]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
[PATCH] cfq-iosched: busy_rr fairness fix
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
e498be7d 106#include <linux/nodemask.h>
dc85da15 107#include <linux/mempolicy.h>
fc0abb14 108#include <linux/mutex.h>
1da177e4
LT
109
110#include <asm/uaccess.h>
111#include <asm/cacheflush.h>
112#include <asm/tlbflush.h>
113#include <asm/page.h>
114
115/*
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
124 */
125
126#ifdef CONFIG_DEBUG_SLAB
127#define DEBUG 1
128#define STATS 1
129#define FORCED_DEBUG 1
130#else
131#define DEBUG 0
132#define STATS 0
133#define FORCED_DEBUG 0
134#endif
135
1da177e4
LT
136/* Shouldn't this be in a header file somewhere? */
137#define BYTES_PER_WORD sizeof(void *)
138
139#ifndef cache_line_size
140#define cache_line_size() L1_CACHE_BYTES
141#endif
142
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
151 */
152#define ARCH_KMALLOC_MINALIGN 0
153#endif
154
155#ifndef ARCH_SLAB_MINALIGN
156/*
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
162 */
163#define ARCH_SLAB_MINALIGN 0
164#endif
165
166#ifndef ARCH_KMALLOC_FLAGS
167#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168#endif
169
170/* Legal flag mask for kmem_cache_create(). */
171#if DEBUG
172# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 174 SLAB_CACHE_DMA | \
1da177e4
LT
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 178#else
ac2b898c 179# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
183#endif
184
185/*
186 * kmem_bufctl_t:
187 *
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
190 *
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 */
203
fa5b08d5 204typedef unsigned int kmem_bufctl_t;
1da177e4
LT
205#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
207#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4
LT
209
210/* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
212 */
213static unsigned long offslab_limit;
214
215/*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222struct slab {
b28a02de
PE
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
1da177e4
LT
229};
230
231/*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247struct slab_rcu {
b28a02de 248 struct rcu_head head;
343e0d7a 249 struct kmem_cache *cachep;
b28a02de 250 void *addr;
1da177e4
LT
251};
252
253/*
254 * struct array_cache
255 *
1da177e4
LT
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
e498be7d 270 spinlock_t lock;
a737b3e2
AM
271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
276 */
1da177e4
LT
277};
278
a737b3e2
AM
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
1da177e4
LT
282 */
283#define BOOT_CPUCACHE_ENTRIES 1
284struct arraycache_init {
285 struct array_cache cache;
b28a02de 286 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
287};
288
289/*
e498be7d 290 * The slab lists for all objects.
1da177e4
LT
291 */
292struct kmem_list3 {
b28a02de
PE
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
b28a02de 297 unsigned int free_limit;
2e1217cf 298 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
35386e3b
CL
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
1da177e4
LT
304};
305
e498be7d
CL
306/*
307 * Need this for bootstrapping a per node allocator.
308 */
309#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define CACHE_CACHE 0
312#define SIZE_AC 1
313#define SIZE_L3 (1 + MAX_NUMNODES)
314
315/*
a737b3e2
AM
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 318 */
7243cc05 319static __always_inline int index_of(const size_t size)
e498be7d 320{
5ec8a847
SR
321 extern void __bad_size(void);
322
e498be7d
CL
323 if (__builtin_constant_p(size)) {
324 int i = 0;
325
326#define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331#include "linux/kmalloc_sizes.h"
332#undef CACHE
5ec8a847 333 __bad_size();
7243cc05 334 } else
5ec8a847 335 __bad_size();
e498be7d
CL
336 return 0;
337}
338
339#define INDEX_AC index_of(sizeof(struct arraycache_init))
340#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 341
5295a74c 342static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
343{
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
2e1217cf 349 parent->colour_next = 0;
e498be7d
CL
350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
353}
354
a737b3e2
AM
355#define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
359 } while (0)
360
a737b3e2
AM
361#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
e498be7d
CL
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
1da177e4
LT
367
368/*
343e0d7a 369 * struct kmem_cache
1da177e4
LT
370 *
371 * manages a cache.
372 */
b28a02de 373
2109a2d1 374struct kmem_cache {
1da177e4 375/* 1) per-cpu data, touched during every alloc/free */
b28a02de 376 struct array_cache *array[NR_CPUS];
b5d8ca7c 377/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
b5d8ca7c 381
3dafccf2 382 unsigned int buffer_size;
b5d8ca7c 383/* 3) touched by every alloc & free from the backend */
b28a02de 384 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 385
a737b3e2
AM
386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
1da177e4 388
b5d8ca7c 389/* 4) cache_grow/shrink */
1da177e4 390 /* order of pgs per slab (2^n) */
b28a02de 391 unsigned int gfporder;
1da177e4
LT
392
393 /* force GFP flags, e.g. GFP_DMA */
b28a02de 394 gfp_t gfpflags;
1da177e4 395
a737b3e2 396 size_t colour; /* cache colouring range */
b28a02de 397 unsigned int colour_off; /* colour offset */
343e0d7a 398 struct kmem_cache *slabp_cache;
b28a02de 399 unsigned int slab_size;
a737b3e2 400 unsigned int dflags; /* dynamic flags */
1da177e4
LT
401
402 /* constructor func */
343e0d7a 403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
404
405 /* de-constructor func */
343e0d7a 406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 407
b5d8ca7c 408/* 5) cache creation/removal */
b28a02de
PE
409 const char *name;
410 struct list_head next;
1da177e4 411
b5d8ca7c 412/* 6) statistics */
1da177e4 413#if STATS
b28a02de
PE
414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
fb7faf33 423 unsigned long node_overflow;
b28a02de
PE
424 atomic_t allochit;
425 atomic_t allocmiss;
426 atomic_t freehit;
427 atomic_t freemiss;
1da177e4
LT
428#endif
429#if DEBUG
3dafccf2
MS
430 /*
431 * If debugging is enabled, then the allocator can add additional
432 * fields and/or padding to every object. buffer_size contains the total
433 * object size including these internal fields, the following two
434 * variables contain the offset to the user object and its size.
435 */
436 int obj_offset;
437 int obj_size;
1da177e4
LT
438#endif
439};
440
441#define CFLGS_OFF_SLAB (0x80000000UL)
442#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
443
444#define BATCHREFILL_LIMIT 16
a737b3e2
AM
445/*
446 * Optimization question: fewer reaps means less probability for unnessary
447 * cpucache drain/refill cycles.
1da177e4 448 *
dc6f3f27 449 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
450 * which could lock up otherwise freeable slabs.
451 */
452#define REAPTIMEOUT_CPUC (2*HZ)
453#define REAPTIMEOUT_LIST3 (4*HZ)
454
455#if STATS
456#define STATS_INC_ACTIVE(x) ((x)->num_active++)
457#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
458#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
459#define STATS_INC_GROWN(x) ((x)->grown++)
460#define STATS_INC_REAPED(x) ((x)->reaped++)
a737b3e2
AM
461#define STATS_SET_HIGH(x) \
462 do { \
463 if ((x)->num_active > (x)->high_mark) \
464 (x)->high_mark = (x)->num_active; \
465 } while (0)
1da177e4
LT
466#define STATS_INC_ERR(x) ((x)->errors++)
467#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 468#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 469#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
470#define STATS_SET_FREEABLE(x, i) \
471 do { \
472 if ((x)->max_freeable < i) \
473 (x)->max_freeable = i; \
474 } while (0)
1da177e4
LT
475#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
476#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
477#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
478#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
479#else
480#define STATS_INC_ACTIVE(x) do { } while (0)
481#define STATS_DEC_ACTIVE(x) do { } while (0)
482#define STATS_INC_ALLOCED(x) do { } while (0)
483#define STATS_INC_GROWN(x) do { } while (0)
484#define STATS_INC_REAPED(x) do { } while (0)
485#define STATS_SET_HIGH(x) do { } while (0)
486#define STATS_INC_ERR(x) do { } while (0)
487#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 488#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 489#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 490#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
491#define STATS_INC_ALLOCHIT(x) do { } while (0)
492#define STATS_INC_ALLOCMISS(x) do { } while (0)
493#define STATS_INC_FREEHIT(x) do { } while (0)
494#define STATS_INC_FREEMISS(x) do { } while (0)
495#endif
496
497#if DEBUG
a737b3e2
AM
498/*
499 * Magic nums for obj red zoning.
1da177e4
LT
500 * Placed in the first word before and the first word after an obj.
501 */
502#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
503#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
504
505/* ...and for poisoning */
506#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
507#define POISON_FREE 0x6b /* for use-after-free poisoning */
508#define POISON_END 0xa5 /* end-byte of poisoning */
509
a737b3e2
AM
510/*
511 * memory layout of objects:
1da177e4 512 * 0 : objp
3dafccf2 513 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
514 * the end of an object is aligned with the end of the real
515 * allocation. Catches writes behind the end of the allocation.
3dafccf2 516 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 517 * redzone word.
3dafccf2
MS
518 * cachep->obj_offset: The real object.
519 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
520 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
521 * [BYTES_PER_WORD long]
1da177e4 522 */
343e0d7a 523static int obj_offset(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_offset;
1da177e4
LT
526}
527
343e0d7a 528static int obj_size(struct kmem_cache *cachep)
1da177e4 529{
3dafccf2 530 return cachep->obj_size;
1da177e4
LT
531}
532
343e0d7a 533static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
534{
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 536 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
537}
538
343e0d7a 539static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
540{
541 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 543 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 544 2 * BYTES_PER_WORD);
3dafccf2 545 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
546}
547
343e0d7a 548static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
549{
550 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 551 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
552}
553
554#else
555
3dafccf2
MS
556#define obj_offset(x) 0
557#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
558#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
559#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
560#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
561
562#endif
563
564/*
a737b3e2
AM
565 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
566 * order.
1da177e4
LT
567 */
568#if defined(CONFIG_LARGE_ALLOCS)
569#define MAX_OBJ_ORDER 13 /* up to 32Mb */
570#define MAX_GFP_ORDER 13 /* up to 32Mb */
571#elif defined(CONFIG_MMU)
572#define MAX_OBJ_ORDER 5 /* 32 pages */
573#define MAX_GFP_ORDER 5 /* 32 pages */
574#else
575#define MAX_OBJ_ORDER 8 /* up to 1Mb */
576#define MAX_GFP_ORDER 8 /* up to 1Mb */
577#endif
578
579/*
580 * Do not go above this order unless 0 objects fit into the slab.
581 */
582#define BREAK_GFP_ORDER_HI 1
583#define BREAK_GFP_ORDER_LO 0
584static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
585
a737b3e2
AM
586/*
587 * Functions for storing/retrieving the cachep and or slab from the page
588 * allocator. These are used to find the slab an obj belongs to. With kfree(),
589 * these are used to find the cache which an obj belongs to.
1da177e4 590 */
065d41cb
PE
591static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
592{
593 page->lru.next = (struct list_head *)cache;
594}
595
596static inline struct kmem_cache *page_get_cache(struct page *page)
597{
84097518
NP
598 if (unlikely(PageCompound(page)))
599 page = (struct page *)page_private(page);
065d41cb
PE
600 return (struct kmem_cache *)page->lru.next;
601}
602
603static inline void page_set_slab(struct page *page, struct slab *slab)
604{
605 page->lru.prev = (struct list_head *)slab;
606}
607
608static inline struct slab *page_get_slab(struct page *page)
609{
84097518
NP
610 if (unlikely(PageCompound(page)))
611 page = (struct page *)page_private(page);
065d41cb
PE
612 return (struct slab *)page->lru.prev;
613}
1da177e4 614
6ed5eb22
PE
615static inline struct kmem_cache *virt_to_cache(const void *obj)
616{
617 struct page *page = virt_to_page(obj);
618 return page_get_cache(page);
619}
620
621static inline struct slab *virt_to_slab(const void *obj)
622{
623 struct page *page = virt_to_page(obj);
624 return page_get_slab(page);
625}
626
8fea4e96
PE
627static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
628 unsigned int idx)
629{
630 return slab->s_mem + cache->buffer_size * idx;
631}
632
633static inline unsigned int obj_to_index(struct kmem_cache *cache,
634 struct slab *slab, void *obj)
635{
636 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
637}
638
a737b3e2
AM
639/*
640 * These are the default caches for kmalloc. Custom caches can have other sizes.
641 */
1da177e4
LT
642struct cache_sizes malloc_sizes[] = {
643#define CACHE(x) { .cs_size = (x) },
644#include <linux/kmalloc_sizes.h>
645 CACHE(ULONG_MAX)
646#undef CACHE
647};
648EXPORT_SYMBOL(malloc_sizes);
649
650/* Must match cache_sizes above. Out of line to keep cache footprint low. */
651struct cache_names {
652 char *name;
653 char *name_dma;
654};
655
656static struct cache_names __initdata cache_names[] = {
657#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
658#include <linux/kmalloc_sizes.h>
b28a02de 659 {NULL,}
1da177e4
LT
660#undef CACHE
661};
662
663static struct arraycache_init initarray_cache __initdata =
b28a02de 664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 665static struct arraycache_init initarray_generic =
b28a02de 666 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
667
668/* internal cache of cache description objs */
343e0d7a 669static struct kmem_cache cache_cache = {
b28a02de
PE
670 .batchcount = 1,
671 .limit = BOOT_CPUCACHE_ENTRIES,
672 .shared = 1,
343e0d7a 673 .buffer_size = sizeof(struct kmem_cache),
b28a02de 674 .name = "kmem_cache",
1da177e4 675#if DEBUG
343e0d7a 676 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
677#endif
678};
679
680/* Guard access to the cache-chain. */
fc0abb14 681static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
682static struct list_head cache_chain;
683
684/*
a737b3e2
AM
685 * vm_enough_memory() looks at this to determine how many slab-allocated pages
686 * are possibly freeable under pressure
1da177e4
LT
687 *
688 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
689 */
690atomic_t slab_reclaim_pages;
1da177e4
LT
691
692/*
693 * chicken and egg problem: delay the per-cpu array allocation
694 * until the general caches are up.
695 */
696static enum {
697 NONE,
e498be7d
CL
698 PARTIAL_AC,
699 PARTIAL_L3,
1da177e4
LT
700 FULL
701} g_cpucache_up;
702
39d24e64
MK
703/*
704 * used by boot code to determine if it can use slab based allocator
705 */
706int slab_is_available(void)
707{
708 return g_cpucache_up == FULL;
709}
710
1da177e4
LT
711static DEFINE_PER_CPU(struct work_struct, reap_work);
712
a737b3e2
AM
713static void free_block(struct kmem_cache *cachep, void **objpp, int len,
714 int node);
343e0d7a 715static void enable_cpucache(struct kmem_cache *cachep);
b28a02de 716static void cache_reap(void *unused);
343e0d7a 717static int __node_shrink(struct kmem_cache *cachep, int node);
1da177e4 718
343e0d7a 719static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
720{
721 return cachep->array[smp_processor_id()];
722}
723
a737b3e2
AM
724static inline struct kmem_cache *__find_general_cachep(size_t size,
725 gfp_t gfpflags)
1da177e4
LT
726{
727 struct cache_sizes *csizep = malloc_sizes;
728
729#if DEBUG
730 /* This happens if someone tries to call
b28a02de
PE
731 * kmem_cache_create(), or __kmalloc(), before
732 * the generic caches are initialized.
733 */
c7e43c78 734 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
735#endif
736 while (size > csizep->cs_size)
737 csizep++;
738
739 /*
0abf40c1 740 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
741 * has cs_{dma,}cachep==NULL. Thus no special case
742 * for large kmalloc calls required.
