]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
SLUB: update comments
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
90/*
91 * Issues still to be resolved:
92 *
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
95 * enough frequent updates. There are 16 pointers in a cacheline, so at
96 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
97 *
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
99 *
81819f0f
CL
100 * - Variable sizing of the per node arrays
101 */
102
103/* Enable to test recovery from slab corruption on boot */
104#undef SLUB_RESILIENCY_TEST
105
106#if PAGE_SHIFT <= 12
107
108/*
109 * Small page size. Make sure that we do not fragment memory
110 */
111#define DEFAULT_MAX_ORDER 1
112#define DEFAULT_MIN_OBJECTS 4
113
114#else
115
116/*
117 * Large page machines are customarily able to handle larger
118 * page orders.
119 */
120#define DEFAULT_MAX_ORDER 2
121#define DEFAULT_MIN_OBJECTS 8
122
123#endif
124
2086d26a
CL
125/*
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 */
e95eed57
CL
129#define MIN_PARTIAL 2
130
2086d26a
CL
131/*
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
135 */
136#define MAX_PARTIAL 10
137
81819f0f
CL
138#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
672bba3a 140
81819f0f
CL
141/*
142 * Set of flags that will prevent slab merging
143 */
144#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146
147#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148 SLAB_CACHE_DMA)
149
150#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 151#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 155#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
156#endif
157
158/* Internal SLUB flags */
159#define __OBJECT_POISON 0x80000000 /* Poison object */
160
65c02d4c
CL
161/* Not all arches define cache_line_size */
162#ifndef cache_line_size
163#define cache_line_size() L1_CACHE_BYTES
164#endif
165
81819f0f
CL
166static int kmem_size = sizeof(struct kmem_cache);
167
168#ifdef CONFIG_SMP
169static struct notifier_block slab_notifier;
170#endif
171
172static enum {
173 DOWN, /* No slab functionality available */
174 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 175 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
176 SYSFS /* Sysfs up */
177} slab_state = DOWN;
178
179/* A list of all slab caches on the system */
180static DECLARE_RWSEM(slub_lock);
181LIST_HEAD(slab_caches);
182
183#ifdef CONFIG_SYSFS
184static int sysfs_slab_add(struct kmem_cache *);
185static int sysfs_slab_alias(struct kmem_cache *, const char *);
186static void sysfs_slab_remove(struct kmem_cache *);
187#else
188static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
189static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
190static void sysfs_slab_remove(struct kmem_cache *s) {}
191#endif
192
193/********************************************************************
194 * Core slab cache functions
195 *******************************************************************/
196
197int slab_is_available(void)
198{
199 return slab_state >= UP;
200}
201
202static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
203{
204#ifdef CONFIG_NUMA
205 return s->node[node];
206#else
207 return &s->local_node;
208#endif
209}
210
211/*
212 * Object debugging
213 */
214static void print_section(char *text, u8 *addr, unsigned int length)
215{
216 int i, offset;
217 int newline = 1;
218 char ascii[17];
219
220 ascii[16] = 0;
221
222 for (i = 0; i < length; i++) {
223 if (newline) {
224 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
225 newline = 0;
226 }
227 printk(" %02x", addr[i]);
228 offset = i % 16;
229 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
230 if (offset == 15) {
231 printk(" %s\n",ascii);
232 newline = 1;
233 }
234 }
235 if (!newline) {
236 i %= 16;
237 while (i < 16) {
238 printk(" ");
239 ascii[i] = ' ';
240 i++;
241 }
242 printk(" %s\n", ascii);
243 }
244}
245
246/*
247 * Slow version of get and set free pointer.
248 *
672bba3a
CL
249 * This version requires touching the cache lines of kmem_cache which
250 * we avoid to do in the fast alloc free paths. There we obtain the offset
251 * from the page struct.
81819f0f
CL
252 */
253static void *get_freepointer(struct kmem_cache *s, void *object)
254{
255 return *(void **)(object + s->offset);
256}
257
258static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
259{
260 *(void **)(object + s->offset) = fp;
261}
262
263/*
264 * Tracking user of a slab.
265 */
266struct track {
267 void *addr; /* Called from address */
268 int cpu; /* Was running on cpu */
269 int pid; /* Pid context */
270 unsigned long when; /* When did the operation occur */
271};
272
273enum track_item { TRACK_ALLOC, TRACK_FREE };
274
275static struct track *get_track(struct kmem_cache *s, void *object,
276 enum track_item alloc)
277{
278 struct track *p;
279
280 if (s->offset)
281 p = object + s->offset + sizeof(void *);
282 else
283 p = object + s->inuse;
284
285 return p + alloc;
286}
287
288static void set_track(struct kmem_cache *s, void *object,
289 enum track_item alloc, void *addr)
290{
291 struct track *p;
292
293 if (s->offset)
294 p = object + s->offset + sizeof(void *);
295 else
296 p = object + s->inuse;
297
298 p += alloc;
299 if (addr) {
300 p->addr = addr;
301 p->cpu = smp_processor_id();
302 p->pid = current ? current->pid : -1;
303 p->when = jiffies;
304 } else
305 memset(p, 0, sizeof(struct track));
306}
307
81819f0f
CL
308static void init_tracking(struct kmem_cache *s, void *object)
309{
310 if (s->flags & SLAB_STORE_USER) {
311 set_track(s, object, TRACK_FREE, NULL);
312 set_track(s, object, TRACK_ALLOC, NULL);
313 }
314}
315
316static void print_track(const char *s, struct track *t)
317{
318 if (!t->addr)
319 return;
320
321 printk(KERN_ERR "%s: ", s);
322 __print_symbol("%s", (unsigned long)t->addr);
323 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
324}
325
326static void print_trailer(struct kmem_cache *s, u8 *p)
327{
328 unsigned int off; /* Offset of last byte */
329
330 if (s->flags & SLAB_RED_ZONE)
331 print_section("Redzone", p + s->objsize,
332 s->inuse - s->objsize);
333
334 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
335 p + s->offset,
336 get_freepointer(s, p));
337
338 if (s->offset)
339 off = s->offset + sizeof(void *);
340 else
341 off = s->inuse;
342
343 if (s->flags & SLAB_STORE_USER) {
344 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
345 print_track("Last free ", get_track(s, p, TRACK_FREE));
346 off += 2 * sizeof(struct track);
347 }
348
349 if (off != s->size)
350 /* Beginning of the filler is the free pointer */
351 print_section("Filler", p + off, s->size - off);
352}
353
354static void object_err(struct kmem_cache *s, struct page *page,
355 u8 *object, char *reason)
356{
357 u8 *addr = page_address(page);
358
359 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
360 s->name, reason, object, page);
361 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
362 object - addr, page->flags, page->inuse, page->freelist);
363 if (object > addr + 16)
364 print_section("Bytes b4", object - 16, 16);
365 print_section("Object", object, min(s->objsize, 128));
366 print_trailer(s, object);
367 dump_stack();
368}
369
370static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
371{
372 va_list args;
373 char buf[100];
374
375 va_start(args, reason);
376 vsnprintf(buf, sizeof(buf), reason, args);
377 va_end(args);
378 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
379 page);
380 dump_stack();
381}
382
383static void init_object(struct kmem_cache *s, void *object, int active)
384{
385 u8 *p = object;
386
387 if (s->flags & __OBJECT_POISON) {
388 memset(p, POISON_FREE, s->objsize - 1);
389 p[s->objsize -1] = POISON_END;
390 }
391
392 if (s->flags & SLAB_RED_ZONE)
393 memset(p + s->objsize,
394 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
395 s->inuse - s->objsize);
396}
397
398static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
399{
400 while (bytes) {
401 if (*start != (u8)value)
402 return 0;
403 start++;
404 bytes--;
405 }
406 return 1;
407}
408
abcd08a6
CL
409static inline int check_valid_pointer(struct kmem_cache *s,
410 struct page *page, const void *object)
81819f0f
CL
411{
412 void *base;
413
414 if (!object)
415 return 1;
416
417 base = page_address(page);
418 if (object < base || object >= base + s->objects * s->size ||
419 (object - base) % s->size) {
420 return 0;
421 }
422
423 return 1;
424}
425
426/*
427 * Object layout:
428 *
429 * object address
430 * Bytes of the object to be managed.
431 * If the freepointer may overlay the object then the free
432 * pointer is the first word of the object.
672bba3a 433 *
81819f0f
CL
434 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
435 * 0xa5 (POISON_END)
436 *
437 * object + s->objsize
438 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
439 * Padding is extended by another word if Redzoning is enabled and
440 * objsize == inuse.
441 *
81819f0f
CL
442 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
443 * 0xcc (RED_ACTIVE) for objects in use.
444 *
445 * object + s->inuse
672bba3a
CL
446 * Meta data starts here.
447 *
81819f0f
CL
448 * A. Free pointer (if we cannot overwrite object on free)
449 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
450 * C. Padding to reach required alignment boundary or at mininum
451 * one word if debuggin is on to be able to detect writes
452 * before the word boundary.
453 *
454 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
455 *
456 * object + s->size
672bba3a 457 * Nothing is used beyond s->size.
81819f0f 458 *
672bba3a
CL
459 * If slabcaches are merged then the objsize and inuse boundaries are mostly
460 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
461 * may be used with merged slabcaches.
462 */
463
464static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
465 void *from, void *to)
466{
70d71228 467 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
81819f0f
CL
468 s->name, message, data, from, to - 1);
469 memset(from, data, to - from);
470}
471
472static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
473{
474 unsigned long off = s->inuse; /* The end of info */
475
476 if (s->offset)
477 /* Freepointer is placed after the object. */
478 off += sizeof(void *);
479
480 if (s->flags & SLAB_STORE_USER)
481 /* We also have user information there */
482 off += 2 * sizeof(struct track);
483
484 if (s->size == off)
485 return 1;
486
487 if (check_bytes(p + off, POISON_INUSE, s->size - off))
488 return 1;
489
490 object_err(s, page, p, "Object padding check fails");
491
492 /*
493 * Restore padding
494 */
495 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
496 return 0;
497}
498
499static int slab_pad_check(struct kmem_cache *s, struct page *page)
500{
501 u8 *p;
502 int length, remainder;
503
504 if (!(s->flags & SLAB_POISON))
505 return 1;
506
507 p = page_address(page);
508 length = s->objects * s->size;
509 remainder = (PAGE_SIZE << s->order) - length;
510 if (!remainder)
511 return 1;
512
513 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
70d71228 514 slab_err(s, page, "Padding check failed");
81819f0f
CL
515 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
516 p + length + remainder);
517 return 0;
518 }
519 return 1;
520}
521
522static int check_object(struct kmem_cache *s, struct page *page,
523 void *object, int active)
524{
525 u8 *p = object;
526 u8 *endobject = object + s->objsize;
527
528 if (s->flags & SLAB_RED_ZONE) {
529 unsigned int red =
530 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
531
532 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
533 object_err(s, page, object,
534 active ? "Redzone Active" : "Redzone Inactive");
535 restore_bytes(s, "redzone", red,
536 endobject, object + s->inuse);
537 return 0;
538 }
539 } else {
540 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
541 !check_bytes(endobject, POISON_INUSE,
542 s->inuse - s->objsize)) {
543 object_err(s, page, p, "Alignment padding check fails");
544 /*
545 * Fix it so that there will not be another report.
546 *
547 * Hmmm... We may be corrupting an object that now expects
548 * to be longer than allowed.
549 */
550 restore_bytes(s, "alignment padding", POISON_INUSE,
551 endobject, object + s->inuse);
552 }
553 }
554
555 if (s->flags & SLAB_POISON) {
556 if (!active && (s->flags & __OBJECT_POISON) &&
557 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
558 p[s->objsize - 1] != POISON_END)) {
559
560 object_err(s, page, p, "Poison check failed");
561 restore_bytes(s, "Poison", POISON_FREE,
562 p, p + s->objsize -1);
563 restore_bytes(s, "Poison", POISON_END,
564 p + s->objsize - 1, p + s->objsize);
565 return 0;
566 }
567 /*
568 * check_pad_bytes cleans up on its own.
