]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
[PATCH] cpuset memory spread slab cache optimizations
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
e498be7d 106#include <linux/nodemask.h>
dc85da15 107#include <linux/mempolicy.h>
fc0abb14 108#include <linux/mutex.h>
1da177e4
LT
109
110#include <asm/uaccess.h>
111#include <asm/cacheflush.h>
112#include <asm/tlbflush.h>
113#include <asm/page.h>
114
115/*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define DEBUG 1
128#define STATS 1
129#define FORCED_DEBUG 1
130#else
131#define DEBUG 0
132#define STATS 0
133#define FORCED_DEBUG 0
134#endif
135
1da177e4
LT
136/* Shouldn't this be in a header file somewhere? */
137#define BYTES_PER_WORD sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size() L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 174 SLAB_CACHE_DMA | \
1da177e4
LT
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 178#else
ac2b898c 179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
fa5b08d5 204typedef unsigned int kmem_bufctl_t;
1da177e4
LT
205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208
209/* Max number of objs-per-slab for caches which use off-slab slabs.
210 * Needed to avoid a possible looping condition in cache_grow().
211 */
212static unsigned long offslab_limit;
213
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
b28a02de
PE
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
1da177e4
LT
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
b28a02de 247 struct rcu_head head;
343e0d7a 248 struct kmem_cache *cachep;
b28a02de 249 void *addr;
1da177e4
LT
250};
251
252/*
253 * struct array_cache
254 *
1da177e4
LT
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
e498be7d 269 spinlock_t lock;
a737b3e2
AM
270 void *entry[0]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
274 * [0] is for gcc 2.95. It should really be [].
275 */
1da177e4
LT
276};
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4
LT
290 */
291struct kmem_list3 {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
308#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310#define CACHE_CACHE 0
311#define SIZE_AC 1
312#define SIZE_L3 (1 + MAX_NUMNODES)
313
314/*
a737b3e2
AM
315 * This function must be completely optimized away if a constant is passed to
316 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 317 */
7243cc05 318static __always_inline int index_of(const size_t size)
e498be7d 319{
5ec8a847
SR
320 extern void __bad_size(void);
321
e498be7d
CL
322 if (__builtin_constant_p(size)) {
323 int i = 0;
324
325#define CACHE(x) \
326 if (size <=x) \
327 return i; \
328 else \
329 i++;
330#include "linux/kmalloc_sizes.h"
331#undef CACHE
5ec8a847 332 __bad_size();
7243cc05 333 } else
5ec8a847 334 __bad_size();
e498be7d
CL
335 return 0;
336}
337
338#define INDEX_AC index_of(sizeof(struct arraycache_init))
339#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 340
5295a74c 341static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
342{
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
2e1217cf 348 parent->colour_next = 0;
e498be7d
CL
349 spin_lock_init(&parent->list_lock);
350 parent->free_objects = 0;
351 parent->free_touched = 0;
352}
353
a737b3e2
AM
354#define MAKE_LIST(cachep, listp, slab, nodeid) \
355 do { \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
358 } while (0)
359
a737b3e2
AM
360#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 do { \
e498be7d
CL
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
365 } while (0)
1da177e4
LT
366
367/*
343e0d7a 368 * struct kmem_cache
1da177e4
LT
369 *
370 * manages a cache.
371 */
b28a02de 372
2109a2d1 373struct kmem_cache {
1da177e4 374/* 1) per-cpu data, touched during every alloc/free */
b28a02de 375 struct array_cache *array[NR_CPUS];
b5d8ca7c 376/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
377 unsigned int batchcount;
378 unsigned int limit;
379 unsigned int shared;
b5d8ca7c 380
3dafccf2 381 unsigned int buffer_size;
b5d8ca7c 382/* 3) touched by every alloc & free from the backend */
b28a02de 383 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 384
a737b3e2
AM
385 unsigned int flags; /* constant flags */
386 unsigned int num; /* # of objs per slab */
1da177e4 387
b5d8ca7c 388/* 4) cache_grow/shrink */
1da177e4 389 /* order of pgs per slab (2^n) */
b28a02de 390 unsigned int gfporder;
1da177e4
LT
391
392 /* force GFP flags, e.g. GFP_DMA */
b28a02de 393 gfp_t gfpflags;
1da177e4 394
a737b3e2 395 size_t colour; /* cache colouring range */
b28a02de 396 unsigned int colour_off; /* colour offset */
343e0d7a 397 struct kmem_cache *slabp_cache;
b28a02de 398 unsigned int slab_size;
a737b3e2 399 unsigned int dflags; /* dynamic flags */
1da177e4
LT
400
401 /* constructor func */
343e0d7a 402 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
403
404 /* de-constructor func */
343e0d7a 405 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 406
b5d8ca7c 407/* 5) cache creation/removal */
b28a02de
PE
408 const char *name;
409 struct list_head next;
1da177e4 410
b5d8ca7c 411/* 6) statistics */
1da177e4 412#if STATS
b28a02de
PE
413 unsigned long num_active;
414 unsigned long num_allocations;
415 unsigned long high_mark;
416 unsigned long grown;
417 unsigned long reaped;
418 unsigned long errors;
419 unsigned long max_freeable;
420 unsigned long node_allocs;
421 unsigned long node_frees;
422 atomic_t allochit;
423 atomic_t allocmiss;
424 atomic_t freehit;
425 atomic_t freemiss;
1da177e4
LT
426#endif
427#if DEBUG
3dafccf2
MS
428 /*
429 * If debugging is enabled, then the allocator can add additional
430 * fields and/or padding to every object. buffer_size contains the total
431 * object size including these internal fields, the following two
432 * variables contain the offset to the user object and its size.
433 */
434 int obj_offset;
435 int obj_size;
1da177e4
LT
436#endif
437};
438
439#define CFLGS_OFF_SLAB (0x80000000UL)
440#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
441
442#define BATCHREFILL_LIMIT 16
a737b3e2
AM
443/*
444 * Optimization question: fewer reaps means less probability for unnessary
445 * cpucache drain/refill cycles.
1da177e4 446 *
dc6f3f27 447 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
448 * which could lock up otherwise freeable slabs.
449 */
450#define REAPTIMEOUT_CPUC (2*HZ)
451#define REAPTIMEOUT_LIST3 (4*HZ)
452
453#if STATS
454#define STATS_INC_ACTIVE(x) ((x)->num_active++)
455#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
456#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
457#define STATS_INC_GROWN(x) ((x)->grown++)
458#define STATS_INC_REAPED(x) ((x)->reaped++)
a737b3e2
AM
459#define STATS_SET_HIGH(x) \
460 do { \
461 if ((x)->num_active > (x)->high_mark) \
462 (x)->high_mark = (x)->num_active; \
463 } while (0)
1da177e4
LT
464#define STATS_INC_ERR(x) ((x)->errors++)
465#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 466#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
a737b3e2
AM
467#define STATS_SET_FREEABLE(x, i) \
468 do { \
469 if ((x)->max_freeable < i) \
470 (x)->max_freeable = i; \
471 } while (0)
1da177e4
LT
472#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
473#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
474#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
475#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
476#else
477#define STATS_INC_ACTIVE(x) do { } while (0)
478#define STATS_DEC_ACTIVE(x) do { } while (0)
479#define STATS_INC_ALLOCED(x) do { } while (0)
480#define STATS_INC_GROWN(x) do { } while (0)
481#define STATS_INC_REAPED(x) do { } while (0)
482#define STATS_SET_HIGH(x) do { } while (0)
483#define STATS_INC_ERR(x) do { } while (0)
484#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 485#define STATS_INC_NODEFREES(x) do { } while (0)
a737b3e2 486#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
487#define STATS_INC_ALLOCHIT(x) do { } while (0)
488#define STATS_INC_ALLOCMISS(x) do { } while (0)
489#define STATS_INC_FREEHIT(x) do { } while (0)
490#define STATS_INC_FREEMISS(x) do { } while (0)
491#endif
492
493#if DEBUG
a737b3e2
AM
494/*
495 * Magic nums for obj red zoning.
1da177e4
LT
496 * Placed in the first word before and the first word after an obj.
497 */
498#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
499#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
500
501/* ...and for poisoning */
502#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
503#define POISON_FREE 0x6b /* for use-after-free poisoning */
504#define POISON_END 0xa5 /* end-byte of poisoning */
505
a737b3e2
AM
506/*
507 * memory layout of objects:
1da177e4 508 * 0 : objp
3dafccf2 509 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
510 * the end of an object is aligned with the end of the real
511 * allocation. Catches writes behind the end of the allocation.
3dafccf2 512 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 513 * redzone word.
3dafccf2
MS
514 * cachep->obj_offset: The real object.
515 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
516 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
517 * [BYTES_PER_WORD long]
1da177e4 518 */
343e0d7a 519static int obj_offset(struct kmem_cache *cachep)
1da177e4 520{
3dafccf2 521 return cachep->obj_offset;
1da177e4
LT
522}
523
343e0d7a 524static int obj_size(struct kmem_cache *cachep)
1da177e4 525{
3dafccf2 526 return cachep->obj_size;
1da177e4
LT
527}
528
343e0d7a 529static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
530{
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 532 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
533}
534
343e0d7a 535static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
536{
537 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
538 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 539 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 540 2 * BYTES_PER_WORD);
3dafccf2 541 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
542}
543
343e0d7a 544static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
545{
546 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 547 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
548}
549
550#else
551
3dafccf2
MS
552#define obj_offset(x) 0
553#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
554#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
557
558#endif
559
560/*
a737b3e2
AM
561 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
562 * order.
1da177e4
LT
563 */
564#if defined(CONFIG_LARGE_ALLOCS)
565#define MAX_OBJ_ORDER 13 /* up to 32Mb */
566#define MAX_GFP_ORDER 13 /* up to 32Mb */
567#elif defined(CONFIG_MMU)
568#define MAX_OBJ_ORDER 5 /* 32 pages */
569#define MAX_GFP_ORDER 5 /* 32 pages */
570#else
571#define MAX_OBJ_ORDER 8 /* up to 1Mb */
572#define MAX_GFP_ORDER 8 /* up to 1Mb */
573#endif
574
575/*
576 * Do not go above this order unless 0 objects fit into the slab.
577 */
578#define BREAK_GFP_ORDER_HI 1
579#define BREAK_GFP_ORDER_LO 0
580static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
581
a737b3e2
AM
582/*
583 * Functions for storing/retrieving the cachep and or slab from the page
584 * allocator. These are used to find the slab an obj belongs to. With kfree(),
585 * these are used to find the cache which an obj belongs to.
1da177e4 586 */
065d41cb
PE
587static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
588{
589 page->lru.next = (struct list_head *)cache;
590}
591
592static inline struct kmem_cache *page_get_cache(struct page *page)
593{
84097518
NP
594 if (unlikely(PageCompound(page)))
595 page = (struct page *)page_private(page);
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
065d41cb
PE
608 return (struct slab *)page->lru.prev;
609}
1da177e4 610
6ed5eb22
PE
611static inline struct kmem_cache *virt_to_cache(const void *obj)
612{
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
615}
616
617static inline struct slab *virt_to_slab(const void *obj)
618{
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
621}
622
8fea4e96
PE
623static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
625{
626 return slab->s_mem + cache->buffer_size * idx;
627}
628
629static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
631{
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633}
634
a737b3e2
AM
635/*
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 */
1da177e4
LT
638struct cache_sizes malloc_sizes[] = {
639#define CACHE(x) { .cs_size = (x) },
640#include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642#undef CACHE
643};
644EXPORT_SYMBOL(malloc_sizes);
645
646/* Must match cache_sizes above. Out of line to keep cache footprint low. */
647struct cache_names {
648 char *name;
649 char *name_dma;
650};
651
652static struct cache_names __initdata cache_names[] = {
653#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654#include <linux/kmalloc_sizes.h>
b28a02de 655 {NULL,}
1da177e4
LT
656#undef CACHE
657};
658
659static struct arraycache_init initarray_cache __initdata =
b28a02de 660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 661static struct arraycache_init initarray_generic =
b28a02de 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
663
664/* internal cache of cache description objs */
343e0d7a 665static struct kmem_cache cache_cache = {
b28a02de
PE
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
343e0d7a 669 .buffer_size = sizeof(struct kmem_cache),
b28a02de 670 .name = "kmem_cache",
1da177e4 671#if DEBUG
343e0d7a 672 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
673#endif
674};
675
676/* Guard access to the cache-chain. */
fc0abb14 677static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
678static struct list_head cache_chain;
679
680/*
a737b3e2
AM
681 * vm_enough_memory() looks at this to determine how many slab-allocated pages
682 * are possibly freeable under pressure
1da177e4
LT
683 *
684 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
685 */
686atomic_t slab_reclaim_pages;
1da177e4
LT
687
688/*
689 * chicken and egg problem: delay the per-cpu array allocation
690 * until the general caches are up.
691 */
692static enum {
693 NONE,
e498be7d
CL
694 PARTIAL_AC,
695 PARTIAL_L3,
1da177e4
LT
696 FULL
697} g_cpucache_up;
698
699static DEFINE_PER_CPU(struct work_struct, reap_work);
700
a737b3e2
AM
701static void free_block(struct kmem_cache *cachep, void **objpp, int len,
702 int node);
343e0d7a 703static void enable_cpucache(struct kmem_cache *cachep);
b28a02de 704static void cache_reap(void *unused);
343e0d7a 705static int __node_shrink(struct kmem_cache *cachep, int node);
1da177e4 706
343e0d7a 707static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
708{
709 return cachep->array[smp_processor_id()];
710}
711
a737b3e2
AM
712static inline struct kmem_cache *__find_general_cachep(size_t size,
713 gfp_t gfpflags)
1da177e4
LT
714{
715 struct cache_sizes *csizep = malloc_sizes;
716
717#if DEBUG
718 /* This happens if someone tries to call
b28a02de
PE
719 * kmem_cache_create(), or __kmalloc(), before
720 * the generic caches are initialized.
721 */
c7e43c78 722 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
723#endif
724 while (size > csizep->cs_size)
725 csizep++;
726
727 /*
0abf40c1 728 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
729 * has cs_{dma,}cachep==NULL. Thus no special case
730 * for large kmalloc calls required.
731 */
732 if (unlikely(gfpflags & GFP_DMA))
733 return csizep->cs_dmacachep;
734 return csizep->cs_cachep;
735}
736
343e0d7a 737struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
738{
739 return __find_general_cachep(size, gfpflags);
740}
741EXPORT_SYMBOL(kmem_find_general_cachep);
742
fbaccacf 743static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 744{
fbaccacf
SR
745 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
746}
1da177e4 747
a737b3e2
AM
748/*
749 * Calculate the number of objects and left-over bytes for a given buffer size.