743 */
744 if (unlikely(gfpflags & GFP_DMA))
745 return csizep->cs_dmacachep;
746 return csizep->cs_cachep;
747}
748
343e0d7a 749struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
750{
751 return __find_general_cachep(size, gfpflags);
752}
753EXPORT_SYMBOL(kmem_find_general_cachep);
754
fbaccacf 755static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 756{
fbaccacf
SR
757 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
758}
1da177e4 759
a737b3e2
AM
760/*
761 * Calculate the number of objects and left-over bytes for a given buffer size.
762 */
fbaccacf
SR
763static void cache_estimate(unsigned long gfporder, size_t buffer_size,
764 size_t align, int flags, size_t *left_over,
765 unsigned int *num)
766{
767 int nr_objs;
768 size_t mgmt_size;
769 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 770
fbaccacf
SR
771 /*
772 * The slab management structure can be either off the slab or
773 * on it. For the latter case, the memory allocated for a
774 * slab is used for:
775 *
776 * - The struct slab
777 * - One kmem_bufctl_t for each object
778 * - Padding to respect alignment of @align
779 * - @buffer_size bytes for each object
780 *
781 * If the slab management structure is off the slab, then the
782 * alignment will already be calculated into the size. Because
783 * the slabs are all pages aligned, the objects will be at the
784 * correct alignment when allocated.
785 */
786 if (flags & CFLGS_OFF_SLAB) {
787 mgmt_size = 0;
788 nr_objs = slab_size / buffer_size;
789
790 if (nr_objs > SLAB_LIMIT)
791 nr_objs = SLAB_LIMIT;
792 } else {
793 /*
794 * Ignore padding for the initial guess. The padding
795 * is at most @align-1 bytes, and @buffer_size is at
796 * least @align. In the worst case, this result will
797 * be one greater than the number of objects that fit
798 * into the memory allocation when taking the padding
799 * into account.
800 */
801 nr_objs = (slab_size - sizeof(struct slab)) /
802 (buffer_size + sizeof(kmem_bufctl_t));
803
804 /*
805 * This calculated number will be either the right
806 * amount, or one greater than what we want.
807 */
808 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
809 > slab_size)
810 nr_objs--;
811
812 if (nr_objs > SLAB_LIMIT)
813 nr_objs = SLAB_LIMIT;
814
815 mgmt_size = slab_mgmt_size(nr_objs, align);
816 }
817 *num = nr_objs;
818 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
819}
820
821#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
822
a737b3e2
AM
823static void __slab_error(const char *function, struct kmem_cache *cachep,
824 char *msg)
1da177e4
LT
825{
826 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 827 function, cachep->name, msg);
1da177e4
LT
828 dump_stack();
829}
830
8fce4d8e
CL
831#ifdef CONFIG_NUMA
832/*
833 * Special reaping functions for NUMA systems called from cache_reap().
834 * These take care of doing round robin flushing of alien caches (containing
835 * objects freed on different nodes from which they were allocated) and the
836 * flushing of remote pcps by calling drain_node_pages.
837 */
838static DEFINE_PER_CPU(unsigned long, reap_node);
839
840static void init_reap_node(int cpu)
841{
842 int node;
843
844 node = next_node(cpu_to_node(cpu), node_online_map);
845 if (node == MAX_NUMNODES)
442295c9 846 node = first_node(node_online_map);
8fce4d8e
CL
847
848 __get_cpu_var(reap_node) = node;
849}
850
851static void next_reap_node(void)
852{
853 int node = __get_cpu_var(reap_node);
854
855 /*
856 * Also drain per cpu pages on remote zones
857 */
858 if (node != numa_node_id())
859 drain_node_pages(node);
860
861 node = next_node(node, node_online_map);
862 if (unlikely(node >= MAX_NUMNODES))
863 node = first_node(node_online_map);
864 __get_cpu_var(reap_node) = node;
865}
866
867#else
868#define init_reap_node(cpu) do { } while (0)
869#define next_reap_node(void) do { } while (0)
870#endif
871
1da177e4
LT
872/*
873 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
874 * via the workqueue/eventd.
875 * Add the CPU number into the expiration time to minimize the possibility of
876 * the CPUs getting into lockstep and contending for the global cache chain
877 * lock.
878 */
879static void __devinit start_cpu_timer(int cpu)
880{
881 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
882
883 /*
884 * When this gets called from do_initcalls via cpucache_init(),
885 * init_workqueues() has already run, so keventd will be setup
886 * at that time.
887 */
888 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 889 init_reap_node(cpu);
1da177e4
LT
890 INIT_WORK(reap_work, cache_reap, NULL);
891 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
892 }
893}
894
e498be7d 895static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 896 int batchcount)
1da177e4 897{
b28a02de 898 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
899 struct array_cache *nc = NULL;
900
e498be7d 901 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
902 if (nc) {
903 nc->avail = 0;
904 nc->limit = entries;
905 nc->batchcount = batchcount;
906 nc->touched = 0;
e498be7d 907 spin_lock_init(&nc->lock);
1da177e4
LT
908 }
909 return nc;
910}
911
3ded175a
CL
912/*
913 * Transfer objects in one arraycache to another.
914 * Locking must be handled by the caller.
915 *
916 * Return the number of entries transferred.
917 */
918static int transfer_objects(struct array_cache *to,
919 struct array_cache *from, unsigned int max)
920{
921 /* Figure out how many entries to transfer */
922 int nr = min(min(from->avail, max), to->limit - to->avail);
923
924 if (!nr)
925 return 0;
926
927 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
928 sizeof(void *) *nr);
929
930 from->avail -= nr;
931 to->avail += nr;
932 to->touched = 1;
933 return nr;
934}
935
e498be7d 936#ifdef CONFIG_NUMA
343e0d7a 937static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 938static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 939
5295a74c 940static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
941{
942 struct array_cache **ac_ptr;
b28a02de 943 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
944 int i;
945
946 if (limit > 1)
947 limit = 12;
948 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
949 if (ac_ptr) {
950 for_each_node(i) {
951 if (i == node || !node_online(i)) {
952 ac_ptr[i] = NULL;
953 continue;
954 }
955 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
956 if (!ac_ptr[i]) {
b28a02de 957 for (i--; i <= 0; i--)
e498be7d
CL
958 kfree(ac_ptr[i]);
959 kfree(ac_ptr);
960 return NULL;
961 }
962 }
963 }
964 return ac_ptr;
965}
966
5295a74c 967static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
968{
969 int i;
970
971 if (!ac_ptr)
972 return;
e498be7d 973 for_each_node(i)
b28a02de 974 kfree(ac_ptr[i]);
e498be7d
CL
975 kfree(ac_ptr);
976}
977
343e0d7a 978static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 979 struct array_cache *ac, int node)
e498be7d
CL
980{
981 struct kmem_list3 *rl3 = cachep->nodelists[node];
982
983 if (ac->avail) {
984 spin_lock(&rl3->list_lock);
e00946fe
CL
985 /*
986 * Stuff objects into the remote nodes shared array first.
987 * That way we could avoid the overhead of putting the objects
988 * into the free lists and getting them back later.
989 */
693f7d36
JS
990 if (rl3->shared)
991 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 992
ff69416e 993 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
994 ac->avail = 0;
995 spin_unlock(&rl3->list_lock);
996 }
997}
998
8fce4d8e
CL
999/*
1000 * Called from cache_reap() to regularly drain alien caches round robin.
1001 */
1002static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1003{
1004 int node = __get_cpu_var(reap_node);
1005
1006 if (l3->alien) {
1007 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1008
1009 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1010 __drain_alien_cache(cachep, ac, node);
1011 spin_unlock_irq(&ac->lock);
1012 }
1013 }
1014}
1015
a737b3e2
AM
1016static void drain_alien_cache(struct kmem_cache *cachep,
1017 struct array_cache **alien)
e498be7d 1018{
b28a02de 1019 int i = 0;
e498be7d
CL
1020 struct array_cache *ac;
1021 unsigned long flags;
1022
1023 for_each_online_node(i) {
4484ebf1 1024 ac = alien[i];
e498be7d
CL
1025 if (ac) {
1026 spin_lock_irqsave(&ac->lock, flags);
1027 __drain_alien_cache(cachep, ac, i);
1028 spin_unlock_irqrestore(&ac->lock, flags);
1029 }
1030 }
1031}
1032#else
7a21ef6f 1033
4484ebf1 1034#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1035#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1036
7a21ef6f
LT
1037static inline struct array_cache **alloc_alien_cache(int node, int limit)
1038{
1039 return (struct array_cache **) 0x01020304ul;
1040}
1041
4484ebf1
RT
1042static inline void free_alien_cache(struct array_cache **ac_ptr)
1043{
1044}
7a21ef6f 1045
e498be7d
CL
1046#endif
1047
83d722f7 1048static int cpuup_callback(struct notifier_block *nfb,
b28a02de 1049 unsigned long action, void *hcpu)
1da177e4
LT
1050{
1051 long cpu = (long)hcpu;
343e0d7a 1052 struct kmem_cache *cachep;
e498be7d
CL
1053 struct kmem_list3 *l3 = NULL;
1054 int node = cpu_to_node(cpu);
1055 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1056
1057 switch (action) {
1058 case CPU_UP_PREPARE:
fc0abb14 1059 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1060 /*
1061 * We need to do this right in the beginning since
e498be7d
CL
1062 * alloc_arraycache's are going to use this list.
1063 * kmalloc_node allows us to add the slab to the right
1064 * kmem_list3 and not this cpu's kmem_list3
1065 */
1066
1da177e4 1067 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1068 /*
1069 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1070 * begin anything. Make sure some other cpu on this
1071 * node has not already allocated this
1072 */
1073 if (!cachep->nodelists[node]) {
a737b3e2
AM
1074 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1075 if (!l3)
e498be7d
CL
1076 goto bad;
1077 kmem_list3_init(l3);
1078 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1079 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1080
4484ebf1
RT
1081 /*
1082 * The l3s don't come and go as CPUs come and
1083 * go. cache_chain_mutex is sufficient
1084 * protection here.
1085 */
e498be7d
CL
1086 cachep->nodelists[node] = l3;
1087 }
1da177e4 1088
e498be7d
CL
1089 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1090 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1091 (1 + nr_cpus_node(node)) *
1092 cachep->batchcount + cachep->num;
e498be7d
CL
1093 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1094 }
1095
a737b3e2
AM
1096 /*
1097 * Now we can go ahead with allocating the shared arrays and
1098 * array caches
1099 */
e498be7d 1100 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1101 struct array_cache *nc;
4484ebf1
RT
1102 struct array_cache *shared;
1103 struct array_cache **alien;
cd105df4 1104
e498be7d 1105 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1106 cachep->batchcount);
1da177e4
LT
1107 if (!nc)
1108 goto bad;
4484ebf1
RT
1109 shared = alloc_arraycache(node,
1110 cachep->shared * cachep->batchcount,
1111 0xbaadf00d);
1112 if (!shared)
1113 goto bad;
7a21ef6f 1114
4484ebf1
RT
1115 alien = alloc_alien_cache(node, cachep->limit);
1116 if (!alien)
1117 goto bad;
1da177e4 1118 cachep->array[cpu] = nc;
e498be7d
CL
1119 l3 = cachep->nodelists[node];
1120 BUG_ON(!l3);
e498be7d 1121
4484ebf1
RT
1122 spin_lock_irq(&l3->list_lock);
1123 if (!l3->shared) {
1124 /*
1125 * We are serialised from CPU_DEAD or
1126 * CPU_UP_CANCELLED by the cpucontrol lock
1127 */
1128 l3->shared = shared;
1129 shared = NULL;
e498be7d 1130 }
4484ebf1
RT
1131#ifdef CONFIG_NUMA
1132 if (!l3->alien) {
1133 l3->alien = alien;
1134 alien = NULL;
1135 }
1136#endif
1137 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1138 kfree(shared);
1139 free_alien_cache(alien);
1da177e4 1140 }
fc0abb14 1141 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1142 break;
1143 case CPU_ONLINE:
1144 start_cpu_timer(cpu);
1145 break;
1146#ifdef CONFIG_HOTPLUG_CPU
1147 case CPU_DEAD:
4484ebf1
RT
1148 /*
1149 * Even if all the cpus of a node are down, we don't free the
1150 * kmem_list3 of any cache. This to avoid a race between
1151 * cpu_down, and a kmalloc allocation from another cpu for
1152 * memory from the node of the cpu going down. The list3
1153 * structure is usually allocated from kmem_cache_create() and
1154 * gets destroyed at kmem_cache_destroy().
1155 */
1da177e4
LT
1156 /* fall thru */
1157 case CPU_UP_CANCELED:
fc0abb14 1158 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1159 list_for_each_entry(cachep, &cache_chain, next) {
1160 struct array_cache *nc;
4484ebf1
RT
1161 struct array_cache *shared;
1162 struct array_cache **alien;
e498be7d 1163 cpumask_t mask;
1da177e4 1164
e498be7d 1165 mask = node_to_cpumask(node);
1da177e4
LT
1166 /* cpu is dead; no one can alloc from it. */
1167 nc = cachep->array[cpu];
1168 cachep->array[cpu] = NULL;
e498be7d
CL
1169 l3 = cachep->nodelists[node];
1170
1171 if (!l3)
4484ebf1 1172 goto free_array_cache;
e498be7d 1173
ca3b9b91 1174 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1175
1176 /* Free limit for this kmem_list3 */
1177 l3->free_limit -= cachep->batchcount;
1178 if (nc)
ff69416e 1179 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1180
1181 if (!cpus_empty(mask)) {
ca3b9b91 1182 spin_unlock_irq(&l3->list_lock);
4484ebf1 1183 goto free_array_cache;
b28a02de 1184 }
e498be7d 1185
4484ebf1
RT
1186 shared = l3->shared;
1187 if (shared) {
e498be7d 1188 free_block(cachep, l3->shared->entry,
b28a02de 1189 l3->shared->avail, node);
e498be7d
CL
1190 l3->shared = NULL;
1191 }
e498be7d 1192
4484ebf1
RT
1193 alien = l3->alien;
1194 l3->alien = NULL;
1195
1196 spin_unlock_irq(&l3->list_lock);
1197
1198 kfree(shared);
1199 if (alien) {
1200 drain_alien_cache(cachep, alien);
1201 free_alien_cache(alien);
e498be7d 1202 }
4484ebf1 1203free_array_cache:
1da177e4
LT
1204 kfree(nc);
1205 }
4484ebf1
RT
1206 /*
1207 * In the previous loop, all the objects were freed to
1208 * the respective cache's slabs, now we can go ahead and
1209 * shrink each nodelist to its limit.
1210 */
1211 list_for_each_entry(cachep, &cache_chain, next) {
1212 l3 = cachep->nodelists[node];
1213 if (!l3)
1214 continue;
1215 spin_lock_irq(&l3->list_lock);
1216 /* free slabs belonging to this node */
1217 __node_shrink(cachep, node);
1218 spin_unlock_irq(&l3->list_lock);
1219 }
fc0abb14 1220 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1221 break;
1222#endif
1223 }
1224 return NOTIFY_OK;
a737b3e2 1225bad:
fc0abb14 1226 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1227 return NOTIFY_BAD;
1228}
1229
1230static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1231
e498be7d
CL
1232/*
1233 * swap the static kmem_list3 with kmalloced memory
1234 */
a737b3e2
AM
1235static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1236 int nodeid)
e498be7d
CL
1237{
1238 struct kmem_list3 *ptr;
1239
1240 BUG_ON(cachep->nodelists[nodeid] != list);
1241 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1242 BUG_ON(!ptr);
1243
1244 local_irq_disable();
1245 memcpy(ptr, list, sizeof(struct kmem_list3));
1246 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1247 cachep->nodelists[nodeid] = ptr;
1248 local_irq_enable();
1249}
1250
a737b3e2
AM
1251/*
1252 * Initialisation. Called after the page allocator have been initialised and
1253 * before smp_init().
