]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
SLUB: add support for dynamic cacheline size determination
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list.
70 * There is no list for full slabs. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * Otherwise there is no need to track full slabs unless we have to
73 * track full slabs for debugging purposes.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
90/*
91 * Issues still to be resolved:
92 *
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
95 * enough frequent updates. There are 16 pointers in a cacheline.so at
96 * max 16 cpus could compete. Likely okay.
97 *
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
99 *
81819f0f
CL
100 * - Variable sizing of the per node arrays
101 */
102
103/* Enable to test recovery from slab corruption on boot */
104#undef SLUB_RESILIENCY_TEST
105
106#if PAGE_SHIFT <= 12
107
108/*
109 * Small page size. Make sure that we do not fragment memory
110 */
111#define DEFAULT_MAX_ORDER 1
112#define DEFAULT_MIN_OBJECTS 4
113
114#else
115
116/*
117 * Large page machines are customarily able to handle larger
118 * page orders.
119 */
120#define DEFAULT_MAX_ORDER 2
121#define DEFAULT_MIN_OBJECTS 8
122
123#endif
124
2086d26a
CL
125/*
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 */
e95eed57
CL
129#define MIN_PARTIAL 2
130
2086d26a
CL
131/*
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
135 */
136#define MAX_PARTIAL 10
137
81819f0f
CL
138#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
140/*
141 * Set of flags that will prevent slab merging
142 */
143#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145
146#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_CACHE_DMA)
148
149#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 150#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 154#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
155#endif
156
157/* Internal SLUB flags */
158#define __OBJECT_POISON 0x80000000 /* Poison object */
159
65c02d4c
CL
160/* Not all arches define cache_line_size */
161#ifndef cache_line_size
162#define cache_line_size() L1_CACHE_BYTES
163#endif
164
81819f0f
CL
165static int kmem_size = sizeof(struct kmem_cache);
166
167#ifdef CONFIG_SMP
168static struct notifier_block slab_notifier;
169#endif
170
171static enum {
172 DOWN, /* No slab functionality available */
173 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
174 UP, /* Everything works */
175 SYSFS /* Sysfs up */
176} slab_state = DOWN;
177
178/* A list of all slab caches on the system */
179static DECLARE_RWSEM(slub_lock);
180LIST_HEAD(slab_caches);
181
182#ifdef CONFIG_SYSFS
183static int sysfs_slab_add(struct kmem_cache *);
184static int sysfs_slab_alias(struct kmem_cache *, const char *);
185static void sysfs_slab_remove(struct kmem_cache *);
186#else
187static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
188static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
189static void sysfs_slab_remove(struct kmem_cache *s) {}
190#endif
191
192/********************************************************************
193 * Core slab cache functions
194 *******************************************************************/
195
196int slab_is_available(void)
197{
198 return slab_state >= UP;
199}
200
201static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
202{
203#ifdef CONFIG_NUMA
204 return s->node[node];
205#else
206 return &s->local_node;
207#endif
208}
209
210/*
211 * Object debugging
212 */
213static void print_section(char *text, u8 *addr, unsigned int length)
214{
215 int i, offset;
216 int newline = 1;
217 char ascii[17];
218
219 ascii[16] = 0;
220
221 for (i = 0; i < length; i++) {
222 if (newline) {
223 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
224 newline = 0;
225 }
226 printk(" %02x", addr[i]);
227 offset = i % 16;
228 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
229 if (offset == 15) {
230 printk(" %s\n",ascii);
231 newline = 1;
232 }
233 }
234 if (!newline) {
235 i %= 16;
236 while (i < 16) {
237 printk(" ");
238 ascii[i] = ' ';
239 i++;
240 }
241 printk(" %s\n", ascii);
242 }
243}
244
245/*
246 * Slow version of get and set free pointer.
247 *
248 * This requires touching the cache lines of kmem_cache.
249 * The offset can also be obtained from the page. In that
250 * case it is in the cacheline that we already need to touch.
251 */
252static void *get_freepointer(struct kmem_cache *s, void *object)
253{
254 return *(void **)(object + s->offset);
255}
256
257static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
258{
259 *(void **)(object + s->offset) = fp;
260}
261
262/*
263 * Tracking user of a slab.
264 */
265struct track {
266 void *addr; /* Called from address */
267 int cpu; /* Was running on cpu */
268 int pid; /* Pid context */
269 unsigned long when; /* When did the operation occur */
270};
271
272enum track_item { TRACK_ALLOC, TRACK_FREE };
273
274static struct track *get_track(struct kmem_cache *s, void *object,
275 enum track_item alloc)
276{
277 struct track *p;
278
279 if (s->offset)
280 p = object + s->offset + sizeof(void *);
281 else
282 p = object + s->inuse;
283
284 return p + alloc;
285}
286
287static void set_track(struct kmem_cache *s, void *object,
288 enum track_item alloc, void *addr)
289{
290 struct track *p;
291
292 if (s->offset)
293 p = object + s->offset + sizeof(void *);
294 else
295 p = object + s->inuse;
296
297 p += alloc;
298 if (addr) {
299 p->addr = addr;
300 p->cpu = smp_processor_id();
301 p->pid = current ? current->pid : -1;
302 p->when = jiffies;
303 } else
304 memset(p, 0, sizeof(struct track));
305}
306
81819f0f
CL
307static void init_tracking(struct kmem_cache *s, void *object)
308{
309 if (s->flags & SLAB_STORE_USER) {
310 set_track(s, object, TRACK_FREE, NULL);
311 set_track(s, object, TRACK_ALLOC, NULL);
312 }
313}
314
315static void print_track(const char *s, struct track *t)
316{
317 if (!t->addr)
318 return;
319
320 printk(KERN_ERR "%s: ", s);
321 __print_symbol("%s", (unsigned long)t->addr);
322 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
323}
324
325static void print_trailer(struct kmem_cache *s, u8 *p)
326{
327 unsigned int off; /* Offset of last byte */
328
329 if (s->flags & SLAB_RED_ZONE)
330 print_section("Redzone", p + s->objsize,
331 s->inuse - s->objsize);
332
333 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
334 p + s->offset,
335 get_freepointer(s, p));
336
337 if (s->offset)
338 off = s->offset + sizeof(void *);
339 else
340 off = s->inuse;
341
342 if (s->flags & SLAB_STORE_USER) {
343 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
344 print_track("Last free ", get_track(s, p, TRACK_FREE));
345 off += 2 * sizeof(struct track);
346 }
347
348 if (off != s->size)
349 /* Beginning of the filler is the free pointer */
350 print_section("Filler", p + off, s->size - off);
351}
352
353static void object_err(struct kmem_cache *s, struct page *page,
354 u8 *object, char *reason)
355{
356 u8 *addr = page_address(page);
357
358 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
359 s->name, reason, object, page);
360 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
361 object - addr, page->flags, page->inuse, page->freelist);
362 if (object > addr + 16)
363 print_section("Bytes b4", object - 16, 16);
364 print_section("Object", object, min(s->objsize, 128));
365 print_trailer(s, object);
366 dump_stack();
367}
368
369static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
370{
371 va_list args;
372 char buf[100];
373
374 va_start(args, reason);
375 vsnprintf(buf, sizeof(buf), reason, args);
376 va_end(args);
377 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
378 page);
379 dump_stack();
380}
381
382static void init_object(struct kmem_cache *s, void *object, int active)
383{
384 u8 *p = object;
385
386 if (s->flags & __OBJECT_POISON) {
387 memset(p, POISON_FREE, s->objsize - 1);
388 p[s->objsize -1] = POISON_END;
389 }
390
391 if (s->flags & SLAB_RED_ZONE)
392 memset(p + s->objsize,
393 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
394 s->inuse - s->objsize);
395}
396
397static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
398{
399 while (bytes) {
400 if (*start != (u8)value)
401 return 0;
402 start++;
403 bytes--;
404 }
405 return 1;
406}
407
408
409static int check_valid_pointer(struct kmem_cache *s, struct page *page,
410 void *object)
411{
412 void *base;
413
414 if (!object)
415 return 1;
416
417 base = page_address(page);
418 if (object < base || object >= base + s->objects * s->size ||
419 (object - base) % s->size) {
420 return 0;
421 }
422
423 return 1;
424}
425
426/*
427 * Object layout:
428 *
429 * object address
430 * Bytes of the object to be managed.
431 * If the freepointer may overlay the object then the free
432 * pointer is the first word of the object.
433 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
434 * 0xa5 (POISON_END)
435 *
436 * object + s->objsize
437 * Padding to reach word boundary. This is also used for Redzoning.
438 * Padding is extended to word size if Redzoning is enabled
439 * and objsize == inuse.
440 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
441 * 0xcc (RED_ACTIVE) for objects in use.
442 *
443 * object + s->inuse
444 * A. Free pointer (if we cannot overwrite object on free)
445 * B. Tracking data for SLAB_STORE_USER
446 * C. Padding to reach required alignment boundary
447 * Padding is done using 0x5a (POISON_INUSE)
448 *
449 * object + s->size
450 *
451 * If slabcaches are merged then the objsize and inuse boundaries are to
452 * be ignored. And therefore no slab options that rely on these boundaries
453 * may be used with merged slabcaches.
454 */
455
456static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
457 void *from, void *to)
458{
70d71228 459 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
81819f0f
CL
460 s->name, message, data, from, to - 1);
461 memset(from, data, to - from);
462}
463
464static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
465{
466 unsigned long off = s->inuse; /* The end of info */
467
468 if (s->offset)
469 /* Freepointer is placed after the object. */
470 off += sizeof(void *);
471
472 if (s->flags & SLAB_STORE_USER)
473 /* We also have user information there */
474 off += 2 * sizeof(struct track);
475
476 if (s->size == off)
477 return 1;
478
479 if (check_bytes(p + off, POISON_INUSE, s->size - off))
480 return 1;
481
482 object_err(s, page, p, "Object padding check fails");
483
484 /*
485 * Restore padding
486 */
487 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
488 return 0;
489}
490
491static int slab_pad_check(struct kmem_cache *s, struct page *page)
492{
493 u8 *p;
494 int length, remainder;
495
496 if (!(s->flags & SLAB_POISON))
497 return 1;
498
499 p = page_address(page);
500 length = s->objects * s->size;
501 remainder = (PAGE_SIZE << s->order) - length;
502 if (!remainder)
503 return 1;
504
505 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
70d71228 506 slab_err(s, page, "Padding check failed");
81819f0f
CL
507 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
508 p + length + remainder);
509 return 0;
510 }
511 return 1;
512}
513
514static int check_object(struct kmem_cache *s, struct page *page,
515 void *object, int active)
516{
517 u8 *p = object;
518 u8 *endobject = object + s->objsize;
519
520 if (s->flags & SLAB_RED_ZONE) {
521 unsigned int red =
522 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
523
524 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
525 object_err(s, page, object,
526 active ? "Redzone Active" : "Redzone Inactive");
527 restore_bytes(s, "redzone", red,
528 endobject, object + s->inuse);
529 return 0;
530 }
531 } else {
532 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
533 !check_bytes(endobject, POISON_INUSE,
534 s->inuse - s->objsize)) {
535 object_err(s, page, p, "Alignment padding check fails");
536 /*
537 * Fix it so that there will not be another report.
538 *
539 * Hmmm... We may be corrupting an object that now expects
540 * to be longer than allowed.
541 */
542 restore_bytes(s, "alignment padding", POISON_INUSE,
543 endobject, object + s->inuse);
544 }
545 }
546
547 if (s->flags & SLAB_POISON) {
548 if (!active && (s->flags & __OBJECT_POISON) &&
549 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
550 p[s->objsize - 1] != POISON_END)) {
551
552 object_err(s, page, p, "Poison check failed");
553 restore_bytes(s, "Poison", POISON_FREE,
554 p, p + s->objsize -1);
555 restore_bytes(s, "Poison", POISON_END,
556 p + s->objsize - 1, p + s->objsize);
557 return 0;
558 }
559 /*
560 * check_pad_bytes cleans up on its own.