750 */
fbaccacf
SR
751static void cache_estimate(unsigned long gfporder, size_t buffer_size,
752 size_t align, int flags, size_t *left_over,
753 unsigned int *num)
754{
755 int nr_objs;
756 size_t mgmt_size;
757 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 758
fbaccacf
SR
759 /*
760 * The slab management structure can be either off the slab or
761 * on it. For the latter case, the memory allocated for a
762 * slab is used for:
763 *
764 * - The struct slab
765 * - One kmem_bufctl_t for each object
766 * - Padding to respect alignment of @align
767 * - @buffer_size bytes for each object
768 *
769 * If the slab management structure is off the slab, then the
770 * alignment will already be calculated into the size. Because
771 * the slabs are all pages aligned, the objects will be at the
772 * correct alignment when allocated.
773 */
774 if (flags & CFLGS_OFF_SLAB) {
775 mgmt_size = 0;
776 nr_objs = slab_size / buffer_size;
777
778 if (nr_objs > SLAB_LIMIT)
779 nr_objs = SLAB_LIMIT;
780 } else {
781 /*
782 * Ignore padding for the initial guess. The padding
783 * is at most @align-1 bytes, and @buffer_size is at
784 * least @align. In the worst case, this result will
785 * be one greater than the number of objects that fit
786 * into the memory allocation when taking the padding
787 * into account.
788 */
789 nr_objs = (slab_size - sizeof(struct slab)) /
790 (buffer_size + sizeof(kmem_bufctl_t));
791
792 /*
793 * This calculated number will be either the right
794 * amount, or one greater than what we want.
795 */
796 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
797 > slab_size)
798 nr_objs--;
799
800 if (nr_objs > SLAB_LIMIT)
801 nr_objs = SLAB_LIMIT;
802
803 mgmt_size = slab_mgmt_size(nr_objs, align);
804 }
805 *num = nr_objs;
806 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
807}
808
809#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
810
a737b3e2
AM
811static void __slab_error(const char *function, struct kmem_cache *cachep,
812 char *msg)
1da177e4
LT
813{
814 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 815 function, cachep->name, msg);
1da177e4
LT
816 dump_stack();
817}
818
8fce4d8e
CL
819#ifdef CONFIG_NUMA
820/*
821 * Special reaping functions for NUMA systems called from cache_reap().
822 * These take care of doing round robin flushing of alien caches (containing
823 * objects freed on different nodes from which they were allocated) and the
824 * flushing of remote pcps by calling drain_node_pages.
825 */
826static DEFINE_PER_CPU(unsigned long, reap_node);
827
828static void init_reap_node(int cpu)
829{
830 int node;
831
832 node = next_node(cpu_to_node(cpu), node_online_map);
833 if (node == MAX_NUMNODES)
442295c9 834 node = first_node(node_online_map);
8fce4d8e
CL
835
836 __get_cpu_var(reap_node) = node;
837}
838
839static void next_reap_node(void)
840{
841 int node = __get_cpu_var(reap_node);
842
843 /*
844 * Also drain per cpu pages on remote zones
845 */
846 if (node != numa_node_id())
847 drain_node_pages(node);
848
849 node = next_node(node, node_online_map);
850 if (unlikely(node >= MAX_NUMNODES))
851 node = first_node(node_online_map);
852 __get_cpu_var(reap_node) = node;
853}
854
855#else
856#define init_reap_node(cpu) do { } while (0)
857#define next_reap_node(void) do { } while (0)
858#endif
859
1da177e4
LT
860/*
861 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
862 * via the workqueue/eventd.
863 * Add the CPU number into the expiration time to minimize the possibility of
864 * the CPUs getting into lockstep and contending for the global cache chain
865 * lock.
866 */
867static void __devinit start_cpu_timer(int cpu)
868{
869 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
870
871 /*
872 * When this gets called from do_initcalls via cpucache_init(),
873 * init_workqueues() has already run, so keventd will be setup
874 * at that time.
875 */
876 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 877 init_reap_node(cpu);
1da177e4
LT
878 INIT_WORK(reap_work, cache_reap, NULL);
879 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
880 }
881}
882
e498be7d 883static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 884 int batchcount)
1da177e4 885{
b28a02de 886 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
887 struct array_cache *nc = NULL;
888
e498be7d 889 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
890 if (nc) {
891 nc->avail = 0;
892 nc->limit = entries;
893 nc->batchcount = batchcount;
894 nc->touched = 0;
e498be7d 895 spin_lock_init(&nc->lock);
1da177e4
LT
896 }
897 return nc;
898}
899
e498be7d 900#ifdef CONFIG_NUMA
343e0d7a 901static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 902static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 903
5295a74c 904static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
905{
906 struct array_cache **ac_ptr;
b28a02de 907 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
908 int i;
909
910 if (limit > 1)
911 limit = 12;
912 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
913 if (ac_ptr) {
914 for_each_node(i) {
915 if (i == node || !node_online(i)) {
916 ac_ptr[i] = NULL;
917 continue;
918 }
919 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
920 if (!ac_ptr[i]) {
b28a02de 921 for (i--; i <= 0; i--)
e498be7d
CL
922 kfree(ac_ptr[i]);
923 kfree(ac_ptr);
924 return NULL;
925 }
926 }
927 }
928 return ac_ptr;
929}
930
5295a74c 931static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
932{
933 int i;
934
935 if (!ac_ptr)
936 return;
e498be7d 937 for_each_node(i)
b28a02de 938 kfree(ac_ptr[i]);
e498be7d
CL
939 kfree(ac_ptr);
940}
941
343e0d7a 942static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 943 struct array_cache *ac, int node)
e498be7d
CL
944{
945 struct kmem_list3 *rl3 = cachep->nodelists[node];
946
947 if (ac->avail) {
948 spin_lock(&rl3->list_lock);
ff69416e 949 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
950 ac->avail = 0;
951 spin_unlock(&rl3->list_lock);
952 }
953}
954
8fce4d8e
CL
955/*
956 * Called from cache_reap() to regularly drain alien caches round robin.
957 */
958static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
959{
960 int node = __get_cpu_var(reap_node);
961
962 if (l3->alien) {
963 struct array_cache *ac = l3->alien[node];
964 if (ac && ac->avail) {
965 spin_lock_irq(&ac->lock);
966 __drain_alien_cache(cachep, ac, node);
967 spin_unlock_irq(&ac->lock);
968 }
969 }
970}
971
a737b3e2
AM
972static void drain_alien_cache(struct kmem_cache *cachep,
973 struct array_cache **alien)
e498be7d 974{
b28a02de 975 int i = 0;
e498be7d
CL
976 struct array_cache *ac;
977 unsigned long flags;
978
979 for_each_online_node(i) {
4484ebf1 980 ac = alien[i];
e498be7d
CL
981 if (ac) {
982 spin_lock_irqsave(&ac->lock, flags);
983 __drain_alien_cache(cachep, ac, i);
984 spin_unlock_irqrestore(&ac->lock, flags);
985 }
986 }
987}
988#else
7a21ef6f 989
4484ebf1 990#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 991#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 992
7a21ef6f
LT
993static inline struct array_cache **alloc_alien_cache(int node, int limit)
994{
995 return (struct array_cache **) 0x01020304ul;
996}
997
4484ebf1
RT
998static inline void free_alien_cache(struct array_cache **ac_ptr)
999{
1000}
7a21ef6f 1001
e498be7d
CL
1002#endif
1003
1da177e4 1004static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1005 unsigned long action, void *hcpu)
1da177e4
LT
1006{
1007 long cpu = (long)hcpu;
343e0d7a 1008 struct kmem_cache *cachep;
e498be7d
CL
1009 struct kmem_list3 *l3 = NULL;
1010 int node = cpu_to_node(cpu);
1011 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1012
1013 switch (action) {
1014 case CPU_UP_PREPARE:
fc0abb14 1015 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1016 /*
1017 * We need to do this right in the beginning since
e498be7d
CL
1018 * alloc_arraycache's are going to use this list.
1019 * kmalloc_node allows us to add the slab to the right
1020 * kmem_list3 and not this cpu's kmem_list3
1021 */
1022
1da177e4 1023 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1024 /*
1025 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1026 * begin anything. Make sure some other cpu on this
1027 * node has not already allocated this
1028 */
1029 if (!cachep->nodelists[node]) {
a737b3e2
AM
1030 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1031 if (!l3)
e498be7d
CL
1032 goto bad;
1033 kmem_list3_init(l3);
1034 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1035 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1036
4484ebf1
RT
1037 /*
1038 * The l3s don't come and go as CPUs come and
1039 * go. cache_chain_mutex is sufficient
1040 * protection here.
1041 */
e498be7d
CL
1042 cachep->nodelists[node] = l3;
1043 }
1da177e4 1044
e498be7d
CL
1045 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1046 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1047 (1 + nr_cpus_node(node)) *
1048 cachep->batchcount + cachep->num;
e498be7d
CL
1049 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1050 }
1051
a737b3e2
AM
1052 /*
1053 * Now we can go ahead with allocating the shared arrays and
1054 * array caches
1055 */
e498be7d 1056 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1057 struct array_cache *nc;
4484ebf1
RT
1058 struct array_cache *shared;
1059 struct array_cache **alien;
cd105df4 1060
e498be7d 1061 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1062 cachep->batchcount);
1da177e4
LT
1063 if (!nc)
1064 goto bad;
4484ebf1
RT
1065 shared = alloc_arraycache(node,
1066 cachep->shared * cachep->batchcount,
1067 0xbaadf00d);
1068 if (!shared)
1069 goto bad;
7a21ef6f 1070
4484ebf1
RT
1071 alien = alloc_alien_cache(node, cachep->limit);
1072 if (!alien)
1073 goto bad;
1da177e4 1074 cachep->array[cpu] = nc;
e498be7d
CL
1075 l3 = cachep->nodelists[node];
1076 BUG_ON(!l3);
e498be7d 1077
4484ebf1
RT
1078 spin_lock_irq(&l3->list_lock);
1079 if (!l3->shared) {
1080 /*
1081 * We are serialised from CPU_DEAD or
1082 * CPU_UP_CANCELLED by the cpucontrol lock
1083 */
1084 l3->shared = shared;
1085 shared = NULL;
e498be7d 1086 }
4484ebf1
RT
1087#ifdef CONFIG_NUMA
1088 if (!l3->alien) {
1089 l3->alien = alien;
1090 alien = NULL;
1091 }
1092#endif
1093 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1094 kfree(shared);
1095 free_alien_cache(alien);
1da177e4 1096 }
fc0abb14 1097 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1098 break;
1099 case CPU_ONLINE:
1100 start_cpu_timer(cpu);
1101 break;
1102#ifdef CONFIG_HOTPLUG_CPU
1103 case CPU_DEAD:
4484ebf1
RT
1104 /*
1105 * Even if all the cpus of a node are down, we don't free the
1106 * kmem_list3 of any cache. This to avoid a race between
1107 * cpu_down, and a kmalloc allocation from another cpu for
1108 * memory from the node of the cpu going down. The list3
1109 * structure is usually allocated from kmem_cache_create() and
1110 * gets destroyed at kmem_cache_destroy().
1111 */
1da177e4
LT
1112 /* fall thru */
1113 case CPU_UP_CANCELED:
fc0abb14 1114 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1115 list_for_each_entry(cachep, &cache_chain, next) {
1116 struct array_cache *nc;
4484ebf1
RT
1117 struct array_cache *shared;
1118 struct array_cache **alien;
e498be7d 1119 cpumask_t mask;
1da177e4 1120
e498be7d 1121 mask = node_to_cpumask(node);
1da177e4
LT
1122 /* cpu is dead; no one can alloc from it. */
1123 nc = cachep->array[cpu];
1124 cachep->array[cpu] = NULL;
e498be7d
CL
1125 l3 = cachep->nodelists[node];
1126
1127 if (!l3)
4484ebf1 1128 goto free_array_cache;
e498be7d 1129
ca3b9b91 1130 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1131
1132 /* Free limit for this kmem_list3 */
1133 l3->free_limit -= cachep->batchcount;
1134 if (nc)
ff69416e 1135 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1136
1137 if (!cpus_empty(mask)) {
ca3b9b91 1138 spin_unlock_irq(&l3->list_lock);
4484ebf1 1139 goto free_array_cache;
b28a02de 1140 }
e498be7d 1141
4484ebf1
RT
1142 shared = l3->shared;
1143 if (shared) {
e498be7d 1144 free_block(cachep, l3->shared->entry,
b28a02de 1145 l3->shared->avail, node);
e498be7d
CL
1146 l3->shared = NULL;
1147 }
e498be7d 1148
4484ebf1
RT
1149 alien = l3->alien;
1150 l3->alien = NULL;
1151
1152 spin_unlock_irq(&l3->list_lock);
1153
1154 kfree(shared);
1155 if (alien) {
1156 drain_alien_cache(cachep, alien);
1157 free_alien_cache(alien);
e498be7d 1158 }
4484ebf1 1159free_array_cache:
1da177e4
LT
1160 kfree(nc);
1161 }
4484ebf1
RT
1162 /*
1163 * In the previous loop, all the objects were freed to
1164 * the respective cache's slabs, now we can go ahead and
1165 * shrink each nodelist to its limit.
1166 */
1167 list_for_each_entry(cachep, &cache_chain, next) {
1168 l3 = cachep->nodelists[node];
1169 if (!l3)
1170 continue;
1171 spin_lock_irq(&l3->list_lock);
1172 /* free slabs belonging to this node */
1173 __node_shrink(cachep, node);
1174 spin_unlock_irq(&l3->list_lock);
1175 }
fc0abb14 1176 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1177 break;
1178#endif
1179 }
1180 return NOTIFY_OK;
a737b3e2 1181bad:
fc0abb14 1182 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1183 return NOTIFY_BAD;
1184}
1185
1186static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1187
e498be7d
CL
1188/*
1189 * swap the static kmem_list3 with kmalloced memory
1190 */
a737b3e2
AM
1191static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1192 int nodeid)
e498be7d
CL
1193{
1194 struct kmem_list3 *ptr;
1195
1196 BUG_ON(cachep->nodelists[nodeid] != list);
1197 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1198 BUG_ON(!ptr);
1199
1200 local_irq_disable();
1201 memcpy(ptr, list, sizeof(struct kmem_list3));
1202 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1203 cachep->nodelists[nodeid] = ptr;
1204 local_irq_enable();
1205}
1206
a737b3e2
AM
1207/*
1208 * Initialisation. Called after the page allocator have been initialised and
1209 * before smp_init().
1da177e4
LT
1210 */
1211void __init kmem_cache_init(void)
1212{
1213 size_t left_over;
1214 struct cache_sizes *sizes;
1215 struct cache_names *names;
e498be7d 1216 int i;
07ed76b2 1217 int order;
e498be7d
CL
1218
1219 for (i = 0; i < NUM_INIT_LISTS; i++) {
1220 kmem_list3_init(&initkmem_list3[i]);
1221 if (i < MAX_NUMNODES)
1222 cache_cache.nodelists[i] = NULL;
1223 }
1da177e4
LT
1224
1225 /*
1226 * Fragmentation resistance on low memory - only use bigger
1227 * page orders on machines with more than 32MB of memory.