569 */
570 check_pad_bytes(s, page, p);
571 }
572
573 if (!s->offset && active)
574 /*
575 * Object and freepointer overlap. Cannot check
576 * freepointer while object is allocated.
577 */
578 return 1;
579
580 /* Check free pointer validity */
581 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
582 object_err(s, page, p, "Freepointer corrupt");
583 /*
584 * No choice but to zap it and thus loose the remainder
585 * of the free objects in this slab. May cause
672bba3a 586 * another error because the object count is now wrong.
81819f0f
CL
587 */
588 set_freepointer(s, p, NULL);
589 return 0;
590 }
591 return 1;
592}
593
594static int check_slab(struct kmem_cache *s, struct page *page)
595{
596 VM_BUG_ON(!irqs_disabled());
597
598 if (!PageSlab(page)) {
70d71228
CL
599 slab_err(s, page, "Not a valid slab page flags=%lx "
600 "mapping=0x%p count=%d", page->flags, page->mapping,
81819f0f
CL
601 page_count(page));
602 return 0;
603 }
604 if (page->offset * sizeof(void *) != s->offset) {
70d71228
CL
605 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
606 "mapping=0x%p count=%d",
81819f0f 607 (unsigned long)(page->offset * sizeof(void *)),
81819f0f
CL
608 page->flags,
609 page->mapping,
610 page_count(page));
81819f0f
CL
611 return 0;
612 }
613 if (page->inuse > s->objects) {
70d71228
CL
614 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
615 "mapping=0x%p count=%d",
616 s->name, page->inuse, s->objects, page->flags,
81819f0f 617 page->mapping, page_count(page));
81819f0f
CL
618 return 0;
619 }
620 /* Slab_pad_check fixes things up after itself */
621 slab_pad_check(s, page);
622 return 1;
623}
624
625/*
672bba3a
CL
626 * Determine if a certain object on a page is on the freelist. Must hold the
627 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
628 */
629static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
630{
631 int nr = 0;
632 void *fp = page->freelist;
633 void *object = NULL;
634
635 while (fp && nr <= s->objects) {
636 if (fp == search)
637 return 1;
638 if (!check_valid_pointer(s, page, fp)) {
639 if (object) {
640 object_err(s, page, object,
641 "Freechain corrupt");
642 set_freepointer(s, object, NULL);
643 break;
644 } else {
70d71228
CL
645 slab_err(s, page, "Freepointer 0x%p corrupt",
646 fp);
81819f0f
CL
647 page->freelist = NULL;
648 page->inuse = s->objects;
70d71228
CL
649 printk(KERN_ERR "@@@ SLUB %s: Freelist "
650 "cleared. Slab 0x%p\n",
651 s->name, page);
81819f0f
CL
652 return 0;
653 }
654 break;
655 }
656 object = fp;
657 fp = get_freepointer(s, object);
658 nr++;
659 }
660
661 if (page->inuse != s->objects - nr) {
70d71228
CL
662 slab_err(s, page, "Wrong object count. Counter is %d but "
663 "counted were %d", s, page, page->inuse,
664 s->objects - nr);
81819f0f 665 page->inuse = s->objects - nr;
70d71228
CL
666 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
667 "Slab @0x%p\n", s->name, page);
81819f0f
CL
668 }
669 return search == NULL;
670}
671
643b1138 672/*
672bba3a 673 * Tracking of fully allocated slabs for debugging purposes.
643b1138 674 */
e95eed57 675static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 676{
643b1138
CL
677 spin_lock(&n->list_lock);
678 list_add(&page->lru, &n->full);
679 spin_unlock(&n->list_lock);
680}
681
682static void remove_full(struct kmem_cache *s, struct page *page)
683{
684 struct kmem_cache_node *n;
685
686 if (!(s->flags & SLAB_STORE_USER))
687 return;
688
689 n = get_node(s, page_to_nid(page));
690
691 spin_lock(&n->list_lock);
692 list_del(&page->lru);
693 spin_unlock(&n->list_lock);
694}
695
81819f0f
CL
696static int alloc_object_checks(struct kmem_cache *s, struct page *page,
697 void *object)
698{
699 if (!check_slab(s, page))
700 goto bad;
701
702 if (object && !on_freelist(s, page, object)) {
70d71228
CL
703 slab_err(s, page, "Object 0x%p already allocated", object);
704 goto bad;
81819f0f
CL
705 }
706
707 if (!check_valid_pointer(s, page, object)) {
708 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 709 goto bad;
81819f0f
CL
710 }
711
712 if (!object)
713 return 1;
714
715 if (!check_object(s, page, object, 0))
716 goto bad;
81819f0f 717
81819f0f 718 return 1;
81819f0f
CL
719bad:
720 if (PageSlab(page)) {
721 /*
722 * If this is a slab page then lets do the best we can
723 * to avoid issues in the future. Marking all objects
672bba3a 724 * as used avoids touching the remaining objects.
81819f0f
CL
725 */
726 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
727 s->name, page);
728 page->inuse = s->objects;
729 page->freelist = NULL;
730 /* Fix up fields that may be corrupted */
731 page->offset = s->offset / sizeof(void *);
732 }
733 return 0;
734}
735
736static int free_object_checks(struct kmem_cache *s, struct page *page,
737 void *object)
738{
739 if (!check_slab(s, page))
740 goto fail;
741
742 if (!check_valid_pointer(s, page, object)) {
70d71228 743 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
744 goto fail;
745 }
746
747 if (on_freelist(s, page, object)) {
70d71228 748 slab_err(s, page, "Object 0x%p already free", object);
81819f0f
CL
749 goto fail;
750 }
751
752 if (!check_object(s, page, object, 1))
753 return 0;
754
755 if (unlikely(s != page->slab)) {
756 if (!PageSlab(page))
70d71228
CL
757 slab_err(s, page, "Attempt to free object(0x%p) "
758 "outside of slab", object);
81819f0f 759 else
70d71228 760 if (!page->slab) {
81819f0f 761 printk(KERN_ERR
70d71228 762 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 763 object);
70d71228
CL
764 dump_stack();
765 }
81819f0f 766 else
70d71228
CL
767 slab_err(s, page, "object at 0x%p belongs "
768 "to slab %s", object, page->slab->name);
81819f0f
CL
769 goto fail;
770 }
81819f0f
CL
771 return 1;
772fail:
81819f0f
CL
773 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
774 s->name, page, object);
775 return 0;
776}
777
778/*
779 * Slab allocation and freeing
780 */
781static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
782{
783 struct page * page;
784 int pages = 1 << s->order;
785
786 if (s->order)
787 flags |= __GFP_COMP;
788
789 if (s->flags & SLAB_CACHE_DMA)
790 flags |= SLUB_DMA;
791
792 if (node == -1)
793 page = alloc_pages(flags, s->order);
794 else
795 page = alloc_pages_node(node, flags, s->order);
796
797 if (!page)
798 return NULL;
799
800 mod_zone_page_state(page_zone(page),
801 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
802 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
803 pages);
804
805 return page;
806}
807
808static void setup_object(struct kmem_cache *s, struct page *page,
809 void *object)
810{
811 if (PageError(page)) {
812 init_object(s, object, 0);
813 init_tracking(s, object);
814 }
815
4f104934
CL
816 if (unlikely(s->ctor))
817 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
81819f0f
CL
818}
819
820static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
821{
822 struct page *page;
823 struct kmem_cache_node *n;
824 void *start;
825 void *end;
826 void *last;
827 void *p;
828
81819f0f
CL
829 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
830
831 if (flags & __GFP_WAIT)
832 local_irq_enable();
833
834 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
835 if (!page)
836 goto out;
837
838 n = get_node(s, page_to_nid(page));
839 if (n)
840 atomic_long_inc(&n->nr_slabs);
841 page->offset = s->offset / sizeof(void *);
842 page->slab = s;
843 page->flags |= 1 << PG_slab;
844 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
845 SLAB_STORE_USER | SLAB_TRACE))
846 page->flags |= 1 << PG_error;
847
848 start = page_address(page);
849 end = start + s->objects * s->size;
850
851 if (unlikely(s->flags & SLAB_POISON))
852 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
853
854 last = start;
855 for (p = start + s->size; p < end; p += s->size) {
856 setup_object(s, page, last);
857 set_freepointer(s, last, p);
858 last = p;
859 }
860 setup_object(s, page, last);
861 set_freepointer(s, last, NULL);
862
863 page->freelist = start;
864 page->inuse = 0;
865out:
866 if (flags & __GFP_WAIT)
867 local_irq_disable();
868 return page;
869}
870
871static void __free_slab(struct kmem_cache *s, struct page *page)
872{
873 int pages = 1 << s->order;
874
875 if (unlikely(PageError(page) || s->dtor)) {
876 void *start = page_address(page);
877 void *end = start + (pages << PAGE_SHIFT);
878 void *p;
879
880 slab_pad_check(s, page);
881 for (p = start; p <= end - s->size; p += s->size) {
882 if (s->dtor)
883 s->dtor(p, s, 0);
884 check_object(s, page, p, 0);
885 }
886 }
887
888 mod_zone_page_state(page_zone(page),
889 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
890 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
891 - pages);
892
893 page->mapping = NULL;
894 __free_pages(page, s->order);
895}
896
897static void rcu_free_slab(struct rcu_head *h)
898{
899 struct page *page;
900
901 page = container_of((struct list_head *)h, struct page, lru);
902 __free_slab(page->slab, page);
903}
904
905static void free_slab(struct kmem_cache *s, struct page *page)
906{
907 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
908 /*
909 * RCU free overloads the RCU head over the LRU
910 */
911 struct rcu_head *head = (void *)&page->lru;
912
913 call_rcu(head, rcu_free_slab);
914 } else
915 __free_slab(s, page);
916}
917
918static void discard_slab(struct kmem_cache *s, struct page *page)
919{
920 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
921
922 atomic_long_dec(&n->nr_slabs);
923 reset_page_mapcount(page);
924 page->flags &= ~(1 << PG_slab | 1 << PG_error);
925 free_slab(s, page);
926}
927
928/*
929 * Per slab locking using the pagelock
930 */
931static __always_inline void slab_lock(struct page *page)
932{
933 bit_spin_lock(PG_locked, &page->flags);
934}
935
936static __always_inline void slab_unlock(struct page *page)
937{
938 bit_spin_unlock(PG_locked, &page->flags);
939}
940
941static __always_inline int slab_trylock(struct page *page)
942{
943 int rc = 1;
944
945 rc = bit_spin_trylock(PG_locked, &page->flags);
946 return rc;
947}
948
949/*
950 * Management of partially allocated slabs
951 */
e95eed57 952static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 953{
e95eed57
CL
954 spin_lock(&n->list_lock);
955 n->nr_partial++;
956 list_add_tail(&page->lru, &n->partial);
957 spin_unlock(&n->list_lock);
958}
81819f0f 959
e95eed57
CL
960static void add_partial(struct kmem_cache_node *n, struct page *page)
961{
81819f0f
CL
962 spin_lock(&n->list_lock);
963 n->nr_partial++;
964 list_add(&page->lru, &n->partial);
965 spin_unlock(&n->list_lock);
966}
967
968static void remove_partial(struct kmem_cache *s,
969 struct page *page)
970{
971 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
972
973 spin_lock(&n->list_lock);
974 list_del(&page->lru);
975 n->nr_partial--;
976 spin_unlock(&n->list_lock);
977}
978
979/*
672bba3a 980 * Lock slab and remove from the partial list.
81819f0f 981 *
672bba3a 982 * Must hold list_lock.
81819f0f
CL
983 */
984static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
985{
986 if (slab_trylock(page)) {
987 list_del(&page->lru);
988 n->nr_partial--;
989 return 1;
990 }
991 return 0;
992}
993
994/*
672bba3a 995 * Try to allocate a partial slab from a specific node.
81819f0f
CL
996 */
997static struct page *get_partial_node(struct kmem_cache_node *n)
998{
999 struct page *page;
1000
1001 /*
1002 * Racy check. If we mistakenly see no partial slabs then we
1003 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1004 * partial slab and there is none available then get_partials()
1005 * will return NULL.
