]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/sparse.c
mm: verify the page links and memory model
[net-next-2.6.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36
AW
4#include <linux/mm.h>
5#include <linux/mmzone.h>
6#include <linux/bootmem.h>
0b0acbec 7#include <linux/highmem.h>
d41dee36 8#include <linux/module.h>
28ae55c9 9#include <linux/spinlock.h>
0b0acbec 10#include <linux/vmalloc.h>
0c0a4a51 11#include "internal.h"
d41dee36 12#include <asm/dma.h>
8f6aac41
CL
13#include <asm/pgalloc.h>
14#include <asm/pgtable.h>
d41dee36
AW
15
16/*
17 * Permanent SPARSEMEM data:
18 *
19 * 1) mem_section - memory sections, mem_map's for valid memory
20 */
3e347261 21#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 22struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 23 ____cacheline_internodealigned_in_smp;
3e347261
BP
24#else
25struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 26 ____cacheline_internodealigned_in_smp;
3e347261
BP
27#endif
28EXPORT_SYMBOL(mem_section);
29
89689ae7
CL
30#ifdef NODE_NOT_IN_PAGE_FLAGS
31/*
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
35 */
36#if MAX_NUMNODES <= 256
37static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38#else
39static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40#endif
41
25ba77c1 42int page_to_nid(struct page *page)
89689ae7
CL
43{
44 return section_to_node_table[page_to_section(page)];
45}
46EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
47
48static void set_section_nid(unsigned long section_nr, int nid)
49{
50 section_to_node_table[section_nr] = nid;
51}
52#else /* !NODE_NOT_IN_PAGE_FLAGS */
53static inline void set_section_nid(unsigned long section_nr, int nid)
54{
55}
89689ae7
CL
56#endif
57
3e347261 58#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 59static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
60{
61 struct mem_section *section = NULL;
62 unsigned long array_size = SECTIONS_PER_ROOT *
63 sizeof(struct mem_section);
64
39d24e64 65 if (slab_is_available())
46a66eec
MK
66 section = kmalloc_node(array_size, GFP_KERNEL, nid);
67 else
68 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
28ae55c9
DH
69
70 if (section)
71 memset(section, 0, array_size);
72
73 return section;
3e347261 74}
802f192e 75
a3142c8e 76static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 77{
34af946a 78 static DEFINE_SPINLOCK(index_init_lock);
28ae55c9
DH
79 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 struct mem_section *section;
81 int ret = 0;
802f192e
BP
82
83 if (mem_section[root])
28ae55c9 84 return -EEXIST;
3e347261 85
28ae55c9 86 section = sparse_index_alloc(nid);
af0cd5a7
WC
87 if (!section)
88 return -ENOMEM;
28ae55c9
DH
89 /*
90 * This lock keeps two different sections from
91 * reallocating for the same index
92 */
93 spin_lock(&index_init_lock);
3e347261 94
28ae55c9
DH
95 if (mem_section[root]) {
96 ret = -EEXIST;
97 goto out;
98 }
99
100 mem_section[root] = section;
101out:
102 spin_unlock(&index_init_lock);
103 return ret;
104}
105#else /* !SPARSEMEM_EXTREME */
106static inline int sparse_index_init(unsigned long section_nr, int nid)
107{
108 return 0;
802f192e 109}
28ae55c9
DH
110#endif
111
4ca644d9
DH
112/*
113 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 114 * to also work for the flat array case because
4ca644d9
DH
115 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
116 */
117int __section_nr(struct mem_section* ms)
118{
119 unsigned long root_nr;
120 struct mem_section* root;
121
12783b00
MK
122 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
123 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
124 if (!root)
125 continue;
126
127 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
128 break;
129 }
130
131 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
132}
133
30c253e6
AW
134/*
135 * During early boot, before section_mem_map is used for an actual
136 * mem_map, we use section_mem_map to store the section's NUMA
137 * node. This keeps us from having to use another data structure. The
138 * node information is cleared just before we store the real mem_map.