1228 */
1229 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1230 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1231
1da177e4
LT
1232 /* Bootstrap is tricky, because several objects are allocated
1233 * from caches that do not exist yet:
a737b3e2
AM
1234 * 1) initialize the cache_cache cache: it contains the struct
1235 * kmem_cache structures of all caches, except cache_cache itself:
1236 * cache_cache is statically allocated.
e498be7d
CL
1237 * Initially an __init data area is used for the head array and the
1238 * kmem_list3 structures, it's replaced with a kmalloc allocated
1239 * array at the end of the bootstrap.
1da177e4 1240 * 2) Create the first kmalloc cache.
343e0d7a 1241 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1242 * An __init data area is used for the head array.
1243 * 3) Create the remaining kmalloc caches, with minimally sized
1244 * head arrays.
1da177e4
LT
1245 * 4) Replace the __init data head arrays for cache_cache and the first
1246 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1247 * 5) Replace the __init data for kmem_list3 for cache_cache and
1248 * the other cache's with kmalloc allocated memory.
1249 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1250 */
1251
1252 /* 1) create the cache_cache */
1da177e4
LT
1253 INIT_LIST_HEAD(&cache_chain);
1254 list_add(&cache_cache.next, &cache_chain);
1255 cache_cache.colour_off = cache_line_size();
1256 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1257 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1258
a737b3e2
AM
1259 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1260 cache_line_size());
1da177e4 1261
07ed76b2
JS
1262 for (order = 0; order < MAX_ORDER; order++) {
1263 cache_estimate(order, cache_cache.buffer_size,
1264 cache_line_size(), 0, &left_over, &cache_cache.num);
1265 if (cache_cache.num)
1266 break;
1267 }
1da177e4
LT
1268 if (!cache_cache.num)
1269 BUG();
07ed76b2 1270 cache_cache.gfporder = order;
b28a02de 1271 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1272 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1273 sizeof(struct slab), cache_line_size());
1da177e4
LT
1274
1275 /* 2+3) create the kmalloc caches */
1276 sizes = malloc_sizes;
1277 names = cache_names;
1278
a737b3e2
AM
1279 /*
1280 * Initialize the caches that provide memory for the array cache and the
1281 * kmem_list3 structures first. Without this, further allocations will
1282 * bug.
e498be7d
CL
1283 */
1284
1285 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1286 sizes[INDEX_AC].cs_size,
1287 ARCH_KMALLOC_MINALIGN,
1288 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1289 NULL, NULL);
e498be7d 1290
a737b3e2 1291 if (INDEX_AC != INDEX_L3) {
e498be7d 1292 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1293 kmem_cache_create(names[INDEX_L3].name,
1294 sizes[INDEX_L3].cs_size,
1295 ARCH_KMALLOC_MINALIGN,
1296 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1297 NULL, NULL);
1298 }
e498be7d 1299
1da177e4 1300 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1301 /*
1302 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1303 * This should be particularly beneficial on SMP boxes, as it
1304 * eliminates "false sharing".
1305 * Note for systems short on memory removing the alignment will
e498be7d
CL
1306 * allow tighter packing of the smaller caches.
1307 */
a737b3e2 1308 if (!sizes->cs_cachep) {
e498be7d 1309 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1310 sizes->cs_size,
1311 ARCH_KMALLOC_MINALIGN,
1312 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1313 NULL, NULL);
1314 }
1da177e4
LT
1315
1316 /* Inc off-slab bufctl limit until the ceiling is hit. */
1317 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1318 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1319 offslab_limit /= sizeof(kmem_bufctl_t);
1320 }
1321
1322 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1323 sizes->cs_size,
1324 ARCH_KMALLOC_MINALIGN,
1325 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1326 SLAB_PANIC,
1327 NULL, NULL);
1da177e4
LT
1328 sizes++;
1329 names++;
1330 }
1331 /* 4) Replace the bootstrap head arrays */
1332 {
b28a02de 1333 void *ptr;
e498be7d 1334
1da177e4 1335 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1336
1da177e4 1337 local_irq_disable();
9a2dba4b
PE
1338 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1339 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1340 sizeof(struct arraycache_init));
1da177e4
LT
1341 cache_cache.array[smp_processor_id()] = ptr;
1342 local_irq_enable();
e498be7d 1343
1da177e4 1344 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1345
1da177e4 1346 local_irq_disable();
9a2dba4b 1347 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1348 != &initarray_generic.cache);
9a2dba4b 1349 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1350 sizeof(struct arraycache_init));
e498be7d 1351 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1352 ptr;
1da177e4
LT
1353 local_irq_enable();
1354 }
e498be7d
CL
1355 /* 5) Replace the bootstrap kmem_list3's */
1356 {
1357 int node;
1358 /* Replace the static kmem_list3 structures for the boot cpu */
1359 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1360 numa_node_id());
e498be7d
CL
1361
1362 for_each_online_node(node) {
1363 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1364 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1365
1366 if (INDEX_AC != INDEX_L3) {
1367 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1368 &initkmem_list3[SIZE_L3 + node],
1369 node);
e498be7d
CL
1370 }
1371 }
1372 }
1da177e4 1373
e498be7d 1374 /* 6) resize the head arrays to their final sizes */
1da177e4 1375 {
343e0d7a 1376 struct kmem_cache *cachep;
fc0abb14 1377 mutex_lock(&cache_chain_mutex);
1da177e4 1378 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1379 enable_cpucache(cachep);
fc0abb14 1380 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1381 }
1382
1383 /* Done! */
1384 g_cpucache_up = FULL;
1385
a737b3e2
AM
1386 /*
1387 * Register a cpu startup notifier callback that initializes
1388 * cpu_cache_get for all new cpus
1da177e4
LT
1389 */
1390 register_cpu_notifier(&cpucache_notifier);
1da177e4 1391
a737b3e2
AM
1392 /*
1393 * The reap timers are started later, with a module init call: That part
1394 * of the kernel is not yet operational.
1da177e4
LT
1395 */
1396}
1397
1398static int __init cpucache_init(void)
1399{
1400 int cpu;
1401
a737b3e2
AM
1402 /*
1403 * Register the timers that return unneeded pages to the page allocator
1da177e4 1404 */
e498be7d 1405 for_each_online_cpu(cpu)
a737b3e2 1406 start_cpu_timer(cpu);
1da177e4
LT
1407 return 0;
1408}
1da177e4
LT
1409__initcall(cpucache_init);
1410
1411/*
1412 * Interface to system's page allocator. No need to hold the cache-lock.
1413 *
1414 * If we requested dmaable memory, we will get it. Even if we
1415 * did not request dmaable memory, we might get it, but that
1416 * would be relatively rare and ignorable.
1417 */
343e0d7a 1418static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1419{
1420 struct page *page;
1421 void *addr;
1422 int i;
1423
1424 flags |= cachep->gfpflags;
50c85a19 1425 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1426 if (!page)
1427 return NULL;
1428 addr = page_address(page);
1429
1430 i = (1 << cachep->gfporder);
1431 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1432 atomic_add(i, &slab_reclaim_pages);
1433 add_page_state(nr_slab, i);
1434 while (i--) {
f205b2fe 1435 __SetPageSlab(page);
1da177e4
LT
1436 page++;
1437 }
1438 return addr;
1439}
1440
1441/*
1442 * Interface to system's page release.
1443 */
343e0d7a 1444static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1445{
b28a02de 1446 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1447 struct page *page = virt_to_page(addr);
1448 const unsigned long nr_freed = i;
1449
1450 while (i--) {
f205b2fe
NP
1451 BUG_ON(!PageSlab(page));
1452 __ClearPageSlab(page);
1da177e4
LT
1453 page++;
1454 }
1455 sub_page_state(nr_slab, nr_freed);
1456 if (current->reclaim_state)
1457 current->reclaim_state->reclaimed_slab += nr_freed;
1458 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1459 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1461}
1462
1463static void kmem_rcu_free(struct rcu_head *head)
1464{
b28a02de 1465 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1466 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1467
1468 kmem_freepages(cachep, slab_rcu->addr);
1469 if (OFF_SLAB(cachep))
1470 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1471}
1472
1473#if DEBUG
1474
1475#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1476static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1477 unsigned long caller)
1da177e4 1478{
3dafccf2 1479 int size = obj_size(cachep);
1da177e4 1480
3dafccf2 1481 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1482
b28a02de 1483 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1484 return;
1485
b28a02de
PE
1486 *addr++ = 0x12345678;
1487 *addr++ = caller;
1488 *addr++ = smp_processor_id();
1489 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1490 {
1491 unsigned long *sptr = &caller;
1492 unsigned long svalue;
1493
1494 while (!kstack_end(sptr)) {
1495 svalue = *sptr++;
1496 if (kernel_text_address(svalue)) {
b28a02de 1497 *addr++ = svalue;
1da177e4
LT
1498 size -= sizeof(unsigned long);
1499 if (size <= sizeof(unsigned long))
1500 break;
1501 }
1502 }
1503
1504 }
b28a02de 1505 *addr++ = 0x87654321;
1da177e4
LT
1506}
1507#endif
1508
343e0d7a 1509static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1510{
3dafccf2
MS
1511 int size = obj_size(cachep);
1512 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1513
1514 memset(addr, val, size);
b28a02de 1515 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1516}
1517
1518static void dump_line(char *data, int offset, int limit)
1519{
1520 int i;
1521 printk(KERN_ERR "%03x:", offset);
a737b3e2 1522 for (i = 0; i < limit; i++)
b28a02de 1523 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1524 printk("\n");
1525}
1526#endif
1527
1528#if DEBUG
1529
343e0d7a 1530static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1531{
1532 int i, size;
1533 char *realobj;
1534
1535 if (cachep->flags & SLAB_RED_ZONE) {
1536 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1537 *dbg_redzone1(cachep, objp),
1538 *dbg_redzone2(cachep, objp));
1da177e4
LT
1539 }
1540
1541 if (cachep->flags & SLAB_STORE_USER) {
1542 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1543 *dbg_userword(cachep, objp));
1da177e4 1544 print_symbol("(%s)",
a737b3e2 1545 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1546 printk("\n");
1547 }
3dafccf2
MS
1548 realobj = (char *)objp + obj_offset(cachep);
1549 size = obj_size(cachep);
b28a02de 1550 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1551 int limit;
1552 limit = 16;
b28a02de
PE
1553 if (i + limit > size)
1554 limit = size - i;
1da177e4
LT
1555 dump_line(realobj, i, limit);
1556 }
1557}
1558
343e0d7a 1559static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1560{
1561 char *realobj;
1562 int size, i;
1563 int lines = 0;
1564
3dafccf2
MS
1565 realobj = (char *)objp + obj_offset(cachep);
1566 size = obj_size(cachep);
1da177e4 1567
b28a02de 1568 for (i = 0; i < size; i++) {
1da177e4 1569 char exp = POISON_FREE;
b28a02de 1570 if (i == size - 1)
1da177e4
LT
1571 exp = POISON_END;
1572 if (realobj[i] != exp) {
1573 int limit;
1574 /* Mismatch ! */
1575 /* Print header */
1576 if (lines == 0) {
b28a02de 1577 printk(KERN_ERR
a737b3e2
AM
1578 "Slab corruption: start=%p, len=%d\n",
1579 realobj, size);
1da177e4
LT
1580 print_objinfo(cachep, objp, 0);
1581 }
1582 /* Hexdump the affected line */
b28a02de 1583 i = (i / 16) * 16;
1da177e4 1584 limit = 16;
b28a02de
PE
1585 if (i + limit > size)
1586 limit = size - i;
1da177e4
LT
1587 dump_line(realobj, i, limit);
1588 i += 16;
1589 lines++;
1590 /* Limit to 5 lines */
1591 if (lines > 5)
1592 break;
1593 }
1594 }
1595 if (lines != 0) {
1596 /* Print some data about the neighboring objects, if they
1597 * exist:
1598 */
6ed5eb22 1599 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1600 unsigned int objnr;
1da177e4 1601
8fea4e96 1602 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1603 if (objnr) {
8fea4e96 1604 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1605 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1606 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1607 realobj, size);
1da177e4
LT
1608 print_objinfo(cachep, objp, 2);
1609 }
b28a02de 1610 if (objnr + 1 < cachep->num) {
8fea4e96 1611 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1612 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1613 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1614 realobj, size);
1da177e4
LT
1615 print_objinfo(cachep, objp, 2);
1616 }
1617 }
1618}
1619#endif
1620
12dd36fa
MD
1621#if DEBUG
1622/**
911851e6
RD
1623 * slab_destroy_objs - destroy a slab and its objects
1624 * @cachep: cache pointer being destroyed
1625 * @slabp: slab pointer being destroyed
1626 *
1627 * Call the registered destructor for each object in a slab that is being
1628 * destroyed.
1da177e4 1629 */
343e0d7a 1630static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1631{
1da177e4
LT
1632 int i;
1633 for (i = 0; i < cachep->num; i++) {
8fea4e96 1634 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1635
1636 if (cachep->flags & SLAB_POISON) {
1637#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1638 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1639 OFF_SLAB(cachep))
b28a02de 1640 kernel_map_pages(virt_to_page(objp),
a737b3e2 1641 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1642 else
1643 check_poison_obj(cachep, objp);
1644#else
1645 check_poison_obj(cachep, objp);
1646#endif
1647 }
1648 if (cachep->flags & SLAB_RED_ZONE) {
1649 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1650 slab_error(cachep, "start of a freed object "
b28a02de 1651 "was overwritten");
1da177e4
LT
1652 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1653 slab_error(cachep, "end of a freed object "
b28a02de 1654 "was overwritten");
1da177e4
LT
1655 }
1656 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1657 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1658 }
12dd36fa 1659}
1da177e4 1660#else
343e0d7a 1661static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1662{
1da177e4
LT
1663 if (cachep->dtor) {
1664 int i;
1665 for (i = 0; i < cachep->num; i++) {
8fea4e96 1666 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1667 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1668 }
1669 }
12dd36fa 1670}
1da177e4
LT
1671#endif
1672
911851e6
RD
1673/**
1674 * slab_destroy - destroy and release all objects in a slab
1675 * @cachep: cache pointer being destroyed
1676 * @slabp: slab pointer being destroyed
1677 *
12dd36fa 1678 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1679 * Before calling the slab must have been unlinked from the cache. The
1680 * cache-lock is not held/needed.
