]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/swap.c
[PATCH] vmscan: balancing fix
[net-next-2.6.git] / mm / swap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the opereation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/mm_inline.h>
26#include <linux/buffer_head.h> /* for try_to_release_page() */
27#include <linux/module.h>
28#include <linux/percpu_counter.h>
29#include <linux/percpu.h>
30#include <linux/cpu.h>
31#include <linux/notifier.h>
32#include <linux/init.h>
33
34/* How many pages do we try to swap or page in/out together? */
35int page_cluster;
36
1da177e4
LT
37void put_page(struct page *page)
38{
39 if (unlikely(PageCompound(page))) {
4c21e2f2 40 page = (struct page *)page_private(page);
1da177e4
LT
41 if (put_page_testzero(page)) {
42 void (*dtor)(struct page *page);
43
44 dtor = (void (*)(struct page *))page[1].mapping;
45 (*dtor)(page);
46 }
47 return;
48 }
b5810039 49 if (put_page_testzero(page))
1da177e4
LT
50 __page_cache_release(page);
51}
52EXPORT_SYMBOL(put_page);
1da177e4
LT
53
54/*
55 * Writeback is about to end against a page which has been marked for immediate
56 * reclaim. If it still appears to be reclaimable, move it to the tail of the
57 * inactive list. The page still has PageWriteback set, which will pin it.
58 *
59 * We don't expect many pages to come through here, so don't bother batching
60 * things up.
61 *
62 * To avoid placing the page at the tail of the LRU while PG_writeback is still
63 * set, this function will clear PG_writeback before performing the page
64 * motion. Do that inside the lru lock because once PG_writeback is cleared
65 * we may not touch the page.
66 *
67 * Returns zero if it cleared PG_writeback.
68 */
69int rotate_reclaimable_page(struct page *page)
70{
71 struct zone *zone;
72 unsigned long flags;
73
74 if (PageLocked(page))
75 return 1;
76 if (PageDirty(page))
77 return 1;
78 if (PageActive(page))
79 return 1;
80 if (!PageLRU(page))
81 return 1;
82
83 zone = page_zone(page);
84 spin_lock_irqsave(&zone->lru_lock, flags);
85 if (PageLRU(page) && !PageActive(page)) {
86 list_del(&page->lru);
87 list_add_tail(&page->lru, &zone->inactive_list);
88 inc_page_state(pgrotated);
89 }
90 if (!test_clear_page_writeback(page))
91 BUG();
92 spin_unlock_irqrestore(&zone->lru_lock, flags);
93 return 0;
94}
95
96/*
97 * FIXME: speed this up?
98 */
99void fastcall activate_page(struct page *page)
100{
101 struct zone *zone = page_zone(page);
102
103 spin_lock_irq(&zone->lru_lock);
104 if (PageLRU(page) && !PageActive(page)) {
105 del_page_from_inactive_list(zone, page);
106 SetPageActive(page);
107 add_page_to_active_list(zone, page);
108 inc_page_state(pgactivate);
109 }
110 spin_unlock_irq(&zone->lru_lock);
111}
112
113/*
114 * Mark a page as having seen activity.
115 *
116 * inactive,unreferenced -> inactive,referenced
117 * inactive,referenced -> active,unreferenced
118 * active,unreferenced -> active,referenced
119 */
120void fastcall mark_page_accessed(struct page *page)
121{
122 if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
123 activate_page(page);
124 ClearPageReferenced(page);
125 } else if (!PageReferenced(page)) {
126 SetPageReferenced(page);
127 }
128}
129
130EXPORT_SYMBOL(mark_page_accessed);
131
132/**
133 * lru_cache_add: add a page to the page lists
134 * @page: the page to add
135 */
136static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
137static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
138
139void fastcall lru_cache_add(struct page *page)
140{
141 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
142
143 page_cache_get(page);
144 if (!pagevec_add(pvec, page))
145 __pagevec_lru_add(pvec);
146 put_cpu_var(lru_add_pvecs);
147}
148
149void fastcall lru_cache_add_active(struct page *page)
150{
151 struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
152
153 page_cache_get(page);
154 if (!pagevec_add(pvec, page))
155 __pagevec_lru_add_active(pvec);
156 put_cpu_var(lru_add_active_pvecs);
157}
158
159void lru_add_drain(void)
160{
161 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
162
163 if (pagevec_count(pvec))
164 __pagevec_lru_add(pvec);
165 pvec = &__get_cpu_var(lru_add_active_pvecs);
166 if (pagevec_count(pvec))
167 __pagevec_lru_add_active(pvec);
168 put_cpu_var(lru_add_pvecs);
169}
170
171/*
172 * This path almost never happens for VM activity - pages are normally
173 * freed via pagevecs. But it gets used by networking.