561 */
562 check_pad_bytes(s, page, p);
563 }
564
565 if (!s->offset && active)
566 /*
567 * Object and freepointer overlap. Cannot check
568 * freepointer while object is allocated.
569 */
570 return 1;
571
572 /* Check free pointer validity */
573 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
574 object_err(s, page, p, "Freepointer corrupt");
575 /*
576 * No choice but to zap it and thus loose the remainder
577 * of the free objects in this slab. May cause
578 * another error because the object count maybe
579 * wrong now.
580 */
581 set_freepointer(s, p, NULL);
582 return 0;
583 }
584 return 1;
585}
586
587static int check_slab(struct kmem_cache *s, struct page *page)
588{
589 VM_BUG_ON(!irqs_disabled());
590
591 if (!PageSlab(page)) {
70d71228
CL
592 slab_err(s, page, "Not a valid slab page flags=%lx "
593 "mapping=0x%p count=%d", page->flags, page->mapping,
81819f0f
CL
594 page_count(page));
595 return 0;
596 }
597 if (page->offset * sizeof(void *) != s->offset) {
70d71228
CL
598 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
599 "mapping=0x%p count=%d",
81819f0f 600 (unsigned long)(page->offset * sizeof(void *)),
81819f0f
CL
601 page->flags,
602 page->mapping,
603 page_count(page));
81819f0f
CL
604 return 0;
605 }
606 if (page->inuse > s->objects) {
70d71228
CL
607 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
608 "mapping=0x%p count=%d",
609 s->name, page->inuse, s->objects, page->flags,
81819f0f 610 page->mapping, page_count(page));
81819f0f
CL
611 return 0;
612 }
613 /* Slab_pad_check fixes things up after itself */
614 slab_pad_check(s, page);
615 return 1;
616}
617
618/*
619 * Determine if a certain object on a page is on the freelist and
620 * therefore free. Must hold the slab lock for cpu slabs to
621 * guarantee that the chains are consistent.
622 */
623static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
624{
625 int nr = 0;
626 void *fp = page->freelist;
627 void *object = NULL;
628
629 while (fp && nr <= s->objects) {
630 if (fp == search)
631 return 1;
632 if (!check_valid_pointer(s, page, fp)) {
633 if (object) {
634 object_err(s, page, object,
635 "Freechain corrupt");
636 set_freepointer(s, object, NULL);
637 break;
638 } else {
70d71228
CL
639 slab_err(s, page, "Freepointer 0x%p corrupt",
640 fp);
81819f0f
CL
641 page->freelist = NULL;
642 page->inuse = s->objects;
70d71228
CL
643 printk(KERN_ERR "@@@ SLUB %s: Freelist "
644 "cleared. Slab 0x%p\n",
645 s->name, page);
81819f0f
CL
646 return 0;
647 }
648 break;
649 }
650 object = fp;
651 fp = get_freepointer(s, object);
652 nr++;
653 }
654
655 if (page->inuse != s->objects - nr) {
70d71228
CL
656 slab_err(s, page, "Wrong object count. Counter is %d but "
657 "counted were %d", s, page, page->inuse,
658 s->objects - nr);
81819f0f 659 page->inuse = s->objects - nr;
70d71228
CL
660 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
661 "Slab @0x%p\n", s->name, page);
81819f0f
CL
662 }
663 return search == NULL;
664}
665
643b1138
CL
666/*
667 * Tracking of fully allocated slabs for debugging
668 */
e95eed57 669static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 670{
643b1138
CL
671 spin_lock(&n->list_lock);
672 list_add(&page->lru, &n->full);
673 spin_unlock(&n->list_lock);
674}
675
676static void remove_full(struct kmem_cache *s, struct page *page)
677{
678 struct kmem_cache_node *n;
679
680 if (!(s->flags & SLAB_STORE_USER))
681 return;
682
683 n = get_node(s, page_to_nid(page));
684
685 spin_lock(&n->list_lock);
686 list_del(&page->lru);
687 spin_unlock(&n->list_lock);
688}
689
81819f0f
CL
690static int alloc_object_checks(struct kmem_cache *s, struct page *page,
691 void *object)
692{
693 if (!check_slab(s, page))
694 goto bad;
695
696 if (object && !on_freelist(s, page, object)) {
70d71228
CL
697 slab_err(s, page, "Object 0x%p already allocated", object);
698 goto bad;
81819f0f
CL
699 }
700
701 if (!check_valid_pointer(s, page, object)) {
702 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 703 goto bad;
81819f0f
CL
704 }
705
706 if (!object)
707 return 1;
708
709 if (!check_object(s, page, object, 0))
710 goto bad;
81819f0f 711
81819f0f 712 return 1;
81819f0f
CL
713bad:
714 if (PageSlab(page)) {
715 /*
716 * If this is a slab page then lets do the best we can
717 * to avoid issues in the future. Marking all objects
718 * as used avoids touching the remainder.
719 */
720 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
721 s->name, page);
722 page->inuse = s->objects;
723 page->freelist = NULL;
724 /* Fix up fields that may be corrupted */
725 page->offset = s->offset / sizeof(void *);
726 }
727 return 0;
728}
729
730static int free_object_checks(struct kmem_cache *s, struct page *page,
731 void *object)
732{
733 if (!check_slab(s, page))
734 goto fail;
735
736 if (!check_valid_pointer(s, page, object)) {
70d71228 737 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
738 goto fail;
739 }
740
741 if (on_freelist(s, page, object)) {
70d71228 742 slab_err(s, page, "Object 0x%p already free", object);
81819f0f
CL
743 goto fail;
744 }
745
746 if (!check_object(s, page, object, 1))
747 return 0;
748
749 if (unlikely(s != page->slab)) {
750 if (!PageSlab(page))
70d71228
CL
751 slab_err(s, page, "Attempt to free object(0x%p) "
752 "outside of slab", object);
81819f0f 753 else
70d71228 754 if (!page->slab) {
81819f0f 755 printk(KERN_ERR
70d71228 756 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 757 object);
70d71228
CL
758 dump_stack();
759 }
81819f0f 760 else
70d71228
CL
761 slab_err(s, page, "object at 0x%p belongs "
762 "to slab %s", object, page->slab->name);
81819f0f
CL
763 goto fail;
764 }
81819f0f
CL
765 return 1;
766fail:
81819f0f
CL
767 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
768 s->name, page, object);
769 return 0;
770}
771
772/*
773 * Slab allocation and freeing
774 */
775static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
776{
777 struct page * page;
778 int pages = 1 << s->order;
779
780 if (s->order)
781 flags |= __GFP_COMP;
782
783 if (s->flags & SLAB_CACHE_DMA)
784 flags |= SLUB_DMA;
785
786 if (node == -1)
787 page = alloc_pages(flags, s->order);
788 else
789 page = alloc_pages_node(node, flags, s->order);
790
791 if (!page)
792 return NULL;
793
794 mod_zone_page_state(page_zone(page),
795 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
796 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
797 pages);
798
799 return page;
800}
801
802static void setup_object(struct kmem_cache *s, struct page *page,
803 void *object)
804{
805 if (PageError(page)) {
806 init_object(s, object, 0);
807 init_tracking(s, object);
808 }
809
4f104934
CL
810 if (unlikely(s->ctor))
811 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
81819f0f
CL
812}
813
814static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
815{
816 struct page *page;
817 struct kmem_cache_node *n;
818 void *start;
819 void *end;
820 void *last;
821 void *p;
822
81819f0f
CL
823 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
824
825 if (flags & __GFP_WAIT)
826 local_irq_enable();
827
828 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
829 if (!page)
830 goto out;
831
832 n = get_node(s, page_to_nid(page));
833 if (n)
834 atomic_long_inc(&n->nr_slabs);
835 page->offset = s->offset / sizeof(void *);
836 page->slab = s;
837 page->flags |= 1 << PG_slab;
838 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
839 SLAB_STORE_USER | SLAB_TRACE))
840 page->flags |= 1 << PG_error;
841
842 start = page_address(page);
843 end = start + s->objects * s->size;
844
845 if (unlikely(s->flags & SLAB_POISON))
846 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
847
848 last = start;
849 for (p = start + s->size; p < end; p += s->size) {
850 setup_object(s, page, last);
851 set_freepointer(s, last, p);
852 last = p;
853 }
854 setup_object(s, page, last);
855 set_freepointer(s, last, NULL);
856
857 page->freelist = start;
858 page->inuse = 0;
859out:
860 if (flags & __GFP_WAIT)
861 local_irq_disable();
862 return page;
863}
864
865static void __free_slab(struct kmem_cache *s, struct page *page)
866{
867 int pages = 1 << s->order;
868
869 if (unlikely(PageError(page) || s->dtor)) {
870 void *start = page_address(page);
871 void *end = start + (pages << PAGE_SHIFT);
872 void *p;
873
874 slab_pad_check(s, page);
875 for (p = start; p <= end - s->size; p += s->size) {
876 if (s->dtor)
877 s->dtor(p, s, 0);
878 check_object(s, page, p, 0);
879 }
880 }
881
882 mod_zone_page_state(page_zone(page),
883 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
884 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
885 - pages);
886
887 page->mapping = NULL;
888 __free_pages(page, s->order);
889}
890
891static void rcu_free_slab(struct rcu_head *h)
892{
893 struct page *page;
894
895 page = container_of((struct list_head *)h, struct page, lru);
896 __free_slab(page->slab, page);
897}
898
899static void free_slab(struct kmem_cache *s, struct page *page)
900{
901 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
902 /*
903 * RCU free overloads the RCU head over the LRU
904 */
905 struct rcu_head *head = (void *)&page->lru;
906
907 call_rcu(head, rcu_free_slab);
908 } else
909 __free_slab(s, page);
910}
911
912static void discard_slab(struct kmem_cache *s, struct page *page)
913{
914 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
915
916 atomic_long_dec(&n->nr_slabs);
917 reset_page_mapcount(page);
918 page->flags &= ~(1 << PG_slab | 1 << PG_error);
919 free_slab(s, page);
920}
921
922/*
923 * Per slab locking using the pagelock
924 */
925static __always_inline void slab_lock(struct page *page)
926{
927 bit_spin_lock(PG_locked, &page->flags);
928}
929
930static __always_inline void slab_unlock(struct page *page)
931{
932 bit_spin_unlock(PG_locked, &page->flags);
933}
934
935static __always_inline int slab_trylock(struct page *page)
936{
937 int rc = 1;
938
939 rc = bit_spin_trylock(PG_locked, &page->flags);
940 return rc;
941}
942
943/*
944 * Management of partially allocated slabs
945 */
e95eed57 946static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 947{
e95eed57
CL
948 spin_lock(&n->list_lock);
949 n->nr_partial++;
950 list_add_tail(&page->lru, &n->partial);
951 spin_unlock(&n->list_lock);
952}
81819f0f 953
e95eed57
CL
954static void add_partial(struct kmem_cache_node *n, struct page *page)
955{
81819f0f
CL
956 spin_lock(&n->list_lock);
957 n->nr_partial++;
958 list_add(&page->lru, &n->partial);
959 spin_unlock(&n->list_lock);
960}
961
962static void remove_partial(struct kmem_cache *s,
963 struct page *page)
964{
965 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
966
967 spin_lock(&n->list_lock);
968 list_del(&page->lru);
969 n->nr_partial--;
970 spin_unlock(&n->list_lock);
971}
972
973/*
974 * Lock page and remove it from the partial list
975 *
976 * Must hold list_lock
977 */
978static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
979{
980 if (slab_trylock(page)) {
981 list_del(&page->lru);
982 n->nr_partial--;
983 return 1;
984 }
985 return 0;
986}
987
988/*
989 * Try to get a partial slab from a specific node
990 */
991static struct page *get_partial_node(struct kmem_cache_node *n)
992{
993 struct page *page;
994
995 /*
996 * Racy check. If we mistakenly see no partial slabs then we
997 * just allocate an empty slab. If we mistakenly try to get a
998 * partial slab then get_partials() will return NULL.