81819f0f
CL
1006 */
1007 if (!n || !n->nr_partial)
1008 return NULL;
1009
1010 spin_lock(&n->list_lock);
1011 list_for_each_entry(page, &n->partial, lru)
1012 if (lock_and_del_slab(n, page))
1013 goto out;
1014 page = NULL;
1015out:
1016 spin_unlock(&n->list_lock);
1017 return page;
1018}
1019
1020/*
672bba3a 1021 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1022 */
1023static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1024{
1025#ifdef CONFIG_NUMA
1026 struct zonelist *zonelist;
1027 struct zone **z;
1028 struct page *page;
1029
1030 /*
672bba3a
CL
1031 * The defrag ratio allows a configuration of the tradeoffs between
1032 * inter node defragmentation and node local allocations. A lower
1033 * defrag_ratio increases the tendency to do local allocations
1034 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1035 *
672bba3a
CL
1036 * If the defrag_ratio is set to 0 then kmalloc() always
1037 * returns node local objects. If the ratio is higher then kmalloc()
1038 * may return off node objects because partial slabs are obtained
1039 * from other nodes and filled up.
81819f0f
CL
1040 *
1041 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1042 * defrag_ratio = 1000) then every (well almost) allocation will
1043 * first attempt to defrag slab caches on other nodes. This means
1044 * scanning over all nodes to look for partial slabs which may be
1045 * expensive if we do it every time we are trying to find a slab
1046 * with available objects.
81819f0f
CL
1047 */
1048 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1049 return NULL;
1050
1051 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1052 ->node_zonelists[gfp_zone(flags)];
1053 for (z = zonelist->zones; *z; z++) {
1054 struct kmem_cache_node *n;
1055
1056 n = get_node(s, zone_to_nid(*z));
1057
1058 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1059 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1060 page = get_partial_node(n);
1061 if (page)
1062 return page;
1063 }
1064 }
1065#endif
1066 return NULL;
1067}
1068
1069/*
1070 * Get a partial page, lock it and return it.
1071 */
1072static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1073{
1074 struct page *page;
1075 int searchnode = (node == -1) ? numa_node_id() : node;
1076
1077 page = get_partial_node(get_node(s, searchnode));
1078 if (page || (flags & __GFP_THISNODE))
1079 return page;
1080
1081 return get_any_partial(s, flags);
1082}
1083
1084/*
1085 * Move a page back to the lists.
1086 *
1087 * Must be called with the slab lock held.
1088 *
1089 * On exit the slab lock will have been dropped.
1090 */
1091static void putback_slab(struct kmem_cache *s, struct page *page)
1092{
e95eed57
CL
1093 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1094
81819f0f 1095 if (page->inuse) {
e95eed57 1096
81819f0f 1097 if (page->freelist)
e95eed57
CL
1098 add_partial(n, page);
1099 else if (PageError(page) && (s->flags & SLAB_STORE_USER))
1100 add_full(n, page);
81819f0f 1101 slab_unlock(page);
e95eed57 1102
81819f0f 1103 } else {
e95eed57
CL
1104 if (n->nr_partial < MIN_PARTIAL) {
1105 /*
672bba3a
CL
1106 * Adding an empty slab to the partial slabs in order
1107 * to avoid page allocator overhead. This slab needs
1108 * to come after the other slabs with objects in
1109 * order to fill them up. That way the size of the
1110 * partial list stays small. kmem_cache_shrink can
1111 * reclaim empty slabs from the partial list.
e95eed57
CL
1112 */
1113 add_partial_tail(n, page);
1114 slab_unlock(page);
1115 } else {
1116 slab_unlock(page);
1117 discard_slab(s, page);
1118 }
81819f0f
CL
1119 }
1120}
1121
1122/*
1123 * Remove the cpu slab
1124 */
1125static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1126{
1127 s->cpu_slab[cpu] = NULL;
1128 ClearPageActive(page);
1129
1130 putback_slab(s, page);
1131}
1132
1133static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1134{
1135 slab_lock(page);
1136 deactivate_slab(s, page, cpu);
1137}
1138
1139/*
1140 * Flush cpu slab.
1141 * Called from IPI handler with interrupts disabled.
1142 */
1143static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1144{
1145 struct page *page = s->cpu_slab[cpu];
1146
1147 if (likely(page))
1148 flush_slab(s, page, cpu);
1149}
1150
1151static void flush_cpu_slab(void *d)
1152{
1153 struct kmem_cache *s = d;
1154 int cpu = smp_processor_id();
1155
1156 __flush_cpu_slab(s, cpu);
1157}
1158
1159static void flush_all(struct kmem_cache *s)
1160{
1161#ifdef CONFIG_SMP
1162 on_each_cpu(flush_cpu_slab, s, 1, 1);
1163#else
1164 unsigned long flags;
1165
1166 local_irq_save(flags);
1167 flush_cpu_slab(s);
1168 local_irq_restore(flags);
1169#endif
1170}
1171
1172/*
1173 * slab_alloc is optimized to only modify two cachelines on the fast path
1174 * (aside from the stack):
1175 *
1176 * 1. The page struct
1177 * 2. The first cacheline of the object to be allocated.
1178 *
672bba3a 1179 * The only other cache lines that are read (apart from code) is the
81819f0f
CL
1180 * per cpu array in the kmem_cache struct.
1181 *
1182 * Fastpath is not possible if we need to get a new slab or have
1183 * debugging enabled (which means all slabs are marked with PageError)
1184 */
77c5e2d0
CL
1185static void *slab_alloc(struct kmem_cache *s,
1186 gfp_t gfpflags, int node, void *addr)
81819f0f
CL
1187{
1188 struct page *page;
1189 void **object;
1190 unsigned long flags;
1191 int cpu;
1192
1193 local_irq_save(flags);
1194 cpu = smp_processor_id();
1195 page = s->cpu_slab[cpu];
1196 if (!page)
1197 goto new_slab;
1198
1199 slab_lock(page);
1200 if (unlikely(node != -1 && page_to_nid(page) != node))
1201 goto another_slab;
1202redo:
1203 object = page->freelist;
1204 if (unlikely(!object))
1205 goto another_slab;
1206 if (unlikely(PageError(page)))
1207 goto debug;
1208
1209have_object:
1210 page->inuse++;
1211 page->freelist = object[page->offset];
1212 slab_unlock(page);
1213 local_irq_restore(flags);
1214 return object;
1215
1216another_slab:
1217 deactivate_slab(s, page, cpu);
1218
1219new_slab:
1220 page = get_partial(s, gfpflags, node);
1221 if (likely(page)) {
1222have_slab:
1223 s->cpu_slab[cpu] = page;
1224 SetPageActive(page);
1225 goto redo;
1226 }
1227
1228 page = new_slab(s, gfpflags, node);
1229 if (page) {
1230 cpu = smp_processor_id();
1231 if (s->cpu_slab[cpu]) {
1232 /*
672bba3a
CL
1233 * Someone else populated the cpu_slab while we
1234 * enabled interrupts, or we have gotten scheduled
1235 * on another cpu. The page may not be on the
1236 * requested node even if __GFP_THISNODE was
1237 * specified. So we need to recheck.
81819f0f
CL
1238 */
1239 if (node == -1 ||
1240 page_to_nid(s->cpu_slab[cpu]) == node) {
1241 /*
1242 * Current cpuslab is acceptable and we
1243 * want the current one since its cache hot
1244 */
1245 discard_slab(s, page);
1246 page = s->cpu_slab[cpu];
1247 slab_lock(page);
1248 goto redo;
1249 }
672bba3a 1250 /* New slab does not fit our expectations */
81819f0f
CL
1251 flush_slab(s, s->cpu_slab[cpu], cpu);
1252 }
1253 slab_lock(page);
1254 goto have_slab;
1255 }
1256 local_irq_restore(flags);
1257 return NULL;
1258debug:
1259 if (!alloc_object_checks(s, page, object))
1260 goto another_slab;
1261 if (s->flags & SLAB_STORE_USER)
77c5e2d0 1262 set_track(s, object, TRACK_ALLOC, addr);
70d71228
CL
1263 if (s->flags & SLAB_TRACE) {
1264 printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
1265 s->name, object, page->inuse,
1266 page->freelist);
1267 dump_stack();
1268 }
1269 init_object(s, object, 1);
81819f0f
CL
1270 goto have_object;
1271}
1272
1273void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1274{
77c5e2d0 1275 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1276}
1277EXPORT_SYMBOL(kmem_cache_alloc);
1278
1279#ifdef CONFIG_NUMA
1280void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1281{
77c5e2d0 1282 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1283}
1284EXPORT_SYMBOL(kmem_cache_alloc_node);
1285#endif
1286
1287/*
1288 * The fastpath only writes the cacheline of the page struct and the first
1289 * cacheline of the object.
1290 *
672bba3a
CL
1291 * We read the cpu_slab cacheline to check if the slab is the per cpu
1292 * slab for this processor.
81819f0f 1293 */
77c5e2d0
CL
1294static void slab_free(struct kmem_cache *s, struct page *page,
1295 void *x, void *addr)
81819f0f
CL
1296{
1297 void *prior;
1298 void **object = (void *)x;
1299 unsigned long flags;
1300
1301 local_irq_save(flags);
1302 slab_lock(page);
1303
1304 if (unlikely(PageError(page)))
1305 goto debug;
1306checks_ok:
1307 prior = object[page->offset] = page->freelist;
1308 page->freelist = object;
1309 page->inuse--;
1310
1311 if (unlikely(PageActive(page)))
1312 /*
1313 * Cpu slabs are never on partial lists and are
1314 * never freed.
1315 */
1316 goto out_unlock;
1317
1318 if (unlikely(!page->inuse))
1319 goto slab_empty;
1320
1321 /*
1322 * Objects left in the slab. If it
1323 * was not on the partial list before
1324 * then add it.
1325 */
1326 if (unlikely(!prior))
e95eed57 1327 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1328
1329out_unlock:
1330 slab_unlock(page);
1331 local_irq_restore(flags);
1332 return;
1333
1334slab_empty:
1335 if (prior)
1336 /*
672bba3a 1337 * Slab still on the partial list.
81819f0f
CL
1338 */
1339 remove_partial(s, page);
1340
1341 slab_unlock(page);
1342 discard_slab(s, page);
1343 local_irq_restore(flags);
1344 return;
1345
1346debug:
77c5e2d0
CL
1347 if (!free_object_checks(s, page, x))
1348 goto out_unlock;
643b1138
CL
1349 if (!PageActive(page) && !page->freelist)
1350 remove_full(s, page);
77c5e2d0
CL
1351 if (s->flags & SLAB_STORE_USER)
1352 set_track(s, x, TRACK_FREE, addr);
70d71228
CL
1353 if (s->flags & SLAB_TRACE) {
1354 printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
1355 s->name, object, page->inuse,
1356 page->freelist);
1357 print_section("Object", (void *)object, s->objsize);
1358 dump_stack();
1359 }
1360 init_object(s, object, 0);
77c5e2d0 1361 goto checks_ok;
81819f0f
CL
1362}
1363
1364void kmem_cache_free(struct kmem_cache *s, void *x)
1365{
77c5e2d0 1366 struct page *page;
81819f0f 1367
b49af68f 1368 page = virt_to_head_page(x);
81819f0f 1369
77c5e2d0 1370 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1371}
1372EXPORT_SYMBOL(kmem_cache_free);
1373
1374/* Figure out on which slab object the object resides */
1375static struct page *get_object_page(const void *x)
1376{
b49af68f 1377 struct page *page = virt_to_head_page(x);
81819f0f
CL
1378
1379 if (!PageSlab(page))
1380 return NULL;
1381
1382 return page;
1383}
1384
1385/*
672bba3a
CL
1386 * Object placement in a slab is made very easy because we always start at
1387 * offset 0. If we tune the size of the object to the alignment then we can
1388 * get the required alignment by putting one properly sized object after
1389 * another.
81819f0f
CL
1390 *
1391 * Notice that the allocation order determines the sizes of the per cpu
1392 * caches. Each processor has always one slab available for allocations.
1393 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1394 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1395 * locking overhead.