12dd36fa 1681 */
343e0d7a 1682static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1683{
1684 void *addr = slabp->s_mem - slabp->colouroff;
1685
1686 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1687 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1688 struct slab_rcu *slab_rcu;
1689
b28a02de 1690 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1691 slab_rcu->cachep = cachep;
1692 slab_rcu->addr = addr;
1693 call_rcu(&slab_rcu->head, kmem_rcu_free);
1694 } else {
1695 kmem_freepages(cachep, addr);
1696 if (OFF_SLAB(cachep))
1697 kmem_cache_free(cachep->slabp_cache, slabp);
1698 }
1699}
1700
a737b3e2
AM
1701/*
1702 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1703 * size of kmem_list3.
1704 */
343e0d7a 1705static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1706{
1707 int node;
1708
1709 for_each_online_node(node) {
b28a02de 1710 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1711 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1712 REAPTIMEOUT_LIST3 +
1713 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1714 }
1715}
1716
4d268eba 1717/**
a70773dd
RD
1718 * calculate_slab_order - calculate size (page order) of slabs
1719 * @cachep: pointer to the cache that is being created
1720 * @size: size of objects to be created in this cache.
1721 * @align: required alignment for the objects.
1722 * @flags: slab allocation flags
1723 *
1724 * Also calculates the number of objects per slab.
4d268eba
PE
1725 *
1726 * This could be made much more intelligent. For now, try to avoid using
1727 * high order pages for slabs. When the gfp() functions are more friendly
1728 * towards high-order requests, this should be changed.
1729 */
a737b3e2 1730static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1731 size_t size, size_t align, unsigned long flags)
4d268eba
PE
1732{
1733 size_t left_over = 0;
9888e6fa 1734 int gfporder;
4d268eba 1735
a737b3e2 1736 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1737 unsigned int num;
1738 size_t remainder;
1739
9888e6fa 1740 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1741 if (!num)
1742 continue;
9888e6fa 1743
4d268eba 1744 /* More than offslab_limit objects will cause problems */
9888e6fa 1745 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
4d268eba
PE
1746 break;
1747
9888e6fa 1748 /* Found something acceptable - save it away */
4d268eba 1749 cachep->num = num;
9888e6fa 1750 cachep->gfporder = gfporder;
4d268eba
PE
1751 left_over = remainder;
1752
f78bb8ad
LT
1753 /*
1754 * A VFS-reclaimable slab tends to have most allocations
1755 * as GFP_NOFS and we really don't want to have to be allocating
1756 * higher-order pages when we are unable to shrink dcache.
1757 */
1758 if (flags & SLAB_RECLAIM_ACCOUNT)
1759 break;
1760
4d268eba
PE
1761 /*
1762 * Large number of objects is good, but very large slabs are
1763 * currently bad for the gfp()s.
1764 */
9888e6fa 1765 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1766 break;
1767
9888e6fa
LT
1768 /*
1769 * Acceptable internal fragmentation?
1770 */
a737b3e2 1771 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1772 break;
1773 }
1774 return left_over;
1775}
1776
f30cf7d1
PE
1777static void setup_cpu_cache(struct kmem_cache *cachep)
1778{
1779 if (g_cpucache_up == FULL) {
1780 enable_cpucache(cachep);
1781 return;
1782 }
1783 if (g_cpucache_up == NONE) {
1784 /*
1785 * Note: the first kmem_cache_create must create the cache
1786 * that's used by kmalloc(24), otherwise the creation of
1787 * further caches will BUG().
1788 */
1789 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1790
1791 /*
1792 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1793 * the first cache, then we need to set up all its list3s,
1794 * otherwise the creation of further caches will BUG().
1795 */
1796 set_up_list3s(cachep, SIZE_AC);
1797 if (INDEX_AC == INDEX_L3)
1798 g_cpucache_up = PARTIAL_L3;
1799 else
1800 g_cpucache_up = PARTIAL_AC;
1801 } else {
1802 cachep->array[smp_processor_id()] =
1803 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1804
1805 if (g_cpucache_up == PARTIAL_AC) {
1806 set_up_list3s(cachep, SIZE_L3);
1807 g_cpucache_up = PARTIAL_L3;
1808 } else {
1809 int node;
1810 for_each_online_node(node) {
1811 cachep->nodelists[node] =
1812 kmalloc_node(sizeof(struct kmem_list3),
1813 GFP_KERNEL, node);
1814 BUG_ON(!cachep->nodelists[node]);
1815 kmem_list3_init(cachep->nodelists[node]);
1816 }
1817 }
1818 }
1819 cachep->nodelists[numa_node_id()]->next_reap =
1820 jiffies + REAPTIMEOUT_LIST3 +
1821 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1822
1823 cpu_cache_get(cachep)->avail = 0;
1824 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1825 cpu_cache_get(cachep)->batchcount = 1;
1826 cpu_cache_get(cachep)->touched = 0;
1827 cachep->batchcount = 1;
1828 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1829}
1830
1da177e4
LT
1831/**
1832 * kmem_cache_create - Create a cache.
1833 * @name: A string which is used in /proc/slabinfo to identify this cache.
1834 * @size: The size of objects to be created in this cache.
1835 * @align: The required alignment for the objects.
1836 * @flags: SLAB flags
1837 * @ctor: A constructor for the objects.
1838 * @dtor: A destructor for the objects.
1839 *
1840 * Returns a ptr to the cache on success, NULL on failure.
1841 * Cannot be called within a int, but can be interrupted.
1842 * The @ctor is run when new pages are allocated by the cache
1843 * and the @dtor is run before the pages are handed back.
1844 *
1845 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1846 * the module calling this has to destroy the cache before getting unloaded.
1847 *
1da177e4
LT
1848 * The flags are
1849 *
1850 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1851 * to catch references to uninitialised memory.
1852 *
1853 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1854 * for buffer overruns.
1855 *
1da177e4
LT
1856 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1857 * cacheline. This can be beneficial if you're counting cycles as closely
1858 * as davem.
1859 */
343e0d7a 1860struct kmem_cache *
1da177e4 1861kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1862 unsigned long flags,
1863 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1864 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1865{
1866 size_t left_over, slab_size, ralign;
343e0d7a 1867 struct kmem_cache *cachep = NULL;
4f12bb4f 1868 struct list_head *p;
1da177e4
LT
1869
1870 /*
1871 * Sanity checks... these are all serious usage bugs.
1872 */
a737b3e2 1873 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1874 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1875 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1876 name);
b28a02de
PE
1877 BUG();
1878 }
1da177e4 1879
f0188f47
RT
1880 /*
1881 * Prevent CPUs from coming and going.
1882 * lock_cpu_hotplug() nests outside cache_chain_mutex
1883 */
1884 lock_cpu_hotplug();
1885
fc0abb14 1886 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1887
1888 list_for_each(p, &cache_chain) {
343e0d7a 1889 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
4f12bb4f
AM
1890 mm_segment_t old_fs = get_fs();
1891 char tmp;
1892 int res;
1893
1894 /*
1895 * This happens when the module gets unloaded and doesn't
1896 * destroy its slab cache and no-one else reuses the vmalloc
1897 * area of the module. Print a warning.
1898 */
1899 set_fs(KERNEL_DS);
1900 res = __get_user(tmp, pc->name);
1901 set_fs(old_fs);
1902 if (res) {
1903 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1904 pc->buffer_size);
4f12bb4f
AM
1905 continue;
1906 }
1907
b28a02de 1908 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1909 printk("kmem_cache_create: duplicate cache %s\n", name);
1910 dump_stack();
1911 goto oops;
1912 }
1913 }
1914
1da177e4
LT
1915#if DEBUG
1916 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1917 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1918 /* No constructor, but inital state check requested */
1919 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1920 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1921 flags &= ~SLAB_DEBUG_INITIAL;
1922 }
1da177e4
LT
1923#if FORCED_DEBUG
1924 /*
1925 * Enable redzoning and last user accounting, except for caches with
1926 * large objects, if the increased size would increase the object size
1927 * above the next power of two: caches with object sizes just above a
1928 * power of two have a significant amount of internal fragmentation.
1929 */
a737b3e2 1930 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 1931 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1932 if (!(flags & SLAB_DESTROY_BY_RCU))
1933 flags |= SLAB_POISON;
1934#endif
1935 if (flags & SLAB_DESTROY_BY_RCU)
1936 BUG_ON(flags & SLAB_POISON);
1937#endif
1938 if (flags & SLAB_DESTROY_BY_RCU)
1939 BUG_ON(dtor);
1940
1941 /*
a737b3e2
AM
1942 * Always checks flags, a caller might be expecting debug support which
1943 * isn't available.
1da177e4
LT
1944 */
1945 if (flags & ~CREATE_MASK)
1946 BUG();
1947
a737b3e2
AM
1948 /*
1949 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1950 * unaligned accesses for some archs when redzoning is used, and makes
1951 * sure any on-slab bufctl's are also correctly aligned.
1952 */
b28a02de
PE
1953 if (size & (BYTES_PER_WORD - 1)) {
1954 size += (BYTES_PER_WORD - 1);
1955 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1956 }
1957
a737b3e2
AM
1958 /* calculate the final buffer alignment: */
1959
1da177e4
LT
1960 /* 1) arch recommendation: can be overridden for debug */
1961 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
1962 /*
1963 * Default alignment: as specified by the arch code. Except if
1964 * an object is really small, then squeeze multiple objects into
1965 * one cacheline.
1da177e4
LT
1966 */
1967 ralign = cache_line_size();
b28a02de 1968 while (size <= ralign / 2)
1da177e4
LT
1969 ralign /= 2;
1970 } else {
1971 ralign = BYTES_PER_WORD;
1972 }
1973 /* 2) arch mandated alignment: disables debug if necessary */
1974 if (ralign < ARCH_SLAB_MINALIGN) {
1975 ralign = ARCH_SLAB_MINALIGN;
1976 if (ralign > BYTES_PER_WORD)
b28a02de 1977 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1978 }
1979 /* 3) caller mandated alignment: disables debug if necessary */
1980 if (ralign < align) {
1981 ralign = align;
1982 if (ralign > BYTES_PER_WORD)
b28a02de 1983 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 1984 }
a737b3e2
AM
1985 /*
1986 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
1987 * the alignment to BYTES_PER_WORD.
1988 */
1989 align = ralign;
1990
1991 /* Get cache's description obj. */
343e0d7a 1992 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1da177e4 1993 if (!cachep)
4f12bb4f 1994 goto oops;
343e0d7a 1995 memset(cachep, 0, sizeof(struct kmem_cache));
1da177e4
LT
1996
1997#if DEBUG
3dafccf2 1998 cachep->obj_size = size;
1da177e4
LT
1999
2000 if (flags & SLAB_RED_ZONE) {
2001 /* redzoning only works with word aligned caches */
2002 align = BYTES_PER_WORD;
2003
2004 /* add space for red zone words */
3dafccf2 2005 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2006 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2007 }
2008 if (flags & SLAB_STORE_USER) {
2009 /* user store requires word alignment and
2010 * one word storage behind the end of the real
2011 * object.
2012 */
2013 align = BYTES_PER_WORD;
2014 size += BYTES_PER_WORD;
2015 }
2016#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2017 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2018 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2019 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2020 size = PAGE_SIZE;
2021 }
2022#endif
2023#endif
2024
2025 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 2026 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
2027 /*
2028 * Size is large, assume best to place the slab management obj
2029 * off-slab (should allow better packing of objs).
2030 */
2031 flags |= CFLGS_OFF_SLAB;
2032
2033 size = ALIGN(size, align);
2034
f78bb8ad 2035 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2036
2037 if (!cachep->num) {
2038 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2039 kmem_cache_free(&cache_cache, cachep);
2040 cachep = NULL;
4f12bb4f 2041 goto oops;
1da177e4 2042 }
b28a02de
PE
2043 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2044 + sizeof(struct slab), align);
1da177e4
LT
2045
2046 /*
2047 * If the slab has been placed off-slab, and we have enough space then
2048 * move it on-slab. This is at the expense of any extra colouring.
2049 */
2050 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2051 flags &= ~CFLGS_OFF_SLAB;
2052 left_over -= slab_size;
2053 }
2054
2055 if (flags & CFLGS_OFF_SLAB) {
2056 /* really off slab. No need for manual alignment */
b28a02de
PE
2057 slab_size =
2058 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2059 }
2060
2061 cachep->colour_off = cache_line_size();
2062 /* Offset must be a multiple of the alignment. */
2063 if (cachep->colour_off < align)
2064 cachep->colour_off = align;
b28a02de 2065 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2066 cachep->slab_size = slab_size;
2067 cachep->flags = flags;
2068 cachep->gfpflags = 0;
2069 if (flags & SLAB_CACHE_DMA)
2070 cachep->gfpflags |= GFP_DMA;
3dafccf2 2071 cachep->buffer_size = size;
1da177e4
LT
2072
2073 if (flags & CFLGS_OFF_SLAB)
b2d55073 2074 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2075 cachep->ctor = ctor;
2076 cachep->dtor = dtor;
2077 cachep->name = name;
2078
1da177e4 2079
f30cf7d1 2080 setup_cpu_cache(cachep);
1da177e4 2081
1da177e4
LT
2082 /* cache setup completed, link it into the list */
2083 list_add(&cachep->next, &cache_chain);
a737b3e2 2084oops:
1da177e4
LT
2085 if (!cachep && (flags & SLAB_PANIC))
2086 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2087 name);
fc0abb14 2088 mutex_unlock(&cache_chain_mutex);
f0188f47 2089 unlock_cpu_hotplug();
1da177e4
LT
2090 return cachep;
2091}
2092EXPORT_SYMBOL(kmem_cache_create);
2093
2094#if DEBUG
2095static void check_irq_off(void)
2096{
2097 BUG_ON(!irqs_disabled());
2098}
2099
2100static void check_irq_on(void)
2101{
2102 BUG_ON(irqs_disabled());
2103}
2104
343e0d7a 2105static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2106{
2107#ifdef CONFIG_SMP
2108 check_irq_off();
e498be7d 2109 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2110#endif
2111}
e498be7d 2112
343e0d7a 2113static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2114{
2115#ifdef CONFIG_SMP
2116 check_irq_off();
2117 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2118#endif
2119}
2120
1da177e4
LT
2121#else
2122#define check_irq_off() do { } while(0)
2123#define check_irq_on() do { } while(0)
2124#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2125#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2126#endif
2127
aab2207c
CL
2128static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2129 struct array_cache *ac,
2130 int force, int node);
2131
1da177e4
LT
2132static void do_drain(void *arg)
2133{
a737b3e2 2134 struct kmem_cache *cachep = arg;
1da177e4 2135 struct array_cache *ac;
ff69416e 2136 int node = numa_node_id();
1da177e4
LT
2137
2138 check_irq_off();
9a2dba4b 2139 ac = cpu_cache_get(cachep);
ff69416e
CL
2140 spin_lock(&cachep->nodelists[node]->list_lock);
2141 free_block(cachep, ac->entry, ac->avail, node);
2142 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2143 ac->avail = 0;
2144}
2145
343e0d7a 2146static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2147{
e498be7d
CL
2148 struct kmem_list3 *l3;
2149 int node;
2150
a07fa394 2151 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2152 check_irq_on();
b28a02de 2153 for_each_online_node(node) {
e498be7d
CL
2154 l3 = cachep->nodelists[node];
2155 if (l3) {
aab2207c 2156 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2157 if (l3->alien)
4484ebf1 2158 drain_alien_cache(cachep, l3->alien);
e498be7d
CL
2159 }
2160 }
1da177e4
LT
2161}
2162
343e0d7a 2163static int __node_shrink(struct kmem_cache *cachep, int node)
1da177e4
LT
2164{
2165 struct slab *slabp;
e498be7d 2166 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
2167 int ret;
2168
e498be7d 2169 for (;;) {
1da177e4
LT
2170 struct list_head *p;
2171
e498be7d
CL
2172 p = l3->slabs_free.prev;
2173 if (p == &l3->slabs_free)
1da177e4
LT
2174 break;
2175
e498be7d 2176 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4
LT
2177#if DEBUG
2178 if (slabp->inuse)
2179 BUG();
2180#endif
2181 list_del(&slabp->list);
2182
e498be7d
CL
2183 l3->free_objects -= cachep->num;
2184 spin_unlock_irq(&l3->list_lock);
1da177e4 2185 slab_destroy(cachep, slabp);
e498be7d 2186 spin_lock_irq(&l3->list_lock);
1da177e4 2187 }
b28a02de 2188 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
2189 return ret;
2190}
2191
343e0d7a 2192static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2193{
2194 int ret = 0, i = 0;
2195 struct kmem_list3 *l3;
2196
2197 drain_cpu_caches(cachep);
2198
2199 check_irq_on();
2200 for_each_online_node(i) {
2201 l3 = cachep->nodelists[i];
2202 if (l3) {
2203 spin_lock_irq(&l3->list_lock);
2204 ret += __node_shrink(cachep, i);
2205 spin_unlock_irq(&l3->list_lock);
2206 }
2207 }
2208 return (ret ? 1 : 0);
2209}
2210
1da177e4
LT
2211/**
2212 * kmem_cache_shrink - Shrink a cache.