1da177e4
LT
1254 */
1255void __init kmem_cache_init(void)
1256{
1257 size_t left_over;
1258 struct cache_sizes *sizes;
1259 struct cache_names *names;
e498be7d 1260 int i;
07ed76b2 1261 int order;
e498be7d
CL
1262
1263 for (i = 0; i < NUM_INIT_LISTS; i++) {
1264 kmem_list3_init(&initkmem_list3[i]);
1265 if (i < MAX_NUMNODES)
1266 cache_cache.nodelists[i] = NULL;
1267 }
1da177e4
LT
1268
1269 /*
1270 * Fragmentation resistance on low memory - only use bigger
1271 * page orders on machines with more than 32MB of memory.
1272 */
1273 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1274 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1275
1da177e4
LT
1276 /* Bootstrap is tricky, because several objects are allocated
1277 * from caches that do not exist yet:
a737b3e2
AM
1278 * 1) initialize the cache_cache cache: it contains the struct
1279 * kmem_cache structures of all caches, except cache_cache itself:
1280 * cache_cache is statically allocated.
e498be7d
CL
1281 * Initially an __init data area is used for the head array and the
1282 * kmem_list3 structures, it's replaced with a kmalloc allocated
1283 * array at the end of the bootstrap.
1da177e4 1284 * 2) Create the first kmalloc cache.
343e0d7a 1285 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1286 * An __init data area is used for the head array.
1287 * 3) Create the remaining kmalloc caches, with minimally sized
1288 * head arrays.
1da177e4
LT
1289 * 4) Replace the __init data head arrays for cache_cache and the first
1290 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1291 * 5) Replace the __init data for kmem_list3 for cache_cache and
1292 * the other cache's with kmalloc allocated memory.
1293 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1294 */
1295
1296 /* 1) create the cache_cache */
1da177e4
LT
1297 INIT_LIST_HEAD(&cache_chain);
1298 list_add(&cache_cache.next, &cache_chain);
1299 cache_cache.colour_off = cache_line_size();
1300 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1301 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1302
a737b3e2
AM
1303 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1304 cache_line_size());
1da177e4 1305
07ed76b2
JS
1306 for (order = 0; order < MAX_ORDER; order++) {
1307 cache_estimate(order, cache_cache.buffer_size,
1308 cache_line_size(), 0, &left_over, &cache_cache.num);
1309 if (cache_cache.num)
1310 break;
1311 }
40094fa6 1312 BUG_ON(!cache_cache.num);
07ed76b2 1313 cache_cache.gfporder = order;
b28a02de 1314 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1315 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1316 sizeof(struct slab), cache_line_size());
1da177e4
LT
1317
1318 /* 2+3) create the kmalloc caches */
1319 sizes = malloc_sizes;
1320 names = cache_names;
1321
a737b3e2
AM
1322 /*
1323 * Initialize the caches that provide memory for the array cache and the
1324 * kmem_list3 structures first. Without this, further allocations will
1325 * bug.
e498be7d
CL
1326 */
1327
1328 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1329 sizes[INDEX_AC].cs_size,
1330 ARCH_KMALLOC_MINALIGN,
1331 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1332 NULL, NULL);
e498be7d 1333
a737b3e2 1334 if (INDEX_AC != INDEX_L3) {
e498be7d 1335 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1336 kmem_cache_create(names[INDEX_L3].name,
1337 sizes[INDEX_L3].cs_size,
1338 ARCH_KMALLOC_MINALIGN,
1339 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1340 NULL, NULL);
1341 }
e498be7d 1342
1da177e4 1343 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1344 /*
1345 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1346 * This should be particularly beneficial on SMP boxes, as it
1347 * eliminates "false sharing".
1348 * Note for systems short on memory removing the alignment will
e498be7d
CL
1349 * allow tighter packing of the smaller caches.
1350 */
a737b3e2 1351 if (!sizes->cs_cachep) {
e498be7d 1352 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1353 sizes->cs_size,
1354 ARCH_KMALLOC_MINALIGN,
1355 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1356 NULL, NULL);
1357 }
1da177e4
LT
1358
1359 /* Inc off-slab bufctl limit until the ceiling is hit. */
1360 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1361 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1362 offslab_limit /= sizeof(kmem_bufctl_t);
1363 }
1364
1365 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1366 sizes->cs_size,
1367 ARCH_KMALLOC_MINALIGN,
1368 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1369 SLAB_PANIC,
1370 NULL, NULL);
1da177e4
LT
1371 sizes++;
1372 names++;
1373 }
1374 /* 4) Replace the bootstrap head arrays */
1375 {
b28a02de 1376 void *ptr;
e498be7d 1377
1da177e4 1378 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1379
1da177e4 1380 local_irq_disable();
9a2dba4b
PE
1381 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1382 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1383 sizeof(struct arraycache_init));
1da177e4
LT
1384 cache_cache.array[smp_processor_id()] = ptr;
1385 local_irq_enable();
e498be7d 1386
1da177e4 1387 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1388
1da177e4 1389 local_irq_disable();
9a2dba4b 1390 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1391 != &initarray_generic.cache);
9a2dba4b 1392 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1393 sizeof(struct arraycache_init));
e498be7d 1394 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1395 ptr;
1da177e4
LT
1396 local_irq_enable();
1397 }
e498be7d
CL
1398 /* 5) Replace the bootstrap kmem_list3's */
1399 {
1400 int node;
1401 /* Replace the static kmem_list3 structures for the boot cpu */
1402 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1403 numa_node_id());
e498be7d
CL
1404
1405 for_each_online_node(node) {
1406 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1407 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1408
1409 if (INDEX_AC != INDEX_L3) {
1410 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1411 &initkmem_list3[SIZE_L3 + node],
1412 node);
e498be7d
CL
1413 }
1414 }
1415 }
1da177e4 1416
e498be7d 1417 /* 6) resize the head arrays to their final sizes */
1da177e4 1418 {
343e0d7a 1419 struct kmem_cache *cachep;
fc0abb14 1420 mutex_lock(&cache_chain_mutex);
1da177e4 1421 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1422 enable_cpucache(cachep);
fc0abb14 1423 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1424 }
1425
1426 /* Done! */
1427 g_cpucache_up = FULL;
1428
a737b3e2
AM
1429 /*
1430 * Register a cpu startup notifier callback that initializes
1431 * cpu_cache_get for all new cpus
1da177e4
LT
1432 */
1433 register_cpu_notifier(&cpucache_notifier);
1da177e4 1434
a737b3e2
AM
1435 /*
1436 * The reap timers are started later, with a module init call: That part
1437 * of the kernel is not yet operational.
1da177e4
LT
1438 */
1439}
1440
1441static int __init cpucache_init(void)
1442{
1443 int cpu;
1444
a737b3e2
AM
1445 /*
1446 * Register the timers that return unneeded pages to the page allocator
1da177e4 1447 */
e498be7d 1448 for_each_online_cpu(cpu)
a737b3e2 1449 start_cpu_timer(cpu);
1da177e4
LT
1450 return 0;
1451}
1da177e4
LT
1452__initcall(cpucache_init);
1453
1454/*
1455 * Interface to system's page allocator. No need to hold the cache-lock.
1456 *
1457 * If we requested dmaable memory, we will get it. Even if we
1458 * did not request dmaable memory, we might get it, but that
1459 * would be relatively rare and ignorable.
1460 */
343e0d7a 1461static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1462{
1463 struct page *page;
1464 void *addr;
1465 int i;
1466
1467 flags |= cachep->gfpflags;
d6fef9da
LY
1468#ifndef CONFIG_MMU
1469 /* nommu uses slab's for process anonymous memory allocations, so
1470 * requires __GFP_COMP to properly refcount higher order allocations"
1471 */
1472 page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
1473#else
50c85a19 1474 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
d6fef9da 1475#endif
1da177e4
LT
1476 if (!page)
1477 return NULL;
1478 addr = page_address(page);
1479
1480 i = (1 << cachep->gfporder);
1481 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1482 atomic_add(i, &slab_reclaim_pages);
1483 add_page_state(nr_slab, i);
1484 while (i--) {
f205b2fe 1485 __SetPageSlab(page);
1da177e4
LT
1486 page++;
1487 }
1488 return addr;
1489}
1490
1491/*
1492 * Interface to system's page release.
1493 */
343e0d7a 1494static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1495{
b28a02de 1496 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1497 struct page *page = virt_to_page(addr);
1498 const unsigned long nr_freed = i;
1499
1500 while (i--) {
f205b2fe
NP
1501 BUG_ON(!PageSlab(page));
1502 __ClearPageSlab(page);
1da177e4
LT
1503 page++;
1504 }
1505 sub_page_state(nr_slab, nr_freed);
1506 if (current->reclaim_state)
1507 current->reclaim_state->reclaimed_slab += nr_freed;
1508 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1509 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1510 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1511}
1512
1513static void kmem_rcu_free(struct rcu_head *head)
1514{
b28a02de 1515 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1516 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1517
1518 kmem_freepages(cachep, slab_rcu->addr);
1519 if (OFF_SLAB(cachep))
1520 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1521}
1522
1523#if DEBUG
1524
1525#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1526static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1527 unsigned long caller)
1da177e4 1528{
3dafccf2 1529 int size = obj_size(cachep);
1da177e4 1530
3dafccf2 1531 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1532
b28a02de 1533 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1534 return;
1535
b28a02de
PE
1536 *addr++ = 0x12345678;
1537 *addr++ = caller;
1538 *addr++ = smp_processor_id();
1539 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1540 {
1541 unsigned long *sptr = &caller;
1542 unsigned long svalue;
1543
1544 while (!kstack_end(sptr)) {
1545 svalue = *sptr++;
1546 if (kernel_text_address(svalue)) {
b28a02de 1547 *addr++ = svalue;
1da177e4
LT
1548 size -= sizeof(unsigned long);
1549 if (size <= sizeof(unsigned long))
1550 break;
1551 }
1552 }
1553
1554 }
b28a02de 1555 *addr++ = 0x87654321;
1da177e4
LT
1556}
1557#endif
1558
343e0d7a 1559static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1560{
3dafccf2
MS
1561 int size = obj_size(cachep);
1562 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1563
1564 memset(addr, val, size);
b28a02de 1565 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1566}
1567
1568static void dump_line(char *data, int offset, int limit)
1569{
1570 int i;
1571 printk(KERN_ERR "%03x:", offset);
a737b3e2 1572 for (i = 0; i < limit; i++)
b28a02de 1573 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1574 printk("\n");
1575}
1576#endif
1577
1578#if DEBUG
1579
343e0d7a 1580static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1581{
1582 int i, size;
1583 char *realobj;
1584
1585 if (cachep->flags & SLAB_RED_ZONE) {
1586 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1587 *dbg_redzone1(cachep, objp),
1588 *dbg_redzone2(cachep, objp));
1da177e4
LT
1589 }
1590
1591 if (cachep->flags & SLAB_STORE_USER) {
1592 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1593 *dbg_userword(cachep, objp));
1da177e4 1594 print_symbol("(%s)",
a737b3e2 1595 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1596 printk("\n");
1597 }
3dafccf2
MS
1598 realobj = (char *)objp + obj_offset(cachep);
1599 size = obj_size(cachep);
b28a02de 1600 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1601 int limit;
1602 limit = 16;
b28a02de
PE
1603 if (i + limit > size)
1604 limit = size - i;
1da177e4
LT
1605 dump_line(realobj, i, limit);
1606 }
1607}
1608
343e0d7a 1609static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1610{
1611 char *realobj;
1612 int size, i;
1613 int lines = 0;
1614
3dafccf2
MS
1615 realobj = (char *)objp + obj_offset(cachep);
1616 size = obj_size(cachep);
1da177e4 1617
b28a02de 1618 for (i = 0; i < size; i++) {
1da177e4 1619 char exp = POISON_FREE;
b28a02de 1620 if (i == size - 1)
1da177e4
LT
1621 exp = POISON_END;
1622 if (realobj[i] != exp) {
1623 int limit;
1624 /* Mismatch ! */
1625 /* Print header */
1626 if (lines == 0) {
b28a02de 1627 printk(KERN_ERR
a737b3e2
AM
1628 "Slab corruption: start=%p, len=%d\n",
1629 realobj, size);
1da177e4
LT
1630 print_objinfo(cachep, objp, 0);
1631 }
1632 /* Hexdump the affected line */
b28a02de 1633 i = (i / 16) * 16;
1da177e4 1634 limit = 16;
b28a02de
PE
1635 if (i + limit > size)
1636 limit = size - i;
1da177e4
LT
1637 dump_line(realobj, i, limit);
1638 i += 16;
1639 lines++;
1640 /* Limit to 5 lines */
1641 if (lines > 5)
1642 break;
1643 }
1644 }
1645 if (lines != 0) {
1646 /* Print some data about the neighboring objects, if they
1647 * exist:
1648 */
6ed5eb22 1649 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1650 unsigned int objnr;
1da177e4 1651
8fea4e96 1652 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1653 if (objnr) {
8fea4e96 1654 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1655 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1656 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1657 realobj, size);
1da177e4
LT
1658 print_objinfo(cachep, objp, 2);
1659 }
b28a02de 1660 if (objnr + 1 < cachep->num) {
8fea4e96 1661 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1662 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1663 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1664 realobj, size);
1da177e4
LT
1665 print_objinfo(cachep, objp, 2);
1666 }
1667 }
1668}
1669#endif
1670
12dd36fa
MD
1671#if DEBUG
1672/**
911851e6
RD
1673 * slab_destroy_objs - destroy a slab and its objects
1674 * @cachep: cache pointer being destroyed
1675 * @slabp: slab pointer being destroyed
1676 *
1677 * Call the registered destructor for each object in a slab that is being
1678 * destroyed.
1da177e4 1679 */
343e0d7a 1680static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1681{
1da177e4
LT
1682 int i;
1683 for (i = 0; i < cachep->num; i++) {
8fea4e96 1684 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1685
1686 if (cachep->flags & SLAB_POISON) {
1687#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1688 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1689 OFF_SLAB(cachep))
b28a02de 1690 kernel_map_pages(virt_to_page(objp),
a737b3e2 1691 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1692 else
1693 check_poison_obj(cachep, objp);
1694#else
1695 check_poison_obj(cachep, objp);
1696#endif
1697 }
1698 if (cachep->flags & SLAB_RED_ZONE) {
1699 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1700 slab_error(cachep, "start of a freed object "
b28a02de 1701 "was overwritten");
1da177e4
LT
1702 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1703 slab_error(cachep, "end of a freed object "
b28a02de 1704 "was overwritten");
1da177e4
LT
1705 }
1706 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1707 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1708 }
12dd36fa 1709}
1da177e4 1710#else
343e0d7a 1711static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1712{
1da177e4
LT
1713 if (cachep->dtor) {
1714 int i;
1715 for (i = 0; i < cachep->num; i++) {
8fea4e96 1716 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1717 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1718 }
1719 }
12dd36fa 1720}
1da177e4
LT
1721#endif
1722
911851e6
RD
1723/**
1724 * slab_destroy - destroy and release all objects in a slab
1725 * @cachep: cache pointer being destroyed
1726 * @slabp: slab pointer being destroyed
1727 *
12dd36fa 1728 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1729 * Before calling the slab must have been unlinked from the cache. The
1730 * cache-lock is not held/needed.
12dd36fa 1731 */
343e0d7a 1732static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1733{
1734 void *addr = slabp->s_mem - slabp->colouroff;
1735
1736 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1737 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1738 struct slab_rcu *slab_rcu;
1739
b28a02de 1740 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1741 slab_rcu->cachep = cachep;
1742 slab_rcu->addr = addr;
1743 call_rcu(&slab_rcu->head, kmem_rcu_free);
1744 } else {
1745 kmem_freepages(cachep, addr);
1746 if (OFF_SLAB(cachep))
1747 kmem_cache_free(cachep->slabp_cache, slabp);
1748 }
1749}
1750
a737b3e2
AM
1751/*
1752 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1753 * size of kmem_list3.