999 */
1000 if (!n || !n->nr_partial)
1001 return NULL;
1002
1003 spin_lock(&n->list_lock);
1004 list_for_each_entry(page, &n->partial, lru)
1005 if (lock_and_del_slab(n, page))
1006 goto out;
1007 page = NULL;
1008out:
1009 spin_unlock(&n->list_lock);
1010 return page;
1011}
1012
1013/*
1014 * Get a page from somewhere. Search in increasing NUMA
1015 * distances.
1016 */
1017static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1018{
1019#ifdef CONFIG_NUMA
1020 struct zonelist *zonelist;
1021 struct zone **z;
1022 struct page *page;
1023
1024 /*
1025 * The defrag ratio allows to configure the tradeoffs between
1026 * inter node defragmentation and node local allocations.
1027 * A lower defrag_ratio increases the tendency to do local
1028 * allocations instead of scanning throught the partial
1029 * lists on other nodes.
1030 *
1031 * If defrag_ratio is set to 0 then kmalloc() always
1032 * returns node local objects. If its higher then kmalloc()
1033 * may return off node objects in order to avoid fragmentation.
1034 *
1035 * A higher ratio means slabs may be taken from other nodes
1036 * thus reducing the number of partial slabs on those nodes.
1037 *
1038 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1039 * defrag_ratio = 1000) then every (well almost) allocation
1040 * will first attempt to defrag slab caches on other nodes. This
1041 * means scanning over all nodes to look for partial slabs which
1042 * may be a bit expensive to do on every slab allocation.
1043 */
1044 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1045 return NULL;
1046
1047 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1048 ->node_zonelists[gfp_zone(flags)];
1049 for (z = zonelist->zones; *z; z++) {
1050 struct kmem_cache_node *n;
1051
1052 n = get_node(s, zone_to_nid(*z));
1053
1054 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1055 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1056 page = get_partial_node(n);
1057 if (page)
1058 return page;
1059 }
1060 }
1061#endif
1062 return NULL;
1063}
1064
1065/*
1066 * Get a partial page, lock it and return it.
1067 */
1068static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1069{
1070 struct page *page;
1071 int searchnode = (node == -1) ? numa_node_id() : node;
1072
1073 page = get_partial_node(get_node(s, searchnode));
1074 if (page || (flags & __GFP_THISNODE))
1075 return page;
1076
1077 return get_any_partial(s, flags);
1078}
1079
1080/*
1081 * Move a page back to the lists.
1082 *
1083 * Must be called with the slab lock held.
1084 *
1085 * On exit the slab lock will have been dropped.
1086 */
1087static void putback_slab(struct kmem_cache *s, struct page *page)
1088{
e95eed57
CL
1089 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1090
81819f0f 1091 if (page->inuse) {
e95eed57 1092
81819f0f 1093 if (page->freelist)
e95eed57
CL
1094 add_partial(n, page);
1095 else if (PageError(page) && (s->flags & SLAB_STORE_USER))
1096 add_full(n, page);
81819f0f 1097 slab_unlock(page);
e95eed57 1098
81819f0f 1099 } else {
e95eed57
CL
1100 if (n->nr_partial < MIN_PARTIAL) {
1101 /*
1102 * Adding an empty page to the partial slabs in order
1103 * to avoid page allocator overhead. This page needs to
1104 * come after all the others that are not fully empty
1105 * in order to make sure that we do maximum
1106 * defragmentation.
1107 */
1108 add_partial_tail(n, page);
1109 slab_unlock(page);
1110 } else {
1111 slab_unlock(page);
1112 discard_slab(s, page);
1113 }
81819f0f
CL
1114 }
1115}
1116
1117/*
1118 * Remove the cpu slab
1119 */
1120static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1121{
1122 s->cpu_slab[cpu] = NULL;
1123 ClearPageActive(page);
1124
1125 putback_slab(s, page);
1126}
1127
1128static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1129{
1130 slab_lock(page);
1131 deactivate_slab(s, page, cpu);
1132}
1133
1134/*
1135 * Flush cpu slab.
1136 * Called from IPI handler with interrupts disabled.
1137 */
1138static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1139{
1140 struct page *page = s->cpu_slab[cpu];
1141
1142 if (likely(page))
1143 flush_slab(s, page, cpu);
1144}
1145
1146static void flush_cpu_slab(void *d)
1147{
1148 struct kmem_cache *s = d;
1149 int cpu = smp_processor_id();
1150
1151 __flush_cpu_slab(s, cpu);
1152}
1153
1154static void flush_all(struct kmem_cache *s)
1155{
1156#ifdef CONFIG_SMP
1157 on_each_cpu(flush_cpu_slab, s, 1, 1);
1158#else
1159 unsigned long flags;
1160
1161 local_irq_save(flags);
1162 flush_cpu_slab(s);
1163 local_irq_restore(flags);
1164#endif
1165}
1166
1167/*
1168 * slab_alloc is optimized to only modify two cachelines on the fast path
1169 * (aside from the stack):
1170 *
1171 * 1. The page struct
1172 * 2. The first cacheline of the object to be allocated.
1173 *
1174 * The only cache lines that are read (apart from code) is the
1175 * per cpu array in the kmem_cache struct.
1176 *
1177 * Fastpath is not possible if we need to get a new slab or have
1178 * debugging enabled (which means all slabs are marked with PageError)
1179 */
77c5e2d0
CL
1180static void *slab_alloc(struct kmem_cache *s,
1181 gfp_t gfpflags, int node, void *addr)
81819f0f
CL
1182{
1183 struct page *page;
1184 void **object;
1185 unsigned long flags;
1186 int cpu;
1187
1188 local_irq_save(flags);
1189 cpu = smp_processor_id();
1190 page = s->cpu_slab[cpu];
1191 if (!page)
1192 goto new_slab;
1193
1194 slab_lock(page);
1195 if (unlikely(node != -1 && page_to_nid(page) != node))
1196 goto another_slab;
1197redo:
1198 object = page->freelist;
1199 if (unlikely(!object))
1200 goto another_slab;
1201 if (unlikely(PageError(page)))
1202 goto debug;
1203
1204have_object:
1205 page->inuse++;
1206 page->freelist = object[page->offset];
1207 slab_unlock(page);
1208 local_irq_restore(flags);
1209 return object;
1210
1211another_slab:
1212 deactivate_slab(s, page, cpu);
1213
1214new_slab:
1215 page = get_partial(s, gfpflags, node);
1216 if (likely(page)) {
1217have_slab:
1218 s->cpu_slab[cpu] = page;
1219 SetPageActive(page);
1220 goto redo;
1221 }
1222
1223 page = new_slab(s, gfpflags, node);
1224 if (page) {
1225 cpu = smp_processor_id();
1226 if (s->cpu_slab[cpu]) {
1227 /*
1228 * Someone else populated the cpu_slab while we enabled
1229 * interrupts, or we have got scheduled on another cpu.
1230 * The page may not be on the requested node.
1231 */
1232 if (node == -1 ||
1233 page_to_nid(s->cpu_slab[cpu]) == node) {
1234 /*
1235 * Current cpuslab is acceptable and we
1236 * want the current one since its cache hot
1237 */
1238 discard_slab(s, page);
1239 page = s->cpu_slab[cpu];
1240 slab_lock(page);
1241 goto redo;
1242 }
1243 /* Dump the current slab */
1244 flush_slab(s, s->cpu_slab[cpu], cpu);
1245 }
1246 slab_lock(page);
1247 goto have_slab;
1248 }
1249 local_irq_restore(flags);
1250 return NULL;
1251debug:
1252 if (!alloc_object_checks(s, page, object))
1253 goto another_slab;
1254 if (s->flags & SLAB_STORE_USER)
77c5e2d0 1255 set_track(s, object, TRACK_ALLOC, addr);
70d71228
CL
1256 if (s->flags & SLAB_TRACE) {
1257 printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
1258 s->name, object, page->inuse,
1259 page->freelist);
1260 dump_stack();
1261 }
1262 init_object(s, object, 1);
81819f0f
CL
1263 goto have_object;
1264}
1265
1266void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1267{
77c5e2d0 1268 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1269}
1270EXPORT_SYMBOL(kmem_cache_alloc);
1271
1272#ifdef CONFIG_NUMA
1273void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1274{
77c5e2d0 1275 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1276}
1277EXPORT_SYMBOL(kmem_cache_alloc_node);
1278#endif
1279
1280/*
1281 * The fastpath only writes the cacheline of the page struct and the first
1282 * cacheline of the object.
1283 *
1284 * No special cachelines need to be read
1285 */
77c5e2d0
CL
1286static void slab_free(struct kmem_cache *s, struct page *page,
1287 void *x, void *addr)
81819f0f
CL
1288{
1289 void *prior;
1290 void **object = (void *)x;
1291 unsigned long flags;
1292
1293 local_irq_save(flags);
1294 slab_lock(page);
1295
1296 if (unlikely(PageError(page)))
1297 goto debug;
1298checks_ok:
1299 prior = object[page->offset] = page->freelist;
1300 page->freelist = object;
1301 page->inuse--;
1302
1303 if (unlikely(PageActive(page)))
1304 /*
1305 * Cpu slabs are never on partial lists and are
1306 * never freed.
1307 */
1308 goto out_unlock;
1309
1310 if (unlikely(!page->inuse))
1311 goto slab_empty;
1312
1313 /*
1314 * Objects left in the slab. If it
1315 * was not on the partial list before
1316 * then add it.
1317 */
1318 if (unlikely(!prior))
e95eed57 1319 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1320
1321out_unlock:
1322 slab_unlock(page);
1323 local_irq_restore(flags);
1324 return;
1325
1326slab_empty:
1327 if (prior)
1328 /*
643b1138 1329 * Slab on the partial list.
81819f0f
CL
1330 */
1331 remove_partial(s, page);
1332
1333 slab_unlock(page);
1334 discard_slab(s, page);
1335 local_irq_restore(flags);
1336 return;
1337
1338debug:
77c5e2d0
CL
1339 if (!free_object_checks(s, page, x))
1340 goto out_unlock;
643b1138
CL
1341 if (!PageActive(page) && !page->freelist)
1342 remove_full(s, page);
77c5e2d0
CL
1343 if (s->flags & SLAB_STORE_USER)
1344 set_track(s, x, TRACK_FREE, addr);
70d71228
CL
1345 if (s->flags & SLAB_TRACE) {
1346 printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
1347 s->name, object, page->inuse,
1348 page->freelist);
1349 print_section("Object", (void *)object, s->objsize);
1350 dump_stack();
1351 }
1352 init_object(s, object, 0);
77c5e2d0 1353 goto checks_ok;
81819f0f
CL
1354}
1355
1356void kmem_cache_free(struct kmem_cache *s, void *x)
1357{
77c5e2d0 1358 struct page *page;
81819f0f 1359
b49af68f 1360 page = virt_to_head_page(x);
81819f0f 1361
77c5e2d0 1362 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1363}
1364EXPORT_SYMBOL(kmem_cache_free);
1365
1366/* Figure out on which slab object the object resides */
1367static struct page *get_object_page(const void *x)
1368{
b49af68f 1369 struct page *page = virt_to_head_page(x);
81819f0f
CL
1370
1371 if (!PageSlab(page))
1372 return NULL;
1373
1374 return page;
1375}
1376
1377/*
1378 * kmem_cache_open produces objects aligned at "size" and the first object
1379 * is placed at offset 0 in the slab (We have no metainformation on the
1380 * slab, all slabs are in essence "off slab").
1381 *
1382 * In order to get the desired alignment one just needs to align the
1383 * size.
1384 *
1385 * Notice that the allocation order determines the sizes of the per cpu
1386 * caches. Each processor has always one slab available for allocations.
1387 * Increasing the allocation order reduces the number of times that slabs
1388 * must be moved on and off the partial lists and therefore may influence
1389 * locking overhead.
1390 *
1391 * The offset is used to relocate the free list link in each object. It is
1392 * therefore possible to move the free list link behind the object. This
1393 * is necessary for RCU to work properly and also useful for debugging.
1394 */
1395
1396/*
1397 * Mininum / Maximum order of slab pages. This influences locking overhead
1398 * and slab fragmentation. A higher order reduces the number of partial slabs
1399 * and increases the number of allocations possible without having to
1400 * take the list_lock.