81819f0f
CL
1396 */
1397
1398/*
1399 * Mininum / Maximum order of slab pages. This influences locking overhead
1400 * and slab fragmentation. A higher order reduces the number of partial slabs
1401 * and increases the number of allocations possible without having to
1402 * take the list_lock.
1403 */
1404static int slub_min_order;
1405static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1406static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1407
1408/*
1409 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1410 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1411 */
1412static int slub_nomerge;
1413
1414/*
1415 * Debug settings:
1416 */
1417static int slub_debug;
1418
1419static char *slub_debug_slabs;
1420
1421/*
1422 * Calculate the order of allocation given an slab object size.
1423 *
672bba3a
CL
1424 * The order of allocation has significant impact on performance and other
1425 * system components. Generally order 0 allocations should be preferred since
1426 * order 0 does not cause fragmentation in the page allocator. Larger objects
1427 * be problematic to put into order 0 slabs because there may be too much
1428 * unused space left. We go to a higher order if more than 1/8th of the slab
1429 * would be wasted.
1430 *
1431 * In order to reach satisfactory performance we must ensure that a minimum
1432 * number of objects is in one slab. Otherwise we may generate too much
1433 * activity on the partial lists which requires taking the list_lock. This is
1434 * less a concern for large slabs though which are rarely used.
81819f0f 1435 *
672bba3a
CL
1436 * slub_max_order specifies the order where we begin to stop considering the
1437 * number of objects in a slab as critical. If we reach slub_max_order then
1438 * we try to keep the page order as low as possible. So we accept more waste
1439 * of space in favor of a small page order.
81819f0f 1440 *
672bba3a
CL
1441 * Higher order allocations also allow the placement of more objects in a
1442 * slab and thereby reduce object handling overhead. If the user has
1443 * requested a higher mininum order then we start with that one instead of
1444 * the smallest order which will fit the object.
81819f0f
CL
1445 */
1446static int calculate_order(int size)
1447{
1448 int order;
1449 int rem;
1450
1451 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1452 order < MAX_ORDER; order++) {
1453 unsigned long slab_size = PAGE_SIZE << order;
1454
1455 if (slub_max_order > order &&
1456 slab_size < slub_min_objects * size)
1457 continue;
1458
1459 if (slab_size < size)
1460 continue;
1461
1462 rem = slab_size % size;
1463
672bba3a 1464 if (rem <= slab_size / 8)
81819f0f
CL
1465 break;
1466
1467 }
1468 if (order >= MAX_ORDER)
1469 return -E2BIG;
672bba3a 1470
81819f0f
CL
1471 return order;
1472}
1473
1474/*
672bba3a 1475 * Figure out what the alignment of the objects will be.
81819f0f
CL
1476 */
1477static unsigned long calculate_alignment(unsigned long flags,
1478 unsigned long align, unsigned long size)
1479{
1480 /*
1481 * If the user wants hardware cache aligned objects then
1482 * follow that suggestion if the object is sufficiently
1483 * large.
1484 *
1485 * The hardware cache alignment cannot override the
1486 * specified alignment though. If that is greater
1487 * then use it.
1488 */
5af60839 1489 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1490 size > cache_line_size() / 2)
1491 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1492
1493 if (align < ARCH_SLAB_MINALIGN)
1494 return ARCH_SLAB_MINALIGN;
1495
1496 return ALIGN(align, sizeof(void *));
1497}
1498
1499static void init_kmem_cache_node(struct kmem_cache_node *n)
1500{
1501 n->nr_partial = 0;
1502 atomic_long_set(&n->nr_slabs, 0);
1503 spin_lock_init(&n->list_lock);
1504 INIT_LIST_HEAD(&n->partial);
643b1138 1505 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1506}
1507
1508#ifdef CONFIG_NUMA
1509/*
1510 * No kmalloc_node yet so do it by hand. We know that this is the first
1511 * slab on the node for this slabcache. There are no concurrent accesses
1512 * possible.
1513 *
1514 * Note that this function only works on the kmalloc_node_cache
1515 * when allocating for the kmalloc_node_cache.
1516 */
1517static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1518 int node)
1519{
1520 struct page *page;
1521 struct kmem_cache_node *n;
1522
1523 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1524
1525 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1526 /* new_slab() disables interupts */
1527 local_irq_enable();
1528
1529 BUG_ON(!page);
1530 n = page->freelist;
1531 BUG_ON(!n);
1532 page->freelist = get_freepointer(kmalloc_caches, n);
1533 page->inuse++;
1534 kmalloc_caches->node[node] = n;
1535 init_object(kmalloc_caches, n, 1);
1536 init_kmem_cache_node(n);
1537 atomic_long_inc(&n->nr_slabs);
e95eed57 1538 add_partial(n, page);
81819f0f
CL
1539 return n;
1540}
1541
1542static void free_kmem_cache_nodes(struct kmem_cache *s)
1543{
1544 int node;
1545
1546 for_each_online_node(node) {
1547 struct kmem_cache_node *n = s->node[node];
1548 if (n && n != &s->local_node)
1549 kmem_cache_free(kmalloc_caches, n);
1550 s->node[node] = NULL;
1551 }
1552}
1553
1554static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1555{
1556 int node;
1557 int local_node;
1558
1559 if (slab_state >= UP)
1560 local_node = page_to_nid(virt_to_page(s));
1561 else
1562 local_node = 0;
1563
1564 for_each_online_node(node) {
1565 struct kmem_cache_node *n;
1566
1567 if (local_node == node)
1568 n = &s->local_node;
1569 else {
1570 if (slab_state == DOWN) {
1571 n = early_kmem_cache_node_alloc(gfpflags,
1572 node);
1573 continue;
1574 }
1575 n = kmem_cache_alloc_node(kmalloc_caches,
1576 gfpflags, node);
1577
1578 if (!n) {
1579 free_kmem_cache_nodes(s);
1580 return 0;
1581 }
1582
1583 }
1584 s->node[node] = n;
1585 init_kmem_cache_node(n);
1586 }
1587 return 1;
1588}
1589#else
1590static void free_kmem_cache_nodes(struct kmem_cache *s)
1591{
1592}
1593
1594static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1595{
1596 init_kmem_cache_node(&s->local_node);
1597 return 1;
1598}
1599#endif
1600
1601/*
1602 * calculate_sizes() determines the order and the distribution of data within
1603 * a slab object.
1604 */
1605static int calculate_sizes(struct kmem_cache *s)
1606{
1607 unsigned long flags = s->flags;
1608 unsigned long size = s->objsize;
1609 unsigned long align = s->align;
1610
1611 /*
1612 * Determine if we can poison the object itself. If the user of
1613 * the slab may touch the object after free or before allocation
1614 * then we should never poison the object itself.
1615 */
1616 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1617 !s->ctor && !s->dtor)
1618 s->flags |= __OBJECT_POISON;
1619 else
1620 s->flags &= ~__OBJECT_POISON;
1621
1622 /*
1623 * Round up object size to the next word boundary. We can only
1624 * place the free pointer at word boundaries and this determines
1625 * the possible location of the free pointer.
1626 */
1627 size = ALIGN(size, sizeof(void *));
1628
1629 /*
672bba3a 1630 * If we are Redzoning then check if there is some space between the
81819f0f 1631 * end of the object and the free pointer. If not then add an
672bba3a 1632 * additional word to have some bytes to store Redzone information.
81819f0f
CL
1633 */
1634 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1635 size += sizeof(void *);
1636
1637 /*
672bba3a
CL
1638 * With that we have determined the number of bytes in actual use
1639 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
1640 */
1641 s->inuse = size;
1642
1643 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1644 s->ctor || s->dtor)) {
1645 /*
1646 * Relocate free pointer after the object if it is not
1647 * permitted to overwrite the first word of the object on
1648 * kmem_cache_free.
1649 *
1650 * This is the case if we do RCU, have a constructor or
1651 * destructor or are poisoning the objects.
1652 */
1653 s->offset = size;
1654 size += sizeof(void *);
1655 }
1656
1657 if (flags & SLAB_STORE_USER)
1658 /*
1659 * Need to store information about allocs and frees after
1660 * the object.
1661 */
1662 size += 2 * sizeof(struct track);
1663
be7b3fbc 1664 if (flags & SLAB_RED_ZONE)
81819f0f
CL
1665 /*
1666 * Add some empty padding so that we can catch
1667 * overwrites from earlier objects rather than let
1668 * tracking information or the free pointer be
1669 * corrupted if an user writes before the start
1670 * of the object.
1671 */
1672 size += sizeof(void *);
672bba3a 1673
81819f0f
CL
1674 /*
1675 * Determine the alignment based on various parameters that the
65c02d4c
CL
1676 * user specified and the dynamic determination of cache line size
1677 * on bootup.
81819f0f
CL
1678 */
1679 align = calculate_alignment(flags, align, s->objsize);
1680
1681 /*
1682 * SLUB stores one object immediately after another beginning from
1683 * offset 0. In order to align the objects we have to simply size
1684 * each object to conform to the alignment.
1685 */
1686 size = ALIGN(size, align);
1687 s->size = size;
1688
1689 s->order = calculate_order(size);
1690 if (s->order < 0)
1691 return 0;
1692
1693 /*
1694 * Determine the number of objects per slab
1695 */
1696 s->objects = (PAGE_SIZE << s->order) / size;
1697
1698 /*
1699 * Verify that the number of objects is within permitted limits.
1700 * The page->inuse field is only 16 bit wide! So we cannot have
1701 * more than 64k objects per slab.
1702 */
1703 if (!s->objects || s->objects > 65535)
1704 return 0;
1705 return 1;
1706
1707}
1708
81819f0f
CL
1709static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1710 const char *name, size_t size,
1711 size_t align, unsigned long flags,
1712 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1713 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1714{
1715 memset(s, 0, kmem_size);
1716 s->name = name;
1717 s->ctor = ctor;
1718 s->dtor = dtor;
1719 s->objsize = size;
1720 s->flags = flags;
1721 s->align = align;
1722
81819f0f
CL
1723 /*
1724 * The page->offset field is only 16 bit wide. This is an offset
1725 * in units of words from the beginning of an object. If the slab
1726 * size is bigger then we cannot move the free pointer behind the
1727 * object anymore.
1728 *
1729 * On 32 bit platforms the limit is 256k. On 64bit platforms
1730 * the limit is 512k.
1731 *
1732 * Debugging or ctor/dtors may create a need to move the free
1733 * pointer. Fail if this happens.
1734 */
1735 if (s->size >= 65535 * sizeof(void *)) {
1736 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1737 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1738 BUG_ON(ctor || dtor);
1739 }
1740 else
1741 /*
1742 * Enable debugging if selected on the kernel commandline.
1743 */
1744 if (slub_debug && (!slub_debug_slabs ||
1745 strncmp(slub_debug_slabs, name,
1746 strlen(slub_debug_slabs)) == 0))
1747 s->flags |= slub_debug;
1748
1749 if (!calculate_sizes(s))
1750 goto error;
1751
1752 s->refcount = 1;
1753#ifdef CONFIG_NUMA
1754 s->defrag_ratio = 100;
1755#endif
1756
1757 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1758 return 1;
1759error:
1760 if (flags & SLAB_PANIC)
1761 panic("Cannot create slab %s size=%lu realsize=%u "
1762 "order=%u offset=%u flags=%lx\n",
1763 s->name, (unsigned long)size, s->size, s->order,
1764 s->offset, flags);
1765 return 0;
1766}
1767EXPORT_SYMBOL(kmem_cache_open);
1768
1769/*
1770 * Check if a given pointer is valid
1771 */
1772int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1773{
1774 struct page * page;
81819f0f
CL
1775
1776 page = get_object_page(object);
1777
1778 if (!page || s != page->slab)
1779 /* No slab or wrong slab */
1780 return 0;
1781
abcd08a6 1782 if (!check_valid_pointer(s, page, object))
81819f0f
CL
1783 return 0;
1784
1785 /*
1786 * We could also check if the object is on the slabs freelist.
1787 * But this would be too expensive and it seems that the main
1788 * purpose of kmem_ptr_valid is to check if the object belongs
1789 * to a certain slab.