1754 */
343e0d7a 1755static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1756{
1757 int node;
1758
1759 for_each_online_node(node) {
b28a02de 1760 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1761 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1762 REAPTIMEOUT_LIST3 +
1763 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1764 }
1765}
1766
4d268eba 1767/**
a70773dd
RD
1768 * calculate_slab_order - calculate size (page order) of slabs
1769 * @cachep: pointer to the cache that is being created
1770 * @size: size of objects to be created in this cache.
1771 * @align: required alignment for the objects.
1772 * @flags: slab allocation flags
1773 *
1774 * Also calculates the number of objects per slab.
4d268eba
PE
1775 *
1776 * This could be made much more intelligent. For now, try to avoid using
1777 * high order pages for slabs. When the gfp() functions are more friendly
1778 * towards high-order requests, this should be changed.
1779 */
a737b3e2 1780static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1781 size_t size, size_t align, unsigned long flags)
4d268eba
PE
1782{
1783 size_t left_over = 0;
9888e6fa 1784 int gfporder;
4d268eba 1785
a737b3e2 1786 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1787 unsigned int num;
1788 size_t remainder;
1789
9888e6fa 1790 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1791 if (!num)
1792 continue;
9888e6fa 1793
4d268eba 1794 /* More than offslab_limit objects will cause problems */
9888e6fa 1795 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
4d268eba
PE
1796 break;
1797
9888e6fa 1798 /* Found something acceptable - save it away */
4d268eba 1799 cachep->num = num;
9888e6fa 1800 cachep->gfporder = gfporder;
4d268eba
PE
1801 left_over = remainder;
1802
f78bb8ad
LT
1803 /*
1804 * A VFS-reclaimable slab tends to have most allocations
1805 * as GFP_NOFS and we really don't want to have to be allocating
1806 * higher-order pages when we are unable to shrink dcache.
1807 */
1808 if (flags & SLAB_RECLAIM_ACCOUNT)
1809 break;
1810
4d268eba
PE
1811 /*
1812 * Large number of objects is good, but very large slabs are
1813 * currently bad for the gfp()s.
1814 */
9888e6fa 1815 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1816 break;
1817
9888e6fa
LT
1818 /*
1819 * Acceptable internal fragmentation?
1820 */
a737b3e2 1821 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1822 break;
1823 }
1824 return left_over;
1825}
1826
f30cf7d1
PE
1827static void setup_cpu_cache(struct kmem_cache *cachep)
1828{
1829 if (g_cpucache_up == FULL) {
1830 enable_cpucache(cachep);
1831 return;
1832 }
1833 if (g_cpucache_up == NONE) {
1834 /*
1835 * Note: the first kmem_cache_create must create the cache
1836 * that's used by kmalloc(24), otherwise the creation of
1837 * further caches will BUG().
1838 */
1839 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1840
1841 /*
1842 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1843 * the first cache, then we need to set up all its list3s,
1844 * otherwise the creation of further caches will BUG().
1845 */
1846 set_up_list3s(cachep, SIZE_AC);
1847 if (INDEX_AC == INDEX_L3)
1848 g_cpucache_up = PARTIAL_L3;
1849 else
1850 g_cpucache_up = PARTIAL_AC;
1851 } else {
1852 cachep->array[smp_processor_id()] =
1853 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1854
1855 if (g_cpucache_up == PARTIAL_AC) {
1856 set_up_list3s(cachep, SIZE_L3);
1857 g_cpucache_up = PARTIAL_L3;
1858 } else {
1859 int node;
1860 for_each_online_node(node) {
1861 cachep->nodelists[node] =
1862 kmalloc_node(sizeof(struct kmem_list3),
1863 GFP_KERNEL, node);
1864 BUG_ON(!cachep->nodelists[node]);
1865 kmem_list3_init(cachep->nodelists[node]);
1866 }
1867 }
1868 }
1869 cachep->nodelists[numa_node_id()]->next_reap =
1870 jiffies + REAPTIMEOUT_LIST3 +
1871 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1872
1873 cpu_cache_get(cachep)->avail = 0;
1874 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1875 cpu_cache_get(cachep)->batchcount = 1;
1876 cpu_cache_get(cachep)->touched = 0;
1877 cachep->batchcount = 1;
1878 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1879}
1880
1da177e4
LT
1881/**
1882 * kmem_cache_create - Create a cache.
1883 * @name: A string which is used in /proc/slabinfo to identify this cache.
1884 * @size: The size of objects to be created in this cache.
1885 * @align: The required alignment for the objects.
1886 * @flags: SLAB flags
1887 * @ctor: A constructor for the objects.
1888 * @dtor: A destructor for the objects.
1889 *
1890 * Returns a ptr to the cache on success, NULL on failure.
1891 * Cannot be called within a int, but can be interrupted.
1892 * The @ctor is run when new pages are allocated by the cache
1893 * and the @dtor is run before the pages are handed back.
1894 *
1895 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1896 * the module calling this has to destroy the cache before getting unloaded.
1897 *
1da177e4
LT
1898 * The flags are
1899 *
1900 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1901 * to catch references to uninitialised memory.
1902 *
1903 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1904 * for buffer overruns.
1905 *
1da177e4
LT
1906 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1907 * cacheline. This can be beneficial if you're counting cycles as closely
1908 * as davem.
1909 */
343e0d7a 1910struct kmem_cache *
1da177e4 1911kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1912 unsigned long flags,
1913 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1914 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1915{
1916 size_t left_over, slab_size, ralign;
343e0d7a 1917 struct kmem_cache *cachep = NULL;
4f12bb4f 1918 struct list_head *p;
1da177e4
LT
1919
1920 /*
1921 * Sanity checks... these are all serious usage bugs.
1922 */
a737b3e2 1923 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1924 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1925 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1926 name);
b28a02de
PE
1927 BUG();
1928 }
1da177e4 1929
f0188f47
RT
1930 /*
1931 * Prevent CPUs from coming and going.
1932 * lock_cpu_hotplug() nests outside cache_chain_mutex
1933 */
1934 lock_cpu_hotplug();
1935
fc0abb14 1936 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1937
1938 list_for_each(p, &cache_chain) {
343e0d7a 1939 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
4f12bb4f
AM
1940 mm_segment_t old_fs = get_fs();
1941 char tmp;
1942 int res;
1943
1944 /*
1945 * This happens when the module gets unloaded and doesn't
1946 * destroy its slab cache and no-one else reuses the vmalloc
1947 * area of the module. Print a warning.
1948 */
1949 set_fs(KERNEL_DS);
1950 res = __get_user(tmp, pc->name);
1951 set_fs(old_fs);
1952 if (res) {
1953 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1954 pc->buffer_size);
4f12bb4f
AM
1955 continue;
1956 }
1957
b28a02de 1958 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1959 printk("kmem_cache_create: duplicate cache %s\n", name);
1960 dump_stack();
1961 goto oops;
1962 }
1963 }
1964
1da177e4
LT
1965#if DEBUG
1966 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1967 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1968 /* No constructor, but inital state check requested */
1969 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1970 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1971 flags &= ~SLAB_DEBUG_INITIAL;
1972 }
1da177e4
LT
1973#if FORCED_DEBUG
1974 /*
1975 * Enable redzoning and last user accounting, except for caches with
1976 * large objects, if the increased size would increase the object size
1977 * above the next power of two: caches with object sizes just above a
1978 * power of two have a significant amount of internal fragmentation.
1979 */
a737b3e2 1980 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 1981 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1982 if (!(flags & SLAB_DESTROY_BY_RCU))
1983 flags |= SLAB_POISON;
1984#endif
1985 if (flags & SLAB_DESTROY_BY_RCU)
1986 BUG_ON(flags & SLAB_POISON);
1987#endif
1988 if (flags & SLAB_DESTROY_BY_RCU)
1989 BUG_ON(dtor);
1990
1991 /*
a737b3e2
AM
1992 * Always checks flags, a caller might be expecting debug support which
1993 * isn't available.
1da177e4 1994 */
40094fa6 1995 BUG_ON(flags & ~CREATE_MASK);
1da177e4 1996
a737b3e2
AM
1997 /*
1998 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
1999 * unaligned accesses for some archs when redzoning is used, and makes
2000 * sure any on-slab bufctl's are also correctly aligned.
2001 */
b28a02de
PE
2002 if (size & (BYTES_PER_WORD - 1)) {
2003 size += (BYTES_PER_WORD - 1);
2004 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2005 }
2006
a737b3e2
AM
2007 /* calculate the final buffer alignment: */
2008
1da177e4
LT
2009 /* 1) arch recommendation: can be overridden for debug */
2010 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2011 /*
2012 * Default alignment: as specified by the arch code. Except if
2013 * an object is really small, then squeeze multiple objects into
2014 * one cacheline.
1da177e4
LT
2015 */
2016 ralign = cache_line_size();
b28a02de 2017 while (size <= ralign / 2)
1da177e4
LT
2018 ralign /= 2;
2019 } else {
2020 ralign = BYTES_PER_WORD;
2021 }
2022 /* 2) arch mandated alignment: disables debug if necessary */
2023 if (ralign < ARCH_SLAB_MINALIGN) {
2024 ralign = ARCH_SLAB_MINALIGN;
2025 if (ralign > BYTES_PER_WORD)
b28a02de 2026 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2027 }
2028 /* 3) caller mandated alignment: disables debug if necessary */
2029 if (ralign < align) {
2030 ralign = align;
2031 if (ralign > BYTES_PER_WORD)
b28a02de 2032 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2033 }
a737b3e2
AM
2034 /*
2035 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
2036 * the alignment to BYTES_PER_WORD.
2037 */
2038 align = ralign;
2039
2040 /* Get cache's description obj. */
c5e3b83e 2041 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2042 if (!cachep)
4f12bb4f 2043 goto oops;
1da177e4
LT
2044
2045#if DEBUG
3dafccf2 2046 cachep->obj_size = size;
1da177e4
LT
2047
2048 if (flags & SLAB_RED_ZONE) {
2049 /* redzoning only works with word aligned caches */
2050 align = BYTES_PER_WORD;
2051
2052 /* add space for red zone words */
3dafccf2 2053 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2054 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2055 }
2056 if (flags & SLAB_STORE_USER) {
2057 /* user store requires word alignment and
2058 * one word storage behind the end of the real
2059 * object.
2060 */
2061 align = BYTES_PER_WORD;
2062 size += BYTES_PER_WORD;
2063 }
2064#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2065 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2066 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2067 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2068 size = PAGE_SIZE;
2069 }
2070#endif
2071#endif
2072
2073 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 2074 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
2075 /*
2076 * Size is large, assume best to place the slab management obj
2077 * off-slab (should allow better packing of objs).
2078 */
2079 flags |= CFLGS_OFF_SLAB;
2080
2081 size = ALIGN(size, align);
2082
f78bb8ad 2083 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2084
2085 if (!cachep->num) {
2086 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2087 kmem_cache_free(&cache_cache, cachep);
2088 cachep = NULL;
4f12bb4f 2089 goto oops;
1da177e4 2090 }
b28a02de
PE
2091 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2092 + sizeof(struct slab), align);
1da177e4
LT
2093
2094 /*
2095 * If the slab has been placed off-slab, and we have enough space then
2096 * move it on-slab. This is at the expense of any extra colouring.
2097 */
2098 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2099 flags &= ~CFLGS_OFF_SLAB;
2100 left_over -= slab_size;
2101 }
2102
2103 if (flags & CFLGS_OFF_SLAB) {
2104 /* really off slab. No need for manual alignment */
b28a02de
PE
2105 slab_size =
2106 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2107 }
2108
2109 cachep->colour_off = cache_line_size();
2110 /* Offset must be a multiple of the alignment. */
2111 if (cachep->colour_off < align)
2112 cachep->colour_off = align;
b28a02de 2113 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2114 cachep->slab_size = slab_size;
2115 cachep->flags = flags;
2116 cachep->gfpflags = 0;
2117 if (flags & SLAB_CACHE_DMA)
2118 cachep->gfpflags |= GFP_DMA;
3dafccf2 2119 cachep->buffer_size = size;
1da177e4
LT
2120
2121 if (flags & CFLGS_OFF_SLAB)
b2d55073 2122 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2123 cachep->ctor = ctor;
2124 cachep->dtor = dtor;
2125 cachep->name = name;
2126
1da177e4 2127
f30cf7d1 2128 setup_cpu_cache(cachep);
1da177e4 2129
1da177e4
LT
2130 /* cache setup completed, link it into the list */
2131 list_add(&cachep->next, &cache_chain);
a737b3e2 2132oops:
1da177e4
LT
2133 if (!cachep && (flags & SLAB_PANIC))
2134 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2135 name);
fc0abb14 2136 mutex_unlock(&cache_chain_mutex);
f0188f47 2137 unlock_cpu_hotplug();
1da177e4
LT
2138 return cachep;
2139}
2140EXPORT_SYMBOL(kmem_cache_create);
2141
2142#if DEBUG
2143static void check_irq_off(void)
2144{
2145 BUG_ON(!irqs_disabled());
2146}
2147
2148static void check_irq_on(void)
2149{
2150 BUG_ON(irqs_disabled());
2151}
2152
343e0d7a 2153static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2154{
2155#ifdef CONFIG_SMP
2156 check_irq_off();
e498be7d 2157 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2158#endif
2159}
e498be7d 2160
343e0d7a 2161static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2162{
2163#ifdef CONFIG_SMP
2164 check_irq_off();
2165 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2166#endif
2167}
2168
1da177e4
LT
2169#else
2170#define check_irq_off() do { } while(0)
2171#define check_irq_on() do { } while(0)
2172#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2173#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2174#endif
2175
aab2207c
CL
2176static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2177 struct array_cache *ac,
2178 int force, int node);
2179
1da177e4
LT
2180static void do_drain(void *arg)
2181{
a737b3e2 2182 struct kmem_cache *cachep = arg;
1da177e4 2183 struct array_cache *ac;
ff69416e 2184 int node = numa_node_id();
1da177e4
LT
2185
2186 check_irq_off();
9a2dba4b 2187 ac = cpu_cache_get(cachep);
ff69416e
CL
2188 spin_lock(&cachep->nodelists[node]->list_lock);
2189 free_block(cachep, ac->entry, ac->avail, node);
2190 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2191 ac->avail = 0;
2192}
2193
343e0d7a 2194static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2195{
e498be7d
CL
2196 struct kmem_list3 *l3;
2197 int node;
2198
a07fa394 2199 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2200 check_irq_on();
b28a02de 2201 for_each_online_node(node) {
e498be7d 2202 l3 = cachep->nodelists[node];
a4523a8b
RD
2203 if (l3 && l3->alien)
2204 drain_alien_cache(cachep, l3->alien);
2205 }
2206
2207 for_each_online_node(node) {
2208 l3 = cachep->nodelists[node];
2209 if (l3)
aab2207c 2210 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2211 }
1da177e4
LT
2212}
2213
343e0d7a 2214static int __node_shrink(struct kmem_cache *cachep, int node)
1da177e4
LT
2215{
2216 struct slab *slabp;
e498be7d 2217 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
2218 int ret;
2219
e498be7d 2220 for (;;) {
1da177e4
LT
2221 struct list_head *p;
2222
e498be7d
CL
2223 p = l3->slabs_free.prev;
2224 if (p == &l3->slabs_free)
1da177e4
LT
2225 break;
2226
e498be7d 2227 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4 2228#if DEBUG
40094fa6 2229 BUG_ON(slabp->inuse);
1da177e4
LT
2230#endif
2231 list_del(&slabp->list);
2232
e498be7d
CL
2233 l3->free_objects -= cachep->num;
2234 spin_unlock_irq(&l3->list_lock);
1da177e4 2235 slab_destroy(cachep, slabp);
e498be7d 2236 spin_lock_irq(&l3->list_lock);
1da177e4 2237 }
b28a02de 2238 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
2239 return ret;
2240}
2241
343e0d7a 2242static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2243{
2244 int ret = 0, i = 0;
2245 struct kmem_list3 *l3;
2246
2247 drain_cpu_caches(cachep);
2248
2249 check_irq_on();
2250 for_each_online_node(i) {
2251 l3 = cachep->nodelists[i];
2252 if (l3) {
2253 spin_lock_irq(&l3->list_lock);
2254 ret += __node_shrink(cachep, i);
2255 spin_unlock_irq(&l3->list_lock);
2256 }
2257 }
2258 return (ret ? 1 : 0);
2259}
2260
1da177e4
LT
2261/**
2262 * kmem_cache_shrink - Shrink a cache.