2213 * @cachep: The cache to shrink.
2214 *
2215 * Releases as many slabs as possible for a cache.
2216 * To help debugging, a zero exit status indicates all slabs were released.
2217 */
343e0d7a 2218int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4
LT
2219{
2220 if (!cachep || in_interrupt())
2221 BUG();
2222
2223 return __cache_shrink(cachep);
2224}
2225EXPORT_SYMBOL(kmem_cache_shrink);
2226
2227/**
2228 * kmem_cache_destroy - delete a cache
2229 * @cachep: the cache to destroy
2230 *
343e0d7a 2231 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2232 * Returns 0 on success.
2233 *
2234 * It is expected this function will be called by a module when it is
2235 * unloaded. This will remove the cache completely, and avoid a duplicate
2236 * cache being allocated each time a module is loaded and unloaded, if the
2237 * module doesn't have persistent in-kernel storage across loads and unloads.
2238 *
2239 * The cache must be empty before calling this function.
2240 *
2241 * The caller must guarantee that noone will allocate memory from the cache
2242 * during the kmem_cache_destroy().
2243 */
343e0d7a 2244int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2245{
2246 int i;
e498be7d 2247 struct kmem_list3 *l3;
1da177e4
LT
2248
2249 if (!cachep || in_interrupt())
2250 BUG();
2251
2252 /* Don't let CPUs to come and go */
2253 lock_cpu_hotplug();
2254
2255 /* Find the cache in the chain of caches. */
fc0abb14 2256 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2257 /*
2258 * the chain is never empty, cache_cache is never destroyed
2259 */
2260 list_del(&cachep->next);
fc0abb14 2261 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2262
2263 if (__cache_shrink(cachep)) {
2264 slab_error(cachep, "Can't free all objects");
fc0abb14 2265 mutex_lock(&cache_chain_mutex);
b28a02de 2266 list_add(&cachep->next, &cache_chain);
fc0abb14 2267 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2268 unlock_cpu_hotplug();
2269 return 1;
2270 }
2271
2272 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2273 synchronize_rcu();
1da177e4 2274
e498be7d 2275 for_each_online_cpu(i)
b28a02de 2276 kfree(cachep->array[i]);
1da177e4
LT
2277
2278 /* NUMA: free the list3 structures */
e498be7d 2279 for_each_online_node(i) {
a737b3e2
AM
2280 l3 = cachep->nodelists[i];
2281 if (l3) {
e498be7d
CL
2282 kfree(l3->shared);
2283 free_alien_cache(l3->alien);
2284 kfree(l3);
2285 }
2286 }
1da177e4 2287 kmem_cache_free(&cache_cache, cachep);
1da177e4 2288 unlock_cpu_hotplug();
1da177e4
LT
2289 return 0;
2290}
2291EXPORT_SYMBOL(kmem_cache_destroy);
2292
2293/* Get the memory for a slab management obj. */
343e0d7a 2294static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
b28a02de 2295 int colour_off, gfp_t local_flags)
1da177e4
LT
2296{
2297 struct slab *slabp;
b28a02de 2298
1da177e4
LT
2299 if (OFF_SLAB(cachep)) {
2300 /* Slab management obj is off-slab. */
2301 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2302 if (!slabp)
2303 return NULL;
2304 } else {
b28a02de 2305 slabp = objp + colour_off;
1da177e4
LT
2306 colour_off += cachep->slab_size;
2307 }
2308 slabp->inuse = 0;
2309 slabp->colouroff = colour_off;
b28a02de 2310 slabp->s_mem = objp + colour_off;
1da177e4
LT
2311 return slabp;
2312}
2313
2314static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2315{
b28a02de 2316 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2317}
2318
343e0d7a 2319static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2320 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2321{
2322 int i;
2323
2324 for (i = 0; i < cachep->num; i++) {
8fea4e96 2325 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2326#if DEBUG
2327 /* need to poison the objs? */
2328 if (cachep->flags & SLAB_POISON)
2329 poison_obj(cachep, objp, POISON_FREE);
2330 if (cachep->flags & SLAB_STORE_USER)
2331 *dbg_userword(cachep, objp) = NULL;
2332
2333 if (cachep->flags & SLAB_RED_ZONE) {
2334 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2335 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2336 }
2337 /*
a737b3e2
AM
2338 * Constructors are not allowed to allocate memory from the same
2339 * cache which they are a constructor for. Otherwise, deadlock.
2340 * They must also be threaded.
1da177e4
LT
2341 */
2342 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2343 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2344 ctor_flags);
1da177e4
LT
2345
2346 if (cachep->flags & SLAB_RED_ZONE) {
2347 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2348 slab_error(cachep, "constructor overwrote the"
b28a02de 2349 " end of an object");
1da177e4
LT
2350 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2351 slab_error(cachep, "constructor overwrote the"
b28a02de 2352 " start of an object");
1da177e4 2353 }
a737b3e2
AM
2354 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2355 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2356 kernel_map_pages(virt_to_page(objp),
3dafccf2 2357 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2358#else
2359 if (cachep->ctor)
2360 cachep->ctor(objp, cachep, ctor_flags);
2361#endif
b28a02de 2362 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2363 }
b28a02de 2364 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2365 slabp->free = 0;
2366}
2367
343e0d7a 2368static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2369{
a737b3e2
AM
2370 if (flags & SLAB_DMA)
2371 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2372 else
2373 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2374}
2375
a737b3e2
AM
2376static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2377 int nodeid)
78d382d7 2378{
8fea4e96 2379 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2380 kmem_bufctl_t next;
2381
2382 slabp->inuse++;
2383 next = slab_bufctl(slabp)[slabp->free];
2384#if DEBUG
2385 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2386 WARN_ON(slabp->nodeid != nodeid);
2387#endif
2388 slabp->free = next;
2389
2390 return objp;
2391}
2392
a737b3e2
AM
2393static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2394 void *objp, int nodeid)
78d382d7 2395{
8fea4e96 2396 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2397
2398#if DEBUG
2399 /* Verify that the slab belongs to the intended node */
2400 WARN_ON(slabp->nodeid != nodeid);
2401
2402 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2403 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2404 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2405 BUG();
2406 }
2407#endif
2408 slab_bufctl(slabp)[objnr] = slabp->free;
2409 slabp->free = objnr;
2410 slabp->inuse--;
2411}
2412
a737b3e2
AM
2413static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2414 void *objp)
1da177e4
LT
2415{
2416 int i;
2417 struct page *page;
2418
2419 /* Nasty!!!!!! I hope this is OK. */
1da177e4 2420 page = virt_to_page(objp);
84097518
NP
2421
2422 i = 1;
2423 if (likely(!PageCompound(page)))
2424 i <<= cachep->gfporder;
1da177e4 2425 do {
065d41cb
PE
2426 page_set_cache(page, cachep);
2427 page_set_slab(page, slabp);
1da177e4
LT
2428 page++;
2429 } while (--i);
2430}
2431
2432/*
2433 * Grow (by 1) the number of slabs within a cache. This is called by
2434 * kmem_cache_alloc() when there are no active objs left in a cache.
2435 */
343e0d7a 2436static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2437{
b28a02de
PE
2438 struct slab *slabp;
2439 void *objp;
2440 size_t offset;
2441 gfp_t local_flags;
2442 unsigned long ctor_flags;
e498be7d 2443 struct kmem_list3 *l3;
1da177e4 2444
a737b3e2
AM
2445 /*
2446 * Be lazy and only check for valid flags here, keeping it out of the
2447 * critical path in kmem_cache_alloc().
1da177e4 2448 */
b28a02de 2449 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
1da177e4
LT
2450 BUG();
2451 if (flags & SLAB_NO_GROW)
2452 return 0;
2453
2454 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2455 local_flags = (flags & SLAB_LEVEL_MASK);
2456 if (!(local_flags & __GFP_WAIT))
2457 /*
2458 * Not allowed to sleep. Need to tell a constructor about
2459 * this - it might need to know...
2460 */
2461 ctor_flags |= SLAB_CTOR_ATOMIC;
2462
2e1217cf 2463 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2464 check_irq_off();
2e1217cf
RT
2465 l3 = cachep->nodelists[nodeid];
2466 spin_lock(&l3->list_lock);
1da177e4
LT
2467
2468 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2469 offset = l3->colour_next;
2470 l3->colour_next++;
2471 if (l3->colour_next >= cachep->colour)
2472 l3->colour_next = 0;
2473 spin_unlock(&l3->list_lock);
1da177e4 2474
2e1217cf 2475 offset *= cachep->colour_off;
1da177e4
LT
2476
2477 if (local_flags & __GFP_WAIT)
2478 local_irq_enable();
2479
2480 /*
2481 * The test for missing atomic flag is performed here, rather than
2482 * the more obvious place, simply to reduce the critical path length
2483 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2484 * will eventually be caught here (where it matters).
2485 */
2486 kmem_flagcheck(cachep, flags);
2487
a737b3e2
AM
2488 /*
2489 * Get mem for the objs. Attempt to allocate a physical page from
2490 * 'nodeid'.
e498be7d 2491 */
a737b3e2
AM
2492 objp = kmem_getpages(cachep, flags, nodeid);
2493 if (!objp)
1da177e4
LT
2494 goto failed;
2495
2496 /* Get slab management. */
a737b3e2
AM
2497 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2498 if (!slabp)
1da177e4
LT
2499 goto opps1;
2500
e498be7d 2501 slabp->nodeid = nodeid;
1da177e4
LT
2502 set_slab_attr(cachep, slabp, objp);
2503
2504 cache_init_objs(cachep, slabp, ctor_flags);
2505
2506 if (local_flags & __GFP_WAIT)
2507 local_irq_disable();
2508 check_irq_off();
e498be7d 2509 spin_lock(&l3->list_lock);
1da177e4
LT
2510
2511 /* Make slab active. */
e498be7d 2512 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2513 STATS_INC_GROWN(cachep);
e498be7d
CL
2514 l3->free_objects += cachep->num;
2515 spin_unlock(&l3->list_lock);
1da177e4 2516 return 1;
a737b3e2 2517opps1:
1da177e4 2518 kmem_freepages(cachep, objp);
a737b3e2 2519failed:
1da177e4
LT
2520 if (local_flags & __GFP_WAIT)
2521 local_irq_disable();
2522 return 0;
2523}
2524
2525#if DEBUG
2526
2527/*
2528 * Perform extra freeing checks:
2529 * - detect bad pointers.
2530 * - POISON/RED_ZONE checking
2531 * - destructor calls, for caches with POISON+dtor
2532 */
2533static void kfree_debugcheck(const void *objp)
2534{
2535 struct page *page;
2536
2537 if (!virt_addr_valid(objp)) {
2538 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2539 (unsigned long)objp);
2540 BUG();
1da177e4
LT
2541 }
2542 page = virt_to_page(objp);
2543 if (!PageSlab(page)) {
b28a02de
PE
2544 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2545 (unsigned long)objp);
1da177e4
LT
2546 BUG();
2547 }
2548}
2549
343e0d7a 2550static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2551 void *caller)
1da177e4
LT
2552{
2553 struct page *page;
2554 unsigned int objnr;
2555 struct slab *slabp;
2556
3dafccf2 2557 objp -= obj_offset(cachep);
1da177e4
LT
2558 kfree_debugcheck(objp);
2559 page = virt_to_page(objp);
2560
065d41cb 2561 if (page_get_cache(page) != cachep) {
a737b3e2
AM
2562 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2563 "cache %p, got %p\n",
b28a02de 2564 page_get_cache(page), cachep);
1da177e4 2565 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2566 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2567 page_get_cache(page)->name);
1da177e4
LT
2568 WARN_ON(1);
2569 }
065d41cb 2570 slabp = page_get_slab(page);
1da177e4
LT
2571
2572 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2573 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2574 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2575 slab_error(cachep, "double free, or memory outside"
2576 " object was overwritten");
2577 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2578 "redzone 2:0x%lx.\n",
b28a02de
PE
2579 objp, *dbg_redzone1(cachep, objp),
2580 *dbg_redzone2(cachep, objp));
1da177e4
LT
2581 }
2582 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2583 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2584 }
2585 if (cachep->flags & SLAB_STORE_USER)
2586 *dbg_userword(cachep, objp) = caller;
2587
8fea4e96 2588 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2589
2590 BUG_ON(objnr >= cachep->num);
8fea4e96 2591 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2592
2593 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2594 /*
2595 * Need to call the slab's constructor so the caller can
2596 * perform a verify of its state (debugging). Called without
2597 * the cache-lock held.