1790 */
1791 return 1;
1792}
1793EXPORT_SYMBOL(kmem_ptr_validate);
1794
1795/*
1796 * Determine the size of a slab object
1797 */
1798unsigned int kmem_cache_size(struct kmem_cache *s)
1799{
1800 return s->objsize;
1801}
1802EXPORT_SYMBOL(kmem_cache_size);
1803
1804const char *kmem_cache_name(struct kmem_cache *s)
1805{
1806 return s->name;
1807}
1808EXPORT_SYMBOL(kmem_cache_name);
1809
1810/*
672bba3a
CL
1811 * Attempt to free all slabs on a node. Return the number of slabs we
1812 * were unable to free.
81819f0f
CL
1813 */
1814static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1815 struct list_head *list)
1816{
1817 int slabs_inuse = 0;
1818 unsigned long flags;
1819 struct page *page, *h;
1820
1821 spin_lock_irqsave(&n->list_lock, flags);
1822 list_for_each_entry_safe(page, h, list, lru)
1823 if (!page->inuse) {
1824 list_del(&page->lru);
1825 discard_slab(s, page);
1826 } else
1827 slabs_inuse++;
1828 spin_unlock_irqrestore(&n->list_lock, flags);
1829 return slabs_inuse;
1830}
1831
1832/*
672bba3a 1833 * Release all resources used by a slab cache.
81819f0f
CL
1834 */
1835static int kmem_cache_close(struct kmem_cache *s)
1836{
1837 int node;
1838
1839 flush_all(s);
1840
1841 /* Attempt to free all objects */
1842 for_each_online_node(node) {
1843 struct kmem_cache_node *n = get_node(s, node);
1844
2086d26a 1845 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
1846 if (atomic_long_read(&n->nr_slabs))
1847 return 1;
1848 }
1849 free_kmem_cache_nodes(s);
1850 return 0;
1851}
1852
1853/*
1854 * Close a cache and release the kmem_cache structure
1855 * (must be used for caches created using kmem_cache_create)
1856 */
1857void kmem_cache_destroy(struct kmem_cache *s)
1858{
1859 down_write(&slub_lock);
1860 s->refcount--;
1861 if (!s->refcount) {
1862 list_del(&s->list);
1863 if (kmem_cache_close(s))
1864 WARN_ON(1);
1865 sysfs_slab_remove(s);
1866 kfree(s);
1867 }
1868 up_write(&slub_lock);
1869}
1870EXPORT_SYMBOL(kmem_cache_destroy);
1871
1872/********************************************************************
1873 * Kmalloc subsystem
1874 *******************************************************************/
1875
1876struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1877EXPORT_SYMBOL(kmalloc_caches);
1878
1879#ifdef CONFIG_ZONE_DMA
1880static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1881#endif
1882
1883static int __init setup_slub_min_order(char *str)
1884{
1885 get_option (&str, &slub_min_order);
1886
1887 return 1;
1888}
1889
1890__setup("slub_min_order=", setup_slub_min_order);
1891
1892static int __init setup_slub_max_order(char *str)
1893{
1894 get_option (&str, &slub_max_order);
1895
1896 return 1;
1897}
1898
1899__setup("slub_max_order=", setup_slub_max_order);
1900
1901static int __init setup_slub_min_objects(char *str)
1902{
1903 get_option (&str, &slub_min_objects);
1904
1905 return 1;
1906}
1907
1908__setup("slub_min_objects=", setup_slub_min_objects);
1909
1910static int __init setup_slub_nomerge(char *str)
1911{
1912 slub_nomerge = 1;
1913 return 1;
1914}
1915
1916__setup("slub_nomerge", setup_slub_nomerge);
1917
1918static int __init setup_slub_debug(char *str)
1919{
1920 if (!str || *str != '=')
1921 slub_debug = DEBUG_DEFAULT_FLAGS;
1922 else {
1923 str++;
1924 if (*str == 0 || *str == ',')
1925 slub_debug = DEBUG_DEFAULT_FLAGS;
1926 else
1927 for( ;*str && *str != ','; str++)
1928 switch (*str) {
1929 case 'f' : case 'F' :
1930 slub_debug |= SLAB_DEBUG_FREE;
1931 break;
1932 case 'z' : case 'Z' :
1933 slub_debug |= SLAB_RED_ZONE;
1934 break;
1935 case 'p' : case 'P' :
1936 slub_debug |= SLAB_POISON;
1937 break;
1938 case 'u' : case 'U' :
1939 slub_debug |= SLAB_STORE_USER;
1940 break;
1941 case 't' : case 'T' :
1942 slub_debug |= SLAB_TRACE;
1943 break;
1944 default:
1945 printk(KERN_ERR "slub_debug option '%c' "
1946 "unknown. skipped\n",*str);
1947 }
1948 }
1949
1950 if (*str == ',')
1951 slub_debug_slabs = str + 1;
1952 return 1;
1953}
1954
1955__setup("slub_debug", setup_slub_debug);
1956
1957static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1958 const char *name, int size, gfp_t gfp_flags)
1959{
1960 unsigned int flags = 0;
1961
1962 if (gfp_flags & SLUB_DMA)
1963 flags = SLAB_CACHE_DMA;
1964
1965 down_write(&slub_lock);
1966 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
1967 flags, NULL, NULL))
1968 goto panic;
1969
1970 list_add(&s->list, &slab_caches);
1971 up_write(&slub_lock);
1972 if (sysfs_slab_add(s))
1973 goto panic;
1974 return s;
1975
1976panic:
1977 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
1978}
1979
1980static struct kmem_cache *get_slab(size_t size, gfp_t flags)
1981{
1982 int index = kmalloc_index(size);
1983
614410d5 1984 if (!index)
81819f0f
CL
1985 return NULL;
1986
1987 /* Allocation too large? */
1988 BUG_ON(index < 0);
1989
1990#ifdef CONFIG_ZONE_DMA
1991 if ((flags & SLUB_DMA)) {
1992 struct kmem_cache *s;
1993 struct kmem_cache *x;
1994 char *text;
1995 size_t realsize;
1996
1997 s = kmalloc_caches_dma[index];
1998 if (s)
1999 return s;
2000
2001 /* Dynamically create dma cache */
2002 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2003 if (!x)
2004 panic("Unable to allocate memory for dma cache\n");
2005
2006 if (index <= KMALLOC_SHIFT_HIGH)
2007 realsize = 1 << index;
2008 else {
2009 if (index == 1)
2010 realsize = 96;
2011 else
2012 realsize = 192;
2013 }
2014
2015 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2016 (unsigned int)realsize);
2017 s = create_kmalloc_cache(x, text, realsize, flags);
2018 kmalloc_caches_dma[index] = s;
2019 return s;
2020 }
2021#endif
2022 return &kmalloc_caches[index];
2023}
2024
2025void *__kmalloc(size_t size, gfp_t flags)
2026{
2027 struct kmem_cache *s = get_slab(size, flags);
2028
2029 if (s)
77c5e2d0 2030 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2031 return NULL;
2032}
2033EXPORT_SYMBOL(__kmalloc);
2034
2035#ifdef CONFIG_NUMA
2036void *__kmalloc_node(size_t size, gfp_t flags, int node)
2037{
2038 struct kmem_cache *s = get_slab(size, flags);
2039
2040 if (s)
77c5e2d0 2041 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2042 return NULL;
2043}
2044EXPORT_SYMBOL(__kmalloc_node);
2045#endif
2046
2047size_t ksize(const void *object)
2048{
2049 struct page *page = get_object_page(object);
2050 struct kmem_cache *s;
2051
2052 BUG_ON(!page);
2053 s = page->slab;
2054 BUG_ON(!s);
2055
2056 /*
2057 * Debugging requires use of the padding between object
2058 * and whatever may come after it.
2059 */
2060 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2061 return s->objsize;
2062
2063 /*
2064 * If we have the need to store the freelist pointer
2065 * back there or track user information then we can
2066 * only use the space before that information.
2067 */
2068 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2069 return s->inuse;
2070
2071 /*
2072 * Else we can use all the padding etc for the allocation
2073 */
2074 return s->size;
2075}
2076EXPORT_SYMBOL(ksize);
2077
2078void kfree(const void *x)
2079{
2080 struct kmem_cache *s;
2081 struct page *page;
2082
2083 if (!x)
2084 return;
2085
b49af68f 2086 page = virt_to_head_page(x);
81819f0f
CL
2087 s = page->slab;
2088
77c5e2d0 2089 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2090}
2091EXPORT_SYMBOL(kfree);
2092
2086d26a 2093/*
672bba3a
CL
2094 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2095 * the remaining slabs by the number of items in use. The slabs with the
2096 * most items in use come first. New allocations will then fill those up
2097 * and thus they can be removed from the partial lists.
2098 *
2099 * The slabs with the least items are placed last. This results in them
2100 * being allocated from last increasing the chance that the last objects
2101 * are freed in them.
2086d26a
CL
2102 */
2103int kmem_cache_shrink(struct kmem_cache *s)
2104{
2105 int node;
2106 int i;
2107 struct kmem_cache_node *n;
2108 struct page *page;
2109 struct page *t;
2110 struct list_head *slabs_by_inuse =
2111 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2112 unsigned long flags;
2113
2114 if (!slabs_by_inuse)
2115 return -ENOMEM;
2116
2117 flush_all(s);
2118 for_each_online_node(node) {
2119 n = get_node(s, node);
2120
2121 if (!n->nr_partial)
2122 continue;
2123
2124 for (i = 0; i < s->objects; i++)
2125 INIT_LIST_HEAD(slabs_by_inuse + i);
2126
2127 spin_lock_irqsave(&n->list_lock, flags);
2128
2129 /*
672bba3a 2130 * Build lists indexed by the items in use in each slab.
2086d26a 2131 *
672bba3a
CL
2132 * Note that concurrent frees may occur while we hold the
2133 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2134 */
2135 list_for_each_entry_safe(page, t, &n->partial, lru) {
2136 if (!page->inuse && slab_trylock(page)) {
2137 /*
2138 * Must hold slab lock here because slab_free
2139 * may have freed the last object and be
2140 * waiting to release the slab.
2141 */
2142 list_del(&page->lru);
2143 n->nr_partial--;
2144 slab_unlock(page);
2145 discard_slab(s, page);
2146 } else {
2147 if (n->nr_partial > MAX_PARTIAL)
2148 list_move(&page->lru,
2149 slabs_by_inuse + page->inuse);
2150 }
2151 }
2152
2153 if (n->nr_partial <= MAX_PARTIAL)
2154 goto out;
2155
2156 /*
672bba3a
CL
2157 * Rebuild the partial list with the slabs filled up most
2158 * first and the least used slabs at the end.
2086d26a
CL
2159 */
2160 for (i = s->objects - 1; i >= 0; i--)
2161 list_splice(slabs_by_inuse + i, n->partial.prev);
2162
2163 out:
2164 spin_unlock_irqrestore(&n->list_lock, flags);
2165 }
2166
2167 kfree(slabs_by_inuse);
2168 return 0;
2169}
2170EXPORT_SYMBOL(kmem_cache_shrink);
2171
81819f0f
CL
2172/**
2173 * krealloc - reallocate memory. The contents will remain unchanged.
2174 *
2175 * @p: object to reallocate memory for.
2176 * @new_size: how many bytes of memory are required.
2177 * @flags: the type of memory to allocate.
2178 *
2179 * The contents of the object pointed to are preserved up to the
2180 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2181 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2182 * %NULL pointer, the object pointed to is freed.
2183 */
2184void *krealloc(const void *p, size_t new_size, gfp_t flags)
2185{
81819f0f 2186 void *ret;
1f99a283 2187 size_t ks;
81819f0f
CL
2188
2189 if (unlikely(!p))
2190 return kmalloc(new_size, flags);
2191
2192 if (unlikely(!new_size)) {
2193 kfree(p);
2194 return NULL;
2195 }
2196
1f99a283
CL
2197 ks = ksize(p);
2198 if (ks >= new_size)
81819f0f
CL
2199 return (void *)p;
2200
2201 ret = kmalloc(new_size, flags);
2202 if (ret) {
1f99a283 2203 memcpy(ret, p, min(new_size, ks));
81819f0f
CL
2204 kfree(p);
2205 }
2206 return ret;
2207}
2208EXPORT_SYMBOL(krealloc);
2209
2210/********************************************************************
2211 * Basic setup of slabs
2212 *******************************************************************/
2213
2214void __init kmem_cache_init(void)
2215{
2216 int i;
2217
2218#ifdef CONFIG_NUMA
2219 /*
2220 * Must first have the slab cache available for the allocations of the
672bba3a 2221 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2222 * kmem_cache_open for slab_state == DOWN.