139 */
140static inline unsigned long sparse_encode_early_nid(int nid)
141{
142 return (nid << SECTION_NID_SHIFT);
143}
144
145static inline int sparse_early_nid(struct mem_section *section)
146{
147 return (section->section_mem_map >> SECTION_NID_SHIFT);
148}
149
d41dee36 150/* Record a memory area against a node. */
a3142c8e 151void __init memory_present(int nid, unsigned long start, unsigned long end)
d41dee36 152{
bead9a3a 153 unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36
AW
154 unsigned long pfn;
155
bead9a3a
IM
156 /*
157 * Sanity checks - do not allow an architecture to pass
158 * in larger pfns than the maximum scope of sparsemem:
159 */
160 if (start >= max_arch_pfn)
161 return;
162 if (end >= max_arch_pfn)
163 end = max_arch_pfn;
164
d41dee36
AW
165 start &= PAGE_SECTION_MASK;
166 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
167 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
168 struct mem_section *ms;
169
170 sparse_index_init(section, nid);
85770ffe 171 set_section_nid(section, nid);
802f192e
BP
172
173 ms = __nr_to_section(section);
174 if (!ms->section_mem_map)
30c253e6
AW
175 ms->section_mem_map = sparse_encode_early_nid(nid) |
176 SECTION_MARKED_PRESENT;
d41dee36
AW
177 }
178}
179
180/*
181 * Only used by the i386 NUMA architecures, but relatively
182 * generic code.
183 */
184unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
185 unsigned long end_pfn)
186{
187 unsigned long pfn;
188 unsigned long nr_pages = 0;
189
190 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
191 if (nid != early_pfn_to_nid(pfn))
192 continue;
193
540557b9 194 if (pfn_present(pfn))
d41dee36
AW
195 nr_pages += PAGES_PER_SECTION;
196 }
197
198 return nr_pages * sizeof(struct page);
199}
200
29751f69
AW
201/*
202 * Subtle, we encode the real pfn into the mem_map such that
203 * the identity pfn - section_mem_map will return the actual
204 * physical page frame number.
205 */
206static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
207{
208 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
209}
210
211/*
ea01ea93 212 * Decode mem_map from the coded memmap
29751f69 213 */
29751f69
AW
214struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
215{
ea01ea93
BP
216 /* mask off the extra low bits of information */
217 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
218 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
219}
220
a3142c8e 221static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
222 unsigned long pnum, struct page *mem_map,
223 unsigned long *pageblock_bitmap)
29751f69 224{
540557b9 225 if (!present_section(ms))
29751f69
AW
226 return -EINVAL;
227
30c253e6 228 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
229 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
230 SECTION_HAS_MEM_MAP;
5c0e3066 231 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
232
233 return 1;
234}
235
04753278 236unsigned long usemap_size(void)
5c0e3066
MG
237{
238 unsigned long size_bytes;
239 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
240 size_bytes = roundup(size_bytes, sizeof(unsigned long));
241 return size_bytes;
242}
243
244#ifdef CONFIG_MEMORY_HOTPLUG
245static unsigned long *__kmalloc_section_usemap(void)
246{
247 return kmalloc(usemap_size(), GFP_KERNEL);
248}
249#endif /* CONFIG_MEMORY_HOTPLUG */
250
a322f8ab 251static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
5c0e3066 252{
51674644 253 unsigned long *usemap;
5c0e3066
MG
254 struct mem_section *ms = __nr_to_section(pnum);
255 int nid = sparse_early_nid(ms);
256
51674644 257 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
5c0e3066
MG
258 if (usemap)
259 return usemap;
260
261 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
262 nid = 0;
263
d40cee24 264 printk(KERN_WARNING "%s: allocation failed\n", __func__);
5c0e3066
MG
265 return NULL;
266}
267
8f6aac41 268#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 269struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
270{
271 struct page *map;
29751f69
AW
272
273 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
274 if (map)
275 return map;
276
9d99217a
YG
277 map = alloc_bootmem_pages_node(NODE_DATA(nid),
278 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
8f6aac41
CL
279 return map;
280}
281#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
282
283struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
284{
285 struct page *map;
286 struct mem_section *ms = __nr_to_section(pnum);
287 int nid = sparse_early_nid(ms);
288
98f3cfc1 289 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
290 if (map)
291 return map;
292
8f6aac41 293 printk(KERN_ERR "%s: sparsemem memory map backing failed "
d40cee24 294 "some memory will not be available.\n", __func__);
802f192e 295 ms->section_mem_map = 0;
29751f69
AW
296 return NULL;
297}
298
c2b91e2e
YL
299void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
300{
301}
193faea9
SR
302/*
303 * Allocate the accumulated non-linear sections, allocate a mem_map
304 * for each and record the physical to section mapping.