2263 * @cachep: The cache to shrink.
2264 *
2265 * Releases as many slabs as possible for a cache.
2266 * To help debugging, a zero exit status indicates all slabs were released.
2267 */
343e0d7a 2268int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2269{
40094fa6 2270 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2271
2272 return __cache_shrink(cachep);
2273}
2274EXPORT_SYMBOL(kmem_cache_shrink);
2275
2276/**
2277 * kmem_cache_destroy - delete a cache
2278 * @cachep: the cache to destroy
2279 *
343e0d7a 2280 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2281 * Returns 0 on success.
2282 *
2283 * It is expected this function will be called by a module when it is
2284 * unloaded. This will remove the cache completely, and avoid a duplicate
2285 * cache being allocated each time a module is loaded and unloaded, if the
2286 * module doesn't have persistent in-kernel storage across loads and unloads.
2287 *
2288 * The cache must be empty before calling this function.
2289 *
2290 * The caller must guarantee that noone will allocate memory from the cache
2291 * during the kmem_cache_destroy().
2292 */
343e0d7a 2293int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2294{
2295 int i;
e498be7d 2296 struct kmem_list3 *l3;
1da177e4 2297
40094fa6 2298 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2299
2300 /* Don't let CPUs to come and go */
2301 lock_cpu_hotplug();
2302
2303 /* Find the cache in the chain of caches. */
fc0abb14 2304 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2305 /*
2306 * the chain is never empty, cache_cache is never destroyed
2307 */
2308 list_del(&cachep->next);
fc0abb14 2309 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2310
2311 if (__cache_shrink(cachep)) {
2312 slab_error(cachep, "Can't free all objects");
fc0abb14 2313 mutex_lock(&cache_chain_mutex);
b28a02de 2314 list_add(&cachep->next, &cache_chain);
fc0abb14 2315 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2316 unlock_cpu_hotplug();
2317 return 1;
2318 }
2319
2320 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2321 synchronize_rcu();
1da177e4 2322
e498be7d 2323 for_each_online_cpu(i)
b28a02de 2324 kfree(cachep->array[i]);
1da177e4
LT
2325
2326 /* NUMA: free the list3 structures */
e498be7d 2327 for_each_online_node(i) {
a737b3e2
AM
2328 l3 = cachep->nodelists[i];
2329 if (l3) {
e498be7d
CL
2330 kfree(l3->shared);
2331 free_alien_cache(l3->alien);
2332 kfree(l3);
2333 }
2334 }
1da177e4 2335 kmem_cache_free(&cache_cache, cachep);
1da177e4 2336 unlock_cpu_hotplug();
1da177e4
LT
2337 return 0;
2338}
2339EXPORT_SYMBOL(kmem_cache_destroy);
2340
2341/* Get the memory for a slab management obj. */
343e0d7a 2342static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2343 int colour_off, gfp_t local_flags,
2344 int nodeid)
1da177e4
LT
2345{
2346 struct slab *slabp;
b28a02de 2347
1da177e4
LT
2348 if (OFF_SLAB(cachep)) {
2349 /* Slab management obj is off-slab. */
5b74ada7
RT
2350 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2351 local_flags, nodeid);
1da177e4
LT
2352 if (!slabp)
2353 return NULL;
2354 } else {
b28a02de 2355 slabp = objp + colour_off;
1da177e4
LT
2356 colour_off += cachep->slab_size;
2357 }
2358 slabp->inuse = 0;
2359 slabp->colouroff = colour_off;
b28a02de 2360 slabp->s_mem = objp + colour_off;
5b74ada7 2361 slabp->nodeid = nodeid;
1da177e4
LT
2362 return slabp;
2363}
2364
2365static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2366{
b28a02de 2367 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2368}
2369
343e0d7a 2370static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2371 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2372{
2373 int i;
2374
2375 for (i = 0; i < cachep->num; i++) {
8fea4e96 2376 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2377#if DEBUG
2378 /* need to poison the objs? */
2379 if (cachep->flags & SLAB_POISON)
2380 poison_obj(cachep, objp, POISON_FREE);
2381 if (cachep->flags & SLAB_STORE_USER)
2382 *dbg_userword(cachep, objp) = NULL;
2383
2384 if (cachep->flags & SLAB_RED_ZONE) {
2385 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2386 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2387 }
2388 /*
a737b3e2
AM
2389 * Constructors are not allowed to allocate memory from the same
2390 * cache which they are a constructor for. Otherwise, deadlock.
2391 * They must also be threaded.
1da177e4
LT
2392 */
2393 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2394 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2395 ctor_flags);
1da177e4
LT
2396
2397 if (cachep->flags & SLAB_RED_ZONE) {
2398 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2399 slab_error(cachep, "constructor overwrote the"
b28a02de 2400 " end of an object");
1da177e4
LT
2401 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2402 slab_error(cachep, "constructor overwrote the"
b28a02de 2403 " start of an object");
1da177e4 2404 }
a737b3e2
AM
2405 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2406 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2407 kernel_map_pages(virt_to_page(objp),
3dafccf2 2408 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2409#else
2410 if (cachep->ctor)
2411 cachep->ctor(objp, cachep, ctor_flags);
2412#endif
b28a02de 2413 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2414 }
b28a02de 2415 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2416 slabp->free = 0;
2417}
2418
343e0d7a 2419static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2420{
a737b3e2
AM
2421 if (flags & SLAB_DMA)
2422 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2423 else
2424 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2425}
2426
a737b3e2
AM
2427static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2428 int nodeid)
78d382d7 2429{
8fea4e96 2430 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2431 kmem_bufctl_t next;
2432
2433 slabp->inuse++;
2434 next = slab_bufctl(slabp)[slabp->free];
2435#if DEBUG
2436 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2437 WARN_ON(slabp->nodeid != nodeid);
2438#endif
2439 slabp->free = next;
2440
2441 return objp;
2442}
2443
a737b3e2
AM
2444static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2445 void *objp, int nodeid)
78d382d7 2446{
8fea4e96 2447 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2448
2449#if DEBUG
2450 /* Verify that the slab belongs to the intended node */
2451 WARN_ON(slabp->nodeid != nodeid);
2452
871751e2 2453 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2454 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2455 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2456 BUG();
2457 }
2458#endif
2459 slab_bufctl(slabp)[objnr] = slabp->free;
2460 slabp->free = objnr;
2461 slabp->inuse--;
2462}
2463
a737b3e2
AM
2464static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2465 void *objp)
1da177e4
LT
2466{
2467 int i;
2468 struct page *page;
2469
2470 /* Nasty!!!!!! I hope this is OK. */
1da177e4 2471 page = virt_to_page(objp);
84097518
NP
2472
2473 i = 1;
2474 if (likely(!PageCompound(page)))
2475 i <<= cachep->gfporder;
1da177e4 2476 do {
065d41cb
PE
2477 page_set_cache(page, cachep);
2478 page_set_slab(page, slabp);
1da177e4
LT
2479 page++;
2480 } while (--i);
2481}
2482
2483/*
2484 * Grow (by 1) the number of slabs within a cache. This is called by
2485 * kmem_cache_alloc() when there are no active objs left in a cache.
2486 */
343e0d7a 2487static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2488{
b28a02de
PE
2489 struct slab *slabp;
2490 void *objp;
2491 size_t offset;
2492 gfp_t local_flags;
2493 unsigned long ctor_flags;
e498be7d 2494 struct kmem_list3 *l3;
1da177e4 2495
a737b3e2
AM
2496 /*
2497 * Be lazy and only check for valid flags here, keeping it out of the
2498 * critical path in kmem_cache_alloc().
1da177e4 2499 */
40094fa6 2500 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2501 if (flags & SLAB_NO_GROW)
2502 return 0;
2503
2504 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2505 local_flags = (flags & SLAB_LEVEL_MASK);
2506 if (!(local_flags & __GFP_WAIT))
2507 /*
2508 * Not allowed to sleep. Need to tell a constructor about
2509 * this - it might need to know...
2510 */
2511 ctor_flags |= SLAB_CTOR_ATOMIC;
2512
2e1217cf 2513 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2514 check_irq_off();
2e1217cf
RT
2515 l3 = cachep->nodelists[nodeid];
2516 spin_lock(&l3->list_lock);
1da177e4
LT
2517
2518 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2519 offset = l3->colour_next;
2520 l3->colour_next++;
2521 if (l3->colour_next >= cachep->colour)
2522 l3->colour_next = 0;
2523 spin_unlock(&l3->list_lock);
1da177e4 2524
2e1217cf 2525 offset *= cachep->colour_off;
1da177e4
LT
2526
2527 if (local_flags & __GFP_WAIT)
2528 local_irq_enable();
2529
2530 /*
2531 * The test for missing atomic flag is performed here, rather than
2532 * the more obvious place, simply to reduce the critical path length
2533 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2534 * will eventually be caught here (where it matters).
2535 */
2536 kmem_flagcheck(cachep, flags);
2537
a737b3e2
AM
2538 /*
2539 * Get mem for the objs. Attempt to allocate a physical page from
2540 * 'nodeid'.
e498be7d 2541 */
a737b3e2
AM
2542 objp = kmem_getpages(cachep, flags, nodeid);
2543 if (!objp)
1da177e4
LT
2544 goto failed;
2545
2546 /* Get slab management. */
5b74ada7 2547 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2548 if (!slabp)
1da177e4
LT
2549 goto opps1;
2550
e498be7d 2551 slabp->nodeid = nodeid;
1da177e4
LT
2552 set_slab_attr(cachep, slabp, objp);
2553
2554 cache_init_objs(cachep, slabp, ctor_flags);
2555
2556 if (local_flags & __GFP_WAIT)
2557 local_irq_disable();
2558 check_irq_off();
e498be7d 2559 spin_lock(&l3->list_lock);
1da177e4
LT
2560
2561 /* Make slab active. */
e498be7d 2562 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2563 STATS_INC_GROWN(cachep);
e498be7d
CL
2564 l3->free_objects += cachep->num;
2565 spin_unlock(&l3->list_lock);
1da177e4 2566 return 1;
a737b3e2 2567opps1:
1da177e4 2568 kmem_freepages(cachep, objp);
a737b3e2 2569failed:
1da177e4
LT
2570 if (local_flags & __GFP_WAIT)
2571 local_irq_disable();
2572 return 0;
2573}
2574
2575#if DEBUG
2576
2577/*
2578 * Perform extra freeing checks:
2579 * - detect bad pointers.
2580 * - POISON/RED_ZONE checking
2581 * - destructor calls, for caches with POISON+dtor
2582 */
2583static void kfree_debugcheck(const void *objp)
2584{
2585 struct page *page;
2586
2587 if (!virt_addr_valid(objp)) {
2588 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2589 (unsigned long)objp);
2590 BUG();
1da177e4
LT
2591 }
2592 page = virt_to_page(objp);
2593 if (!PageSlab(page)) {
b28a02de
PE
2594 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2595 (unsigned long)objp);
1da177e4
LT
2596 BUG();
2597 }
2598}
2599
343e0d7a 2600static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2601 void *caller)
1da177e4
LT
2602{
2603 struct page *page;
2604 unsigned int objnr;
2605 struct slab *slabp;
2606
3dafccf2 2607 objp -= obj_offset(cachep);
1da177e4
LT
2608 kfree_debugcheck(objp);
2609 page = virt_to_page(objp);
2610
065d41cb 2611 if (page_get_cache(page) != cachep) {
a737b3e2
AM
2612 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2613 "cache %p, got %p\n",
b28a02de 2614 page_get_cache(page), cachep);
1da177e4 2615 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2616 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2617 page_get_cache(page)->name);
1da177e4
LT
2618 WARN_ON(1);
2619 }
065d41cb 2620 slabp = page_get_slab(page);
1da177e4
LT
2621
2622 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2623 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2624 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2625 slab_error(cachep, "double free, or memory outside"
2626 " object was overwritten");
2627 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2628 "redzone 2:0x%lx.\n",
b28a02de
PE
2629 objp, *dbg_redzone1(cachep, objp),
2630 *dbg_redzone2(cachep, objp));
1da177e4
LT
2631 }
2632 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2633 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2634 }
2635 if (cachep->flags & SLAB_STORE_USER)
2636 *dbg_userword(cachep, objp) = caller;
2637
8fea4e96 2638 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2639
2640 BUG_ON(objnr >= cachep->num);
8fea4e96 2641 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2642
2643 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2644 /*
2645 * Need to call the slab's constructor so the caller can
2646 * perform a verify of its state (debugging). Called without
2647 * the cache-lock held.
1da177e4 2648 */
3dafccf2 2649 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2650 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2651 }
2652 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2653 /* we want to cache poison the object,
2654 * call the destruction callback
2655 */
3dafccf2 2656 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2657 }
871751e2
AV
2658#ifdef CONFIG_DEBUG_SLAB_LEAK
2659 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2660#endif
1da177e4
LT
2661 if (cachep->flags & SLAB_POISON) {
2662#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2663 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2664 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2665 kernel_map_pages(virt_to_page(objp),
3dafccf2 2666 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2667 } else {
2668 poison_obj(cachep, objp, POISON_FREE);
2669 }
2670#else
2671 poison_obj(cachep, objp, POISON_FREE);
2672#endif
2673 }
2674 return objp;
2675}
2676
343e0d7a 2677static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2678{
2679 kmem_bufctl_t i;
2680 int entries = 0;
b28a02de 2681
1da177e4
LT
2682 /* Check slab's freelist to see if this obj is there. */
2683 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2684 entries++;
2685 if (entries > cachep->num || i >= cachep->num)
2686 goto bad;
2687 }
2688 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2689bad:
2690 printk(KERN_ERR "slab: Internal list corruption detected in "
2691 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2692 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2693 for (i = 0;
264132bc 2694 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2695 i++) {
a737b3e2 2696 if (i % 16 == 0)
1da177e4 2697 printk("\n%03x:", i);
b28a02de 2698 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2699 }
2700 printk("\n");
2701 BUG();
2702 }
2703}
2704#else
2705#define kfree_debugcheck(x) do { } while(0)
2706#define cache_free_debugcheck(x,objp,z) (objp)
2707#define check_slabp(x,y) do { } while(0)
2708#endif
2709
343e0d7a 2710static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2711{
2712 int batchcount;
2713 struct kmem_list3 *l3;
2714 struct array_cache *ac;
2715
2716 check_irq_off();
9a2dba4b 2717 ac = cpu_cache_get(cachep);
a737b3e2 2718retry:
1da177e4
LT
2719 batchcount = ac->batchcount;
2720 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2721 /*
2722 * If there was little recent activity on this cache, then
2723 * perform only a partial refill. Otherwise we could generate
2724 * refill bouncing.