1da177e4 2598 */
3dafccf2 2599 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2600 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2601 }
2602 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2603 /* we want to cache poison the object,
2604 * call the destruction callback
2605 */
3dafccf2 2606 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4
LT
2607 }
2608 if (cachep->flags & SLAB_POISON) {
2609#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2610 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2611 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2612 kernel_map_pages(virt_to_page(objp),
3dafccf2 2613 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2614 } else {
2615 poison_obj(cachep, objp, POISON_FREE);
2616 }
2617#else
2618 poison_obj(cachep, objp, POISON_FREE);
2619#endif
2620 }
2621 return objp;
2622}
2623
343e0d7a 2624static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2625{
2626 kmem_bufctl_t i;
2627 int entries = 0;
b28a02de 2628
1da177e4
LT
2629 /* Check slab's freelist to see if this obj is there. */
2630 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2631 entries++;
2632 if (entries > cachep->num || i >= cachep->num)
2633 goto bad;
2634 }
2635 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2636bad:
2637 printk(KERN_ERR "slab: Internal list corruption detected in "
2638 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2639 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2640 for (i = 0;
264132bc 2641 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2642 i++) {
a737b3e2 2643 if (i % 16 == 0)
1da177e4 2644 printk("\n%03x:", i);
b28a02de 2645 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2646 }
2647 printk("\n");
2648 BUG();
2649 }
2650}
2651#else
2652#define kfree_debugcheck(x) do { } while(0)
2653#define cache_free_debugcheck(x,objp,z) (objp)
2654#define check_slabp(x,y) do { } while(0)
2655#endif
2656
343e0d7a 2657static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2658{
2659 int batchcount;
2660 struct kmem_list3 *l3;
2661 struct array_cache *ac;
2662
2663 check_irq_off();
9a2dba4b 2664 ac = cpu_cache_get(cachep);
a737b3e2 2665retry:
1da177e4
LT
2666 batchcount = ac->batchcount;
2667 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2668 /*
2669 * If there was little recent activity on this cache, then
2670 * perform only a partial refill. Otherwise we could generate
2671 * refill bouncing.
1da177e4
LT
2672 */
2673 batchcount = BATCHREFILL_LIMIT;
2674 }
e498be7d
CL
2675 l3 = cachep->nodelists[numa_node_id()];
2676
2677 BUG_ON(ac->avail > 0 || !l3);
2678 spin_lock(&l3->list_lock);
1da177e4 2679
1da177e4
LT
2680 if (l3->shared) {
2681 struct array_cache *shared_array = l3->shared;
2682 if (shared_array->avail) {
2683 if (batchcount > shared_array->avail)
2684 batchcount = shared_array->avail;
2685 shared_array->avail -= batchcount;
2686 ac->avail = batchcount;
e498be7d 2687 memcpy(ac->entry,
b28a02de
PE
2688 &(shared_array->entry[shared_array->avail]),
2689 sizeof(void *) * batchcount);
1da177e4
LT
2690 shared_array->touched = 1;
2691 goto alloc_done;
2692 }
2693 }
2694 while (batchcount > 0) {
2695 struct list_head *entry;
2696 struct slab *slabp;
2697 /* Get slab alloc is to come from. */
2698 entry = l3->slabs_partial.next;
2699 if (entry == &l3->slabs_partial) {
2700 l3->free_touched = 1;
2701 entry = l3->slabs_free.next;
2702 if (entry == &l3->slabs_free)
2703 goto must_grow;
2704 }
2705
2706 slabp = list_entry(entry, struct slab, list);
2707 check_slabp(cachep, slabp);
2708 check_spinlock_acquired(cachep);
2709 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2710 STATS_INC_ALLOCED(cachep);
2711 STATS_INC_ACTIVE(cachep);
2712 STATS_SET_HIGH(cachep);
2713
78d382d7
MD
2714 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2715 numa_node_id());
1da177e4
LT
2716 }
2717 check_slabp(cachep, slabp);
2718
2719 /* move slabp to correct slabp list: */
2720 list_del(&slabp->list);
2721 if (slabp->free == BUFCTL_END)
2722 list_add(&slabp->list, &l3->slabs_full);
2723 else
2724 list_add(&slabp->list, &l3->slabs_partial);
2725 }
2726
a737b3e2 2727must_grow:
1da177e4 2728 l3->free_objects -= ac->avail;
a737b3e2 2729alloc_done:
e498be7d 2730 spin_unlock(&l3->list_lock);
1da177e4
LT
2731
2732 if (unlikely(!ac->avail)) {
2733 int x;
e498be7d
CL
2734 x = cache_grow(cachep, flags, numa_node_id());
2735
a737b3e2 2736 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2737 ac = cpu_cache_get(cachep);
a737b3e2 2738 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2739 return NULL;
2740
a737b3e2 2741 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2742 goto retry;
2743 }
2744 ac->touched = 1;
e498be7d 2745 return ac->entry[--ac->avail];
1da177e4
LT
2746}
2747
a737b3e2
AM
2748static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2749 gfp_t flags)
1da177e4
LT
2750{
2751 might_sleep_if(flags & __GFP_WAIT);
2752#if DEBUG
2753 kmem_flagcheck(cachep, flags);
2754#endif
2755}
2756
2757#if DEBUG
a737b3e2
AM
2758static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2759 gfp_t flags, void *objp, void *caller)
1da177e4 2760{
b28a02de 2761 if (!objp)
1da177e4 2762 return objp;
b28a02de 2763 if (cachep->flags & SLAB_POISON) {
1da177e4 2764#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2765 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2766 kernel_map_pages(virt_to_page(objp),
3dafccf2 2767 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2768 else
2769 check_poison_obj(cachep, objp);
2770#else
2771 check_poison_obj(cachep, objp);
2772#endif
2773 poison_obj(cachep, objp, POISON_INUSE);
2774 }
2775 if (cachep->flags & SLAB_STORE_USER)
2776 *dbg_userword(cachep, objp) = caller;
2777
2778 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2779 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2780 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2781 slab_error(cachep, "double free, or memory outside"
2782 " object was overwritten");
b28a02de 2783 printk(KERN_ERR
a737b3e2
AM
2784 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2785 objp, *dbg_redzone1(cachep, objp),
2786 *dbg_redzone2(cachep, objp));
1da177e4
LT
2787 }
2788 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2789 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2790 }
3dafccf2 2791 objp += obj_offset(cachep);
1da177e4 2792 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2793 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2794
2795 if (!(flags & __GFP_WAIT))
2796 ctor_flags |= SLAB_CTOR_ATOMIC;
2797
2798 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2799 }
1da177e4
LT
2800 return objp;
2801}
2802#else
2803#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2804#endif
2805
343e0d7a 2806static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2807{
b28a02de 2808 void *objp;
1da177e4
LT
2809 struct array_cache *ac;
2810
dc85da15 2811#ifdef CONFIG_NUMA
c61afb18
PJ
2812 if (unlikely(current->flags & (PF_SPREAD_PAGE | PF_SPREAD_SLAB |
2813 PF_MEMPOLICY))) {
2814 objp = alternate_node_alloc(cachep, flags);
2815 if (objp != NULL)
2816 return objp;
dc85da15
CL
2817 }
2818#endif
2819
5c382300 2820 check_irq_off();
9a2dba4b 2821 ac = cpu_cache_get(cachep);
1da177e4
LT
2822 if (likely(ac->avail)) {
2823 STATS_INC_ALLOCHIT(cachep);
2824 ac->touched = 1;
e498be7d 2825 objp = ac->entry[--ac->avail];
1da177e4
LT
2826 } else {
2827 STATS_INC_ALLOCMISS(cachep);
2828 objp = cache_alloc_refill(cachep, flags);
2829 }
5c382300
AK
2830 return objp;
2831}
2832
a737b3e2
AM
2833static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2834 gfp_t flags, void *caller)
5c382300
AK
2835{
2836 unsigned long save_flags;
b28a02de 2837 void *objp;
5c382300
AK
2838
2839 cache_alloc_debugcheck_before(cachep, flags);
2840
2841 local_irq_save(save_flags);
2842 objp = ____cache_alloc(cachep, flags);
1da177e4 2843 local_irq_restore(save_flags);
34342e86 2844 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2845 caller);
34342e86 2846 prefetchw(objp);
1da177e4
LT
2847 return objp;
2848}
2849
e498be7d 2850#ifdef CONFIG_NUMA
c61afb18
PJ
2851/*
2852 * Try allocating on another node if PF_SPREAD_PAGE|PF_SPREAD_SLAB|PF_MEMPOLICY.
2853 *
2854 * If we are in_interrupt, then process context, including cpusets and
2855 * mempolicy, may not apply and should not be used for allocation policy.
2856 */
2857static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2858{
2859 int nid_alloc, nid_here;
2860
2861 if (in_interrupt())
2862 return NULL;
2863 nid_alloc = nid_here = numa_node_id();
2864 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2865 nid_alloc = cpuset_mem_spread_node();
2866 else if (current->mempolicy)
2867 nid_alloc = slab_node(current->mempolicy);
2868 if (nid_alloc != nid_here)
2869 return __cache_alloc_node(cachep, flags, nid_alloc);
2870 return NULL;
2871}
2872
e498be7d
CL
2873/*
2874 * A interface to enable slab creation on nodeid
1da177e4 2875 */
a737b3e2
AM
2876static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2877 int nodeid)
e498be7d
CL
2878{
2879 struct list_head *entry;
b28a02de
PE
2880 struct slab *slabp;
2881 struct kmem_list3 *l3;
2882 void *obj;
b28a02de
PE
2883 int x;
2884
2885 l3 = cachep->nodelists[nodeid];
2886 BUG_ON(!l3);
2887
a737b3e2 2888retry:
ca3b9b91 2889 check_irq_off();
b28a02de
PE
2890 spin_lock(&l3->list_lock);
2891 entry = l3->slabs_partial.next;
2892 if (entry == &l3->slabs_partial) {
2893 l3->free_touched = 1;
2894 entry = l3->slabs_free.next;
2895 if (entry == &l3->slabs_free)
2896 goto must_grow;
2897 }
2898
2899 slabp = list_entry(entry, struct slab, list);
2900 check_spinlock_acquired_node(cachep, nodeid);
2901 check_slabp(cachep, slabp);
2902
2903 STATS_INC_NODEALLOCS(cachep);
2904 STATS_INC_ACTIVE(cachep);
2905 STATS_SET_HIGH(cachep);
2906
2907 BUG_ON(slabp->inuse == cachep->num);
2908
78d382d7 2909 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
2910 check_slabp(cachep, slabp);
2911 l3->free_objects--;
2912 /* move slabp to correct slabp list: */
2913 list_del(&slabp->list);
2914
a737b3e2 2915 if (slabp->free == BUFCTL_END)
b28a02de 2916 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 2917 else
b28a02de 2918 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 2919
b28a02de
PE
2920 spin_unlock(&l3->list_lock);
2921 goto done;
e498be7d 2922
a737b3e2 2923must_grow:
b28a02de
PE
2924 spin_unlock(&l3->list_lock);
2925 x = cache_grow(cachep, flags, nodeid);
1da177e4 2926
b28a02de
PE
2927 if (!x)
2928 return NULL;
e498be7d 2929
b28a02de 2930 goto retry;
a737b3e2 2931done:
b28a02de 2932 return obj;
e498be7d
CL
2933}
2934#endif
2935
2936/*
2937 * Caller needs to acquire correct kmem_list's list_lock
2938 */
343e0d7a 2939static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 2940 int node)
1da177e4
LT
2941{
2942 int i;
e498be7d 2943 struct kmem_list3 *l3;
1da177e4
LT
2944
2945 for (i = 0; i < nr_objects; i++) {
2946 void *objp = objpp[i];
2947 struct slab *slabp;
1da177e4 2948
6ed5eb22 2949 slabp = virt_to_slab(objp);
ff69416e 2950 l3 = cachep->nodelists[node];
1da177e4 2951 list_del(&slabp->list);
ff69416e 2952 check_spinlock_acquired_node(cachep, node);
1da177e4 2953 check_slabp(cachep, slabp);
78d382d7 2954 slab_put_obj(cachep, slabp, objp, node);
1da177e4 2955 STATS_DEC_ACTIVE(cachep);
e498be7d 2956 l3->free_objects++;
1da177e4
LT
2957 check_slabp(cachep, slabp);
2958
2959 /* fixup slab chains */
2960 if (slabp->inuse == 0) {
e498be7d
CL
2961 if (l3->free_objects > l3->free_limit) {
2962 l3->free_objects -= cachep->num;
1da177e4
LT
2963 slab_destroy(cachep, slabp);
2964 } else {
e498be7d 2965 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2966 }
2967 } else {
2968 /* Unconditionally move a slab to the end of the
2969 * partial list on free - maximum time for the
2970 * other objects to be freed, too.
2971 */
e498be7d 2972 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
2973 }
2974 }
2975}
2976
343e0d7a 2977static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
2978{
2979 int batchcount;
e498be7d 2980 struct kmem_list3 *l3;
ff69416e 2981 int node = numa_node_id();
1da177e4
LT
2982
2983 batchcount = ac->batchcount;
2984#if DEBUG
2985 BUG_ON(!batchcount || batchcount > ac->avail);
2986#endif
2987 check_irq_off();
ff69416e 2988 l3 = cachep->nodelists[node];
e498be7d
CL
2989 spin_lock(&l3->list_lock);
2990 if (l3->shared) {
2991 struct array_cache *shared_array = l3->shared;
b28a02de 2992 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
2993 if (max) {
2994 if (batchcount > max)
2995 batchcount = max;
e498be7d 2996 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 2997 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
2998 shared_array->avail += batchcount;
2999 goto free_done;
3000 }
3001 }
3002
ff69416e 3003 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3004free_done:
1da177e4
LT
3005#if STATS
3006 {
3007 int i = 0;
3008 struct list_head *p;
3009
e498be7d
CL
3010 p = l3->slabs_free.next;
3011 while (p != &(l3->slabs_free)) {
1da177e4
LT
3012 struct slab *slabp;
3013
3014 slabp = list_entry(p, struct slab, list);
3015 BUG_ON(slabp->inuse);
3016
3017 i++;
3018 p = p->next;
3019 }
3020 STATS_SET_FREEABLE(cachep, i);
3021 }
3022#endif
e498be7d 3023 spin_unlock(&l3->list_lock);
1da177e4 3024 ac->avail -= batchcount;
a737b3e2 3025 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3026}
3027
3028/*
a737b3e2
AM
3029 * Release an obj back to its cache. If the obj has a constructed state, it must
3030 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3031 */
343e0d7a 3032static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3033{
9a2dba4b 3034 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3035
3036 check_irq_off();
3037 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3038
e498be7d
CL
3039 /* Make sure we are not freeing a object from another
3040 * node to the array cache on this cpu.
