]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
[PATCH] cpu hotplug: make [un]register_cpu_notifier init time only
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
1da177e4
LT
110
111#include <asm/uaccess.h>
112#include <asm/cacheflush.h>
113#include <asm/tlbflush.h>
114#include <asm/page.h>
115
116/*
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
120 *
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
123 *
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 */
126
127#ifdef CONFIG_DEBUG_SLAB
128#define DEBUG 1
129#define STATS 1
130#define FORCED_DEBUG 1
131#else
132#define DEBUG 0
133#define STATS 0
134#define FORCED_DEBUG 0
135#endif
136
1da177e4
LT
137/* Shouldn't this be in a header file somewhere? */
138#define BYTES_PER_WORD sizeof(void *)
139
140#ifndef cache_line_size
141#define cache_line_size() L1_CACHE_BYTES
142#endif
143
144#ifndef ARCH_KMALLOC_MINALIGN
145/*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
152 */
153#define ARCH_KMALLOC_MINALIGN 0
154#endif
155
156#ifndef ARCH_SLAB_MINALIGN
157/*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164#define ARCH_SLAB_MINALIGN 0
165#endif
166
167#ifndef ARCH_KMALLOC_FLAGS
168#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169#endif
170
171/* Legal flag mask for kmem_cache_create(). */
172#if DEBUG
173# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 175 SLAB_CACHE_DMA | \
1da177e4
LT
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 179#else
ac2b898c 180# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
184#endif
185
186/*
187 * kmem_bufctl_t:
188 *
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
191 *
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 */
204
fa5b08d5 205typedef unsigned int kmem_bufctl_t;
1da177e4
LT
206#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
208#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 210
1da177e4
LT
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
b28a02de
PE
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
1da177e4
LT
225};
226
227/*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243struct slab_rcu {
b28a02de 244 struct rcu_head head;
343e0d7a 245 struct kmem_cache *cachep;
b28a02de 246 void *addr;
1da177e4
LT
247};
248
249/*
250 * struct array_cache
251 *
1da177e4
LT
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
e498be7d 266 spinlock_t lock;
a737b3e2
AM
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
272 */
1da177e4
LT
273};
274
a737b3e2
AM
275/*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
1da177e4
LT
278 */
279#define BOOT_CPUCACHE_ENTRIES 1
280struct arraycache_init {
281 struct array_cache cache;
b28a02de 282 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
283};
284
285/*
e498be7d 286 * The slab lists for all objects.
1da177e4
LT
287 */
288struct kmem_list3 {
b28a02de
PE
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
b28a02de 293 unsigned int free_limit;
2e1217cf 294 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
35386e3b
CL
298 unsigned long next_reap; /* updated without locking */
299 int free_touched; /* updated without locking */
1da177e4
LT
300};
301
e498be7d
CL
302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define CACHE_CACHE 0
308#define SIZE_AC 1
309#define SIZE_L3 (1 + MAX_NUMNODES)
310
311/*
a737b3e2
AM
312 * This function must be completely optimized away if a constant is passed to
313 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 314 */
7243cc05 315static __always_inline int index_of(const size_t size)
e498be7d 316{
5ec8a847
SR
317 extern void __bad_size(void);
318
e498be7d
CL
319 if (__builtin_constant_p(size)) {
320 int i = 0;
321
322#define CACHE(x) \
323 if (size <=x) \
324 return i; \
325 else \
326 i++;
327#include "linux/kmalloc_sizes.h"
328#undef CACHE
5ec8a847 329 __bad_size();
7243cc05 330 } else
5ec8a847 331 __bad_size();
e498be7d
CL
332 return 0;
333}
334
e0a42726
IM
335static int slab_early_init = 1;
336
e498be7d
CL
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 339
5295a74c 340static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
341{
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
2e1217cf 347 parent->colour_next = 0;
e498be7d
CL
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
351}
352
a737b3e2
AM
353#define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
357 } while (0)
358
a737b3e2
AM
359#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
e498be7d
CL
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
1da177e4
LT
365
366/*
343e0d7a 367 * struct kmem_cache
1da177e4
LT
368 *
369 * manages a cache.