1401 */
1402static int slub_min_order;
1403static int slub_max_order = DEFAULT_MAX_ORDER;
1404
1405/*
1406 * Minimum number of objects per slab. This is necessary in order to
1407 * reduce locking overhead. Similar to the queue size in SLAB.
1408 */
1409static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1410
1411/*
1412 * Merge control. If this is set then no merging of slab caches will occur.
1413 */
1414static int slub_nomerge;
1415
1416/*
1417 * Debug settings:
1418 */
1419static int slub_debug;
1420
1421static char *slub_debug_slabs;
1422
1423/*
1424 * Calculate the order of allocation given an slab object size.
1425 *
1426 * The order of allocation has significant impact on other elements
1427 * of the system. Generally order 0 allocations should be preferred
1428 * since they do not cause fragmentation in the page allocator. Larger
1429 * objects may have problems with order 0 because there may be too much
1430 * space left unused in a slab. We go to a higher order if more than 1/8th
1431 * of the slab would be wasted.
1432 *
1433 * In order to reach satisfactory performance we must ensure that
1434 * a minimum number of objects is in one slab. Otherwise we may
1435 * generate too much activity on the partial lists. This is less a
1436 * concern for large slabs though. slub_max_order specifies the order
1437 * where we begin to stop considering the number of objects in a slab.
1438 *
1439 * Higher order allocations also allow the placement of more objects
1440 * in a slab and thereby reduce object handling overhead. If the user
1441 * has requested a higher mininum order then we start with that one
1442 * instead of zero.
1443 */
1444static int calculate_order(int size)
1445{
1446 int order;
1447 int rem;
1448
1449 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1450 order < MAX_ORDER; order++) {
1451 unsigned long slab_size = PAGE_SIZE << order;
1452
1453 if (slub_max_order > order &&
1454 slab_size < slub_min_objects * size)
1455 continue;
1456
1457 if (slab_size < size)
1458 continue;
1459
1460 rem = slab_size % size;
1461
1462 if (rem <= (PAGE_SIZE << order) / 8)
1463 break;
1464
1465 }
1466 if (order >= MAX_ORDER)
1467 return -E2BIG;
1468 return order;
1469}
1470
1471/*
1472 * Function to figure out which alignment to use from the
1473 * various ways of specifying it.
1474 */
1475static unsigned long calculate_alignment(unsigned long flags,
1476 unsigned long align, unsigned long size)
1477{
1478 /*
1479 * If the user wants hardware cache aligned objects then
1480 * follow that suggestion if the object is sufficiently
1481 * large.
1482 *
1483 * The hardware cache alignment cannot override the
1484 * specified alignment though. If that is greater
1485 * then use it.
1486 */
5af60839 1487 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1488 size > cache_line_size() / 2)
1489 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1490
1491 if (align < ARCH_SLAB_MINALIGN)
1492 return ARCH_SLAB_MINALIGN;
1493
1494 return ALIGN(align, sizeof(void *));
1495}
1496
1497static void init_kmem_cache_node(struct kmem_cache_node *n)
1498{
1499 n->nr_partial = 0;
1500 atomic_long_set(&n->nr_slabs, 0);
1501 spin_lock_init(&n->list_lock);
1502 INIT_LIST_HEAD(&n->partial);
643b1138 1503 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1504}
1505
1506#ifdef CONFIG_NUMA
1507/*
1508 * No kmalloc_node yet so do it by hand. We know that this is the first
1509 * slab on the node for this slabcache. There are no concurrent accesses
1510 * possible.
1511 *
1512 * Note that this function only works on the kmalloc_node_cache
1513 * when allocating for the kmalloc_node_cache.
1514 */
1515static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1516 int node)
1517{
1518 struct page *page;
1519 struct kmem_cache_node *n;
1520
1521 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1522
1523 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1524 /* new_slab() disables interupts */
1525 local_irq_enable();
1526
1527 BUG_ON(!page);
1528 n = page->freelist;
1529 BUG_ON(!n);
1530 page->freelist = get_freepointer(kmalloc_caches, n);
1531 page->inuse++;
1532 kmalloc_caches->node[node] = n;
1533 init_object(kmalloc_caches, n, 1);
1534 init_kmem_cache_node(n);
1535 atomic_long_inc(&n->nr_slabs);
e95eed57 1536 add_partial(n, page);
81819f0f
CL
1537 return n;
1538}
1539
1540static void free_kmem_cache_nodes(struct kmem_cache *s)
1541{
1542 int node;
1543
1544 for_each_online_node(node) {
1545 struct kmem_cache_node *n = s->node[node];
1546 if (n && n != &s->local_node)
1547 kmem_cache_free(kmalloc_caches, n);
1548 s->node[node] = NULL;
1549 }
1550}
1551
1552static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1553{
1554 int node;
1555 int local_node;
1556
1557 if (slab_state >= UP)
1558 local_node = page_to_nid(virt_to_page(s));
1559 else
1560 local_node = 0;
1561
1562 for_each_online_node(node) {
1563 struct kmem_cache_node *n;
1564
1565 if (local_node == node)
1566 n = &s->local_node;
1567 else {
1568 if (slab_state == DOWN) {
1569 n = early_kmem_cache_node_alloc(gfpflags,
1570 node);
1571 continue;
1572 }
1573 n = kmem_cache_alloc_node(kmalloc_caches,
1574 gfpflags, node);
1575
1576 if (!n) {
1577 free_kmem_cache_nodes(s);
1578 return 0;
1579 }
1580
1581 }
1582 s->node[node] = n;
1583 init_kmem_cache_node(n);
1584 }
1585 return 1;
1586}
1587#else
1588static void free_kmem_cache_nodes(struct kmem_cache *s)
1589{
1590}
1591
1592static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1593{
1594 init_kmem_cache_node(&s->local_node);
1595 return 1;
1596}
1597#endif
1598
1599/*
1600 * calculate_sizes() determines the order and the distribution of data within
1601 * a slab object.
1602 */
1603static int calculate_sizes(struct kmem_cache *s)
1604{
1605 unsigned long flags = s->flags;
1606 unsigned long size = s->objsize;
1607 unsigned long align = s->align;
1608
1609 /*
1610 * Determine if we can poison the object itself. If the user of
1611 * the slab may touch the object after free or before allocation
1612 * then we should never poison the object itself.
1613 */
1614 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1615 !s->ctor && !s->dtor)
1616 s->flags |= __OBJECT_POISON;
1617 else
1618 s->flags &= ~__OBJECT_POISON;
1619
1620 /*
1621 * Round up object size to the next word boundary. We can only
1622 * place the free pointer at word boundaries and this determines
1623 * the possible location of the free pointer.
1624 */
1625 size = ALIGN(size, sizeof(void *));
1626
1627 /*
1628 * If we are redzoning then check if there is some space between the
1629 * end of the object and the free pointer. If not then add an
1630 * additional word, so that we can establish a redzone between
1631 * the object and the freepointer to be able to check for overwrites.
1632 */
1633 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1634 size += sizeof(void *);
1635
1636 /*
1637 * With that we have determined how much of the slab is in actual
1638 * use by the object. This is the potential offset to the free
1639 * pointer.
1640 */
1641 s->inuse = size;
1642
1643 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1644 s->ctor || s->dtor)) {
1645 /*
1646 * Relocate free pointer after the object if it is not
1647 * permitted to overwrite the first word of the object on
1648 * kmem_cache_free.
1649 *
1650 * This is the case if we do RCU, have a constructor or
1651 * destructor or are poisoning the objects.
1652 */
1653 s->offset = size;
1654 size += sizeof(void *);
1655 }
1656
1657 if (flags & SLAB_STORE_USER)
1658 /*
1659 * Need to store information about allocs and frees after
1660 * the object.
1661 */
1662 size += 2 * sizeof(struct track);
1663
1664 if (flags & DEBUG_DEFAULT_FLAGS)
1665 /*
1666 * Add some empty padding so that we can catch
1667 * overwrites from earlier objects rather than let
1668 * tracking information or the free pointer be
1669 * corrupted if an user writes before the start
1670 * of the object.
1671 */
1672 size += sizeof(void *);
1673 /*
1674 * Determine the alignment based on various parameters that the
65c02d4c
CL
1675 * user specified and the dynamic determination of cache line size
1676 * on bootup.
81819f0f
CL
1677 */
1678 align = calculate_alignment(flags, align, s->objsize);
1679
1680 /*
1681 * SLUB stores one object immediately after another beginning from
1682 * offset 0. In order to align the objects we have to simply size
1683 * each object to conform to the alignment.
1684 */
1685 size = ALIGN(size, align);
1686 s->size = size;
1687
1688 s->order = calculate_order(size);
1689 if (s->order < 0)
1690 return 0;
1691
1692 /*
1693 * Determine the number of objects per slab
1694 */
1695 s->objects = (PAGE_SIZE << s->order) / size;
1696
1697 /*
1698 * Verify that the number of objects is within permitted limits.
1699 * The page->inuse field is only 16 bit wide! So we cannot have
1700 * more than 64k objects per slab.
1701 */
1702 if (!s->objects || s->objects > 65535)
1703 return 0;
1704 return 1;
1705
1706}
1707
1708static int __init finish_bootstrap(void)
1709{
1710 struct list_head *h;
1711 int err;
1712
1713 slab_state = SYSFS;
1714
1715 list_for_each(h, &slab_caches) {
1716 struct kmem_cache *s =
1717 container_of(h, struct kmem_cache, list);
1718
1719 err = sysfs_slab_add(s);
1720 BUG_ON(err);
1721 }
1722 return 0;
1723}
1724
1725static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1726 const char *name, size_t size,
1727 size_t align, unsigned long flags,
1728 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1729 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1730{
1731 memset(s, 0, kmem_size);
1732 s->name = name;
1733 s->ctor = ctor;
1734 s->dtor = dtor;
1735 s->objsize = size;
1736 s->flags = flags;
1737 s->align = align;
1738
81819f0f
CL
1739 /*
1740 * The page->offset field is only 16 bit wide. This is an offset
1741 * in units of words from the beginning of an object. If the slab
1742 * size is bigger then we cannot move the free pointer behind the
1743 * object anymore.
1744 *
1745 * On 32 bit platforms the limit is 256k. On 64bit platforms
1746 * the limit is 512k.
1747 *
1748 * Debugging or ctor/dtors may create a need to move the free
1749 * pointer. Fail if this happens.
1750 */
1751 if (s->size >= 65535 * sizeof(void *)) {
1752 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1753 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1754 BUG_ON(ctor || dtor);
1755 }
1756 else
1757 /*
1758 * Enable debugging if selected on the kernel commandline.
1759 */
1760 if (slub_debug && (!slub_debug_slabs ||
1761 strncmp(slub_debug_slabs, name,
1762 strlen(slub_debug_slabs)) == 0))
1763 s->flags |= slub_debug;
1764
1765 if (!calculate_sizes(s))
1766 goto error;
1767
1768 s->refcount = 1;
1769#ifdef CONFIG_NUMA
1770 s->defrag_ratio = 100;
1771#endif
1772
1773 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1774 return 1;
1775error:
1776 if (flags & SLAB_PANIC)
1777 panic("Cannot create slab %s size=%lu realsize=%u "
1778 "order=%u offset=%u flags=%lx\n",
1779 s->name, (unsigned long)size, s->size, s->order,
1780 s->offset, flags);
1781 return 0;
1782}
1783EXPORT_SYMBOL(kmem_cache_open);
1784
1785/*
1786 * Check if a given pointer is valid
1787 */
1788int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1789{
1790 struct page * page;
1791 void *addr;
1792
1793 page = get_object_page(object);
1794
1795 if (!page || s != page->slab)
1796 /* No slab or wrong slab */
1797 return 0;
1798
1799 addr = page_address(page);
1800 if (object < addr || object >= addr + s->objects * s->size)
1801 /* Out of bounds */
1802 return 0;
1803
1804 if ((object - addr) % s->size)
1805 /* Improperly aligned */
1806 return 0;
1807
1808 /*
1809 * We could also check if the object is on the slabs freelist.
1810 * But this would be too expensive and it seems that the main
1811 * purpose of kmem_ptr_valid is to check if the object belongs
1812 * to a certain slab.