174 */
175void fastcall __page_cache_release(struct page *page)
176{
177 unsigned long flags;
178 struct zone *zone = page_zone(page);
179
180 spin_lock_irqsave(&zone->lru_lock, flags);
181 if (TestClearPageLRU(page))
182 del_page_from_lru(zone, page);
183 if (page_count(page) != 0)
184 page = NULL;
185 spin_unlock_irqrestore(&zone->lru_lock, flags);
186 if (page)
187 free_hot_page(page);
188}
189
190EXPORT_SYMBOL(__page_cache_release);
191
192/*
193 * Batched page_cache_release(). Decrement the reference count on all the
194 * passed pages. If it fell to zero then remove the page from the LRU and
195 * free it.
196 *
197 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
198 * for the remainder of the operation.
199 *
200 * The locking in this function is against shrink_cache(): we recheck the
201 * page count inside the lock to see whether shrink_cache grabbed the page
202 * via the LRU. If it did, give up: shrink_cache will free it.
203 */
204void release_pages(struct page **pages, int nr, int cold)
205{
206 int i;
207 struct pagevec pages_to_free;
208 struct zone *zone = NULL;
209
210 pagevec_init(&pages_to_free, cold);
211 for (i = 0; i < nr; i++) {
212 struct page *page = pages[i];
213 struct zone *pagezone;
214
b5810039 215 if (!put_page_testzero(page))
1da177e4
LT
216 continue;
217
218 pagezone = page_zone(page);
219 if (pagezone != zone) {
220 if (zone)
221 spin_unlock_irq(&zone->lru_lock);
222 zone = pagezone;
223 spin_lock_irq(&zone->lru_lock);
224 }
225 if (TestClearPageLRU(page))
226 del_page_from_lru(zone, page);
227 if (page_count(page) == 0) {
228 if (!pagevec_add(&pages_to_free, page)) {
229 spin_unlock_irq(&zone->lru_lock);
230 __pagevec_free(&pages_to_free);
231 pagevec_reinit(&pages_to_free);
232 zone = NULL; /* No lock is held */
233 }
234 }
235 }
236 if (zone)
237 spin_unlock_irq(&zone->lru_lock);
238
239 pagevec_free(&pages_to_free);
240}
241
242/*
243 * The pages which we're about to release may be in the deferred lru-addition
244 * queues. That would prevent them from really being freed right now. That's
245 * OK from a correctness point of view but is inefficient - those pages may be
246 * cache-warm and we want to give them back to the page allocator ASAP.
247 *
248 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
249 * and __pagevec_lru_add_active() call release_pages() directly to avoid
250 * mutual recursion.
251 */
252void __pagevec_release(struct pagevec *pvec)
253{
254 lru_add_drain();
255 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
256 pagevec_reinit(pvec);
257}
258
7f285701
SF
259EXPORT_SYMBOL(__pagevec_release);
260
1da177e4
LT
261/*
262 * pagevec_release() for pages which are known to not be on the LRU
263 *
264 * This function reinitialises the caller's pagevec.
265 */
266void __pagevec_release_nonlru(struct pagevec *pvec)
267{
268 int i;
269 struct pagevec pages_to_free;
270
271 pagevec_init(&pages_to_free, pvec->cold);
1da177e4
LT
272 for (i = 0; i < pagevec_count(pvec); i++) {
273 struct page *page = pvec->pages[i];
274
275 BUG_ON(PageLRU(page));
276 if (put_page_testzero(page))
277 pagevec_add(&pages_to_free, page);
278 }
279 pagevec_free(&pages_to_free);
280 pagevec_reinit(pvec);
281}
282
283/*
284 * Add the passed pages to the LRU, then drop the caller's refcount
285 * on them. Reinitialises the caller's pagevec.