370 */
b28a02de 371
2109a2d1 372struct kmem_cache {
1da177e4 373/* 1) per-cpu data, touched during every alloc/free */
b28a02de 374 struct array_cache *array[NR_CPUS];
b5d8ca7c 375/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
b5d8ca7c 379
3dafccf2 380 unsigned int buffer_size;
b5d8ca7c 381/* 3) touched by every alloc & free from the backend */
b28a02de 382 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 383
a737b3e2
AM
384 unsigned int flags; /* constant flags */
385 unsigned int num; /* # of objs per slab */
1da177e4 386
b5d8ca7c 387/* 4) cache_grow/shrink */
1da177e4 388 /* order of pgs per slab (2^n) */
b28a02de 389 unsigned int gfporder;
1da177e4
LT
390
391 /* force GFP flags, e.g. GFP_DMA */
b28a02de 392 gfp_t gfpflags;
1da177e4 393
a737b3e2 394 size_t colour; /* cache colouring range */
b28a02de 395 unsigned int colour_off; /* colour offset */
343e0d7a 396 struct kmem_cache *slabp_cache;
b28a02de 397 unsigned int slab_size;
a737b3e2 398 unsigned int dflags; /* dynamic flags */
1da177e4
LT
399
400 /* constructor func */
343e0d7a 401 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
402
403 /* de-constructor func */
343e0d7a 404 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 405
b5d8ca7c 406/* 5) cache creation/removal */
b28a02de
PE
407 const char *name;
408 struct list_head next;
1da177e4 409
b5d8ca7c 410/* 6) statistics */
1da177e4 411#if STATS
b28a02de
PE
412 unsigned long num_active;
413 unsigned long num_allocations;
414 unsigned long high_mark;
415 unsigned long grown;
416 unsigned long reaped;
417 unsigned long errors;
418 unsigned long max_freeable;
419 unsigned long node_allocs;
420 unsigned long node_frees;
fb7faf33 421 unsigned long node_overflow;
b28a02de
PE
422 atomic_t allochit;
423 atomic_t allocmiss;
424 atomic_t freehit;
425 atomic_t freemiss;
1da177e4
LT
426#endif
427#if DEBUG
3dafccf2
MS
428 /*
429 * If debugging is enabled, then the allocator can add additional
430 * fields and/or padding to every object. buffer_size contains the total
431 * object size including these internal fields, the following two
432 * variables contain the offset to the user object and its size.
433 */
434 int obj_offset;
435 int obj_size;
1da177e4
LT
436#endif
437};
438
439#define CFLGS_OFF_SLAB (0x80000000UL)
440#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
441
442#define BATCHREFILL_LIMIT 16
a737b3e2
AM
443/*
444 * Optimization question: fewer reaps means less probability for unnessary
445 * cpucache drain/refill cycles.
1da177e4 446 *
dc6f3f27 447 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
448 * which could lock up otherwise freeable slabs.