1813 */
1814 return 1;
1815}
1816EXPORT_SYMBOL(kmem_ptr_validate);
1817
1818/*
1819 * Determine the size of a slab object
1820 */
1821unsigned int kmem_cache_size(struct kmem_cache *s)
1822{
1823 return s->objsize;
1824}
1825EXPORT_SYMBOL(kmem_cache_size);
1826
1827const char *kmem_cache_name(struct kmem_cache *s)
1828{
1829 return s->name;
1830}
1831EXPORT_SYMBOL(kmem_cache_name);
1832
1833/*
1834 * Attempt to free all slabs on a node
1835 */
1836static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1837 struct list_head *list)
1838{
1839 int slabs_inuse = 0;
1840 unsigned long flags;
1841 struct page *page, *h;
1842
1843 spin_lock_irqsave(&n->list_lock, flags);
1844 list_for_each_entry_safe(page, h, list, lru)
1845 if (!page->inuse) {
1846 list_del(&page->lru);
1847 discard_slab(s, page);
1848 } else
1849 slabs_inuse++;
1850 spin_unlock_irqrestore(&n->list_lock, flags);
1851 return slabs_inuse;
1852}
1853
1854/*
1855 * Release all resources used by slab cache
1856 */
1857static int kmem_cache_close(struct kmem_cache *s)
1858{
1859 int node;
1860
1861 flush_all(s);
1862
1863 /* Attempt to free all objects */
1864 for_each_online_node(node) {
1865 struct kmem_cache_node *n = get_node(s, node);
1866
2086d26a 1867 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
1868 if (atomic_long_read(&n->nr_slabs))
1869 return 1;
1870 }
1871 free_kmem_cache_nodes(s);
1872 return 0;
1873}
1874
1875/*
1876 * Close a cache and release the kmem_cache structure
1877 * (must be used for caches created using kmem_cache_create)
1878 */
1879void kmem_cache_destroy(struct kmem_cache *s)
1880{
1881 down_write(&slub_lock);
1882 s->refcount--;
1883 if (!s->refcount) {
1884 list_del(&s->list);
1885 if (kmem_cache_close(s))
1886 WARN_ON(1);
1887 sysfs_slab_remove(s);
1888 kfree(s);
1889 }
1890 up_write(&slub_lock);
1891}
1892EXPORT_SYMBOL(kmem_cache_destroy);
1893
1894/********************************************************************
1895 * Kmalloc subsystem
1896 *******************************************************************/
1897
1898struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1899EXPORT_SYMBOL(kmalloc_caches);
1900
1901#ifdef CONFIG_ZONE_DMA
1902static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1903#endif
1904
1905static int __init setup_slub_min_order(char *str)
1906{
1907 get_option (&str, &slub_min_order);
1908
1909 return 1;
1910}
1911
1912__setup("slub_min_order=", setup_slub_min_order);
1913
1914static int __init setup_slub_max_order(char *str)
1915{
1916 get_option (&str, &slub_max_order);
1917
1918 return 1;
1919}
1920
1921__setup("slub_max_order=", setup_slub_max_order);
1922
1923static int __init setup_slub_min_objects(char *str)
1924{
1925 get_option (&str, &slub_min_objects);
1926
1927 return 1;
1928}
1929
1930__setup("slub_min_objects=", setup_slub_min_objects);
1931
1932static int __init setup_slub_nomerge(char *str)
1933{
1934 slub_nomerge = 1;
1935 return 1;
1936}
1937
1938__setup("slub_nomerge", setup_slub_nomerge);
1939
1940static int __init setup_slub_debug(char *str)
1941{
1942 if (!str || *str != '=')
1943 slub_debug = DEBUG_DEFAULT_FLAGS;
1944 else {
1945 str++;
1946 if (*str == 0 || *str == ',')
1947 slub_debug = DEBUG_DEFAULT_FLAGS;
1948 else
1949 for( ;*str && *str != ','; str++)
1950 switch (*str) {
1951 case 'f' : case 'F' :
1952 slub_debug |= SLAB_DEBUG_FREE;
1953 break;
1954 case 'z' : case 'Z' :
1955 slub_debug |= SLAB_RED_ZONE;
1956 break;
1957 case 'p' : case 'P' :
1958 slub_debug |= SLAB_POISON;
1959 break;
1960 case 'u' : case 'U' :
1961 slub_debug |= SLAB_STORE_USER;
1962 break;
1963 case 't' : case 'T' :
1964 slub_debug |= SLAB_TRACE;
1965 break;
1966 default:
1967 printk(KERN_ERR "slub_debug option '%c' "
1968 "unknown. skipped\n",*str);
1969 }
1970 }
1971
1972 if (*str == ',')
1973 slub_debug_slabs = str + 1;
1974 return 1;
1975}
1976
1977__setup("slub_debug", setup_slub_debug);
1978
1979static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1980 const char *name, int size, gfp_t gfp_flags)
1981{
1982 unsigned int flags = 0;
1983
1984 if (gfp_flags & SLUB_DMA)
1985 flags = SLAB_CACHE_DMA;
1986
1987 down_write(&slub_lock);
1988 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
1989 flags, NULL, NULL))
1990 goto panic;
1991
1992 list_add(&s->list, &slab_caches);
1993 up_write(&slub_lock);
1994 if (sysfs_slab_add(s))
1995 goto panic;
1996 return s;
1997
1998panic:
1999 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2000}
2001
2002static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2003{
2004 int index = kmalloc_index(size);
2005
614410d5 2006 if (!index)
81819f0f
CL
2007 return NULL;
2008
2009 /* Allocation too large? */
2010 BUG_ON(index < 0);
2011
2012#ifdef CONFIG_ZONE_DMA
2013 if ((flags & SLUB_DMA)) {
2014 struct kmem_cache *s;
2015 struct kmem_cache *x;
2016 char *text;
2017 size_t realsize;
2018
2019 s = kmalloc_caches_dma[index];
2020 if (s)
2021 return s;
2022
2023 /* Dynamically create dma cache */
2024 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2025 if (!x)
2026 panic("Unable to allocate memory for dma cache\n");
2027
2028 if (index <= KMALLOC_SHIFT_HIGH)
2029 realsize = 1 << index;
2030 else {
2031 if (index == 1)
2032 realsize = 96;
2033 else
2034 realsize = 192;
2035 }
2036
2037 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2038 (unsigned int)realsize);
2039 s = create_kmalloc_cache(x, text, realsize, flags);
2040 kmalloc_caches_dma[index] = s;
2041 return s;
2042 }
2043#endif
2044 return &kmalloc_caches[index];
2045}
2046
2047void *__kmalloc(size_t size, gfp_t flags)
2048{
2049 struct kmem_cache *s = get_slab(size, flags);
2050
2051 if (s)
77c5e2d0 2052 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2053 return NULL;
2054}
2055EXPORT_SYMBOL(__kmalloc);
2056
2057#ifdef CONFIG_NUMA
2058void *__kmalloc_node(size_t size, gfp_t flags, int node)
2059{
2060 struct kmem_cache *s = get_slab(size, flags);
2061
2062 if (s)
77c5e2d0 2063 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2064 return NULL;
2065}
2066EXPORT_SYMBOL(__kmalloc_node);
2067#endif
2068
2069size_t ksize(const void *object)
2070{
2071 struct page *page = get_object_page(object);
2072 struct kmem_cache *s;
2073
2074 BUG_ON(!page);
2075 s = page->slab;
2076 BUG_ON(!s);
2077
2078 /*
2079 * Debugging requires use of the padding between object
2080 * and whatever may come after it.
2081 */
2082 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2083 return s->objsize;
2084
2085 /*
2086 * If we have the need to store the freelist pointer
2087 * back there or track user information then we can
2088 * only use the space before that information.
2089 */
2090 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2091 return s->inuse;
2092
2093 /*
2094 * Else we can use all the padding etc for the allocation
2095 */
2096 return s->size;
2097}
2098EXPORT_SYMBOL(ksize);
2099
2100void kfree(const void *x)
2101{
2102 struct kmem_cache *s;
2103 struct page *page;
2104
2105 if (!x)
2106 return;
2107
b49af68f 2108 page = virt_to_head_page(x);
81819f0f
CL
2109 s = page->slab;
2110
77c5e2d0 2111 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2112}
2113EXPORT_SYMBOL(kfree);
2114
2086d26a
CL
2115/*
2116 * kmem_cache_shrink removes empty slabs from the partial lists
2117 * and then sorts the partially allocated slabs by the number
2118 * of items in use. The slabs with the most items in use
2119 * come first. New allocations will remove these from the
2120 * partial list because they are full. The slabs with the
2121 * least items are placed last. If it happens that the objects
2122 * are freed then the page can be returned to the page allocator.
2123 */
2124int kmem_cache_shrink(struct kmem_cache *s)
2125{
2126 int node;
2127 int i;
2128 struct kmem_cache_node *n;
2129 struct page *page;
2130 struct page *t;
2131 struct list_head *slabs_by_inuse =
2132 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2133 unsigned long flags;
2134
2135 if (!slabs_by_inuse)
2136 return -ENOMEM;
2137
2138 flush_all(s);
2139 for_each_online_node(node) {
2140 n = get_node(s, node);
2141
2142 if (!n->nr_partial)
2143 continue;
2144
2145 for (i = 0; i < s->objects; i++)
2146 INIT_LIST_HEAD(slabs_by_inuse + i);
2147
2148 spin_lock_irqsave(&n->list_lock, flags);
2149
2150 /*
2151 * Build lists indexed by the items in use in
2152 * each slab or free slabs if empty.
2153 *
2154 * Note that concurrent frees may occur while
2155 * we hold the list_lock. page->inuse here is
2156 * the upper limit.
2157 */
2158 list_for_each_entry_safe(page, t, &n->partial, lru) {
2159 if (!page->inuse && slab_trylock(page)) {
2160 /*
2161 * Must hold slab lock here because slab_free
2162 * may have freed the last object and be
2163 * waiting to release the slab.
2164 */
2165 list_del(&page->lru);
2166 n->nr_partial--;
2167 slab_unlock(page);
2168 discard_slab(s, page);
2169 } else {
2170 if (n->nr_partial > MAX_PARTIAL)
2171 list_move(&page->lru,
2172 slabs_by_inuse + page->inuse);
2173 }
2174 }
2175
2176 if (n->nr_partial <= MAX_PARTIAL)
2177 goto out;
2178
2179 /*
2180 * Rebuild the partial list with the slabs filled up
2181 * most first and the least used slabs at the end.
2182 */
2183 for (i = s->objects - 1; i >= 0; i--)
2184 list_splice(slabs_by_inuse + i, n->partial.prev);
2185
2186 out:
2187 spin_unlock_irqrestore(&n->list_lock, flags);
2188 }
2189
2190 kfree(slabs_by_inuse);
2191 return 0;
2192}
2193EXPORT_SYMBOL(kmem_cache_shrink);
2194
81819f0f
CL
2195/**
2196 * krealloc - reallocate memory. The contents will remain unchanged.
2197 *
2198 * @p: object to reallocate memory for.
2199 * @new_size: how many bytes of memory are required.
2200 * @flags: the type of memory to allocate.
2201 *
2202 * The contents of the object pointed to are preserved up to the
2203 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2204 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2205 * %NULL pointer, the object pointed to is freed.
2206 */
2207void *krealloc(const void *p, size_t new_size, gfp_t flags)
2208{
2209 struct kmem_cache *new_cache;
2210 void *ret;
2211 struct page *page;
2212
2213 if (unlikely(!p))
2214 return kmalloc(new_size, flags);
2215
2216 if (unlikely(!new_size)) {
2217 kfree(p);
2218 return NULL;
2219 }
2220
b49af68f 2221 page = virt_to_head_page(p);
81819f0f
CL
2222
2223 new_cache = get_slab(new_size, flags);
2224
2225 /*
2226 * If new size fits in the current cache, bail out.