2223 */
2224 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2225 sizeof(struct kmem_cache_node), GFP_KERNEL);
2226#endif
2227
2228 /* Able to allocate the per node structures */
2229 slab_state = PARTIAL;
2230
2231 /* Caches that are not of the two-to-the-power-of size */
2232 create_kmalloc_cache(&kmalloc_caches[1],
2233 "kmalloc-96", 96, GFP_KERNEL);
2234 create_kmalloc_cache(&kmalloc_caches[2],
2235 "kmalloc-192", 192, GFP_KERNEL);
2236
2237 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2238 create_kmalloc_cache(&kmalloc_caches[i],
2239 "kmalloc", 1 << i, GFP_KERNEL);
2240
2241 slab_state = UP;
2242
2243 /* Provide the correct kmalloc names now that the caches are up */
2244 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2245 kmalloc_caches[i]. name =
2246 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2247
2248#ifdef CONFIG_SMP
2249 register_cpu_notifier(&slab_notifier);
2250#endif
2251
2252 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2253 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2254 + nr_cpu_ids * sizeof(struct page *);
2255
2256 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2257 " Processors=%d, Nodes=%d\n",
65c02d4c 2258 KMALLOC_SHIFT_HIGH, cache_line_size(),
81819f0f
CL
2259 slub_min_order, slub_max_order, slub_min_objects,
2260 nr_cpu_ids, nr_node_ids);
2261}
2262
2263/*
2264 * Find a mergeable slab cache
2265 */
2266static int slab_unmergeable(struct kmem_cache *s)
2267{
2268 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2269 return 1;
2270
2271 if (s->ctor || s->dtor)
2272 return 1;
2273
2274 return 0;
2275}
2276
2277static struct kmem_cache *find_mergeable(size_t size,
2278 size_t align, unsigned long flags,
2279 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2280 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2281{
2282 struct list_head *h;
2283
2284 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2285 return NULL;
2286
2287 if (ctor || dtor)
2288 return NULL;
2289
2290 size = ALIGN(size, sizeof(void *));
2291 align = calculate_alignment(flags, align, size);
2292 size = ALIGN(size, align);
2293
2294 list_for_each(h, &slab_caches) {
2295 struct kmem_cache *s =
2296 container_of(h, struct kmem_cache, list);
2297
2298 if (slab_unmergeable(s))
2299 continue;
2300
2301 if (size > s->size)
2302 continue;
2303
2304 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2305 (s->flags & SLUB_MERGE_SAME))
2306 continue;
2307 /*
2308 * Check if alignment is compatible.
2309 * Courtesy of Adrian Drzewiecki
2310 */
2311 if ((s->size & ~(align -1)) != s->size)
2312 continue;
2313
2314 if (s->size - size >= sizeof(void *))
2315 continue;
2316
2317 return s;
2318 }
2319 return NULL;
2320}
2321
2322struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2323 size_t align, unsigned long flags,
2324 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2325 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2326{
2327 struct kmem_cache *s;
2328
2329 down_write(&slub_lock);
2330 s = find_mergeable(size, align, flags, dtor, ctor);
2331 if (s) {
2332 s->refcount++;
2333 /*
2334 * Adjust the object sizes so that we clear
2335 * the complete object on kzalloc.
2336 */
2337 s->objsize = max(s->objsize, (int)size);
2338 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2339 if (sysfs_slab_alias(s, name))
2340 goto err;
2341 } else {
2342 s = kmalloc(kmem_size, GFP_KERNEL);
2343 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2344 size, align, flags, ctor, dtor)) {
2345 if (sysfs_slab_add(s)) {
2346 kfree(s);
2347 goto err;
2348 }
2349 list_add(&s->list, &slab_caches);
2350 } else
2351 kfree(s);
2352 }
2353 up_write(&slub_lock);
2354 return s;
2355
2356err:
2357 up_write(&slub_lock);
2358 if (flags & SLAB_PANIC)
2359 panic("Cannot create slabcache %s\n", name);
2360 else
2361 s = NULL;
2362 return s;
2363}
2364EXPORT_SYMBOL(kmem_cache_create);
2365
2366void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2367{
2368 void *x;
2369
77c5e2d0 2370 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2371 if (x)
2372 memset(x, 0, s->objsize);
2373 return x;
2374}
2375EXPORT_SYMBOL(kmem_cache_zalloc);
2376
2377#ifdef CONFIG_SMP
2378static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2379{
2380 struct list_head *h;
2381
2382 down_read(&slub_lock);
2383 list_for_each(h, &slab_caches) {
2384 struct kmem_cache *s =
2385 container_of(h, struct kmem_cache, list);
2386
2387 func(s, cpu);
2388 }
2389 up_read(&slub_lock);
2390}
2391
2392/*
672bba3a
CL
2393 * Use the cpu notifier to insure that the cpu slabs are flushed when
2394 * necessary.
81819f0f
CL
2395 */
2396static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2397 unsigned long action, void *hcpu)
2398{
2399 long cpu = (long)hcpu;
2400
2401 switch (action) {
2402 case CPU_UP_CANCELED:
2403 case CPU_DEAD:
2404 for_all_slabs(__flush_cpu_slab, cpu);
2405 break;
2406 default:
2407 break;
2408 }
2409 return NOTIFY_OK;
2410}
2411
2412static struct notifier_block __cpuinitdata slab_notifier =
2413 { &slab_cpuup_callback, NULL, 0 };
2414
2415#endif
2416
81819f0f
CL
2417#ifdef CONFIG_NUMA
2418
2419/*****************************************************************
2420 * Generic reaper used to support the page allocator
2421 * (the cpu slabs are reaped by a per slab workqueue).
2422 *
2423 * Maybe move this to the page allocator?
2424 ****************************************************************/
2425
2426static DEFINE_PER_CPU(unsigned long, reap_node);
2427
2428static void init_reap_node(int cpu)
2429{
2430 int node;
2431
2432 node = next_node(cpu_to_node(cpu), node_online_map);
2433 if (node == MAX_NUMNODES)
2434 node = first_node(node_online_map);
2435
2436 __get_cpu_var(reap_node) = node;
2437}
2438
2439static void next_reap_node(void)
2440{
2441 int node = __get_cpu_var(reap_node);
2442
2443 /*
2444 * Also drain per cpu pages on remote zones
2445 */
2446 if (node != numa_node_id())
2447 drain_node_pages(node);
2448
2449 node = next_node(node, node_online_map);
2450 if (unlikely(node >= MAX_NUMNODES))
2451 node = first_node(node_online_map);
2452 __get_cpu_var(reap_node) = node;
2453}
2454#else
2455#define init_reap_node(cpu) do { } while (0)
2456#define next_reap_node(void) do { } while (0)
2457#endif
2458
2459#define REAPTIMEOUT_CPUC (2*HZ)
2460
2461#ifdef CONFIG_SMP
2462static DEFINE_PER_CPU(struct delayed_work, reap_work);
2463
2464static void cache_reap(struct work_struct *unused)
2465{
2466 next_reap_node();
2467 refresh_cpu_vm_stats(smp_processor_id());
2468 schedule_delayed_work(&__get_cpu_var(reap_work),
2469 REAPTIMEOUT_CPUC);
2470}
2471
2472static void __devinit start_cpu_timer(int cpu)
2473{
2474 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2475
2476 /*
2477 * When this gets called from do_initcalls via cpucache_init(),
2478 * init_workqueues() has already run, so keventd will be setup
2479 * at that time.
2480 */
2481 if (keventd_up() && reap_work->work.func == NULL) {
2482 init_reap_node(cpu);
2483 INIT_DELAYED_WORK(reap_work, cache_reap);
2484 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2485 }
2486}
2487
2488static int __init cpucache_init(void)
2489{
2490 int cpu;
2491
2492 /*
2493 * Register the timers that drain pcp pages and update vm statistics
2494 */
2495 for_each_online_cpu(cpu)
2496 start_cpu_timer(cpu);
2497 return 0;
2498}
2499__initcall(cpucache_init);
2500#endif
2501
2502#ifdef SLUB_RESILIENCY_TEST
2503static unsigned long validate_slab_cache(struct kmem_cache *s);
2504
2505static void resiliency_test(void)
2506{
2507 u8 *p;
2508
2509 printk(KERN_ERR "SLUB resiliency testing\n");
2510 printk(KERN_ERR "-----------------------\n");
2511 printk(KERN_ERR "A. Corruption after allocation\n");
2512
2513 p = kzalloc(16, GFP_KERNEL);
2514 p[16] = 0x12;
2515 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2516 " 0x12->0x%p\n\n", p + 16);
2517
2518 validate_slab_cache(kmalloc_caches + 4);
2519
2520 /* Hmmm... The next two are dangerous */
2521 p = kzalloc(32, GFP_KERNEL);
2522 p[32 + sizeof(void *)] = 0x34;
2523 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2524 " 0x34 -> -0x%p\n", p);
2525 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2526
2527 validate_slab_cache(kmalloc_caches + 5);
2528 p = kzalloc(64, GFP_KERNEL);
2529 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2530 *p = 0x56;
2531 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2532 p);
2533 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2534 validate_slab_cache(kmalloc_caches + 6);
2535
2536 printk(KERN_ERR "\nB. Corruption after free\n");
2537 p = kzalloc(128, GFP_KERNEL);
2538 kfree(p);
2539 *p = 0x78;
2540 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2541 validate_slab_cache(kmalloc_caches + 7);
2542
2543 p = kzalloc(256, GFP_KERNEL);
2544 kfree(p);
2545 p[50] = 0x9a;
2546 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2547 validate_slab_cache(kmalloc_caches + 8);
2548
2549 p = kzalloc(512, GFP_KERNEL);
2550 kfree(p);
2551 p[512] = 0xab;
2552 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2553 validate_slab_cache(kmalloc_caches + 9);
2554}
2555#else
2556static void resiliency_test(void) {};
2557#endif
2558
81819f0f
CL
2559void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2560{
2561 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2562
2563 if (!s)
2564 return NULL;
2565
77c5e2d0 2566 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2567}
2568
2569void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2570 int node, void *caller)
2571{
2572 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2573
2574 if (!s)
2575 return NULL;
2576
77c5e2d0 2577 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2578}
2579
2580#ifdef CONFIG_SYSFS
2581
53e15af0
CL
2582static int validate_slab(struct kmem_cache *s, struct page *page)
2583{
2584 void *p;
2585 void *addr = page_address(page);
2586 unsigned long map[BITS_TO_LONGS(s->objects)];
2587
2588 if (!check_slab(s, page) ||
2589 !on_freelist(s, page, NULL))
2590 return 0;
2591
2592 /* Now we know that a valid freelist exists */
2593 bitmap_zero(map, s->objects);
2594
2595 for(p = page->freelist; p; p = get_freepointer(s, p)) {
2596 set_bit((p - addr) / s->size, map);
2597 if (!check_object(s, page, p, 0))
2598 return 0;
2599 }
2600
2601 for(p = addr; p < addr + s->objects * s->size; p += s->size)
2602 if (!test_bit((p - addr) / s->size, map))
2603 if (!check_object(s, page, p, 1))
2604 return 0;
2605 return 1;
2606}
2607
2608static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2609{
2610 if (slab_trylock(page)) {
2611 validate_slab(s, page);
2612 slab_unlock(page);
2613 } else
2614 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2615 s->name, page);
2616
2617 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2618 if (!PageError(page))
2619 printk(KERN_ERR "SLUB %s: PageError not set "
2620 "on slab 0x%p\n", s->name, page);
2621 } else {
2622 if (PageError(page))
2623 printk(KERN_ERR "SLUB %s: PageError set on "
2624 "slab 0x%p\n", s->name, page);
2625 }
2626}
2627
2628static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2629{
2630 unsigned long count = 0;
2631 struct page *page;
2632 unsigned long flags;
2633
2634 spin_lock_irqsave(&n->list_lock, flags);
2635
2636 list_for_each_entry(page, &n->partial, lru) {
2637 validate_slab_slab(s, page);
2638 count++;
2639 }
2640 if (count != n->nr_partial)
2641 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2642 "counter=%ld\n", s->name, count, n->nr_partial);
2643
2644 if (!(s->flags & SLAB_STORE_USER))
2645 goto out;
2646
2647 list_for_each_entry(page, &n->full, lru) {
2648 validate_slab_slab(s, page);
2649 count++;
2650 }
2651 if (count != atomic_long_read(&n->nr_slabs))
2652 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2653 "counter=%ld\n", s->name, count,
2654 atomic_long_read(&n->nr_slabs));
2655
2656out:
2657 spin_unlock_irqrestore(&n->list_lock, flags);
2658 return count;
2659}
2660
2661static unsigned long validate_slab_cache(struct kmem_cache *s)
2662{
2663 int node;
2664 unsigned long count = 0;
2665
2666 flush_all(s);
2667 for_each_online_node(node) {
2668 struct kmem_cache_node *n = get_node(s, node);
2669
2670 count += validate_slab_node(s, n);
2671 }
2672 return count;
2673}
2674
88a420e4 2675/*
672bba3a 2676 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2677 * and freed.