305 */
306void __init sparse_init(void)
307{
308 unsigned long pnum;
309 struct page *map;
5c0e3066 310 unsigned long *usemap;
e123dd3f
YL
311 unsigned long **usemap_map;
312 int size;
313
314 /*
315 * map is using big page (aka 2M in x86 64 bit)
316 * usemap is less one page (aka 24 bytes)
317 * so alloc 2M (with 2M align) and 24 bytes in turn will
318 * make next 2M slip to one more 2M later.
319 * then in big system, the memory will have a lot of holes...
320 * here try to allocate 2M pages continously.
321 *
322 * powerpc need to call sparse_init_one_section right after each
323 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
324 */
325 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
326 usemap_map = alloc_bootmem(size);
327 if (!usemap_map)
328 panic("can not allocate usemap_map\n");
193faea9
SR
329
330 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
540557b9 331 if (!present_section_nr(pnum))
193faea9 332 continue;
e123dd3f
YL
333 usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
334 }
193faea9 335
e123dd3f
YL
336 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
337 if (!present_section_nr(pnum))
193faea9 338 continue;
5c0e3066 339
e123dd3f 340 usemap = usemap_map[pnum];
5c0e3066
MG
341 if (!usemap)
342 continue;
343
e123dd3f
YL
344 map = sparse_early_mem_map_alloc(pnum);
345 if (!map)
346 continue;
347
5c0e3066
MG
348 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
349 usemap);
193faea9 350 }
e123dd3f 351
c2b91e2e
YL
352 vmemmap_populate_print_last();
353
e123dd3f 354 free_bootmem(__pa(usemap_map), size);
193faea9
SR
355}
356
357#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
358#ifdef CONFIG_SPARSEMEM_VMEMMAP
359static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
360 unsigned long nr_pages)
361{
362 /* This will make the necessary allocations eventually. */
363 return sparse_mem_map_populate(pnum, nid);
364}
365static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
366{
367 return; /* XXX: Not implemented yet */
368}
0c0a4a51
YG
369static void free_map_bootmem(struct page *page, unsigned long nr_pages)
370{
371}
98f3cfc1 372#else
0b0acbec
DH
373static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
374{
375 struct page *page, *ret;
376 unsigned long memmap_size = sizeof(struct page) * nr_pages;
377
f2d0aa5b 378 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
379 if (page)
380 goto got_map_page;
381
382 ret = vmalloc(memmap_size);
383 if (ret)
384 goto got_map_ptr;
385
386 return NULL;
387got_map_page:
388 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
389got_map_ptr:
390 memset(ret, 0, memmap_size);
391
392 return ret;
393}
394
98f3cfc1
YG
395static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
396 unsigned long nr_pages)
397{
398 return __kmalloc_section_memmap(nr_pages);
399}
400
0b0acbec
DH
401static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
402{
9e2779fa 403 if (is_vmalloc_addr(memmap))
0b0acbec
DH
404 vfree(memmap);
405 else
406 free_pages((unsigned long)memmap,
407 get_order(sizeof(struct page) * nr_pages));
408}
0c0a4a51
YG
409
410static void free_map_bootmem(struct page *page, unsigned long nr_pages)
411{
412 unsigned long maps_section_nr, removing_section_nr, i;
413 int magic;
414
415 for (i = 0; i < nr_pages; i++, page++) {
416 magic = atomic_read(&page->_mapcount);
417
418 BUG_ON(magic == NODE_INFO);
419
420 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
421 removing_section_nr = page->private;
422
423 /*
424 * When this function is called, the removing section is
425 * logical offlined state. This means all pages are isolated
426 * from page allocator. If removing section's memmap is placed
427 * on the same section, it must not be freed.