1da177e4
LT
2725 */
2726 batchcount = BATCHREFILL_LIMIT;
2727 }
e498be7d
CL
2728 l3 = cachep->nodelists[numa_node_id()];
2729
2730 BUG_ON(ac->avail > 0 || !l3);
2731 spin_lock(&l3->list_lock);
1da177e4 2732
3ded175a
CL
2733 /* See if we can refill from the shared array */
2734 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2735 goto alloc_done;
2736
1da177e4
LT
2737 while (batchcount > 0) {
2738 struct list_head *entry;
2739 struct slab *slabp;
2740 /* Get slab alloc is to come from. */
2741 entry = l3->slabs_partial.next;
2742 if (entry == &l3->slabs_partial) {
2743 l3->free_touched = 1;
2744 entry = l3->slabs_free.next;
2745 if (entry == &l3->slabs_free)
2746 goto must_grow;
2747 }
2748
2749 slabp = list_entry(entry, struct slab, list);
2750 check_slabp(cachep, slabp);
2751 check_spinlock_acquired(cachep);
2752 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2753 STATS_INC_ALLOCED(cachep);
2754 STATS_INC_ACTIVE(cachep);
2755 STATS_SET_HIGH(cachep);
2756
78d382d7
MD
2757 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2758 numa_node_id());
1da177e4
LT
2759 }
2760 check_slabp(cachep, slabp);
2761
2762 /* move slabp to correct slabp list: */
2763 list_del(&slabp->list);
2764 if (slabp->free == BUFCTL_END)
2765 list_add(&slabp->list, &l3->slabs_full);
2766 else
2767 list_add(&slabp->list, &l3->slabs_partial);
2768 }
2769
a737b3e2 2770must_grow:
1da177e4 2771 l3->free_objects -= ac->avail;
a737b3e2 2772alloc_done:
e498be7d 2773 spin_unlock(&l3->list_lock);
1da177e4
LT
2774
2775 if (unlikely(!ac->avail)) {
2776 int x;
e498be7d
CL
2777 x = cache_grow(cachep, flags, numa_node_id());
2778
a737b3e2 2779 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2780 ac = cpu_cache_get(cachep);
a737b3e2 2781 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2782 return NULL;
2783
a737b3e2 2784 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2785 goto retry;
2786 }
2787 ac->touched = 1;
e498be7d 2788 return ac->entry[--ac->avail];
1da177e4
LT
2789}
2790
a737b3e2
AM
2791static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2792 gfp_t flags)
1da177e4
LT
2793{
2794 might_sleep_if(flags & __GFP_WAIT);
2795#if DEBUG
2796 kmem_flagcheck(cachep, flags);
2797#endif
2798}
2799
2800#if DEBUG
a737b3e2
AM
2801static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2802 gfp_t flags, void *objp, void *caller)
1da177e4 2803{
b28a02de 2804 if (!objp)
1da177e4 2805 return objp;
b28a02de 2806 if (cachep->flags & SLAB_POISON) {
1da177e4 2807#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2808 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2809 kernel_map_pages(virt_to_page(objp),
3dafccf2 2810 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2811 else
2812 check_poison_obj(cachep, objp);
2813#else
2814 check_poison_obj(cachep, objp);
2815#endif
2816 poison_obj(cachep, objp, POISON_INUSE);
2817 }
2818 if (cachep->flags & SLAB_STORE_USER)
2819 *dbg_userword(cachep, objp) = caller;
2820
2821 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2822 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2823 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2824 slab_error(cachep, "double free, or memory outside"
2825 " object was overwritten");
b28a02de 2826 printk(KERN_ERR
a737b3e2
AM
2827 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2828 objp, *dbg_redzone1(cachep, objp),
2829 *dbg_redzone2(cachep, objp));
1da177e4
LT
2830 }
2831 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2832 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2833 }
871751e2
AV
2834#ifdef CONFIG_DEBUG_SLAB_LEAK
2835 {
2836 struct slab *slabp;
2837 unsigned objnr;
2838
2839 slabp = page_get_slab(virt_to_page(objp));
2840 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2841 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2842 }
2843#endif
3dafccf2 2844 objp += obj_offset(cachep);
1da177e4 2845 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2846 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2847
2848 if (!(flags & __GFP_WAIT))
2849 ctor_flags |= SLAB_CTOR_ATOMIC;
2850
2851 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2852 }
1da177e4
LT
2853 return objp;
2854}
2855#else
2856#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2857#endif
2858
343e0d7a 2859static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2860{
b28a02de 2861 void *objp;
1da177e4
LT
2862 struct array_cache *ac;
2863
dc85da15 2864#ifdef CONFIG_NUMA
b2455396 2865 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
2866 objp = alternate_node_alloc(cachep, flags);
2867 if (objp != NULL)
2868 return objp;
dc85da15
CL
2869 }
2870#endif
2871
5c382300 2872 check_irq_off();
9a2dba4b 2873 ac = cpu_cache_get(cachep);
1da177e4
LT
2874 if (likely(ac->avail)) {
2875 STATS_INC_ALLOCHIT(cachep);
2876 ac->touched = 1;
e498be7d 2877 objp = ac->entry[--ac->avail];
1da177e4
LT
2878 } else {
2879 STATS_INC_ALLOCMISS(cachep);
2880 objp = cache_alloc_refill(cachep, flags);
2881 }
5c382300
AK
2882 return objp;
2883}
2884
a737b3e2
AM
2885static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2886 gfp_t flags, void *caller)
5c382300
AK
2887{
2888 unsigned long save_flags;
b28a02de 2889 void *objp;
5c382300
AK
2890
2891 cache_alloc_debugcheck_before(cachep, flags);
2892
2893 local_irq_save(save_flags);
2894 objp = ____cache_alloc(cachep, flags);
1da177e4 2895 local_irq_restore(save_flags);
34342e86 2896 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2897 caller);
34342e86 2898 prefetchw(objp);
1da177e4
LT
2899 return objp;
2900}
2901
e498be7d 2902#ifdef CONFIG_NUMA
c61afb18 2903/*
b2455396 2904 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
2905 *
2906 * If we are in_interrupt, then process context, including cpusets and
2907 * mempolicy, may not apply and should not be used for allocation policy.
2908 */
2909static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2910{
2911 int nid_alloc, nid_here;
2912
2913 if (in_interrupt())
2914 return NULL;
2915 nid_alloc = nid_here = numa_node_id();
2916 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2917 nid_alloc = cpuset_mem_spread_node();
2918 else if (current->mempolicy)
2919 nid_alloc = slab_node(current->mempolicy);
2920 if (nid_alloc != nid_here)
2921 return __cache_alloc_node(cachep, flags, nid_alloc);
2922 return NULL;
2923}
2924
e498be7d
CL
2925/*
2926 * A interface to enable slab creation on nodeid
1da177e4 2927 */
a737b3e2
AM
2928static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2929 int nodeid)
e498be7d
CL
2930{
2931 struct list_head *entry;
b28a02de
PE
2932 struct slab *slabp;
2933 struct kmem_list3 *l3;
2934 void *obj;
b28a02de
PE
2935 int x;
2936
2937 l3 = cachep->nodelists[nodeid];
2938 BUG_ON(!l3);
2939
a737b3e2 2940retry:
ca3b9b91 2941 check_irq_off();
b28a02de
PE
2942 spin_lock(&l3->list_lock);
2943 entry = l3->slabs_partial.next;
2944 if (entry == &l3->slabs_partial) {
2945 l3->free_touched = 1;
2946 entry = l3->slabs_free.next;
2947 if (entry == &l3->slabs_free)
2948 goto must_grow;
2949 }
2950
2951 slabp = list_entry(entry, struct slab, list);
2952 check_spinlock_acquired_node(cachep, nodeid);
2953 check_slabp(cachep, slabp);
2954
2955 STATS_INC_NODEALLOCS(cachep);
2956 STATS_INC_ACTIVE(cachep);
2957 STATS_SET_HIGH(cachep);
2958
2959 BUG_ON(slabp->inuse == cachep->num);
2960
78d382d7 2961 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
2962 check_slabp(cachep, slabp);
2963 l3->free_objects--;
2964 /* move slabp to correct slabp list: */
2965 list_del(&slabp->list);
2966
a737b3e2 2967 if (slabp->free == BUFCTL_END)
b28a02de 2968 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 2969 else
b28a02de 2970 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 2971
b28a02de
PE
2972 spin_unlock(&l3->list_lock);
2973 goto done;
e498be7d 2974
a737b3e2 2975must_grow:
b28a02de
PE
2976 spin_unlock(&l3->list_lock);
2977 x = cache_grow(cachep, flags, nodeid);
1da177e4 2978
b28a02de
PE
2979 if (!x)
2980 return NULL;
e498be7d 2981
b28a02de 2982 goto retry;
a737b3e2 2983done:
b28a02de 2984 return obj;
e498be7d
CL
2985}
2986#endif
2987
2988/*
2989 * Caller needs to acquire correct kmem_list's list_lock
2990 */
343e0d7a 2991static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 2992 int node)
1da177e4
LT
2993{
2994 int i;
e498be7d 2995 struct kmem_list3 *l3;
1da177e4
LT
2996
2997 for (i = 0; i < nr_objects; i++) {
2998 void *objp = objpp[i];
2999 struct slab *slabp;
1da177e4 3000
6ed5eb22 3001 slabp = virt_to_slab(objp);
ff69416e 3002 l3 = cachep->nodelists[node];
1da177e4 3003 list_del(&slabp->list);
ff69416e 3004 check_spinlock_acquired_node(cachep, node);
1da177e4 3005 check_slabp(cachep, slabp);
78d382d7 3006 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3007 STATS_DEC_ACTIVE(cachep);
e498be7d 3008 l3->free_objects++;
1da177e4
LT
3009 check_slabp(cachep, slabp);
3010
3011 /* fixup slab chains */
3012 if (slabp->inuse == 0) {
e498be7d
CL
3013 if (l3->free_objects > l3->free_limit) {
3014 l3->free_objects -= cachep->num;
1da177e4
LT
3015 slab_destroy(cachep, slabp);
3016 } else {
e498be7d 3017 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3018 }
3019 } else {
3020 /* Unconditionally move a slab to the end of the
3021 * partial list on free - maximum time for the
3022 * other objects to be freed, too.
3023 */
e498be7d 3024 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3025 }
3026 }
3027}
3028
343e0d7a 3029static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3030{
3031 int batchcount;
e498be7d 3032 struct kmem_list3 *l3;
ff69416e 3033 int node = numa_node_id();
1da177e4
LT
3034
3035 batchcount = ac->batchcount;
3036#if DEBUG
3037 BUG_ON(!batchcount || batchcount > ac->avail);
3038#endif
3039 check_irq_off();
ff69416e 3040 l3 = cachep->nodelists[node];
e498be7d
CL
3041 spin_lock(&l3->list_lock);
3042 if (l3->shared) {
3043 struct array_cache *shared_array = l3->shared;
b28a02de 3044 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3045 if (max) {
3046 if (batchcount > max)
3047 batchcount = max;
e498be7d 3048 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3049 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3050 shared_array->avail += batchcount;
3051 goto free_done;
3052 }
3053 }
3054
ff69416e 3055 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3056free_done:
1da177e4
LT
3057#if STATS
3058 {
3059 int i = 0;
3060 struct list_head *p;
3061
e498be7d
CL
3062 p = l3->slabs_free.next;
3063 while (p != &(l3->slabs_free)) {
1da177e4
LT
3064 struct slab *slabp;
3065
3066 slabp = list_entry(p, struct slab, list);
3067 BUG_ON(slabp->inuse);
3068
3069 i++;
3070 p = p->next;
3071 }
3072 STATS_SET_FREEABLE(cachep, i);
3073 }
3074#endif
e498be7d 3075 spin_unlock(&l3->list_lock);
1da177e4 3076 ac->avail -= batchcount;
a737b3e2 3077 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3078}
3079
3080/*
a737b3e2
AM
3081 * Release an obj back to its cache. If the obj has a constructed state, it must
3082 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3083 */
343e0d7a 3084static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3085{
9a2dba4b 3086 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3087
3088 check_irq_off();
3089 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3090
e498be7d
CL
3091 /* Make sure we are not freeing a object from another
3092 * node to the array cache on this cpu.
3093 */
3094#ifdef CONFIG_NUMA
3095 {
3096 struct slab *slabp;
6ed5eb22 3097 slabp = virt_to_slab(objp);
e498be7d
CL
3098 if (unlikely(slabp->nodeid != numa_node_id())) {
3099 struct array_cache *alien = NULL;
3100 int nodeid = slabp->nodeid;
a737b3e2 3101 struct kmem_list3 *l3;
e498be7d 3102
a737b3e2 3103 l3 = cachep->nodelists[numa_node_id()];
e498be7d
CL
3104 STATS_INC_NODEFREES(cachep);
3105 if (l3->alien && l3->alien[nodeid]) {
3106 alien = l3->alien[nodeid];
3107 spin_lock(&alien->lock);
fb7faf33
RT
3108 if (unlikely(alien->avail == alien->limit)) {
3109 STATS_INC_ACOVERFLOW(cachep);
e498be7d 3110 __drain_alien_cache(cachep,
b28a02de 3111 alien, nodeid);
fb7faf33 3112 }
e498be7d
CL
3113 alien->entry[alien->avail++] = objp;
3114 spin_unlock(&alien->lock);
3115 } else {
3116 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 3117 list_lock);
ff69416e 3118 free_block(cachep, &objp, 1, nodeid);
e498be7d 3119 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 3120 list_lock);
e498be7d
CL
3121 }
3122 return;
3123 }
3124 }
3125#endif
1da177e4
LT
3126 if (likely(ac->avail < ac->limit)) {
3127 STATS_INC_FREEHIT(cachep);
e498be7d 3128 ac->entry[ac->avail++] = objp;
1da177e4
LT
3129 return;
3130 } else {
3131 STATS_INC_FREEMISS(cachep);
3132 cache_flusharray(cachep, ac);
e498be7d 3133 ac->entry[ac->avail++] = objp;
1da177e4
LT
3134 }
3135}
3136
3137/**
3138 * kmem_cache_alloc - Allocate an object
3139 * @cachep: The cache to allocate from.
3140 * @flags: See kmalloc().
3141 *
3142 * Allocate an object from this cache. The flags are only relevant
3143 * if the cache has no available objects.
3144 */
343e0d7a 3145void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3146{
7fd6b141 3147 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3148}
3149EXPORT_SYMBOL(kmem_cache_alloc);
3150
a8c0f9a4
PE
3151/**
3152 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3153 * @cache: The cache to allocate from.
3154 * @flags: See kmalloc().
3155 *
3156 * Allocate an object from this cache and set the allocated memory to zero.
3157 * The flags are only relevant if the cache has no available objects.
3158 */
3159void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3160{
3161 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3162 if (ret)
3163 memset(ret, 0, obj_size(cache));
3164 return ret;
3165}
3166EXPORT_SYMBOL(kmem_cache_zalloc);
3167
1da177e4
LT
3168/**
3169 * kmem_ptr_validate - check if an untrusted pointer might
3170 * be a slab entry.
3171 * @cachep: the cache we're checking against
3172 * @ptr: pointer to validate
3173 *
3174 * This verifies that the untrusted pointer looks sane:
3175 * it is _not_ a guarantee that the pointer is actually
3176 * part of the slab cache in question, but it at least
3177 * validates that the pointer can be dereferenced and
3178 * looks half-way sane.
3179 *
3180 * Currently only used for dentry validation.
3181 */
343e0d7a 3182int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3183{
b28a02de 3184 unsigned long addr = (unsigned long)ptr;
1da177e4 3185 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3186 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3187 unsigned long size = cachep->buffer_size;
1da177e4
LT
3188 struct page *page;
3189
3190 if (unlikely(addr < min_addr))
3191 goto out;
3192 if (unlikely(addr > (unsigned long)high_memory - size))
3193 goto out;
3194 if (unlikely(addr & align_mask))
3195 goto out;
3196 if (unlikely(!kern_addr_valid(addr)))
3197 goto out;
3198 if (unlikely(!kern_addr_valid(addr + size - 1)))
3199 goto out;
3200 page = virt_to_page(ptr);
3201 if (unlikely(!PageSlab(page)))
3202 goto out;
065d41cb 3203 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3204 goto out;
3205 return 1;
a737b3e2 3206out:
1da177e4
LT
3207 return 0;
3208}
3209
3210#ifdef CONFIG_NUMA
3211/**
3212 * kmem_cache_alloc_node - Allocate an object on the specified node
3213 * @cachep: The cache to allocate from.