2227 */
2228 if (likely(page->slab == new_cache))
2229 return (void *)p;
2230
2231 ret = kmalloc(new_size, flags);
2232 if (ret) {
2233 memcpy(ret, p, min(new_size, ksize(p)));
2234 kfree(p);
2235 }
2236 return ret;
2237}
2238EXPORT_SYMBOL(krealloc);
2239
2240/********************************************************************
2241 * Basic setup of slabs
2242 *******************************************************************/
2243
2244void __init kmem_cache_init(void)
2245{
2246 int i;
2247
2248#ifdef CONFIG_NUMA
2249 /*
2250 * Must first have the slab cache available for the allocations of the
2251 * struct kmalloc_cache_node's. There is special bootstrap code in
2252 * kmem_cache_open for slab_state == DOWN.
2253 */
2254 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2255 sizeof(struct kmem_cache_node), GFP_KERNEL);
2256#endif
2257
2258 /* Able to allocate the per node structures */
2259 slab_state = PARTIAL;
2260
2261 /* Caches that are not of the two-to-the-power-of size */
2262 create_kmalloc_cache(&kmalloc_caches[1],
2263 "kmalloc-96", 96, GFP_KERNEL);
2264 create_kmalloc_cache(&kmalloc_caches[2],
2265 "kmalloc-192", 192, GFP_KERNEL);
2266
2267 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2268 create_kmalloc_cache(&kmalloc_caches[i],
2269 "kmalloc", 1 << i, GFP_KERNEL);
2270
2271 slab_state = UP;
2272
2273 /* Provide the correct kmalloc names now that the caches are up */
2274 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2275 kmalloc_caches[i]. name =
2276 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2277
2278#ifdef CONFIG_SMP
2279 register_cpu_notifier(&slab_notifier);
2280#endif
2281
2282 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2283 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2284 + nr_cpu_ids * sizeof(struct page *);
2285
2286 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2287 " Processors=%d, Nodes=%d\n",
65c02d4c 2288 KMALLOC_SHIFT_HIGH, cache_line_size(),
81819f0f
CL
2289 slub_min_order, slub_max_order, slub_min_objects,
2290 nr_cpu_ids, nr_node_ids);
2291}
2292
2293/*
2294 * Find a mergeable slab cache
2295 */
2296static int slab_unmergeable(struct kmem_cache *s)
2297{
2298 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2299 return 1;
2300
2301 if (s->ctor || s->dtor)
2302 return 1;
2303
2304 return 0;
2305}
2306
2307static struct kmem_cache *find_mergeable(size_t size,
2308 size_t align, unsigned long flags,
2309 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2310 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2311{
2312 struct list_head *h;
2313
2314 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2315 return NULL;
2316
2317 if (ctor || dtor)
2318 return NULL;
2319
2320 size = ALIGN(size, sizeof(void *));
2321 align = calculate_alignment(flags, align, size);
2322 size = ALIGN(size, align);
2323
2324 list_for_each(h, &slab_caches) {
2325 struct kmem_cache *s =
2326 container_of(h, struct kmem_cache, list);
2327
2328 if (slab_unmergeable(s))
2329 continue;
2330
2331 if (size > s->size)
2332 continue;
2333
2334 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2335 (s->flags & SLUB_MERGE_SAME))
2336 continue;
2337 /*
2338 * Check if alignment is compatible.
2339 * Courtesy of Adrian Drzewiecki
2340 */
2341 if ((s->size & ~(align -1)) != s->size)
2342 continue;
2343
2344 if (s->size - size >= sizeof(void *))
2345 continue;
2346
2347 return s;
2348 }
2349 return NULL;
2350}
2351
2352struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2353 size_t align, unsigned long flags,
2354 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2355 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2356{
2357 struct kmem_cache *s;
2358
2359 down_write(&slub_lock);
2360 s = find_mergeable(size, align, flags, dtor, ctor);
2361 if (s) {
2362 s->refcount++;
2363 /*
2364 * Adjust the object sizes so that we clear
2365 * the complete object on kzalloc.
2366 */
2367 s->objsize = max(s->objsize, (int)size);
2368 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2369 if (sysfs_slab_alias(s, name))
2370 goto err;
2371 } else {
2372 s = kmalloc(kmem_size, GFP_KERNEL);
2373 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2374 size, align, flags, ctor, dtor)) {
2375 if (sysfs_slab_add(s)) {
2376 kfree(s);
2377 goto err;
2378 }
2379 list_add(&s->list, &slab_caches);
2380 } else
2381 kfree(s);
2382 }
2383 up_write(&slub_lock);
2384 return s;
2385
2386err:
2387 up_write(&slub_lock);
2388 if (flags & SLAB_PANIC)
2389 panic("Cannot create slabcache %s\n", name);
2390 else
2391 s = NULL;
2392 return s;
2393}
2394EXPORT_SYMBOL(kmem_cache_create);
2395
2396void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2397{
2398 void *x;
2399
77c5e2d0 2400 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2401 if (x)
2402 memset(x, 0, s->objsize);
2403 return x;
2404}
2405EXPORT_SYMBOL(kmem_cache_zalloc);
2406
2407#ifdef CONFIG_SMP
2408static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2409{
2410 struct list_head *h;
2411
2412 down_read(&slub_lock);
2413 list_for_each(h, &slab_caches) {
2414 struct kmem_cache *s =
2415 container_of(h, struct kmem_cache, list);
2416
2417 func(s, cpu);
2418 }
2419 up_read(&slub_lock);
2420}
2421
2422/*
2423 * Use the cpu notifier to insure that the slab are flushed
2424 * when necessary.
2425 */
2426static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2427 unsigned long action, void *hcpu)
2428{
2429 long cpu = (long)hcpu;
2430
2431 switch (action) {
2432 case CPU_UP_CANCELED:
2433 case CPU_DEAD:
2434 for_all_slabs(__flush_cpu_slab, cpu);
2435 break;
2436 default:
2437 break;
2438 }
2439 return NOTIFY_OK;
2440}
2441
2442static struct notifier_block __cpuinitdata slab_notifier =
2443 { &slab_cpuup_callback, NULL, 0 };
2444
2445#endif
2446
81819f0f
CL
2447#ifdef CONFIG_NUMA
2448
2449/*****************************************************************
2450 * Generic reaper used to support the page allocator
2451 * (the cpu slabs are reaped by a per slab workqueue).
2452 *
2453 * Maybe move this to the page allocator?
2454 ****************************************************************/
2455
2456static DEFINE_PER_CPU(unsigned long, reap_node);
2457
2458static void init_reap_node(int cpu)
2459{
2460 int node;
2461
2462 node = next_node(cpu_to_node(cpu), node_online_map);
2463 if (node == MAX_NUMNODES)
2464 node = first_node(node_online_map);
2465
2466 __get_cpu_var(reap_node) = node;
2467}
2468
2469static void next_reap_node(void)
2470{
2471 int node = __get_cpu_var(reap_node);
2472
2473 /*
2474 * Also drain per cpu pages on remote zones
2475 */
2476 if (node != numa_node_id())
2477 drain_node_pages(node);
2478
2479 node = next_node(node, node_online_map);
2480 if (unlikely(node >= MAX_NUMNODES))
2481 node = first_node(node_online_map);
2482 __get_cpu_var(reap_node) = node;
2483}
2484#else
2485#define init_reap_node(cpu) do { } while (0)
2486#define next_reap_node(void) do { } while (0)
2487#endif
2488
2489#define REAPTIMEOUT_CPUC (2*HZ)
2490
2491#ifdef CONFIG_SMP
2492static DEFINE_PER_CPU(struct delayed_work, reap_work);
2493
2494static void cache_reap(struct work_struct *unused)
2495{
2496 next_reap_node();
2497 refresh_cpu_vm_stats(smp_processor_id());
2498 schedule_delayed_work(&__get_cpu_var(reap_work),
2499 REAPTIMEOUT_CPUC);
2500}
2501
2502static void __devinit start_cpu_timer(int cpu)
2503{
2504 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2505
2506 /*
2507 * When this gets called from do_initcalls via cpucache_init(),
2508 * init_workqueues() has already run, so keventd will be setup
2509 * at that time.
2510 */
2511 if (keventd_up() && reap_work->work.func == NULL) {
2512 init_reap_node(cpu);
2513 INIT_DELAYED_WORK(reap_work, cache_reap);
2514 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2515 }
2516}
2517
2518static int __init cpucache_init(void)
2519{
2520 int cpu;
2521
2522 /*
2523 * Register the timers that drain pcp pages and update vm statistics
2524 */
2525 for_each_online_cpu(cpu)
2526 start_cpu_timer(cpu);
2527 return 0;
2528}
2529__initcall(cpucache_init);
2530#endif
2531
2532#ifdef SLUB_RESILIENCY_TEST
2533static unsigned long validate_slab_cache(struct kmem_cache *s);
2534
2535static void resiliency_test(void)
2536{
2537 u8 *p;
2538
2539 printk(KERN_ERR "SLUB resiliency testing\n");
2540 printk(KERN_ERR "-----------------------\n");
2541 printk(KERN_ERR "A. Corruption after allocation\n");
2542
2543 p = kzalloc(16, GFP_KERNEL);
2544 p[16] = 0x12;
2545 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2546 " 0x12->0x%p\n\n", p + 16);
2547
2548 validate_slab_cache(kmalloc_caches + 4);
2549
2550 /* Hmmm... The next two are dangerous */
2551 p = kzalloc(32, GFP_KERNEL);
2552 p[32 + sizeof(void *)] = 0x34;
2553 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2554 " 0x34 -> -0x%p\n", p);
2555 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2556
2557 validate_slab_cache(kmalloc_caches + 5);
2558 p = kzalloc(64, GFP_KERNEL);
2559 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2560 *p = 0x56;
2561 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2562 p);
2563 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2564 validate_slab_cache(kmalloc_caches + 6);
2565
2566 printk(KERN_ERR "\nB. Corruption after free\n");
2567 p = kzalloc(128, GFP_KERNEL);
2568 kfree(p);
2569 *p = 0x78;
2570 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2571 validate_slab_cache(kmalloc_caches + 7);
2572
2573 p = kzalloc(256, GFP_KERNEL);
2574 kfree(p);
2575 p[50] = 0x9a;
2576 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2577 validate_slab_cache(kmalloc_caches + 8);
2578
2579 p = kzalloc(512, GFP_KERNEL);
2580 kfree(p);
2581 p[512] = 0xab;
2582 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2583 validate_slab_cache(kmalloc_caches + 9);
2584}
2585#else
2586static void resiliency_test(void) {};
2587#endif
2588
2589/*
2590 * These are not as efficient as kmalloc for the non debug case.
2591 * We do not have the page struct available so we have to touch one
2592 * cacheline in struct kmem_cache to check slab flags.
