= lru_pages) {
1560 reclaim_state.reclaimed_slab = 0;
1561 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1562 if (!reclaim_state.reclaimed_slab)
1da177e4 1563 break;
d6277db4
RW
1564
1565 ret += reclaim_state.reclaimed_slab;
1566 if (ret >= nr_pages)
1567 goto out;
1568
1569 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 1570 }
d6277db4
RW
1571
1572 /*
1573 * We try to shrink LRUs in 5 passes:
1574 * 0 = Reclaim from inactive_list only
1575 * 1 = Reclaim from active list but don't reclaim mapped
1576 * 2 = 2nd pass of type 1
1577 * 3 = Reclaim mapped (normal reclaim)
1578 * 4 = 2nd pass of type 3
1579 */
1580 for (pass = 0; pass < 5; pass++) {
1581 int prio;
1582
d6277db4
RW
1583 /* Force reclaiming mapped pages in the passes #3 and #4 */
1584 if (pass > 2) {
1585 sc.may_swap = 1;
1586 sc.swappiness = 100;
1587 }
1588
1589 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1590 unsigned long nr_to_scan = nr_pages - ret;
1591
d6277db4 1592 sc.nr_scanned = 0;
d6277db4
RW
1593 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1594 if (ret >= nr_pages)
1595 goto out;
1596
1597 reclaim_state.reclaimed_slab = 0;
76395d37
AM
1598 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1599 count_lru_pages());
d6277db4
RW
1600 ret += reclaim_state.reclaimed_slab;
1601 if (ret >= nr_pages)
1602 goto out;
1603
1604 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 1605 congestion_wait(WRITE, HZ / 10);
d6277db4 1606 }
248a0301 1607 }
d6277db4
RW
1608
1609 /*
1610 * If ret = 0, we could not shrink LRUs, but there may be something
1611 * in slab caches
1612 */
76395d37 1613 if (!ret) {
d6277db4
RW
1614 do {
1615 reclaim_state.reclaimed_slab = 0;
76395d37 1616 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
d6277db4
RW
1617 ret += reclaim_state.reclaimed_slab;
1618 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
76395d37 1619 }
d6277db4
RW
1620
1621out:
1da177e4 1622 current->reclaim_state = NULL;
d6277db4 1623
1da177e4
LT
1624 return ret;
1625}
1626#endif
1627
1da177e4
LT
1628/* It's optimal to keep kswapds on the same CPUs as their memory, but
1629 not required for correctness. So if the last cpu in a node goes
1630 away, we get changed to run anywhere: as the first one comes back,
1631 restore their cpu bindings. */
9c7b216d 1632static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 1633 unsigned long action, void *hcpu)
1da177e4
LT
1634{
1635 pg_data_t *pgdat;
1636 cpumask_t mask;
1637
8bb78442 1638 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
ec936fc5 1639 for_each_online_pgdat(pgdat) {
1da177e4
LT
1640 mask = node_to_cpumask(pgdat->node_id);
1641 if (any_online_cpu(mask) != NR_CPUS)
1642 /* One of our CPUs online: restore mask */
1643 set_cpus_allowed(pgdat->kswapd, mask);
1644 }
1645 }
1646 return NOTIFY_OK;
1647}
1da177e4 1648
3218ae14
YG
1649/*
1650 * This kswapd start function will be called by init and node-hot-add.
1651 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1652 */
1653int kswapd_run(int nid)
1654{
1655 pg_data_t *pgdat = NODE_DATA(nid);
1656 int ret = 0;
1657
1658 if (pgdat->kswapd)
1659 return 0;
1660
1661 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1662 if (IS_ERR(pgdat->kswapd)) {
1663 /* failure at boot is fatal */
1664 BUG_ON(system_state == SYSTEM_BOOTING);
1665 printk("Failed to start kswapd on node %d\n",nid);
1666 ret = -1;
1667 }
1668 return ret;
1669}
1670
1da177e4
LT
1671static int __init kswapd_init(void)
1672{
3218ae14 1673 int nid;
69e05944 1674
1da177e4 1675 swap_setup();
3218ae14
YG
1676 for_each_online_node(nid)
1677 kswapd_run(nid);
1da177e4
LT
1678 hotcpu_notifier(cpu_callback, 0);
1679 return 0;
1680}
1681
1682module_init(kswapd_init)
9eeff239
CL
1683
1684#ifdef CONFIG_NUMA
1685/*
1686 * Zone reclaim mode
1687 *
1688 * If non-zero call zone_reclaim when the number of free pages falls below
1689 * the watermarks.
9eeff239
CL
1690 */
1691int zone_reclaim_mode __read_mostly;
1692
1b2ffb78
CL
1693#define RECLAIM_OFF 0
1694#define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1695#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1696#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1697
a92f7126
CL
1698/*
1699 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1700 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1701 * a zone.
1702 */
1703#define ZONE_RECLAIM_PRIORITY 4
1704
9614634f
CL
1705/*
1706 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1707 * occur.