286 */
287void __pagevec_lru_add(struct pagevec *pvec)
288{
289 int i;
290 struct zone *zone = NULL;
291
292 for (i = 0; i < pagevec_count(pvec); i++) {
293 struct page *page = pvec->pages[i];
294 struct zone *pagezone = page_zone(page);
295
296 if (pagezone != zone) {
297 if (zone)
298 spin_unlock_irq(&zone->lru_lock);
299 zone = pagezone;
300 spin_lock_irq(&zone->lru_lock);
301 }
302 if (TestSetPageLRU(page))
303 BUG();
304 add_page_to_inactive_list(zone, page);
305 }
306 if (zone)
307 spin_unlock_irq(&zone->lru_lock);
308 release_pages(pvec->pages, pvec->nr, pvec->cold);
309 pagevec_reinit(pvec);
310}
311
312EXPORT_SYMBOL(__pagevec_lru_add);
313
314void __pagevec_lru_add_active(struct pagevec *pvec)
315{
316 int i;
317 struct zone *zone = NULL;
318
319 for (i = 0; i < pagevec_count(pvec); i++) {
320 struct page *page = pvec->pages[i];
321 struct zone *pagezone = page_zone(page);
322
323 if (pagezone != zone) {
324 if (zone)
325 spin_unlock_irq(&zone->lru_lock);
326 zone = pagezone;
327 spin_lock_irq(&zone->lru_lock);
328 }
329 if (TestSetPageLRU(page))
330 BUG();
331 if (TestSetPageActive(page))
332 BUG();
333 add_page_to_active_list(zone, page);
334 }
335 if (zone)
336 spin_unlock_irq(&zone->lru_lock);
337 release_pages(pvec->pages, pvec->nr, pvec->cold);
338 pagevec_reinit(pvec);
339}
340
341/*
342 * Try to drop buffers from the pages in a pagevec
343 */
344void pagevec_strip(struct pagevec *pvec)
345{
346 int i;
347
348 for (i = 0; i < pagevec_count(pvec); i++) {
349 struct page *page = pvec->pages[i];
350
351 if (PagePrivate(page) && !TestSetPageLocked(page)) {
352 try_to_release_page(page, 0);
353 unlock_page(page);
354 }
355 }
356}
357
358/**
359 * pagevec_lookup - gang pagecache lookup
360 * @pvec: Where the resulting pages are placed
361 * @mapping: The address_space to search
362 * @start: The starting page index
363 * @nr_pages: The maximum number of pages
364 *
365 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
366 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
367 * reference against the pages in @pvec.
368 *
369 * The search returns a group of mapping-contiguous pages with ascending
370 * indexes. There may be holes in the indices due to not-present pages.
371 *
372 * pagevec_lookup() returns the number of pages which were found.
373 */
374unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
375 pgoff_t start, unsigned nr_pages)
376{
377 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
378 return pagevec_count(pvec);
379}
380
381unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
382 pgoff_t *index, int tag, unsigned nr_pages)
383{
384 pvec->nr = find_get_pages_tag(mapping, index, tag,
385 nr_pages, pvec->pages);
386 return pagevec_count(pvec);
387}
388
7f285701 389EXPORT_SYMBOL(pagevec_lookup_tag);
1da177e4
LT
390
391#ifdef CONFIG_SMP
392/*
393 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
394 * CPUs
395 */
396#define ACCT_THRESHOLD max(16, NR_CPUS * 2)
397
398static DEFINE_PER_CPU(long, committed_space) = 0;
399
400void vm_acct_memory(long pages)
401{
402 long *local;
403
404 preempt_disable();
405 local = &__get_cpu_var(committed_space);
406 *local += pages;
407 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
408 atomic_add(*local, &vm_committed_space);
409 *local = 0;
410 }
411 preempt_enable();
412}
1da177e4
LT
413
414#ifdef CONFIG_HOTPLUG_CPU
415static void lru_drain_cache(unsigned int cpu)
416{
417 struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
418
419 /* CPU is dead, so no locking needed. */
420 if (pagevec_count(pvec))
421 __pagevec_lru_add(pvec);
422 pvec = &per_cpu(lru_add_active_pvecs, cpu);
423 if (pagevec_count(pvec))
424 __pagevec_lru_add_active(pvec);
425}
426
427/* Drop the CPU's cached committed space back into the central pool. */
428static int cpu_swap_callback(struct notifier_block *nfb,
429 unsigned long action,
430 void *hcpu)
431{
432 long *committed;
433
434 committed = &per_cpu(committed_space, (long)hcpu);
435 if (action == CPU_DEAD) {
436 atomic_add(*committed, &vm_committed_space);
437 *committed = 0;
438 lru_drain_cache((long)hcpu);
439 }
440 return NOTIFY_OK;
441}
442#endif /* CONFIG_HOTPLUG_CPU */
443#endif /* CONFIG_SMP */
444
445#ifdef CONFIG_SMP
446void percpu_counter_mod(struct percpu_counter *fbc, long amount)
447{
448 long count;
449 long *pcount;
450 int cpu = get_cpu();
451
452 pcount = per_cpu_ptr(fbc->counters, cpu);
453 count = *pcount + amount;
454 if (count >= FBC_BATCH || count <= -FBC_BATCH) {
455 spin_lock(&fbc->lock);
456 fbc->count += count;
457 spin_unlock(&fbc->lock);
458 count = 0;
459 }
460 *pcount = count;
461 put_cpu();
462}
463EXPORT_SYMBOL(percpu_counter_mod);
464#endif
465
466/*
467 * Perform any setup for the swap system
468 */
469void __init swap_setup(void)
470{
471 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
472
473 /* Use a smaller cluster for small-memory machines */
474 if (megs < 16)
475 page_cluster = 2;
476 else
477 page_cluster = 3;
478 /*
479 * Right now other parts of the system means that we
480 * _really_ don't want to cluster much more
481 */
482 hotcpu_notifier(cpu_swap_callback, 0);
483}