3214 * @flags: See kmalloc().
3215 * @nodeid: node number of the target node.
3216 *
3217 * Identical to kmem_cache_alloc, except that this function is slow
3218 * and can sleep. And it will allocate memory on the given node, which
3219 * can improve the performance for cpu bound structures.
e498be7d
CL
3220 * New and improved: it will now make sure that the object gets
3221 * put on the correct node list so that there is no false sharing.
1da177e4 3222 */
343e0d7a 3223void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3224{
e498be7d
CL
3225 unsigned long save_flags;
3226 void *ptr;
1da177e4 3227
e498be7d
CL
3228 cache_alloc_debugcheck_before(cachep, flags);
3229 local_irq_save(save_flags);
18f820f6
CL
3230
3231 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3232 !cachep->nodelists[nodeid])
5c382300
AK
3233 ptr = ____cache_alloc(cachep, flags);
3234 else
3235 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3236 local_irq_restore(save_flags);
18f820f6
CL
3237
3238 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3239 __builtin_return_address(0));
1da177e4 3240
e498be7d 3241 return ptr;
1da177e4
LT
3242}
3243EXPORT_SYMBOL(kmem_cache_alloc_node);
3244
dd0fc66f 3245void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3246{
343e0d7a 3247 struct kmem_cache *cachep;
97e2bde4
MS
3248
3249 cachep = kmem_find_general_cachep(size, flags);
3250 if (unlikely(cachep == NULL))
3251 return NULL;
3252 return kmem_cache_alloc_node(cachep, flags, node);
3253}
3254EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3255#endif
3256
3257/**
3258 * kmalloc - allocate memory
3259 * @size: how many bytes of memory are required.
3260 * @flags: the type of memory to allocate.
911851e6 3261 * @caller: function caller for debug tracking of the caller
1da177e4
LT
3262 *
3263 * kmalloc is the normal method of allocating memory
3264 * in the kernel.
3265 *
3266 * The @flags argument may be one of:
3267 *
3268 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3269 *
3270 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3271 *
3272 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3273 *
3274 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3275 * must be suitable for DMA. This can mean different things on different
3276 * platforms. For example, on i386, it means that the memory must come
3277 * from the first 16MB.
3278 */
7fd6b141
PE
3279static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3280 void *caller)
1da177e4 3281{
343e0d7a 3282 struct kmem_cache *cachep;
1da177e4 3283
97e2bde4
MS
3284 /* If you want to save a few bytes .text space: replace
3285 * __ with kmem_.
3286 * Then kmalloc uses the uninlined functions instead of the inline
3287 * functions.
3288 */
3289 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3290 if (unlikely(cachep == NULL))
3291 return NULL;
7fd6b141
PE
3292 return __cache_alloc(cachep, flags, caller);
3293}
3294
7fd6b141
PE
3295
3296void *__kmalloc(size_t size, gfp_t flags)
3297{
871751e2 3298#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3299 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3300#else
3301 return __do_kmalloc(size, flags, __builtin_return_address(0));
3302#endif
1da177e4
LT
3303}
3304EXPORT_SYMBOL(__kmalloc);
3305
871751e2 3306#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3307void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3308{
3309 return __do_kmalloc(size, flags, caller);
3310}
3311EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3312#endif
3313
1da177e4
LT
3314#ifdef CONFIG_SMP
3315/**
3316 * __alloc_percpu - allocate one copy of the object for every present
3317 * cpu in the system, zeroing them.
3318 * Objects should be dereferenced using the per_cpu_ptr macro only.
3319 *
3320 * @size: how many bytes of memory are required.
1da177e4 3321 */
f9f75005 3322void *__alloc_percpu(size_t size)
1da177e4
LT
3323{
3324 int i;
b28a02de 3325 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3326
3327 if (!pdata)
3328 return NULL;
3329
e498be7d
CL
3330 /*
3331 * Cannot use for_each_online_cpu since a cpu may come online
3332 * and we have no way of figuring out how to fix the array
3333 * that we have allocated then....
3334 */
0a945022 3335 for_each_possible_cpu(i) {
e498be7d
CL
3336 int node = cpu_to_node(i);
3337
3338 if (node_online(node))
3339 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3340 else
3341 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3342
3343 if (!pdata->ptrs[i])
3344 goto unwind_oom;
3345 memset(pdata->ptrs[i], 0, size);
3346 }
3347
3348 /* Catch derefs w/o wrappers */
b28a02de 3349 return (void *)(~(unsigned long)pdata);
1da177e4 3350
a737b3e2 3351unwind_oom:
1da177e4
LT
3352 while (--i >= 0) {
3353 if (!cpu_possible(i))
3354 continue;
3355 kfree(pdata->ptrs[i]);
3356 }
3357 kfree(pdata);
3358 return NULL;
3359}
3360EXPORT_SYMBOL(__alloc_percpu);
3361#endif
3362
3363/**
3364 * kmem_cache_free - Deallocate an object
3365 * @cachep: The cache the allocation was from.
3366 * @objp: The previously allocated object.
3367 *
3368 * Free an object which was previously allocated from this
3369 * cache.
3370 */
343e0d7a 3371void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3372{
3373 unsigned long flags;
3374
3375 local_irq_save(flags);
3376 __cache_free(cachep, objp);
3377 local_irq_restore(flags);
3378}
3379EXPORT_SYMBOL(kmem_cache_free);
3380
1da177e4
LT
3381/**
3382 * kfree - free previously allocated memory
3383 * @objp: pointer returned by kmalloc.
3384 *
80e93eff
PE
3385 * If @objp is NULL, no operation is performed.
3386 *
1da177e4
LT
3387 * Don't free memory not originally allocated by kmalloc()
3388 * or you will run into trouble.
3389 */
3390void kfree(const void *objp)
3391{
343e0d7a 3392 struct kmem_cache *c;
1da177e4
LT
3393 unsigned long flags;
3394
3395 if (unlikely(!objp))
3396 return;
3397 local_irq_save(flags);
3398 kfree_debugcheck(objp);
6ed5eb22 3399 c = virt_to_cache(objp);
3dafccf2 3400 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3401 __cache_free(c, (void *)objp);
1da177e4
LT
3402 local_irq_restore(flags);
3403}
3404EXPORT_SYMBOL(kfree);
3405
3406#ifdef CONFIG_SMP
3407/**
3408 * free_percpu - free previously allocated percpu memory
3409 * @objp: pointer returned by alloc_percpu.
3410 *
3411 * Don't free memory not originally allocated by alloc_percpu()
3412 * The complemented objp is to check for that.
3413 */
b28a02de 3414void free_percpu(const void *objp)
1da177e4
LT
3415{
3416 int i;
b28a02de 3417 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3418
e498be7d
CL
3419 /*
3420 * We allocate for all cpus so we cannot use for online cpu here.
3421 */
0a945022 3422 for_each_possible_cpu(i)
b28a02de 3423 kfree(p->ptrs[i]);
1da177e4
LT
3424 kfree(p);
3425}
3426EXPORT_SYMBOL(free_percpu);
3427#endif
3428
343e0d7a 3429unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3430{
3dafccf2 3431 return obj_size(cachep);
1da177e4
LT
3432}
3433EXPORT_SYMBOL(kmem_cache_size);
3434
343e0d7a 3435const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3436{
3437 return cachep->name;
3438}
3439EXPORT_SYMBOL_GPL(kmem_cache_name);
3440
e498be7d 3441/*
0718dc2a 3442 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3443 */
343e0d7a 3444static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3445{
3446 int node;
3447 struct kmem_list3 *l3;
cafeb02e
CL
3448 struct array_cache *new_shared;
3449 struct array_cache **new_alien;
e498be7d
CL
3450
3451 for_each_online_node(node) {
cafeb02e 3452
a737b3e2
AM
3453 new_alien = alloc_alien_cache(node, cachep->limit);
3454 if (!new_alien)
e498be7d 3455 goto fail;
cafeb02e 3456
0718dc2a
CL
3457 new_shared = alloc_arraycache(node,
3458 cachep->shared*cachep->batchcount,
a737b3e2 3459 0xbaadf00d);
0718dc2a
CL
3460 if (!new_shared) {
3461 free_alien_cache(new_alien);
e498be7d 3462 goto fail;
0718dc2a 3463 }
cafeb02e 3464
a737b3e2
AM
3465 l3 = cachep->nodelists[node];
3466 if (l3) {
cafeb02e
CL
3467 struct array_cache *shared = l3->shared;
3468
e498be7d
CL
3469 spin_lock_irq(&l3->list_lock);
3470
cafeb02e 3471 if (shared)
0718dc2a
CL
3472 free_block(cachep, shared->entry,
3473 shared->avail, node);
e498be7d 3474
cafeb02e
CL
3475 l3->shared = new_shared;
3476 if (!l3->alien) {
e498be7d
CL
3477 l3->alien = new_alien;
3478 new_alien = NULL;
3479 }
b28a02de 3480 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3481 cachep->batchcount + cachep->num;
e498be7d 3482 spin_unlock_irq(&l3->list_lock);
cafeb02e 3483 kfree(shared);
e498be7d
CL
3484 free_alien_cache(new_alien);
3485 continue;
3486 }
a737b3e2 3487 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3488 if (!l3) {
3489 free_alien_cache(new_alien);
3490 kfree(new_shared);
e498be7d 3491 goto fail;
0718dc2a 3492 }
e498be7d
CL
3493
3494 kmem_list3_init(l3);
3495 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3496 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3497 l3->shared = new_shared;
e498be7d 3498 l3->alien = new_alien;
b28a02de 3499 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3500 cachep->batchcount + cachep->num;
e498be7d
CL
3501 cachep->nodelists[node] = l3;
3502 }
cafeb02e 3503 return 0;
0718dc2a 3504
a737b3e2 3505fail:
0718dc2a
CL
3506 if (!cachep->next.next) {
3507 /* Cache is not active yet. Roll back what we did */
3508 node--;
3509 while (node >= 0) {
3510 if (cachep->nodelists[node]) {
3511 l3 = cachep->nodelists[node];
3512
3513 kfree(l3->shared);
3514 free_alien_cache(l3->alien);
3515 kfree(l3);
3516 cachep->nodelists[node] = NULL;
3517 }
3518 node--;
3519 }
3520 }
cafeb02e 3521 return -ENOMEM;
e498be7d
CL
3522}
3523
1da177e4 3524struct ccupdate_struct {
343e0d7a 3525 struct kmem_cache *cachep;
1da177e4
LT
3526 struct array_cache *new[NR_CPUS];
3527};
3528
3529static void do_ccupdate_local(void *info)
3530{
a737b3e2 3531 struct ccupdate_struct *new = info;
1da177e4
LT
3532 struct array_cache *old;
3533
3534 check_irq_off();
9a2dba4b 3535 old = cpu_cache_get(new->cachep);
e498be7d 3536
1da177e4
LT
3537 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3538 new->new[smp_processor_id()] = old;
3539}
3540
b5d8ca7c 3541/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3542static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3543 int batchcount, int shared)
1da177e4
LT
3544{
3545 struct ccupdate_struct new;
e498be7d 3546 int i, err;
1da177e4 3547
b28a02de 3548 memset(&new.new, 0, sizeof(new.new));
e498be7d 3549 for_each_online_cpu(i) {
a737b3e2
AM
3550 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3551 batchcount);
e498be7d 3552 if (!new.new[i]) {
b28a02de
PE
3553 for (i--; i >= 0; i--)
3554 kfree(new.new[i]);
e498be7d 3555 return -ENOMEM;
1da177e4
LT
3556 }
3557 }
3558 new.cachep = cachep;
3559
a07fa394 3560 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3561
1da177e4 3562 check_irq_on();
1da177e4
LT
3563 cachep->batchcount = batchcount;
3564 cachep->limit = limit;
e498be7d 3565 cachep->shared = shared;
1da177e4 3566
e498be7d 3567 for_each_online_cpu(i) {
1da177e4
LT
3568 struct array_cache *ccold = new.new[i];
3569 if (!ccold)
3570 continue;
e498be7d 3571 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3572 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3573 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3574 kfree(ccold);
3575 }
1da177e4 3576
e498be7d
CL
3577 err = alloc_kmemlist(cachep);
3578 if (err) {
3579 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3580 cachep->name, -err);
e498be7d 3581 BUG();
1da177e4 3582 }
1da177e4
LT
3583 return 0;
3584}
3585
b5d8ca7c 3586/* Called with cache_chain_mutex held always */
343e0d7a 3587static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3588{
3589 int err;
3590 int limit, shared;
3591
a737b3e2
AM
3592 /*
3593 * The head array serves three purposes:
1da177e4
LT
3594 * - create a LIFO ordering, i.e. return objects that are cache-warm
3595 * - reduce the number of spinlock operations.
a737b3e2 3596 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3597 * bufctl chains: array operations are cheaper.
3598 * The numbers are guessed, we should auto-tune as described by
3599 * Bonwick.
3600 */
3dafccf2 3601 if (cachep->buffer_size > 131072)
1da177e4 3602 limit = 1;
3dafccf2 3603 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3604 limit = 8;
3dafccf2 3605 else if (cachep->buffer_size > 1024)
1da177e4 3606 limit = 24;
3dafccf2 3607 else if (cachep->buffer_size > 256)
1da177e4
LT
3608 limit = 54;
3609 else
3610 limit = 120;
3611
a737b3e2
AM
3612 /*
3613 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3614 * allocation behaviour: Most allocs on one cpu, most free operations
3615 * on another cpu. For these cases, an efficient object passing between
3616 * cpus is necessary. This is provided by a shared array. The array
3617 * replaces Bonwick's magazine layer.
3618 * On uniprocessor, it's functionally equivalent (but less efficient)
3619 * to a larger limit. Thus disabled by default.
3620 */
3621 shared = 0;
3622#ifdef CONFIG_SMP
3dafccf2 3623 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3624 shared = 8;
3625#endif
3626
3627#if DEBUG
a737b3e2
AM
3628 /*
3629 * With debugging enabled, large batchcount lead to excessively long
3630 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3631 */
3632 if (limit > 32)
3633 limit = 32;
3634#endif
b28a02de 3635 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3636 if (err)
3637 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3638 cachep->name, -err);
1da177e4
LT
3639}
3640
1b55253a
CL
3641/*
3642 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3643 * necessary. Note that the l3 listlock also protects the array_cache
3644 * if drain_array() is used on the shared array.
1b55253a
CL
3645 */
3646void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3647 struct array_cache *ac, int force, int node)
1da177e4
LT
3648{
3649 int tofree;
3650
1b55253a
CL
3651 if (!ac || !ac->avail)
3652 return;
1da177e4
LT
3653 if (ac->touched && !force) {
3654 ac->touched = 0;
b18e7e65 3655 } else {
1b55253a 3656 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3657 if (ac->avail) {
3658 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3659 if (tofree > ac->avail)
3660 tofree = (ac->avail + 1) / 2;
3661 free_block(cachep, ac->entry, tofree, node);
3662 ac->avail -= tofree;
3663 memmove(ac->entry, &(ac->entry[tofree]),
3664 sizeof(void *) * ac->avail);
3665 }
1b55253a 3666 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3667 }
3668}
3669
3670/**
3671 * cache_reap - Reclaim memory from caches.
1e5d5331 3672 * @unused: unused parameter
1da177e4
LT
3673 *
3674 * Called from workqueue/eventd every few seconds.
3675 * Purpose:
3676 * - clear the per-cpu caches for this CPU.
3677 * - return freeable pages to the main free memory pool.