449 */
450#define REAPTIMEOUT_CPUC (2*HZ)
451#define REAPTIMEOUT_LIST3 (4*HZ)
452
453#if STATS
454#define STATS_INC_ACTIVE(x) ((x)->num_active++)
455#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
456#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
457#define STATS_INC_GROWN(x) ((x)->grown++)
458#define STATS_INC_REAPED(x) ((x)->reaped++)
a737b3e2
AM
459#define STATS_SET_HIGH(x) \
460 do { \
461 if ((x)->num_active > (x)->high_mark) \
462 (x)->high_mark = (x)->num_active; \
463 } while (0)
1da177e4
LT
464#define STATS_INC_ERR(x) ((x)->errors++)
465#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 466#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 467#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
468#define STATS_SET_FREEABLE(x, i) \
469 do { \
470 if ((x)->max_freeable < i) \
471 (x)->max_freeable = i; \
472 } while (0)
1da177e4
LT
473#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
474#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
475#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
476#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
477#else
478#define STATS_INC_ACTIVE(x) do { } while (0)
479#define STATS_DEC_ACTIVE(x) do { } while (0)
480#define STATS_INC_ALLOCED(x) do { } while (0)
481#define STATS_INC_GROWN(x) do { } while (0)
482#define STATS_INC_REAPED(x) do { } while (0)
483#define STATS_SET_HIGH(x) do { } while (0)
484#define STATS_INC_ERR(x) do { } while (0)
485#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 486#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 487#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 488#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
489#define STATS_INC_ALLOCHIT(x) do { } while (0)
490#define STATS_INC_ALLOCMISS(x) do { } while (0)
491#define STATS_INC_FREEHIT(x) do { } while (0)
492#define STATS_INC_FREEMISS(x) do { } while (0)
493#endif
494
495#if DEBUG
1da177e4 496
a737b3e2
AM
497/*
498 * memory layout of objects:
1da177e4 499 * 0 : objp
3dafccf2 500 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
501 * the end of an object is aligned with the end of the real
502 * allocation. Catches writes behind the end of the allocation.
3dafccf2 503 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 504 * redzone word.
3dafccf2
MS
505 * cachep->obj_offset: The real object.
506 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
507 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
508 * [BYTES_PER_WORD long]
1da177e4 509 */
343e0d7a 510static int obj_offset(struct kmem_cache *cachep)
1da177e4 511{
3dafccf2 512 return cachep->obj_offset;
1da177e4
LT
513}
514
343e0d7a 515static int obj_size(struct kmem_cache *cachep)
1da177e4 516{
3dafccf2 517 return cachep->obj_size;
1da177e4
LT
518}
519
343e0d7a 520static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
521{
522 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 523 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
524}
525
343e0d7a 526static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
527{
528 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
529 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 530 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 531 2 * BYTES_PER_WORD);
3dafccf2 532 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
533}
534
343e0d7a 535static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
536{
537 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 538 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
539}
540
541#else
542
3dafccf2
MS
543#define obj_offset(x) 0
544#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
545#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
546#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
547#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
548
549#endif
550
551/*
a737b3e2
AM
552 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
553 * order.
1da177e4
LT
554 */
555#if defined(CONFIG_LARGE_ALLOCS)
556#define MAX_OBJ_ORDER 13 /* up to 32Mb */
557#define MAX_GFP_ORDER 13 /* up to 32Mb */
558#elif defined(CONFIG_MMU)
559#define MAX_OBJ_ORDER 5 /* 32 pages */
560#define MAX_GFP_ORDER 5 /* 32 pages */
561#else
562#define MAX_OBJ_ORDER 8 /* up to 1Mb */
563#define MAX_GFP_ORDER 8 /* up to 1Mb */
564#endif
565
566/*
567 * Do not go above this order unless 0 objects fit into the slab.
568 */
569#define BREAK_GFP_ORDER_HI 1
570#define BREAK_GFP_ORDER_LO 0
571static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
572
a737b3e2
AM
573/*
574 * Functions for storing/retrieving the cachep and or slab from the page
575 * allocator. These are used to find the slab an obj belongs to. With kfree(),
576 * these are used to find the cache which an obj belongs to.