3041 */
3042#ifdef CONFIG_NUMA
3043 {
3044 struct slab *slabp;
6ed5eb22 3045 slabp = virt_to_slab(objp);
e498be7d
CL
3046 if (unlikely(slabp->nodeid != numa_node_id())) {
3047 struct array_cache *alien = NULL;
3048 int nodeid = slabp->nodeid;
a737b3e2 3049 struct kmem_list3 *l3;
e498be7d 3050
a737b3e2 3051 l3 = cachep->nodelists[numa_node_id()];
e498be7d
CL
3052 STATS_INC_NODEFREES(cachep);
3053 if (l3->alien && l3->alien[nodeid]) {
3054 alien = l3->alien[nodeid];
3055 spin_lock(&alien->lock);
3056 if (unlikely(alien->avail == alien->limit))
3057 __drain_alien_cache(cachep,
b28a02de 3058 alien, nodeid);
e498be7d
CL
3059 alien->entry[alien->avail++] = objp;
3060 spin_unlock(&alien->lock);
3061 } else {
3062 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 3063 list_lock);
ff69416e 3064 free_block(cachep, &objp, 1, nodeid);
e498be7d 3065 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 3066 list_lock);
e498be7d
CL
3067 }
3068 return;
3069 }
3070 }
3071#endif
1da177e4
LT
3072 if (likely(ac->avail < ac->limit)) {
3073 STATS_INC_FREEHIT(cachep);
e498be7d 3074 ac->entry[ac->avail++] = objp;
1da177e4
LT
3075 return;
3076 } else {
3077 STATS_INC_FREEMISS(cachep);
3078 cache_flusharray(cachep, ac);
e498be7d 3079 ac->entry[ac->avail++] = objp;
1da177e4
LT
3080 }
3081}
3082
3083/**
3084 * kmem_cache_alloc - Allocate an object
3085 * @cachep: The cache to allocate from.
3086 * @flags: See kmalloc().
3087 *
3088 * Allocate an object from this cache. The flags are only relevant
3089 * if the cache has no available objects.
3090 */
343e0d7a 3091void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3092{
7fd6b141 3093 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3094}
3095EXPORT_SYMBOL(kmem_cache_alloc);
3096
3097/**
3098 * kmem_ptr_validate - check if an untrusted pointer might
3099 * be a slab entry.
3100 * @cachep: the cache we're checking against
3101 * @ptr: pointer to validate
3102 *
3103 * This verifies that the untrusted pointer looks sane:
3104 * it is _not_ a guarantee that the pointer is actually
3105 * part of the slab cache in question, but it at least
3106 * validates that the pointer can be dereferenced and
3107 * looks half-way sane.
3108 *
3109 * Currently only used for dentry validation.
3110 */
343e0d7a 3111int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3112{
b28a02de 3113 unsigned long addr = (unsigned long)ptr;
1da177e4 3114 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3115 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3116 unsigned long size = cachep->buffer_size;
1da177e4
LT
3117 struct page *page;
3118
3119 if (unlikely(addr < min_addr))
3120 goto out;
3121 if (unlikely(addr > (unsigned long)high_memory - size))
3122 goto out;
3123 if (unlikely(addr & align_mask))
3124 goto out;
3125 if (unlikely(!kern_addr_valid(addr)))
3126 goto out;
3127 if (unlikely(!kern_addr_valid(addr + size - 1)))
3128 goto out;
3129 page = virt_to_page(ptr);
3130 if (unlikely(!PageSlab(page)))
3131 goto out;
065d41cb 3132 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3133 goto out;
3134 return 1;
a737b3e2 3135out:
1da177e4
LT
3136 return 0;
3137}
3138
3139#ifdef CONFIG_NUMA
3140/**
3141 * kmem_cache_alloc_node - Allocate an object on the specified node
3142 * @cachep: The cache to allocate from.
3143 * @flags: See kmalloc().
3144 * @nodeid: node number of the target node.
3145 *
3146 * Identical to kmem_cache_alloc, except that this function is slow
3147 * and can sleep. And it will allocate memory on the given node, which
3148 * can improve the performance for cpu bound structures.
e498be7d
CL
3149 * New and improved: it will now make sure that the object gets
3150 * put on the correct node list so that there is no false sharing.
1da177e4 3151 */
343e0d7a 3152void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3153{
e498be7d
CL
3154 unsigned long save_flags;
3155 void *ptr;
1da177e4 3156
e498be7d
CL
3157 cache_alloc_debugcheck_before(cachep, flags);
3158 local_irq_save(save_flags);
18f820f6
CL
3159
3160 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3161 !cachep->nodelists[nodeid])
5c382300
AK
3162 ptr = ____cache_alloc(cachep, flags);
3163 else
3164 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3165 local_irq_restore(save_flags);
18f820f6
CL
3166
3167 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3168 __builtin_return_address(0));
1da177e4 3169
e498be7d 3170 return ptr;
1da177e4
LT
3171}
3172EXPORT_SYMBOL(kmem_cache_alloc_node);
3173
dd0fc66f 3174void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3175{
343e0d7a 3176 struct kmem_cache *cachep;
97e2bde4
MS
3177
3178 cachep = kmem_find_general_cachep(size, flags);
3179 if (unlikely(cachep == NULL))
3180 return NULL;
3181 return kmem_cache_alloc_node(cachep, flags, node);
3182}
3183EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3184#endif
3185
3186/**
3187 * kmalloc - allocate memory
3188 * @size: how many bytes of memory are required.
3189 * @flags: the type of memory to allocate.
911851e6 3190 * @caller: function caller for debug tracking of the caller
1da177e4
LT
3191 *
3192 * kmalloc is the normal method of allocating memory
3193 * in the kernel.
3194 *
3195 * The @flags argument may be one of:
3196 *
3197 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3198 *
3199 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3200 *
3201 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3202 *
3203 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3204 * must be suitable for DMA. This can mean different things on different
3205 * platforms. For example, on i386, it means that the memory must come
3206 * from the first 16MB.
3207 */
7fd6b141
PE
3208static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3209 void *caller)
1da177e4 3210{
343e0d7a 3211 struct kmem_cache *cachep;
1da177e4 3212
97e2bde4
MS
3213 /* If you want to save a few bytes .text space: replace
3214 * __ with kmem_.
3215 * Then kmalloc uses the uninlined functions instead of the inline
3216 * functions.
3217 */
3218 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3219 if (unlikely(cachep == NULL))
3220 return NULL;
7fd6b141
PE
3221 return __cache_alloc(cachep, flags, caller);
3222}
3223
3224#ifndef CONFIG_DEBUG_SLAB
3225
3226void *__kmalloc(size_t size, gfp_t flags)
3227{
3228 return __do_kmalloc(size, flags, NULL);
1da177e4
LT
3229}
3230EXPORT_SYMBOL(__kmalloc);
3231
7fd6b141
PE
3232#else
3233
3234void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3235{
3236 return __do_kmalloc(size, flags, caller);
3237}
3238EXPORT_SYMBOL(__kmalloc_track_caller);
3239
3240#endif
3241
1da177e4
LT
3242#ifdef CONFIG_SMP
3243/**
3244 * __alloc_percpu - allocate one copy of the object for every present
3245 * cpu in the system, zeroing them.
3246 * Objects should be dereferenced using the per_cpu_ptr macro only.
3247 *
3248 * @size: how many bytes of memory are required.
1da177e4 3249 */
f9f75005 3250void *__alloc_percpu(size_t size)
1da177e4
LT
3251{
3252 int i;
b28a02de 3253 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3254
3255 if (!pdata)
3256 return NULL;
3257
e498be7d
CL
3258 /*
3259 * Cannot use for_each_online_cpu since a cpu may come online
3260 * and we have no way of figuring out how to fix the array
3261 * that we have allocated then....
3262 */
3263 for_each_cpu(i) {
3264 int node = cpu_to_node(i);
3265
3266 if (node_online(node))
3267 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3268 else
3269 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3270
3271 if (!pdata->ptrs[i])
3272 goto unwind_oom;
3273 memset(pdata->ptrs[i], 0, size);
3274 }
3275
3276 /* Catch derefs w/o wrappers */
b28a02de 3277 return (void *)(~(unsigned long)pdata);
1da177e4 3278
a737b3e2 3279unwind_oom:
1da177e4
LT
3280 while (--i >= 0) {
3281 if (!cpu_possible(i))
3282 continue;
3283 kfree(pdata->ptrs[i]);
3284 }
3285 kfree(pdata);
3286 return NULL;
3287}
3288EXPORT_SYMBOL(__alloc_percpu);
3289#endif
3290
3291/**
3292 * kmem_cache_free - Deallocate an object
3293 * @cachep: The cache the allocation was from.
3294 * @objp: The previously allocated object.
3295 *
3296 * Free an object which was previously allocated from this
3297 * cache.
3298 */
343e0d7a 3299void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3300{
3301 unsigned long flags;
3302
3303 local_irq_save(flags);
3304 __cache_free(cachep, objp);
3305 local_irq_restore(flags);
3306}
3307EXPORT_SYMBOL(kmem_cache_free);
3308
1da177e4
LT
3309/**
3310 * kfree - free previously allocated memory
3311 * @objp: pointer returned by kmalloc.
3312 *
80e93eff
PE
3313 * If @objp is NULL, no operation is performed.
3314 *
1da177e4
LT
3315 * Don't free memory not originally allocated by kmalloc()
3316 * or you will run into trouble.
3317 */
3318void kfree(const void *objp)
3319{
343e0d7a 3320 struct kmem_cache *c;
1da177e4
LT
3321 unsigned long flags;
3322
3323 if (unlikely(!objp))
3324 return;
3325 local_irq_save(flags);
3326 kfree_debugcheck(objp);
6ed5eb22 3327 c = virt_to_cache(objp);
3dafccf2 3328 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3329 __cache_free(c, (void *)objp);
1da177e4
LT
3330 local_irq_restore(flags);
3331}
3332EXPORT_SYMBOL(kfree);
3333
3334#ifdef CONFIG_SMP
3335/**
3336 * free_percpu - free previously allocated percpu memory
3337 * @objp: pointer returned by alloc_percpu.
3338 *
3339 * Don't free memory not originally allocated by alloc_percpu()
3340 * The complemented objp is to check for that.
3341 */
b28a02de 3342void free_percpu(const void *objp)
1da177e4
LT
3343{
3344 int i;
b28a02de 3345 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3346
e498be7d
CL
3347 /*
3348 * We allocate for all cpus so we cannot use for online cpu here.
3349 */
3350 for_each_cpu(i)
b28a02de 3351 kfree(p->ptrs[i]);
1da177e4
LT
3352 kfree(p);
3353}
3354EXPORT_SYMBOL(free_percpu);
3355#endif
3356
343e0d7a 3357unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3358{
3dafccf2 3359 return obj_size(cachep);
1da177e4
LT
3360}
3361EXPORT_SYMBOL(kmem_cache_size);
3362
343e0d7a 3363const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3364{
3365 return cachep->name;
3366}
3367EXPORT_SYMBOL_GPL(kmem_cache_name);
3368
e498be7d
CL
3369/*
3370 * This initializes kmem_list3 for all nodes.
3371 */
343e0d7a 3372static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3373{
3374 int node;
3375 struct kmem_list3 *l3;
3376 int err = 0;
3377
3378 for_each_online_node(node) {
3379 struct array_cache *nc = NULL, *new;
3380 struct array_cache **new_alien = NULL;
3381#ifdef CONFIG_NUMA
a737b3e2
AM
3382 new_alien = alloc_alien_cache(node, cachep->limit);
3383 if (!new_alien)
e498be7d
CL
3384 goto fail;
3385#endif
a737b3e2
AM
3386 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3387 0xbaadf00d);
3388 if (!new)
e498be7d 3389 goto fail;
a737b3e2
AM
3390 l3 = cachep->nodelists[node];
3391 if (l3) {
e498be7d
CL
3392 spin_lock_irq(&l3->list_lock);
3393
a737b3e2
AM
3394 nc = cachep->nodelists[node]->shared;
3395 if (nc)
b28a02de 3396 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
3397
3398 l3->shared = new;
3399 if (!cachep->nodelists[node]->alien) {
3400 l3->alien = new_alien;
3401 new_alien = NULL;
3402 }
b28a02de 3403 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3404 cachep->batchcount + cachep->num;
e498be7d
CL
3405 spin_unlock_irq(&l3->list_lock);
3406 kfree(nc);
3407 free_alien_cache(new_alien);
3408 continue;
3409 }
a737b3e2
AM
3410 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3411 if (!l3)
e498be7d
CL
3412 goto fail;
3413
3414 kmem_list3_init(l3);
3415 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3416 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
3417 l3->shared = new;
3418 l3->alien = new_alien;
b28a02de 3419 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3420 cachep->batchcount + cachep->num;
e498be7d
CL
3421 cachep->nodelists[node] = l3;
3422 }
3423 return err;
a737b3e2 3424fail:
e498be7d
CL
3425 err = -ENOMEM;
3426 return err;
3427}
3428
1da177e4 3429struct ccupdate_struct {
343e0d7a 3430 struct kmem_cache *cachep;
1da177e4
LT
3431 struct array_cache *new[NR_CPUS];
3432};
3433
3434static void do_ccupdate_local(void *info)
3435{
a737b3e2 3436 struct ccupdate_struct *new = info;
1da177e4
LT
3437 struct array_cache *old;
3438
3439 check_irq_off();
9a2dba4b 3440 old = cpu_cache_get(new->cachep);
e498be7d 3441
1da177e4
LT
3442 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3443 new->new[smp_processor_id()] = old;
3444}
3445
b5d8ca7c 3446/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3447static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3448 int batchcount, int shared)
1da177e4
LT
3449{
3450 struct ccupdate_struct new;
e498be7d 3451 int i, err;
1da177e4 3452
b28a02de 3453 memset(&new.new, 0, sizeof(new.new));
e498be7d 3454 for_each_online_cpu(i) {
a737b3e2
AM
3455 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3456 batchcount);
e498be7d 3457 if (!new.new[i]) {
b28a02de
PE
3458 for (i--; i >= 0; i--)
3459 kfree(new.new[i]);
e498be7d 3460 return -ENOMEM;
1da177e4
LT
3461 }
3462 }
3463 new.cachep = cachep;
3464
a07fa394 3465 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3466
1da177e4 3467 check_irq_on();
1da177e4
LT
3468 cachep->batchcount = batchcount;
3469 cachep->limit = limit;
e498be7d 3470 cachep->shared = shared;
1da177e4 3471
e498be7d 3472 for_each_online_cpu(i) {
1da177e4
LT
3473 struct array_cache *ccold = new.new[i];
3474 if (!ccold)
3475 continue;
e498be7d 3476 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3477 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3478 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3479 kfree(ccold);
3480 }
1da177e4 3481
e498be7d
CL
3482 err = alloc_kmemlist(cachep);
3483 if (err) {
3484 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3485 cachep->name, -err);
e498be7d 3486 BUG();
1da177e4 3487 }
1da177e4
LT
3488 return 0;
3489}
3490
b5d8ca7c 3491/* Called with cache_chain_mutex held always */
343e0d7a 3492static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3493{
3494 int err;
3495 int limit, shared;
3496
a737b3e2
AM
3497 /*
3498 * The head array serves three purposes:
1da177e4
LT
3499 * - create a LIFO ordering, i.e. return objects that are cache-warm
3500 * - reduce the number of spinlock operations.
a737b3e2 3501 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3502 * bufctl chains: array operations are cheaper.