428 * If it is freed, page allocator may allocate it which will
429 * be removed physically soon.
430 */
431 if (maps_section_nr != removing_section_nr)
432 put_page_bootmem(page);
433 }
434}
98f3cfc1 435#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 436
ea01ea93
BP
437static void free_section_usemap(struct page *memmap, unsigned long *usemap)
438{
0c0a4a51
YG
439 struct page *usemap_page;
440 unsigned long nr_pages;
441
ea01ea93
BP
442 if (!usemap)
443 return;
444
0c0a4a51 445 usemap_page = virt_to_page(usemap);
ea01ea93
BP
446 /*
447 * Check to see if allocation came from hot-plug-add
448 */
0c0a4a51 449 if (PageSlab(usemap_page)) {
ea01ea93
BP
450 kfree(usemap);
451 if (memmap)
452 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
453 return;
454 }
455
456 /*
0c0a4a51
YG
457 * The usemap came from bootmem. This is packed with other usemaps
458 * on the section which has pgdat at boot time. Just keep it as is now.
ea01ea93 459 */
0c0a4a51
YG
460
461 if (memmap) {
462 struct page *memmap_page;
463 memmap_page = virt_to_page(memmap);
464
465 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
466 >> PAGE_SHIFT;
467
468 free_map_bootmem(memmap_page, nr_pages);
469 }
ea01ea93
BP
470}
471
29751f69
AW
472/*
473 * returns the number of sections whose mem_maps were properly
474 * set. If this is <=0, then that means that the passed-in
475 * map was not consumed and must be freed.
476 */
0b0acbec
DH
477int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
478 int nr_pages)
29751f69 479{
0b0acbec
DH
480 unsigned long section_nr = pfn_to_section_nr(start_pfn);
481 struct pglist_data *pgdat = zone->zone_pgdat;
482 struct mem_section *ms;
483 struct page *memmap;
5c0e3066 484 unsigned long *usemap;
0b0acbec
DH
485 unsigned long flags;
486 int ret;
29751f69 487
0b0acbec
DH
488 /*
489 * no locking for this, because it does its own
490 * plus, it does a kmalloc
491 */
bbd06825
WC
492 ret = sparse_index_init(section_nr, pgdat->node_id);
493 if (ret < 0 && ret != -EEXIST)
494 return ret;
98f3cfc1 495 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
496 if (!memmap)
497 return -ENOMEM;
5c0e3066 498 usemap = __kmalloc_section_usemap();
bbd06825
WC
499 if (!usemap) {
500 __kfree_section_memmap(memmap, nr_pages);
501 return -ENOMEM;
502 }
0b0acbec
DH
503
504 pgdat_resize_lock(pgdat, &flags);
29751f69 505
0b0acbec
DH
506 ms = __pfn_to_section(start_pfn);
507 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
508 ret = -EEXIST;
509 goto out;
510 }
5c0e3066 511
29751f69
AW
512 ms->section_mem_map |= SECTION_MARKED_PRESENT;
513
5c0e3066 514 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 515
0b0acbec
DH
516out:
517 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
518 if (ret <= 0) {
519 kfree(usemap);
46a66eec 520 __kfree_section_memmap(memmap, nr_pages);
bbd06825 521 }
0b0acbec 522 return ret;
29751f69 523}
ea01ea93
BP
524
525void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
526{
527 struct page *memmap = NULL;
528 unsigned long *usemap = NULL;
529
530 if (ms->section_mem_map) {
531 usemap = ms->pageblock_flags;
532 memmap = sparse_decode_mem_map(ms->section_mem_map,
533 __section_nr(ms));
534 ms->section_mem_map = 0;
535 ms->pageblock_flags = NULL;
536 }
537
538 free_section_usemap(memmap, usemap);
539}
a3142c8e 540#endif