1708 */
1709int sysctl_min_unmapped_ratio = 1;
1710
0ff38490
CL
1711/*
1712 * If the number of slab pages in a zone grows beyond this percentage then
1713 * slab reclaim needs to occur.
1714 */
1715int sysctl_min_slab_ratio = 5;
1716
9eeff239
CL
1717/*
1718 * Try to free up some pages from this zone through reclaim.
1719 */
179e9639 1720static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 1721{
7fb2d46d 1722 /* Minimum pages needed in order to stay on node */
69e05944 1723 const unsigned long nr_pages = 1 << order;
9eeff239
CL
1724 struct task_struct *p = current;
1725 struct reclaim_state reclaim_state;
8695949a 1726 int priority;
05ff5137 1727 unsigned long nr_reclaimed = 0;
179e9639
AM
1728 struct scan_control sc = {
1729 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1730 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
69e05944
AM
1731 .swap_cluster_max = max_t(unsigned long, nr_pages,
1732 SWAP_CLUSTER_MAX),
179e9639 1733 .gfp_mask = gfp_mask,
d6277db4 1734 .swappiness = vm_swappiness,
179e9639 1735 };
83e33a47 1736 unsigned long slab_reclaimable;
9eeff239
CL
1737
1738 disable_swap_token();
9eeff239 1739 cond_resched();
d4f7796e
CL
1740 /*
1741 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1742 * and we also need to be able to write out pages for RECLAIM_WRITE
1743 * and RECLAIM_SWAP.
1744 */
1745 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
1746 reclaim_state.reclaimed_slab = 0;
1747 p->reclaim_state = &reclaim_state;
c84db23c 1748
0ff38490
CL
1749 if (zone_page_state(zone, NR_FILE_PAGES) -
1750 zone_page_state(zone, NR_FILE_MAPPED) >
1751 zone->min_unmapped_pages) {
1752 /*
1753 * Free memory by calling shrink zone with increasing
1754 * priorities until we have enough memory freed.
1755 */
1756 priority = ZONE_RECLAIM_PRIORITY;
1757 do {
3bb1a852 1758 note_zone_scanning_priority(zone, priority);
0ff38490
CL
1759 nr_reclaimed += shrink_zone(priority, zone, &sc);
1760 priority--;
1761 } while (priority >= 0 && nr_reclaimed < nr_pages);
1762 }
c84db23c 1763
83e33a47
CL
1764 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1765 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 1766 /*
7fb2d46d 1767 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
1768 * many pages were freed in this zone. So we take the current
1769 * number of slab pages and shake the slab until it is reduced
1770 * by the same nr_pages that we used for reclaiming unmapped
1771 * pages.
2a16e3f4 1772 *
0ff38490
CL
1773 * Note that shrink_slab will free memory on all zones and may
1774 * take a long time.
2a16e3f4 1775 */
0ff38490 1776 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
1777 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1778 slab_reclaimable - nr_pages)
0ff38490 1779 ;
83e33a47
CL
1780
1781 /*
1782 * Update nr_reclaimed by the number of slab pages we
1783 * reclaimed from this zone.
1784 */
1785 nr_reclaimed += slab_reclaimable -
1786 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
1787 }
1788
9eeff239 1789 p->reclaim_state = NULL;
d4f7796e 1790 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
05ff5137 1791 return nr_reclaimed >= nr_pages;
9eeff239 1792}
179e9639
AM
1793
1794int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1795{
1796 cpumask_t mask;
1797 int node_id;
1798
1799 /*
0ff38490
CL
1800 * Zone reclaim reclaims unmapped file backed pages and
1801 * slab pages if we are over the defined limits.
34aa1330 1802 *
9614634f
CL
1803 * A small portion of unmapped file backed pages is needed for
1804 * file I/O otherwise pages read by file I/O will be immediately
1805 * thrown out if the zone is overallocated. So we do not reclaim
1806 * if less than a specified percentage of the zone is used by
1807 * unmapped file backed pages.
179e9639 1808 */
34aa1330 1809 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
1810 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1811 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1812 <= zone->min_slab_pages)
9614634f 1813 return 0;
179e9639
AM
1814
1815 /*
1816 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1817 * not have reclaimable pages and if we should not delay the allocation
1818 * then do not scan.
1819 */
1820 if (!(gfp_mask & __GFP_WAIT) ||
1821 zone->all_unreclaimable ||
1822 atomic_read(&zone->reclaim_in_progress) > 0 ||
1823 (current->flags & PF_MEMALLOC))
1824 return 0;
1825
1826 /*
1827 * Only run zone reclaim on the local zone or on zones that do not
1828 * have associated processors. This will favor the local processor
1829 * over remote processors and spread off node memory allocations
1830 * as wide as possible.
1831 */
89fa3024 1832 node_id = zone_to_nid(zone);
179e9639
AM
1833 mask = node_to_cpumask(node_id);
1834 if (!cpus_empty(mask) && node_id != numa_node_id())
1835 return 0;
1836 return __zone_reclaim(zone, gfp_mask, order);
1837}
9eeff239 1838#endif