3503 * The numbers are guessed, we should auto-tune as described by
3504 * Bonwick.
3505 */
3dafccf2 3506 if (cachep->buffer_size > 131072)
1da177e4 3507 limit = 1;
3dafccf2 3508 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3509 limit = 8;
3dafccf2 3510 else if (cachep->buffer_size > 1024)
1da177e4 3511 limit = 24;
3dafccf2 3512 else if (cachep->buffer_size > 256)
1da177e4
LT
3513 limit = 54;
3514 else
3515 limit = 120;
3516
a737b3e2
AM
3517 /*
3518 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3519 * allocation behaviour: Most allocs on one cpu, most free operations
3520 * on another cpu. For these cases, an efficient object passing between
3521 * cpus is necessary. This is provided by a shared array. The array
3522 * replaces Bonwick's magazine layer.
3523 * On uniprocessor, it's functionally equivalent (but less efficient)
3524 * to a larger limit. Thus disabled by default.
3525 */
3526 shared = 0;
3527#ifdef CONFIG_SMP
3dafccf2 3528 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3529 shared = 8;
3530#endif
3531
3532#if DEBUG
a737b3e2
AM
3533 /*
3534 * With debugging enabled, large batchcount lead to excessively long
3535 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3536 */
3537 if (limit > 32)
3538 limit = 32;
3539#endif
b28a02de 3540 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3541 if (err)
3542 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3543 cachep->name, -err);
1da177e4
LT
3544}
3545
1b55253a
CL
3546/*
3547 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3548 * necessary. Note that the l3 listlock also protects the array_cache
3549 * if drain_array() is used on the shared array.
1b55253a
CL
3550 */
3551void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3552 struct array_cache *ac, int force, int node)
1da177e4
LT
3553{
3554 int tofree;
3555
1b55253a
CL
3556 if (!ac || !ac->avail)
3557 return;
1da177e4
LT
3558 if (ac->touched && !force) {
3559 ac->touched = 0;
b18e7e65 3560 } else {
1b55253a 3561 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3562 if (ac->avail) {
3563 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3564 if (tofree > ac->avail)
3565 tofree = (ac->avail + 1) / 2;
3566 free_block(cachep, ac->entry, tofree, node);
3567 ac->avail -= tofree;
3568 memmove(ac->entry, &(ac->entry[tofree]),
3569 sizeof(void *) * ac->avail);
3570 }
1b55253a 3571 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3572 }
3573}
3574
3575/**
3576 * cache_reap - Reclaim memory from caches.
1e5d5331 3577 * @unused: unused parameter
1da177e4
LT
3578 *
3579 * Called from workqueue/eventd every few seconds.
3580 * Purpose:
3581 * - clear the per-cpu caches for this CPU.
3582 * - return freeable pages to the main free memory pool.
3583 *
a737b3e2
AM
3584 * If we cannot acquire the cache chain mutex then just give up - we'll try
3585 * again on the next iteration.
1da177e4
LT
3586 */
3587static void cache_reap(void *unused)
3588{
3589 struct list_head *walk;
e498be7d 3590 struct kmem_list3 *l3;
aab2207c 3591 int node = numa_node_id();
1da177e4 3592
fc0abb14 3593 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3594 /* Give up. Setup the next iteration. */
b28a02de
PE
3595 schedule_delayed_work(&__get_cpu_var(reap_work),
3596 REAPTIMEOUT_CPUC);
1da177e4
LT
3597 return;
3598 }
3599
3600 list_for_each(walk, &cache_chain) {
343e0d7a 3601 struct kmem_cache *searchp;
b28a02de 3602 struct list_head *p;
1da177e4
LT
3603 int tofree;
3604 struct slab *slabp;
3605
343e0d7a 3606 searchp = list_entry(walk, struct kmem_cache, next);
1da177e4
LT
3607 check_irq_on();
3608
35386e3b
CL
3609 /*
3610 * We only take the l3 lock if absolutely necessary and we
3611 * have established with reasonable certainty that
3612 * we can do some work if the lock was obtained.
3613 */
aab2207c 3614 l3 = searchp->nodelists[node];
35386e3b 3615
8fce4d8e 3616 reap_alien(searchp, l3);
1da177e4 3617
aab2207c 3618 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3619
35386e3b
CL
3620 /*
3621 * These are racy checks but it does not matter
3622 * if we skip one check or scan twice.
3623 */
e498be7d 3624 if (time_after(l3->next_reap, jiffies))
35386e3b 3625 goto next;
1da177e4 3626
e498be7d 3627 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3628
aab2207c 3629 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3630
e498be7d
CL
3631 if (l3->free_touched) {
3632 l3->free_touched = 0;
35386e3b 3633 goto next;
1da177e4
LT
3634 }
3635
a737b3e2
AM
3636 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3637 (5 * searchp->num);
1da177e4 3638 do {
35386e3b
CL
3639 /*
3640 * Do not lock if there are no free blocks.
3641 */
3642 if (list_empty(&l3->slabs_free))
3643 break;
3644
3645 spin_lock_irq(&l3->list_lock);
e498be7d 3646 p = l3->slabs_free.next;
35386e3b
CL
3647 if (p == &(l3->slabs_free)) {
3648 spin_unlock_irq(&l3->list_lock);
1da177e4 3649 break;
35386e3b 3650 }
1da177e4
LT
3651
3652 slabp = list_entry(p, struct slab, list);
3653 BUG_ON(slabp->inuse);
3654 list_del(&slabp->list);
3655 STATS_INC_REAPED(searchp);
3656
a737b3e2
AM
3657 /*
3658 * Safe to drop the lock. The slab is no longer linked
3659 * to the cache. searchp cannot disappear, we hold
1da177e4
LT
3660 * cache_chain_lock
3661 */
e498be7d
CL
3662 l3->free_objects -= searchp->num;
3663 spin_unlock_irq(&l3->list_lock);
1da177e4 3664 slab_destroy(searchp, slabp);
b28a02de 3665 } while (--tofree > 0);
35386e3b 3666next:
1da177e4
LT
3667 cond_resched();
3668 }
3669 check_irq_on();
fc0abb14 3670 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3671 next_reap_node();
a737b3e2 3672 /* Set up the next iteration */
cd61ef62 3673 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3674}
3675
3676#ifdef CONFIG_PROC_FS
3677
85289f98 3678static void print_slabinfo_header(struct seq_file *m)
1da177e4 3679{
85289f98
PE
3680 /*
3681 * Output format version, so at least we can change it
3682 * without _too_ many complaints.
3683 */
1da177e4 3684#if STATS
85289f98 3685 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3686#else
85289f98 3687 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3688#endif
85289f98
PE
3689 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3690 "<objperslab> <pagesperslab>");
3691 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3692 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3693#if STATS
85289f98
PE
3694 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3695 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3696 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3697#endif
85289f98
PE
3698 seq_putc(m, '\n');
3699}
3700
3701static void *s_start(struct seq_file *m, loff_t *pos)
3702{
3703 loff_t n = *pos;
3704 struct list_head *p;
3705
fc0abb14 3706 mutex_lock(&cache_chain_mutex);
85289f98
PE
3707 if (!n)
3708 print_slabinfo_header(m);
1da177e4
LT
3709 p = cache_chain.next;
3710 while (n--) {
3711 p = p->next;
3712 if (p == &cache_chain)
3713 return NULL;
3714 }
343e0d7a 3715 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3716}
3717
3718static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3719{
343e0d7a 3720 struct kmem_cache *cachep = p;
1da177e4 3721 ++*pos;
a737b3e2
AM
3722 return cachep->next.next == &cache_chain ?
3723 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3724}
3725
3726static void s_stop(struct seq_file *m, void *p)
3727{
fc0abb14 3728 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3729}
3730
3731static int s_show(struct seq_file *m, void *p)
3732{
343e0d7a 3733 struct kmem_cache *cachep = p;
1da177e4 3734 struct list_head *q;
b28a02de
PE
3735 struct slab *slabp;
3736 unsigned long active_objs;
3737 unsigned long num_objs;
3738 unsigned long active_slabs = 0;
3739 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3740 const char *name;
1da177e4 3741 char *error = NULL;
e498be7d
CL
3742 int node;
3743 struct kmem_list3 *l3;
1da177e4 3744
1da177e4
LT
3745 active_objs = 0;
3746 num_slabs = 0;
e498be7d
CL
3747 for_each_online_node(node) {
3748 l3 = cachep->nodelists[node];
3749 if (!l3)
3750 continue;
3751
ca3b9b91
RT
3752 check_irq_on();
3753 spin_lock_irq(&l3->list_lock);
e498be7d 3754
b28a02de 3755 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3756 slabp = list_entry(q, struct slab, list);
3757 if (slabp->inuse != cachep->num && !error)
3758 error = "slabs_full accounting error";
3759 active_objs += cachep->num;
3760 active_slabs++;
3761 }
b28a02de 3762 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3763 slabp = list_entry(q, struct slab, list);
3764 if (slabp->inuse == cachep->num && !error)
3765 error = "slabs_partial inuse accounting error";
3766 if (!slabp->inuse && !error)
3767 error = "slabs_partial/inuse accounting error";
3768 active_objs += slabp->inuse;
3769 active_slabs++;
3770 }
b28a02de 3771 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3772 slabp = list_entry(q, struct slab, list);
3773 if (slabp->inuse && !error)
3774 error = "slabs_free/inuse accounting error";
3775 num_slabs++;
3776 }
3777 free_objects += l3->free_objects;
4484ebf1
RT
3778 if (l3->shared)
3779 shared_avail += l3->shared->avail;
e498be7d 3780
ca3b9b91 3781 spin_unlock_irq(&l3->list_lock);
1da177e4 3782 }
b28a02de
PE
3783 num_slabs += active_slabs;
3784 num_objs = num_slabs * cachep->num;
e498be7d 3785 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3786 error = "free_objects accounting error";
3787
b28a02de 3788 name = cachep->name;
1da177e4
LT
3789 if (error)
3790 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3791
3792 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3793 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3794 cachep->num, (1 << cachep->gfporder));
1da177e4 3795 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3796 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3797 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3798 active_slabs, num_slabs, shared_avail);
1da177e4 3799#if STATS
b28a02de 3800 { /* list3 stats */
1da177e4
LT
3801 unsigned long high = cachep->high_mark;
3802 unsigned long allocs = cachep->num_allocations;
3803 unsigned long grown = cachep->grown;
3804 unsigned long reaped = cachep->reaped;
3805 unsigned long errors = cachep->errors;
3806 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3807 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3808 unsigned long node_frees = cachep->node_frees;
1da177e4 3809
e498be7d 3810 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
a737b3e2
AM
3811 %4lu %4lu %4lu %4lu", allocs, high, grown,
3812 reaped, errors, max_freeable, node_allocs,
3813 node_frees);
1da177e4
LT
3814 }
3815 /* cpu stats */
3816 {
3817 unsigned long allochit = atomic_read(&cachep->allochit);
3818 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3819 unsigned long freehit = atomic_read(&cachep->freehit);
3820 unsigned long freemiss = atomic_read(&cachep->freemiss);
3821
3822 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3823 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3824 }
3825#endif
3826 seq_putc(m, '\n');
1da177e4
LT
3827 return 0;
3828}
3829
3830/*
3831 * slabinfo_op - iterator that generates /proc/slabinfo
3832 *
3833 * Output layout:
3834 * cache-name
3835 * num-active-objs
3836 * total-objs
3837 * object size
3838 * num-active-slabs
3839 * total-slabs
3840 * num-pages-per-slab
3841 * + further values on SMP and with statistics enabled
3842 */
3843
3844struct seq_operations slabinfo_op = {
b28a02de
PE
3845 .start = s_start,
3846 .next = s_next,
3847 .stop = s_stop,
3848 .show = s_show,
1da177e4
LT
3849};
3850
3851#define MAX_SLABINFO_WRITE 128
3852/**
3853 * slabinfo_write - Tuning for the slab allocator
3854 * @file: unused
3855 * @buffer: user buffer
3856 * @count: data length
3857 * @ppos: unused
3858 */
b28a02de
PE
3859ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3860 size_t count, loff_t *ppos)
1da177e4 3861{
b28a02de 3862 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3863 int limit, batchcount, shared, res;
3864 struct list_head *p;
b28a02de 3865
1da177e4
LT
3866 if (count > MAX_SLABINFO_WRITE)
3867 return -EINVAL;
3868 if (copy_from_user(&kbuf, buffer, count))
3869 return -EFAULT;
b28a02de 3870 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3871
3872 tmp = strchr(kbuf, ' ');
3873 if (!tmp)
3874 return -EINVAL;
3875 *tmp = '\0';
3876 tmp++;
3877 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3878 return -EINVAL;
3879
3880 /* Find the cache in the chain of caches. */
fc0abb14 3881 mutex_lock(&cache_chain_mutex);
1da177e4 3882 res = -EINVAL;
b28a02de 3883 list_for_each(p, &cache_chain) {
a737b3e2 3884 struct kmem_cache *cachep;
1da177e4 3885
a737b3e2 3886 cachep = list_entry(p, struct kmem_cache, next);
1da177e4 3887 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3888 if (limit < 1 || batchcount < 1 ||
3889 batchcount > limit || shared < 0) {
e498be7d 3890 res = 0;
1da177e4 3891 } else {
e498be7d 3892 res = do_tune_cpucache(cachep, limit,
b28a02de 3893 batchcount, shared);
1da177e4
LT
3894 }
3895 break;
3896 }
3897 }
fc0abb14 3898 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3899 if (res >= 0)
3900 res = count;
3901 return res;
3902}
3903#endif
3904
00e145b6
MS
3905/**
3906 * ksize - get the actual amount of memory allocated for a given object
3907 * @objp: Pointer to the object
3908 *
3909 * kmalloc may internally round up allocations and return more memory
3910 * than requested. ksize() can be used to determine the actual amount of
3911 * memory allocated. The caller may use this additional memory, even though
3912 * a smaller amount of memory was initially specified with the kmalloc call.
3913 * The caller must guarantee that objp points to a valid object previously
3914 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3915 * must not be freed during the duration of the call.
3916 */
1da177e4
LT
3917unsigned int ksize(const void *objp)
3918{
00e145b6
MS
3919 if (unlikely(objp == NULL))
3920 return 0;
1da177e4 3921
6ed5eb22 3922 return obj_size(virt_to_cache(objp));
1da177e4 3923}