2593 */
2594void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2595{
2596 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2597
2598 if (!s)
2599 return NULL;
2600
77c5e2d0 2601 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2602}
2603
2604void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2605 int node, void *caller)
2606{
2607 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2608
2609 if (!s)
2610 return NULL;
2611
77c5e2d0 2612 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2613}
2614
2615#ifdef CONFIG_SYSFS
2616
53e15af0
CL
2617static int validate_slab(struct kmem_cache *s, struct page *page)
2618{
2619 void *p;
2620 void *addr = page_address(page);
2621 unsigned long map[BITS_TO_LONGS(s->objects)];
2622
2623 if (!check_slab(s, page) ||
2624 !on_freelist(s, page, NULL))
2625 return 0;
2626
2627 /* Now we know that a valid freelist exists */
2628 bitmap_zero(map, s->objects);
2629
2630 for(p = page->freelist; p; p = get_freepointer(s, p)) {
2631 set_bit((p - addr) / s->size, map);
2632 if (!check_object(s, page, p, 0))
2633 return 0;
2634 }
2635
2636 for(p = addr; p < addr + s->objects * s->size; p += s->size)
2637 if (!test_bit((p - addr) / s->size, map))
2638 if (!check_object(s, page, p, 1))
2639 return 0;
2640 return 1;
2641}
2642
2643static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2644{
2645 if (slab_trylock(page)) {
2646 validate_slab(s, page);
2647 slab_unlock(page);
2648 } else
2649 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2650 s->name, page);
2651
2652 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2653 if (!PageError(page))
2654 printk(KERN_ERR "SLUB %s: PageError not set "
2655 "on slab 0x%p\n", s->name, page);
2656 } else {
2657 if (PageError(page))
2658 printk(KERN_ERR "SLUB %s: PageError set on "
2659 "slab 0x%p\n", s->name, page);
2660 }
2661}
2662
2663static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2664{
2665 unsigned long count = 0;
2666 struct page *page;
2667 unsigned long flags;
2668
2669 spin_lock_irqsave(&n->list_lock, flags);
2670
2671 list_for_each_entry(page, &n->partial, lru) {
2672 validate_slab_slab(s, page);
2673 count++;
2674 }
2675 if (count != n->nr_partial)
2676 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2677 "counter=%ld\n", s->name, count, n->nr_partial);
2678
2679 if (!(s->flags & SLAB_STORE_USER))
2680 goto out;
2681
2682 list_for_each_entry(page, &n->full, lru) {
2683 validate_slab_slab(s, page);
2684 count++;
2685 }
2686 if (count != atomic_long_read(&n->nr_slabs))
2687 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2688 "counter=%ld\n", s->name, count,
2689 atomic_long_read(&n->nr_slabs));
2690
2691out:
2692 spin_unlock_irqrestore(&n->list_lock, flags);
2693 return count;
2694}
2695
2696static unsigned long validate_slab_cache(struct kmem_cache *s)
2697{
2698 int node;
2699 unsigned long count = 0;
2700
2701 flush_all(s);
2702 for_each_online_node(node) {
2703 struct kmem_cache_node *n = get_node(s, node);
2704
2705 count += validate_slab_node(s, n);
2706 }
2707 return count;
2708}
2709
88a420e4
CL
2710/*
2711 * Generate lists of locations where slabcache objects are allocated
2712 * and freed.
2713 */
2714
2715struct location {
2716 unsigned long count;
2717 void *addr;
2718};
2719
2720struct loc_track {
2721 unsigned long max;
2722 unsigned long count;
2723 struct location *loc;
2724};
2725
2726static void free_loc_track(struct loc_track *t)
2727{
2728 if (t->max)
2729 free_pages((unsigned long)t->loc,
2730 get_order(sizeof(struct location) * t->max));
2731}
2732
2733static int alloc_loc_track(struct loc_track *t, unsigned long max)
2734{
2735 struct location *l;
2736 int order;
2737
2738 if (!max)
2739 max = PAGE_SIZE / sizeof(struct location);
2740
2741 order = get_order(sizeof(struct location) * max);
2742
2743 l = (void *)__get_free_pages(GFP_KERNEL, order);
2744
2745 if (!l)
2746 return 0;
2747
2748 if (t->count) {
2749 memcpy(l, t->loc, sizeof(struct location) * t->count);
2750 free_loc_track(t);
2751 }
2752 t->max = max;
2753 t->loc = l;
2754 return 1;
2755}
2756
2757static int add_location(struct loc_track *t, struct kmem_cache *s,
2758 void *addr)
2759{
2760 long start, end, pos;
2761 struct location *l;
2762 void *caddr;
2763
2764 start = -1;
2765 end = t->count;
2766
2767 for ( ; ; ) {
2768 pos = start + (end - start + 1) / 2;
2769
2770 /*
2771 * There is nothing at "end". If we end up there
2772 * we need to add something to before end.
2773 */
2774 if (pos == end)
2775 break;
2776
2777 caddr = t->loc[pos].addr;
2778 if (addr == caddr) {
2779 t->loc[pos].count++;
2780 return 1;
2781 }
2782
2783 if (addr < caddr)
2784 end = pos;
2785 else
2786 start = pos;
2787 }
2788
2789 /*
2790 * Not found. Insert new tracking element
2791 */
2792 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2793 return 0;
2794
2795 l = t->loc + pos;
2796 if (pos < t->count)
2797 memmove(l + 1, l,
2798 (t->count - pos) * sizeof(struct location));
2799 t->count++;
2800 l->count = 1;
2801 l->addr = addr;
2802 return 1;
2803}
2804
2805static void process_slab(struct loc_track *t, struct kmem_cache *s,
2806 struct page *page, enum track_item alloc)
2807{
2808 void *addr = page_address(page);
2809 unsigned long map[BITS_TO_LONGS(s->objects)];
2810 void *p;
2811
2812 bitmap_zero(map, s->objects);
2813 for (p = page->freelist; p; p = get_freepointer(s, p))
2814 set_bit((p - addr) / s->size, map);
2815
2816 for (p = addr; p < addr + s->objects * s->size; p += s->size)
2817 if (!test_bit((p - addr) / s->size, map)) {
2818 void *addr = get_track(s, p, alloc)->addr;
2819
2820 add_location(t, s, addr);
2821 }
2822}
2823
2824static int list_locations(struct kmem_cache *s, char *buf,
2825 enum track_item alloc)
2826{
2827 int n = 0;
2828 unsigned long i;
2829 struct loc_track t;
2830 int node;
2831
2832 t.count = 0;
2833 t.max = 0;
2834
2835 /* Push back cpu slabs */
2836 flush_all(s);
2837
2838 for_each_online_node(node) {
2839 struct kmem_cache_node *n = get_node(s, node);
2840 unsigned long flags;
2841 struct page *page;
2842
2843 if (!atomic_read(&n->nr_slabs))
2844 continue;
2845
2846 spin_lock_irqsave(&n->list_lock, flags);
2847 list_for_each_entry(page, &n->partial, lru)
2848 process_slab(&t, s, page, alloc);
2849 list_for_each_entry(page, &n->full, lru)
2850 process_slab(&t, s, page, alloc);
2851 spin_unlock_irqrestore(&n->list_lock, flags);
2852 }
2853
2854 for (i = 0; i < t.count; i++) {
2855 void *addr = t.loc[i].addr;
2856
2857 if (n > PAGE_SIZE - 100)
2858 break;
2859 n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2860 if (addr)
2861 n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2862 else
2863 n += sprintf(buf + n, "<not-available>");
2864 n += sprintf(buf + n, "\n");
2865 }
2866
2867 free_loc_track(&t);
2868 if (!t.count)
2869 n += sprintf(buf, "No data\n");
2870 return n;
2871}
2872
81819f0f
CL
2873static unsigned long count_partial(struct kmem_cache_node *n)
2874{
2875 unsigned long flags;
2876 unsigned long x = 0;
2877 struct page *page;
2878
2879 spin_lock_irqsave(&n->list_lock, flags);
2880 list_for_each_entry(page, &n->partial, lru)
2881 x += page->inuse;
2882 spin_unlock_irqrestore(&n->list_lock, flags);
2883 return x;
2884}
2885
2886enum slab_stat_type {
2887 SL_FULL,
2888 SL_PARTIAL,
2889 SL_CPU,
2890 SL_OBJECTS
2891};
2892
2893#define SO_FULL (1 << SL_FULL)
2894#define SO_PARTIAL (1 << SL_PARTIAL)
2895#define SO_CPU (1 << SL_CPU)
2896#define SO_OBJECTS (1 << SL_OBJECTS)
2897
2898static unsigned long slab_objects(struct kmem_cache *s,
2899 char *buf, unsigned long flags)
2900{
2901 unsigned long total = 0;
2902 int cpu;
2903 int node;
2904 int x;
2905 unsigned long *nodes;
2906 unsigned long *per_cpu;
2907
2908 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2909 per_cpu = nodes + nr_node_ids;
2910
2911 for_each_possible_cpu(cpu) {
2912 struct page *page = s->cpu_slab[cpu];
2913 int node;
2914
2915 if (page) {
2916 node = page_to_nid(page);
2917 if (flags & SO_CPU) {
2918 int x = 0;
2919
2920 if (flags & SO_OBJECTS)
2921 x = page->inuse;
2922 else
2923 x = 1;
2924 total += x;
2925 nodes[node] += x;
2926 }
2927 per_cpu[node]++;
2928 }
2929 }
2930
2931 for_each_online_node(node) {
2932 struct kmem_cache_node *n = get_node(s, node);
2933
2934 if (flags & SO_PARTIAL) {
2935 if (flags & SO_OBJECTS)
2936 x = count_partial(n);
2937 else
2938 x = n->nr_partial;
2939 total += x;
2940 nodes[node] += x;
2941 }
2942
2943 if (flags & SO_FULL) {
2944 int full_slabs = atomic_read(&n->nr_slabs)
2945 - per_cpu[node]
2946 - n->nr_partial;
2947
2948 if (flags & SO_OBJECTS)
2949 x = full_slabs * s->objects;
2950 else
2951 x = full_slabs;
2952 total += x;
2953 nodes[node] += x;
2954 }
2955 }
2956
2957 x = sprintf(buf, "%lu", total);
2958#ifdef CONFIG_NUMA
2959 for_each_online_node(node)
2960 if (nodes[node])
2961 x += sprintf(buf + x, " N%d=%lu",
2962 node, nodes[node]);
2963#endif
2964 kfree(nodes);
2965 return x + sprintf(buf + x, "\n");
2966}
2967
2968static int any_slab_objects(struct kmem_cache *s)
2969{
2970 int node;
2971 int cpu;
2972
2973 for_each_possible_cpu(cpu)
2974 if (s->cpu_slab[cpu])
2975 return 1;
2976
2977 for_each_node(node) {
2978 struct kmem_cache_node *n = get_node(s, node);
2979
2980 if (n->nr_partial || atomic_read(&n->nr_slabs))
2981 return 1;
2982 }
2983 return 0;
2984}
2985
2986#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2987#define to_slab(n) container_of(n, struct kmem_cache, kobj);
2988
2989struct slab_attribute {
2990 struct attribute attr;
2991 ssize_t (*show)(struct kmem_cache *s, char *buf);
2992 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2993};
2994
2995#define SLAB_ATTR_RO(_name) \
2996 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2997
2998#define SLAB_ATTR(_name) \
2999 static struct slab_attribute _name##_attr = \
3000 __ATTR(_name, 0644, _name##_show, _name##_store)
3001
81819f0f
CL
3002static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3003{
3004 return sprintf(buf, "%d\n", s->size);
3005}
3006SLAB_ATTR_RO(slab_size);
3007
3008static ssize_t align_show(struct kmem_cache *s, char *buf)
3009{
3010 return sprintf(buf, "%d\n", s->align);
3011}
3012SLAB_ATTR_RO(align);
3013
3014static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3015{
3016 return sprintf(buf, "%d\n", s->objsize);
3017}
3018SLAB_ATTR_RO(object_size);
3019
3020static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3021{
3022 return sprintf(buf, "%d\n", s->objects);
3023}
3024SLAB_ATTR_RO(objs_per_slab);
3025
3026static ssize_t order_show(struct kmem_cache *s, char *buf)
3027{
3028 return sprintf(buf, "%d\n", s->order);
3029}
3030SLAB_ATTR_RO(order);
3031
3032static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3033{
3034 if (s->ctor) {
3035 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3036
3037 return n + sprintf(buf + n, "\n");
3038 }
3039 return 0;
3040}
3041SLAB_ATTR_RO(ctor);
3042
3043static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3044{
3045 if (s->dtor) {
3046 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3047
3048 return n + sprintf(buf + n, "\n");
3049 }
3050 return 0;
3051}
3052SLAB_ATTR_RO(dtor);
3053
3054static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3055{
3056 return sprintf(buf, "%d\n", s->refcount - 1);
3057}
3058SLAB_ATTR_RO(aliases);
3059
3060static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3061{