3678 *
a737b3e2
AM
3679 * If we cannot acquire the cache chain mutex then just give up - we'll try
3680 * again on the next iteration.
1da177e4
LT
3681 */
3682static void cache_reap(void *unused)
3683{
3684 struct list_head *walk;
e498be7d 3685 struct kmem_list3 *l3;
aab2207c 3686 int node = numa_node_id();
1da177e4 3687
fc0abb14 3688 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3689 /* Give up. Setup the next iteration. */
b28a02de
PE
3690 schedule_delayed_work(&__get_cpu_var(reap_work),
3691 REAPTIMEOUT_CPUC);
1da177e4
LT
3692 return;
3693 }
3694
3695 list_for_each(walk, &cache_chain) {
343e0d7a 3696 struct kmem_cache *searchp;
b28a02de 3697 struct list_head *p;
1da177e4
LT
3698 int tofree;
3699 struct slab *slabp;
3700
343e0d7a 3701 searchp = list_entry(walk, struct kmem_cache, next);
1da177e4
LT
3702 check_irq_on();
3703
35386e3b
CL
3704 /*
3705 * We only take the l3 lock if absolutely necessary and we
3706 * have established with reasonable certainty that
3707 * we can do some work if the lock was obtained.
3708 */
aab2207c 3709 l3 = searchp->nodelists[node];
35386e3b 3710
8fce4d8e 3711 reap_alien(searchp, l3);
1da177e4 3712
aab2207c 3713 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3714
35386e3b
CL
3715 /*
3716 * These are racy checks but it does not matter
3717 * if we skip one check or scan twice.
3718 */
e498be7d 3719 if (time_after(l3->next_reap, jiffies))
35386e3b 3720 goto next;
1da177e4 3721
e498be7d 3722 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3723
aab2207c 3724 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3725
e498be7d
CL
3726 if (l3->free_touched) {
3727 l3->free_touched = 0;
35386e3b 3728 goto next;
1da177e4
LT
3729 }
3730
a737b3e2
AM
3731 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3732 (5 * searchp->num);
1da177e4 3733 do {
35386e3b
CL
3734 /*
3735 * Do not lock if there are no free blocks.
3736 */
3737 if (list_empty(&l3->slabs_free))
3738 break;
3739
3740 spin_lock_irq(&l3->list_lock);
e498be7d 3741 p = l3->slabs_free.next;
35386e3b
CL
3742 if (p == &(l3->slabs_free)) {
3743 spin_unlock_irq(&l3->list_lock);
1da177e4 3744 break;
35386e3b 3745 }
1da177e4
LT
3746
3747 slabp = list_entry(p, struct slab, list);
3748 BUG_ON(slabp->inuse);
3749 list_del(&slabp->list);
3750 STATS_INC_REAPED(searchp);
3751
a737b3e2
AM
3752 /*
3753 * Safe to drop the lock. The slab is no longer linked
3754 * to the cache. searchp cannot disappear, we hold
1da177e4
LT
3755 * cache_chain_lock
3756 */
e498be7d
CL
3757 l3->free_objects -= searchp->num;
3758 spin_unlock_irq(&l3->list_lock);
1da177e4 3759 slab_destroy(searchp, slabp);
b28a02de 3760 } while (--tofree > 0);
35386e3b 3761next:
1da177e4
LT
3762 cond_resched();
3763 }
3764 check_irq_on();
fc0abb14 3765 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3766 next_reap_node();
a737b3e2 3767 /* Set up the next iteration */
cd61ef62 3768 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3769}
3770
3771#ifdef CONFIG_PROC_FS
3772
85289f98 3773static void print_slabinfo_header(struct seq_file *m)
1da177e4 3774{
85289f98
PE
3775 /*
3776 * Output format version, so at least we can change it
3777 * without _too_ many complaints.
3778 */
1da177e4 3779#if STATS
85289f98 3780 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3781#else
85289f98 3782 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3783#endif
85289f98
PE
3784 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3785 "<objperslab> <pagesperslab>");
3786 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3787 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3788#if STATS
85289f98 3789 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3790 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3791 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3792#endif
85289f98
PE
3793 seq_putc(m, '\n');
3794}
3795
3796static void *s_start(struct seq_file *m, loff_t *pos)
3797{
3798 loff_t n = *pos;
3799 struct list_head *p;
3800
fc0abb14 3801 mutex_lock(&cache_chain_mutex);
85289f98
PE
3802 if (!n)
3803 print_slabinfo_header(m);
1da177e4
LT
3804 p = cache_chain.next;
3805 while (n--) {
3806 p = p->next;
3807 if (p == &cache_chain)
3808 return NULL;
3809 }
343e0d7a 3810 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3811}
3812
3813static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3814{
343e0d7a 3815 struct kmem_cache *cachep = p;
1da177e4 3816 ++*pos;
a737b3e2
AM
3817 return cachep->next.next == &cache_chain ?
3818 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3819}
3820
3821static void s_stop(struct seq_file *m, void *p)
3822{
fc0abb14 3823 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3824}
3825
3826static int s_show(struct seq_file *m, void *p)
3827{
343e0d7a 3828 struct kmem_cache *cachep = p;
1da177e4 3829 struct list_head *q;
b28a02de
PE
3830 struct slab *slabp;
3831 unsigned long active_objs;
3832 unsigned long num_objs;
3833 unsigned long active_slabs = 0;
3834 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3835 const char *name;
1da177e4 3836 char *error = NULL;
e498be7d
CL
3837 int node;
3838 struct kmem_list3 *l3;
1da177e4 3839
1da177e4
LT
3840 active_objs = 0;
3841 num_slabs = 0;
e498be7d
CL
3842 for_each_online_node(node) {
3843 l3 = cachep->nodelists[node];
3844 if (!l3)
3845 continue;
3846
ca3b9b91
RT
3847 check_irq_on();
3848 spin_lock_irq(&l3->list_lock);
e498be7d 3849
b28a02de 3850 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3851 slabp = list_entry(q, struct slab, list);
3852 if (slabp->inuse != cachep->num && !error)
3853 error = "slabs_full accounting error";
3854 active_objs += cachep->num;
3855 active_slabs++;
3856 }
b28a02de 3857 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3858 slabp = list_entry(q, struct slab, list);
3859 if (slabp->inuse == cachep->num && !error)
3860 error = "slabs_partial inuse accounting error";
3861 if (!slabp->inuse && !error)
3862 error = "slabs_partial/inuse accounting error";
3863 active_objs += slabp->inuse;
3864 active_slabs++;
3865 }
b28a02de 3866 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3867 slabp = list_entry(q, struct slab, list);
3868 if (slabp->inuse && !error)
3869 error = "slabs_free/inuse accounting error";
3870 num_slabs++;
3871 }
3872 free_objects += l3->free_objects;
4484ebf1
RT
3873 if (l3->shared)
3874 shared_avail += l3->shared->avail;
e498be7d 3875
ca3b9b91 3876 spin_unlock_irq(&l3->list_lock);
1da177e4 3877 }
b28a02de
PE
3878 num_slabs += active_slabs;
3879 num_objs = num_slabs * cachep->num;
e498be7d 3880 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3881 error = "free_objects accounting error";
3882
b28a02de 3883 name = cachep->name;
1da177e4
LT
3884 if (error)
3885 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3886
3887 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3888 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3889 cachep->num, (1 << cachep->gfporder));
1da177e4 3890 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3891 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3892 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3893 active_slabs, num_slabs, shared_avail);
1da177e4 3894#if STATS
b28a02de 3895 { /* list3 stats */
1da177e4
LT
3896 unsigned long high = cachep->high_mark;
3897 unsigned long allocs = cachep->num_allocations;
3898 unsigned long grown = cachep->grown;
3899 unsigned long reaped = cachep->reaped;
3900 unsigned long errors = cachep->errors;
3901 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3902 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3903 unsigned long node_frees = cachep->node_frees;
fb7faf33 3904 unsigned long overflows = cachep->node_overflow;
1da177e4 3905
e498be7d 3906 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3907 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3908 reaped, errors, max_freeable, node_allocs,
fb7faf33 3909 node_frees, overflows);
1da177e4
LT
3910 }
3911 /* cpu stats */
3912 {
3913 unsigned long allochit = atomic_read(&cachep->allochit);
3914 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3915 unsigned long freehit = atomic_read(&cachep->freehit);
3916 unsigned long freemiss = atomic_read(&cachep->freemiss);
3917
3918 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3919 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3920 }
3921#endif
3922 seq_putc(m, '\n');
1da177e4
LT
3923 return 0;
3924}
3925
3926/*
3927 * slabinfo_op - iterator that generates /proc/slabinfo
3928 *
3929 * Output layout:
3930 * cache-name
3931 * num-active-objs
3932 * total-objs
3933 * object size
3934 * num-active-slabs
3935 * total-slabs
3936 * num-pages-per-slab
3937 * + further values on SMP and with statistics enabled
3938 */
3939
3940struct seq_operations slabinfo_op = {
b28a02de
PE
3941 .start = s_start,
3942 .next = s_next,
3943 .stop = s_stop,
3944 .show = s_show,
1da177e4
LT
3945};
3946
3947#define MAX_SLABINFO_WRITE 128
3948/**
3949 * slabinfo_write - Tuning for the slab allocator
3950 * @file: unused
3951 * @buffer: user buffer
3952 * @count: data length
3953 * @ppos: unused
3954 */
b28a02de
PE
3955ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3956 size_t count, loff_t *ppos)
1da177e4 3957{
b28a02de 3958 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3959 int limit, batchcount, shared, res;
3960 struct list_head *p;
b28a02de 3961
1da177e4
LT
3962 if (count > MAX_SLABINFO_WRITE)
3963 return -EINVAL;
3964 if (copy_from_user(&kbuf, buffer, count))
3965 return -EFAULT;
b28a02de 3966 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3967
3968 tmp = strchr(kbuf, ' ');
3969 if (!tmp)
3970 return -EINVAL;
3971 *tmp = '\0';
3972 tmp++;
3973 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3974 return -EINVAL;
3975
3976 /* Find the cache in the chain of caches. */
fc0abb14 3977 mutex_lock(&cache_chain_mutex);
1da177e4 3978 res = -EINVAL;
b28a02de 3979 list_for_each(p, &cache_chain) {
a737b3e2 3980 struct kmem_cache *cachep;
1da177e4 3981
a737b3e2 3982 cachep = list_entry(p, struct kmem_cache, next);
1da177e4 3983 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3984 if (limit < 1 || batchcount < 1 ||
3985 batchcount > limit || shared < 0) {
e498be7d 3986 res = 0;
1da177e4 3987 } else {
e498be7d 3988 res = do_tune_cpucache(cachep, limit,
b28a02de 3989 batchcount, shared);
1da177e4
LT
3990 }
3991 break;
3992 }
3993 }
fc0abb14 3994 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3995 if (res >= 0)
3996 res = count;
3997 return res;
3998}
871751e2
AV
3999
4000#ifdef CONFIG_DEBUG_SLAB_LEAK
4001
4002static void *leaks_start(struct seq_file *m, loff_t *pos)
4003{
4004 loff_t n = *pos;
4005 struct list_head *p;
4006
4007 mutex_lock(&cache_chain_mutex);
4008 p = cache_chain.next;
4009 while (n--) {
4010 p = p->next;
4011 if (p == &cache_chain)
4012 return NULL;
4013 }
4014 return list_entry(p, struct kmem_cache, next);
4015}
4016
4017static inline int add_caller(unsigned long *n, unsigned long v)
4018{
4019 unsigned long *p;
4020 int l;
4021 if (!v)
4022 return 1;
4023 l = n[1];
4024 p = n + 2;
4025 while (l) {
4026 int i = l/2;
4027 unsigned long *q = p + 2 * i;
4028 if (*q == v) {
4029 q[1]++;
4030 return 1;
4031 }
4032 if (*q > v) {
4033 l = i;
4034 } else {
4035 p = q + 2;
4036 l -= i + 1;
4037 }
4038 }
4039 if (++n[1] == n[0])
4040 return 0;
4041 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4042 p[0] = v;
4043 p[1] = 1;
4044 return 1;
4045}
4046
4047static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4048{
4049 void *p;
4050 int i;
4051 if (n[0] == n[1])
4052 return;
4053 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4054 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4055 continue;
4056 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4057 return;
4058 }
4059}
4060
4061static void show_symbol(struct seq_file *m, unsigned long address)
4062{
4063#ifdef CONFIG_KALLSYMS
4064 char *modname;
4065 const char *name;
4066 unsigned long offset, size;
4067 char namebuf[KSYM_NAME_LEN+1];
4068
4069 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4070
4071 if (name) {
4072 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4073 if (modname)
4074 seq_printf(m, " [%s]", modname);
4075 return;
4076 }
4077#endif
4078 seq_printf(m, "%p", (void *)address);
4079}
4080
4081static int leaks_show(struct seq_file *m, void *p)
4082{
4083 struct kmem_cache *cachep = p;
4084 struct list_head *q;
4085 struct slab *slabp;
4086 struct kmem_list3 *l3;
4087 const char *name;
4088 unsigned long *n = m->private;
4089 int node;
4090 int i;
4091
4092 if (!(cachep->flags & SLAB_STORE_USER))
4093 return 0;
4094 if (!(cachep->flags & SLAB_RED_ZONE))
4095 return 0;
4096
4097 /* OK, we can do it */
4098
4099 n[1] = 0;
4100
4101 for_each_online_node(node) {
4102 l3 = cachep->nodelists[node];
4103 if (!l3)
4104 continue;
4105
4106 check_irq_on();
4107 spin_lock_irq(&l3->list_lock);
4108
4109 list_for_each(q, &l3->slabs_full) {
4110 slabp = list_entry(q, struct slab, list);
4111 handle_slab(n, cachep, slabp);
4112 }
4113 list_for_each(q, &l3->slabs_partial) {
4114 slabp = list_entry(q, struct slab, list);
4115 handle_slab(n, cachep, slabp);
4116 }
4117 spin_unlock_irq(&l3->list_lock);
4118 }
4119 name = cachep->name;
4120 if (n[0] == n[1]) {
4121 /* Increase the buffer size */
4122 mutex_unlock(&cache_chain_mutex);
4123 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4124 if (!m->private) {
4125 /* Too bad, we are really out */
4126 m->private = n;
4127 mutex_lock(&cache_chain_mutex);
4128 return -ENOMEM;
4129 }
4130 *(unsigned long *)m->private = n[0] * 2;
4131 kfree(n);
4132 mutex_lock(&cache_chain_mutex);
4133 /* Now make sure this entry will be retried */
4134 m->count = m->size;
4135 return 0;
4136 }
4137 for (i = 0; i < n[1]; i++) {
4138 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4139 show_symbol(m, n[2*i+2]);
4140 seq_putc(m, '\n');
4141 }
4142 return 0;
4143}
4144
4145struct seq_operations slabstats_op = {
4146 .start = leaks_start,
4147 .next = s_next,
4148 .stop = s_stop,
4149 .show = leaks_show,
4150};
4151#endif
1da177e4
LT
4152#endif
4153
00e145b6
MS
4154/**
4155 * ksize - get the actual amount of memory allocated for a given object
4156 * @objp: Pointer to the object
4157 *
4158 * kmalloc may internally round up allocations and return more memory
4159 * than requested. ksize() can be used to determine the actual amount of
4160 * memory allocated. The caller may use this additional memory, even though
4161 * a smaller amount of memory was initially specified with the kmalloc call.
4162 * The caller must guarantee that objp points to a valid object previously
4163 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4164 * must not be freed during the duration of the call.
4165 */
1da177e4
LT
4166unsigned int ksize(const void *objp)
4167{
00e145b6
MS
4168 if (unlikely(objp == NULL))
4169 return 0;
1da177e4 4170
6ed5eb22 4171 return obj_size(virt_to_cache(objp));
1da177e4 4172}