2678 */
2679
2680struct location {
2681 unsigned long count;
2682 void *addr;
2683};
2684
2685struct loc_track {
2686 unsigned long max;
2687 unsigned long count;
2688 struct location *loc;
2689};
2690
2691static void free_loc_track(struct loc_track *t)
2692{
2693 if (t->max)
2694 free_pages((unsigned long)t->loc,
2695 get_order(sizeof(struct location) * t->max));
2696}
2697
2698static int alloc_loc_track(struct loc_track *t, unsigned long max)
2699{
2700 struct location *l;
2701 int order;
2702
2703 if (!max)
2704 max = PAGE_SIZE / sizeof(struct location);
2705
2706 order = get_order(sizeof(struct location) * max);
2707
2708 l = (void *)__get_free_pages(GFP_KERNEL, order);
2709
2710 if (!l)
2711 return 0;
2712
2713 if (t->count) {
2714 memcpy(l, t->loc, sizeof(struct location) * t->count);
2715 free_loc_track(t);
2716 }
2717 t->max = max;
2718 t->loc = l;
2719 return 1;
2720}
2721
2722static int add_location(struct loc_track *t, struct kmem_cache *s,
2723 void *addr)
2724{
2725 long start, end, pos;
2726 struct location *l;
2727 void *caddr;
2728
2729 start = -1;
2730 end = t->count;
2731
2732 for ( ; ; ) {
2733 pos = start + (end - start + 1) / 2;
2734
2735 /*
2736 * There is nothing at "end". If we end up there
2737 * we need to add something to before end.
2738 */
2739 if (pos == end)
2740 break;
2741
2742 caddr = t->loc[pos].addr;
2743 if (addr == caddr) {
2744 t->loc[pos].count++;
2745 return 1;
2746 }
2747
2748 if (addr < caddr)
2749 end = pos;
2750 else
2751 start = pos;
2752 }
2753
2754 /*
672bba3a 2755 * Not found. Insert new tracking element.
88a420e4
CL
2756 */
2757 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2758 return 0;
2759
2760 l = t->loc + pos;
2761 if (pos < t->count)
2762 memmove(l + 1, l,
2763 (t->count - pos) * sizeof(struct location));
2764 t->count++;
2765 l->count = 1;
2766 l->addr = addr;
2767 return 1;
2768}
2769
2770static void process_slab(struct loc_track *t, struct kmem_cache *s,
2771 struct page *page, enum track_item alloc)
2772{
2773 void *addr = page_address(page);
2774 unsigned long map[BITS_TO_LONGS(s->objects)];
2775 void *p;
2776
2777 bitmap_zero(map, s->objects);
2778 for (p = page->freelist; p; p = get_freepointer(s, p))
2779 set_bit((p - addr) / s->size, map);
2780
2781 for (p = addr; p < addr + s->objects * s->size; p += s->size)
2782 if (!test_bit((p - addr) / s->size, map)) {
2783 void *addr = get_track(s, p, alloc)->addr;
2784
2785 add_location(t, s, addr);
2786 }
2787}
2788
2789static int list_locations(struct kmem_cache *s, char *buf,
2790 enum track_item alloc)
2791{
2792 int n = 0;
2793 unsigned long i;
2794 struct loc_track t;
2795 int node;
2796
2797 t.count = 0;
2798 t.max = 0;
2799
2800 /* Push back cpu slabs */
2801 flush_all(s);
2802
2803 for_each_online_node(node) {
2804 struct kmem_cache_node *n = get_node(s, node);
2805 unsigned long flags;
2806 struct page *page;
2807
2808 if (!atomic_read(&n->nr_slabs))
2809 continue;
2810
2811 spin_lock_irqsave(&n->list_lock, flags);
2812 list_for_each_entry(page, &n->partial, lru)
2813 process_slab(&t, s, page, alloc);
2814 list_for_each_entry(page, &n->full, lru)
2815 process_slab(&t, s, page, alloc);
2816 spin_unlock_irqrestore(&n->list_lock, flags);
2817 }
2818
2819 for (i = 0; i < t.count; i++) {
2820 void *addr = t.loc[i].addr;
2821
2822 if (n > PAGE_SIZE - 100)
2823 break;
2824 n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2825 if (addr)
2826 n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2827 else
2828 n += sprintf(buf + n, "<not-available>");
2829 n += sprintf(buf + n, "\n");
2830 }
2831
2832 free_loc_track(&t);
2833 if (!t.count)
2834 n += sprintf(buf, "No data\n");
2835 return n;
2836}
2837
81819f0f
CL
2838static unsigned long count_partial(struct kmem_cache_node *n)
2839{
2840 unsigned long flags;
2841 unsigned long x = 0;
2842 struct page *page;
2843
2844 spin_lock_irqsave(&n->list_lock, flags);
2845 list_for_each_entry(page, &n->partial, lru)
2846 x += page->inuse;
2847 spin_unlock_irqrestore(&n->list_lock, flags);
2848 return x;
2849}
2850
2851enum slab_stat_type {
2852 SL_FULL,
2853 SL_PARTIAL,
2854 SL_CPU,
2855 SL_OBJECTS
2856};
2857
2858#define SO_FULL (1 << SL_FULL)
2859#define SO_PARTIAL (1 << SL_PARTIAL)
2860#define SO_CPU (1 << SL_CPU)
2861#define SO_OBJECTS (1 << SL_OBJECTS)
2862
2863static unsigned long slab_objects(struct kmem_cache *s,
2864 char *buf, unsigned long flags)
2865{
2866 unsigned long total = 0;
2867 int cpu;
2868 int node;
2869 int x;
2870 unsigned long *nodes;
2871 unsigned long *per_cpu;
2872
2873 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2874 per_cpu = nodes + nr_node_ids;
2875
2876 for_each_possible_cpu(cpu) {
2877 struct page *page = s->cpu_slab[cpu];
2878 int node;
2879
2880 if (page) {
2881 node = page_to_nid(page);
2882 if (flags & SO_CPU) {
2883 int x = 0;
2884
2885 if (flags & SO_OBJECTS)
2886 x = page->inuse;
2887 else
2888 x = 1;
2889 total += x;
2890 nodes[node] += x;
2891 }
2892 per_cpu[node]++;
2893 }
2894 }
2895
2896 for_each_online_node(node) {
2897 struct kmem_cache_node *n = get_node(s, node);
2898
2899 if (flags & SO_PARTIAL) {
2900 if (flags & SO_OBJECTS)
2901 x = count_partial(n);
2902 else
2903 x = n->nr_partial;
2904 total += x;
2905 nodes[node] += x;
2906 }
2907
2908 if (flags & SO_FULL) {
2909 int full_slabs = atomic_read(&n->nr_slabs)
2910 - per_cpu[node]
2911 - n->nr_partial;
2912
2913 if (flags & SO_OBJECTS)
2914 x = full_slabs * s->objects;
2915 else
2916 x = full_slabs;
2917 total += x;
2918 nodes[node] += x;
2919 }
2920 }
2921
2922 x = sprintf(buf, "%lu", total);
2923#ifdef CONFIG_NUMA
2924 for_each_online_node(node)
2925 if (nodes[node])
2926 x += sprintf(buf + x, " N%d=%lu",
2927 node, nodes[node]);
2928#endif
2929 kfree(nodes);
2930 return x + sprintf(buf + x, "\n");
2931}
2932
2933static int any_slab_objects(struct kmem_cache *s)
2934{
2935 int node;
2936 int cpu;
2937
2938 for_each_possible_cpu(cpu)
2939 if (s->cpu_slab[cpu])
2940 return 1;
2941
2942 for_each_node(node) {
2943 struct kmem_cache_node *n = get_node(s, node);
2944
2945 if (n->nr_partial || atomic_read(&n->nr_slabs))
2946 return 1;
2947 }
2948 return 0;
2949}
2950
2951#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2952#define to_slab(n) container_of(n, struct kmem_cache, kobj);
2953
2954struct slab_attribute {
2955 struct attribute attr;
2956 ssize_t (*show)(struct kmem_cache *s, char *buf);
2957 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2958};
2959
2960#define SLAB_ATTR_RO(_name) \
2961 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2962
2963#define SLAB_ATTR(_name) \
2964 static struct slab_attribute _name##_attr = \
2965 __ATTR(_name, 0644, _name##_show, _name##_store)
2966
81819f0f
CL
2967static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
2968{
2969 return sprintf(buf, "%d\n", s->size);
2970}
2971SLAB_ATTR_RO(slab_size);
2972
2973static ssize_t align_show(struct kmem_cache *s, char *buf)
2974{
2975 return sprintf(buf, "%d\n", s->align);
2976}
2977SLAB_ATTR_RO(align);
2978
2979static ssize_t object_size_show(struct kmem_cache *s, char *buf)
2980{
2981 return sprintf(buf, "%d\n", s->objsize);
2982}
2983SLAB_ATTR_RO(object_size);
2984
2985static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
2986{
2987 return sprintf(buf, "%d\n", s->objects);
2988}
2989SLAB_ATTR_RO(objs_per_slab);
2990
2991static ssize_t order_show(struct kmem_cache *s, char *buf)
2992{
2993 return sprintf(buf, "%d\n", s->order);
2994}
2995SLAB_ATTR_RO(order);
2996
2997static ssize_t ctor_show(struct kmem_cache *s, char *buf)
2998{
2999 if (s->ctor) {
3000 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3001
3002 return n + sprintf(buf + n, "\n");
3003 }
3004 return 0;
3005}
3006SLAB_ATTR_RO(ctor);
3007
3008static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3009{
3010 if (s->dtor) {
3011 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3012
3013 return n + sprintf(buf + n, "\n");
3014 }
3015 return 0;
3016}
3017SLAB_ATTR_RO(dtor);
3018
3019static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3020{
3021 return sprintf(buf, "%d\n", s->refcount - 1);
3022}
3023SLAB_ATTR_RO(aliases);
3024
3025static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3026{
3027 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3028}
3029SLAB_ATTR_RO(slabs);
3030
3031static ssize_t partial_show(struct kmem_cache *s, char *buf)
3032{
3033 return slab_objects(s, buf, SO_PARTIAL);
3034}
3035SLAB_ATTR_RO(partial);
3036
3037static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3038{
3039 return slab_objects(s, buf, SO_CPU);
3040}
3041SLAB_ATTR_RO(cpu_slabs);
3042
3043static ssize_t objects_show(struct kmem_cache *s, char *buf)
3044{
3045 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3046}
3047SLAB_ATTR_RO(objects);
3048
3049static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3050{
3051 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3052}
3053
3054static ssize_t sanity_checks_store(struct kmem_cache *s,
3055 const char *buf, size_t length)
3056{
3057 s->flags &= ~SLAB_DEBUG_FREE;
3058 if (buf[0] == '1')
3059 s->flags |= SLAB_DEBUG_FREE;
3060 return length;
3061}
3062SLAB_ATTR(sanity_checks);
3063
3064static ssize_t trace_show(struct kmem_cache *s, char *buf)
3065{
3066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3067}
3068
3069static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3070 size_t length)
3071{
3072 s->flags &= ~SLAB_TRACE;
3073 if (buf[0] == '1')
3074 s->flags |= SLAB_TRACE;
3075 return length;
3076}
3077SLAB_ATTR(trace);
3078
3079static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3080{
3081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3082}
3083
3084static ssize_t reclaim_account_store(struct kmem_cache *s,
3085 const char *buf, size_t length)
3086{
3087 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3088 if (buf[0] == '1')
3089 s->flags |= SLAB_RECLAIM_ACCOUNT;