3062 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3063}
3064SLAB_ATTR_RO(slabs);
3065
3066static ssize_t partial_show(struct kmem_cache *s, char *buf)
3067{
3068 return slab_objects(s, buf, SO_PARTIAL);
3069}
3070SLAB_ATTR_RO(partial);
3071
3072static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3073{
3074 return slab_objects(s, buf, SO_CPU);
3075}
3076SLAB_ATTR_RO(cpu_slabs);
3077
3078static ssize_t objects_show(struct kmem_cache *s, char *buf)
3079{
3080 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3081}
3082SLAB_ATTR_RO(objects);
3083
3084static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3085{
3086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3087}
3088
3089static ssize_t sanity_checks_store(struct kmem_cache *s,
3090 const char *buf, size_t length)
3091{
3092 s->flags &= ~SLAB_DEBUG_FREE;
3093 if (buf[0] == '1')
3094 s->flags |= SLAB_DEBUG_FREE;
3095 return length;
3096}
3097SLAB_ATTR(sanity_checks);
3098
3099static ssize_t trace_show(struct kmem_cache *s, char *buf)
3100{
3101 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3102}
3103
3104static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3105 size_t length)
3106{
3107 s->flags &= ~SLAB_TRACE;
3108 if (buf[0] == '1')
3109 s->flags |= SLAB_TRACE;
3110 return length;
3111}
3112SLAB_ATTR(trace);
3113
3114static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3115{
3116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3117}
3118
3119static ssize_t reclaim_account_store(struct kmem_cache *s,
3120 const char *buf, size_t length)
3121{
3122 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3123 if (buf[0] == '1')
3124 s->flags |= SLAB_RECLAIM_ACCOUNT;
3125 return length;
3126}
3127SLAB_ATTR(reclaim_account);
3128
3129static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3130{
5af60839 3131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3132}
3133SLAB_ATTR_RO(hwcache_align);
3134
3135#ifdef CONFIG_ZONE_DMA
3136static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3137{
3138 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3139}
3140SLAB_ATTR_RO(cache_dma);
3141#endif
3142
3143static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3144{
3145 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3146}
3147SLAB_ATTR_RO(destroy_by_rcu);
3148
3149static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3150{
3151 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3152}
3153
3154static ssize_t red_zone_store(struct kmem_cache *s,
3155 const char *buf, size_t length)
3156{
3157 if (any_slab_objects(s))
3158 return -EBUSY;
3159
3160 s->flags &= ~SLAB_RED_ZONE;
3161 if (buf[0] == '1')
3162 s->flags |= SLAB_RED_ZONE;
3163 calculate_sizes(s);
3164 return length;
3165}
3166SLAB_ATTR(red_zone);
3167
3168static ssize_t poison_show(struct kmem_cache *s, char *buf)
3169{
3170 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3171}
3172
3173static ssize_t poison_store(struct kmem_cache *s,
3174 const char *buf, size_t length)
3175{
3176 if (any_slab_objects(s))
3177 return -EBUSY;
3178
3179 s->flags &= ~SLAB_POISON;
3180 if (buf[0] == '1')
3181 s->flags |= SLAB_POISON;
3182 calculate_sizes(s);
3183 return length;
3184}
3185SLAB_ATTR(poison);
3186
3187static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3188{
3189 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3190}
3191
3192static ssize_t store_user_store(struct kmem_cache *s,
3193 const char *buf, size_t length)
3194{
3195 if (any_slab_objects(s))
3196 return -EBUSY;
3197
3198 s->flags &= ~SLAB_STORE_USER;
3199 if (buf[0] == '1')
3200 s->flags |= SLAB_STORE_USER;
3201 calculate_sizes(s);
3202 return length;
3203}
3204SLAB_ATTR(store_user);
3205
53e15af0
CL
3206static ssize_t validate_show(struct kmem_cache *s, char *buf)
3207{
3208 return 0;
3209}
3210
3211static ssize_t validate_store(struct kmem_cache *s,
3212 const char *buf, size_t length)
3213{
3214 if (buf[0] == '1')
3215 validate_slab_cache(s);
3216 else
3217 return -EINVAL;
3218 return length;
3219}
3220SLAB_ATTR(validate);
3221
2086d26a
CL
3222static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3223{
3224 return 0;
3225}
3226
3227static ssize_t shrink_store(struct kmem_cache *s,
3228 const char *buf, size_t length)
3229{
3230 if (buf[0] == '1') {
3231 int rc = kmem_cache_shrink(s);
3232
3233 if (rc)
3234 return rc;
3235 } else
3236 return -EINVAL;
3237 return length;
3238}
3239SLAB_ATTR(shrink);
3240
88a420e4
CL
3241static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3242{
3243 if (!(s->flags & SLAB_STORE_USER))
3244 return -ENOSYS;
3245 return list_locations(s, buf, TRACK_ALLOC);
3246}
3247SLAB_ATTR_RO(alloc_calls);
3248
3249static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3250{
3251 if (!(s->flags & SLAB_STORE_USER))
3252 return -ENOSYS;
3253 return list_locations(s, buf, TRACK_FREE);
3254}
3255SLAB_ATTR_RO(free_calls);
3256
81819f0f
CL
3257#ifdef CONFIG_NUMA
3258static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3259{
3260 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3261}
3262
3263static ssize_t defrag_ratio_store(struct kmem_cache *s,
3264 const char *buf, size_t length)
3265{
3266 int n = simple_strtoul(buf, NULL, 10);
3267
3268 if (n < 100)
3269 s->defrag_ratio = n * 10;
3270 return length;
3271}
3272SLAB_ATTR(defrag_ratio);
3273#endif
3274
3275static struct attribute * slab_attrs[] = {
3276 &slab_size_attr.attr,
3277 &object_size_attr.attr,
3278 &objs_per_slab_attr.attr,
3279 &order_attr.attr,
3280 &objects_attr.attr,
3281 &slabs_attr.attr,
3282 &partial_attr.attr,
3283 &cpu_slabs_attr.attr,
3284 &ctor_attr.attr,
3285 &dtor_attr.attr,
3286 &aliases_attr.attr,
3287 &align_attr.attr,
3288 &sanity_checks_attr.attr,
3289 &trace_attr.attr,
3290 &hwcache_align_attr.attr,
3291 &reclaim_account_attr.attr,
3292 &destroy_by_rcu_attr.attr,
3293 &red_zone_attr.attr,
3294 &poison_attr.attr,
3295 &store_user_attr.attr,
53e15af0 3296 &validate_attr.attr,
2086d26a 3297 &shrink_attr.attr,
88a420e4
CL
3298 &alloc_calls_attr.attr,
3299 &free_calls_attr.attr,
81819f0f
CL
3300#ifdef CONFIG_ZONE_DMA
3301 &cache_dma_attr.attr,
3302#endif
3303#ifdef CONFIG_NUMA
3304 &defrag_ratio_attr.attr,
3305#endif
3306 NULL
3307};
3308
3309static struct attribute_group slab_attr_group = {
3310 .attrs = slab_attrs,
3311};
3312
3313static ssize_t slab_attr_show(struct kobject *kobj,
3314 struct attribute *attr,
3315 char *buf)
3316{
3317 struct slab_attribute *attribute;
3318 struct kmem_cache *s;
3319 int err;
3320
3321 attribute = to_slab_attr(attr);
3322 s = to_slab(kobj);
3323
3324 if (!attribute->show)
3325 return -EIO;
3326
3327 err = attribute->show(s, buf);
3328
3329 return err;
3330}
3331
3332static ssize_t slab_attr_store(struct kobject *kobj,
3333 struct attribute *attr,
3334 const char *buf, size_t len)
3335{
3336 struct slab_attribute *attribute;
3337 struct kmem_cache *s;
3338 int err;
3339
3340 attribute = to_slab_attr(attr);
3341 s = to_slab(kobj);
3342
3343 if (!attribute->store)
3344 return -EIO;
3345
3346 err = attribute->store(s, buf, len);
3347
3348 return err;
3349}
3350
3351static struct sysfs_ops slab_sysfs_ops = {
3352 .show = slab_attr_show,
3353 .store = slab_attr_store,
3354};
3355
3356static struct kobj_type slab_ktype = {
3357 .sysfs_ops = &slab_sysfs_ops,
3358};
3359
3360static int uevent_filter(struct kset *kset, struct kobject *kobj)
3361{
3362 struct kobj_type *ktype = get_ktype(kobj);
3363
3364 if (ktype == &slab_ktype)
3365 return 1;
3366 return 0;
3367}
3368
3369static struct kset_uevent_ops slab_uevent_ops = {
3370 .filter = uevent_filter,
3371};
3372
3373decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3374
3375#define ID_STR_LENGTH 64
3376
3377/* Create a unique string id for a slab cache:
3378 * format
3379 * :[flags-]size:[memory address of kmemcache]
3380 */
3381static char *create_unique_id(struct kmem_cache *s)
3382{
3383 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3384 char *p = name;
3385
3386 BUG_ON(!name);
3387
3388 *p++ = ':';
3389 /*
3390 * First flags affecting slabcache operations. We will only
3391 * get here for aliasable slabs so we do not need to support
3392 * too many flags. The flags here must cover all flags that
3393 * are matched during merging to guarantee that the id is
3394 * unique.
3395 */
3396 if (s->flags & SLAB_CACHE_DMA)
3397 *p++ = 'd';
3398 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3399 *p++ = 'a';
3400 if (s->flags & SLAB_DEBUG_FREE)
3401 *p++ = 'F';
3402 if (p != name + 1)
3403 *p++ = '-';
3404 p += sprintf(p, "%07d", s->size);
3405 BUG_ON(p > name + ID_STR_LENGTH - 1);
3406 return name;
3407}
3408
3409static int sysfs_slab_add(struct kmem_cache *s)
3410{
3411 int err;
3412 const char *name;
3413 int unmergeable;
3414
3415 if (slab_state < SYSFS)
3416 /* Defer until later */
3417 return 0;
3418
3419 unmergeable = slab_unmergeable(s);
3420 if (unmergeable) {
3421 /*
3422 * Slabcache can never be merged so we can use the name proper.
3423 * This is typically the case for debug situations. In that
3424 * case we can catch duplicate names easily.
3425 */
0f9008ef 3426 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3427 name = s->name;
3428 } else {
3429 /*
3430 * Create a unique name for the slab as a target
3431 * for the symlinks.
3432 */
3433 name = create_unique_id(s);
3434 }
3435
3436 kobj_set_kset_s(s, slab_subsys);
3437 kobject_set_name(&s->kobj, name);
3438 kobject_init(&s->kobj);
3439 err = kobject_add(&s->kobj);
3440 if (err)
3441 return err;
3442
3443 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3444 if (err)
3445 return err;
3446 kobject_uevent(&s->kobj, KOBJ_ADD);
3447 if (!unmergeable) {
3448 /* Setup first alias */
3449 sysfs_slab_alias(s, s->name);
3450 kfree(name);
3451 }
3452 return 0;
3453}
3454
3455static void sysfs_slab_remove(struct kmem_cache *s)
3456{
3457 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3458 kobject_del(&s->kobj);
3459}
3460
3461/*
3462 * Need to buffer aliases during bootup until sysfs becomes
3463 * available lest we loose that information.
3464 */
3465struct saved_alias {
3466 struct kmem_cache *s;
3467 const char *name;
3468 struct saved_alias *next;
3469};
3470
3471struct saved_alias *alias_list;
3472
3473static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3474{
3475 struct saved_alias *al;
3476
3477 if (slab_state == SYSFS) {
3478 /*
3479 * If we have a leftover link then remove it.
3480 */
0f9008ef
LT
3481 sysfs_remove_link(&slab_subsys.kobj, name);
3482 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3483 &s->kobj, name);
3484 }
3485
3486 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3487 if (!al)
3488 return -ENOMEM;
3489
3490 al->s = s;
3491 al->name = name;
3492 al->next = alias_list;
3493 alias_list = al;
3494 return 0;
3495}
3496
3497static int __init slab_sysfs_init(void)
3498{
3499 int err;
3500
3501 err = subsystem_register(&slab_subsys);
3502 if (err) {
3503 printk(KERN_ERR "Cannot register slab subsystem.\n");
3504 return -ENOSYS;
3505 }
3506
3507 finish_bootstrap();
3508
3509 while (alias_list) {
3510 struct saved_alias *al = alias_list;
3511
3512 alias_list = alias_list->next;
3513 err = sysfs_slab_alias(al->s, al->name);
3514 BUG_ON(err);
3515 kfree(al);
3516 }
3517
3518 resiliency_test();
3519 return 0;
3520}
3521
3522__initcall(slab_sysfs_init);
3523#else
3524__initcall(finish_bootstrap);
3525#endif