3090 return length;
3091}
3092SLAB_ATTR(reclaim_account);
3093
3094static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3095{
5af60839 3096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3097}
3098SLAB_ATTR_RO(hwcache_align);
3099
3100#ifdef CONFIG_ZONE_DMA
3101static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3102{
3103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3104}
3105SLAB_ATTR_RO(cache_dma);
3106#endif
3107
3108static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3109{
3110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3111}
3112SLAB_ATTR_RO(destroy_by_rcu);
3113
3114static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3115{
3116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3117}
3118
3119static ssize_t red_zone_store(struct kmem_cache *s,
3120 const char *buf, size_t length)
3121{
3122 if (any_slab_objects(s))
3123 return -EBUSY;
3124
3125 s->flags &= ~SLAB_RED_ZONE;
3126 if (buf[0] == '1')
3127 s->flags |= SLAB_RED_ZONE;
3128 calculate_sizes(s);
3129 return length;
3130}
3131SLAB_ATTR(red_zone);
3132
3133static ssize_t poison_show(struct kmem_cache *s, char *buf)
3134{
3135 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3136}
3137
3138static ssize_t poison_store(struct kmem_cache *s,
3139 const char *buf, size_t length)
3140{
3141 if (any_slab_objects(s))
3142 return -EBUSY;
3143
3144 s->flags &= ~SLAB_POISON;
3145 if (buf[0] == '1')
3146 s->flags |= SLAB_POISON;
3147 calculate_sizes(s);
3148 return length;
3149}
3150SLAB_ATTR(poison);
3151
3152static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3153{
3154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3155}
3156
3157static ssize_t store_user_store(struct kmem_cache *s,
3158 const char *buf, size_t length)
3159{
3160 if (any_slab_objects(s))
3161 return -EBUSY;
3162
3163 s->flags &= ~SLAB_STORE_USER;
3164 if (buf[0] == '1')
3165 s->flags |= SLAB_STORE_USER;
3166 calculate_sizes(s);
3167 return length;
3168}
3169SLAB_ATTR(store_user);
3170
53e15af0
CL
3171static ssize_t validate_show(struct kmem_cache *s, char *buf)
3172{
3173 return 0;
3174}
3175
3176static ssize_t validate_store(struct kmem_cache *s,
3177 const char *buf, size_t length)
3178{
3179 if (buf[0] == '1')
3180 validate_slab_cache(s);
3181 else
3182 return -EINVAL;
3183 return length;
3184}
3185SLAB_ATTR(validate);
3186
2086d26a
CL
3187static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3188{
3189 return 0;
3190}
3191
3192static ssize_t shrink_store(struct kmem_cache *s,
3193 const char *buf, size_t length)
3194{
3195 if (buf[0] == '1') {
3196 int rc = kmem_cache_shrink(s);
3197
3198 if (rc)
3199 return rc;
3200 } else
3201 return -EINVAL;
3202 return length;
3203}
3204SLAB_ATTR(shrink);
3205
88a420e4
CL
3206static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3207{
3208 if (!(s->flags & SLAB_STORE_USER))
3209 return -ENOSYS;
3210 return list_locations(s, buf, TRACK_ALLOC);
3211}
3212SLAB_ATTR_RO(alloc_calls);
3213
3214static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3215{
3216 if (!(s->flags & SLAB_STORE_USER))
3217 return -ENOSYS;
3218 return list_locations(s, buf, TRACK_FREE);
3219}
3220SLAB_ATTR_RO(free_calls);
3221
81819f0f
CL
3222#ifdef CONFIG_NUMA
3223static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3224{
3225 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3226}
3227
3228static ssize_t defrag_ratio_store(struct kmem_cache *s,
3229 const char *buf, size_t length)
3230{
3231 int n = simple_strtoul(buf, NULL, 10);
3232
3233 if (n < 100)
3234 s->defrag_ratio = n * 10;
3235 return length;
3236}
3237SLAB_ATTR(defrag_ratio);
3238#endif
3239
3240static struct attribute * slab_attrs[] = {
3241 &slab_size_attr.attr,
3242 &object_size_attr.attr,
3243 &objs_per_slab_attr.attr,
3244 &order_attr.attr,
3245 &objects_attr.attr,
3246 &slabs_attr.attr,
3247 &partial_attr.attr,
3248 &cpu_slabs_attr.attr,
3249 &ctor_attr.attr,
3250 &dtor_attr.attr,
3251 &aliases_attr.attr,
3252 &align_attr.attr,
3253 &sanity_checks_attr.attr,
3254 &trace_attr.attr,
3255 &hwcache_align_attr.attr,
3256 &reclaim_account_attr.attr,
3257 &destroy_by_rcu_attr.attr,
3258 &red_zone_attr.attr,
3259 &poison_attr.attr,
3260 &store_user_attr.attr,
53e15af0 3261 &validate_attr.attr,
2086d26a 3262 &shrink_attr.attr,
88a420e4
CL
3263 &alloc_calls_attr.attr,
3264 &free_calls_attr.attr,
81819f0f
CL
3265#ifdef CONFIG_ZONE_DMA
3266 &cache_dma_attr.attr,
3267#endif
3268#ifdef CONFIG_NUMA
3269 &defrag_ratio_attr.attr,
3270#endif
3271 NULL
3272};
3273
3274static struct attribute_group slab_attr_group = {
3275 .attrs = slab_attrs,
3276};
3277
3278static ssize_t slab_attr_show(struct kobject *kobj,
3279 struct attribute *attr,
3280 char *buf)
3281{
3282 struct slab_attribute *attribute;
3283 struct kmem_cache *s;
3284 int err;
3285
3286 attribute = to_slab_attr(attr);
3287 s = to_slab(kobj);
3288
3289 if (!attribute->show)
3290 return -EIO;
3291
3292 err = attribute->show(s, buf);
3293
3294 return err;
3295}
3296
3297static ssize_t slab_attr_store(struct kobject *kobj,
3298 struct attribute *attr,
3299 const char *buf, size_t len)
3300{
3301 struct slab_attribute *attribute;
3302 struct kmem_cache *s;
3303 int err;
3304
3305 attribute = to_slab_attr(attr);
3306 s = to_slab(kobj);
3307
3308 if (!attribute->store)
3309 return -EIO;
3310
3311 err = attribute->store(s, buf, len);
3312
3313 return err;
3314}
3315
3316static struct sysfs_ops slab_sysfs_ops = {
3317 .show = slab_attr_show,
3318 .store = slab_attr_store,
3319};
3320
3321static struct kobj_type slab_ktype = {
3322 .sysfs_ops = &slab_sysfs_ops,
3323};
3324
3325static int uevent_filter(struct kset *kset, struct kobject *kobj)
3326{
3327 struct kobj_type *ktype = get_ktype(kobj);
3328
3329 if (ktype == &slab_ktype)
3330 return 1;
3331 return 0;
3332}
3333
3334static struct kset_uevent_ops slab_uevent_ops = {
3335 .filter = uevent_filter,
3336};
3337
3338decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3339
3340#define ID_STR_LENGTH 64
3341
3342/* Create a unique string id for a slab cache:
3343 * format
3344 * :[flags-]size:[memory address of kmemcache]
3345 */
3346static char *create_unique_id(struct kmem_cache *s)
3347{
3348 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3349 char *p = name;
3350
3351 BUG_ON(!name);
3352
3353 *p++ = ':';
3354 /*
3355 * First flags affecting slabcache operations. We will only
3356 * get here for aliasable slabs so we do not need to support
3357 * too many flags. The flags here must cover all flags that
3358 * are matched during merging to guarantee that the id is
3359 * unique.
3360 */
3361 if (s->flags & SLAB_CACHE_DMA)
3362 *p++ = 'd';
3363 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3364 *p++ = 'a';
3365 if (s->flags & SLAB_DEBUG_FREE)
3366 *p++ = 'F';
3367 if (p != name + 1)
3368 *p++ = '-';
3369 p += sprintf(p, "%07d", s->size);
3370 BUG_ON(p > name + ID_STR_LENGTH - 1);
3371 return name;
3372}
3373
3374static int sysfs_slab_add(struct kmem_cache *s)
3375{
3376 int err;
3377 const char *name;
3378 int unmergeable;
3379
3380 if (slab_state < SYSFS)
3381 /* Defer until later */
3382 return 0;
3383
3384 unmergeable = slab_unmergeable(s);
3385 if (unmergeable) {
3386 /*
3387 * Slabcache can never be merged so we can use the name proper.
3388 * This is typically the case for debug situations. In that
3389 * case we can catch duplicate names easily.
3390 */
0f9008ef 3391 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3392 name = s->name;
3393 } else {
3394 /*
3395 * Create a unique name for the slab as a target
3396 * for the symlinks.
3397 */
3398 name = create_unique_id(s);
3399 }
3400
3401 kobj_set_kset_s(s, slab_subsys);
3402 kobject_set_name(&s->kobj, name);
3403 kobject_init(&s->kobj);
3404 err = kobject_add(&s->kobj);
3405 if (err)
3406 return err;
3407
3408 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3409 if (err)
3410 return err;
3411 kobject_uevent(&s->kobj, KOBJ_ADD);
3412 if (!unmergeable) {
3413 /* Setup first alias */
3414 sysfs_slab_alias(s, s->name);
3415 kfree(name);
3416 }
3417 return 0;
3418}
3419
3420static void sysfs_slab_remove(struct kmem_cache *s)
3421{
3422 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3423 kobject_del(&s->kobj);
3424}
3425
3426/*
3427 * Need to buffer aliases during bootup until sysfs becomes
3428 * available lest we loose that information.
3429 */
3430struct saved_alias {
3431 struct kmem_cache *s;
3432 const char *name;
3433 struct saved_alias *next;
3434};
3435
3436struct saved_alias *alias_list;
3437
3438static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3439{
3440 struct saved_alias *al;
3441
3442 if (slab_state == SYSFS) {
3443 /*
3444 * If we have a leftover link then remove it.
3445 */
0f9008ef
LT
3446 sysfs_remove_link(&slab_subsys.kobj, name);
3447 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3448 &s->kobj, name);
3449 }
3450
3451 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3452 if (!al)
3453 return -ENOMEM;
3454
3455 al->s = s;
3456 al->name = name;
3457 al->next = alias_list;
3458 alias_list = al;
3459 return 0;
3460}
3461
3462static int __init slab_sysfs_init(void)
3463{
26a7bd03 3464 struct list_head *h;
81819f0f
CL
3465 int err;
3466
3467 err = subsystem_register(&slab_subsys);
3468 if (err) {
3469 printk(KERN_ERR "Cannot register slab subsystem.\n");
3470 return -ENOSYS;
3471 }
3472
26a7bd03
CL
3473 slab_state = SYSFS;
3474
3475 list_for_each(h, &slab_caches) {
3476 struct kmem_cache *s =
3477 container_of(h, struct kmem_cache, list);
3478
3479 err = sysfs_slab_add(s);
3480 BUG_ON(err);
3481 }
81819f0f
CL
3482
3483 while (alias_list) {
3484 struct saved_alias *al = alias_list;
3485
3486 alias_list = alias_list->next;
3487 err = sysfs_slab_alias(al->s, al->name);
3488 BUG_ON(err);
3489 kfree(al);
3490 }
3491
3492 resiliency_test();
3493 return 0;
3494}
3495
3496__initcall(slab_sysfs_init);
81819f0f 3497#endif