1da177e4 577 */
065d41cb
PE
578static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
579{
580 page->lru.next = (struct list_head *)cache;
581}
582
583static inline struct kmem_cache *page_get_cache(struct page *page)
584{
84097518
NP
585 if (unlikely(PageCompound(page)))
586 page = (struct page *)page_private(page);
ddc2e812 587 BUG_ON(!PageSlab(page));
065d41cb
PE
588 return (struct kmem_cache *)page->lru.next;
589}
590
591static inline void page_set_slab(struct page *page, struct slab *slab)
592{
593 page->lru.prev = (struct list_head *)slab;
594}
595
596static inline struct slab *page_get_slab(struct page *page)
597{
84097518
NP
598 if (unlikely(PageCompound(page)))
599 page = (struct page *)page_private(page);
ddc2e812 600 BUG_ON(!PageSlab(page));
065d41cb
PE
601 return (struct slab *)page->lru.prev;
602}
1da177e4 603
6ed5eb22
PE
604static inline struct kmem_cache *virt_to_cache(const void *obj)
605{
606 struct page *page = virt_to_page(obj);
607 return page_get_cache(page);
608}
609
610static inline struct slab *virt_to_slab(const void *obj)
611{
612 struct page *page = virt_to_page(obj);
613 return page_get_slab(page);
614}
615
8fea4e96
PE
616static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
617 unsigned int idx)
618{
619 return slab->s_mem + cache->buffer_size * idx;
620}
621
622static inline unsigned int obj_to_index(struct kmem_cache *cache,
623 struct slab *slab, void *obj)
624{
625 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
626}
627
a737b3e2
AM
628/*
629 * These are the default caches for kmalloc. Custom caches can have other sizes.
630 */
1da177e4
LT
631struct cache_sizes malloc_sizes[] = {
632#define CACHE(x) { .cs_size = (x) },
633#include <linux/kmalloc_sizes.h>
634 CACHE(ULONG_MAX)
635#undef CACHE
636};
637EXPORT_SYMBOL(malloc_sizes);
638
639/* Must match cache_sizes above. Out of line to keep cache footprint low. */
640struct cache_names {
641 char *name;
642 char *name_dma;
643};
644
645static struct cache_names __initdata cache_names[] = {
646#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
647#include <linux/kmalloc_sizes.h>
b28a02de 648 {NULL,}
1da177e4
LT
649#undef CACHE
650};
651
652static struct arraycache_init initarray_cache __initdata =
b28a02de 653 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 654static struct arraycache_init initarray_generic =
b28a02de 655 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
656
657/* internal cache of cache description objs */
343e0d7a 658static struct kmem_cache cache_cache = {
b28a02de
PE
659 .batchcount = 1,
660 .limit = BOOT_CPUCACHE_ENTRIES,
661 .shared = 1,
343e0d7a 662 .buffer_size = sizeof(struct kmem_cache),
b28a02de 663 .name = "kmem_cache",
1da177e4 664#if DEBUG
343e0d7a 665 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
666#endif
667};
668
669/* Guard access to the cache-chain. */
fc0abb14 670static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
671static struct list_head cache_chain;
672
673/*
a737b3e2
AM
674 * vm_enough_memory() looks at this to determine how many slab-allocated pages
675 * are possibly freeable under pressure
1da177e4
LT
676 *
677 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
678 */
679atomic_t slab_reclaim_pages;
1da177e4
LT
680
681/*
682 * chicken and egg problem: delay the per-cpu array allocation
683 * until the general caches are up.
684 */
685static enum {
686 NONE,
e498be7d
CL
687 PARTIAL_AC,
688 PARTIAL_L3,
1da177e4
LT
689 FULL
690} g_cpucache_up;
691
39d24e64
MK
692/*
693 * used by boot code to determine if it can use slab based allocator
694 */
695int slab_is_available(void)
696{
697 return g_cpucache_up == FULL;
698}
699
1da177e4
LT
700static DEFINE_PER_CPU(struct work_struct, reap_work);
701
a737b3e2
AM
702static void free_block(struct kmem_cache *cachep, void **objpp, int len,
703 int node);
343e0d7a 704static void enable_cpucache(struct kmem_cache *cachep);
b28a02de 705static void cache_reap(void *unused);
343e0d7a 706static int __node_shrink(struct kmem_cache *cachep, int node);
1da177e4 707
343e0d7a 708static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
709{
710 return cachep->array[smp_processor_id()];
711}
712
a737b3e2
AM
713static inline struct kmem_cache *__find_general_cachep(size_t size,
714 gfp_t gfpflags)
1da177e4
LT
715{
716 struct cache_sizes *csizep = malloc_sizes;
717
718#if DEBUG
719 /* This happens if someone tries to call
b28a02de
PE
720 * kmem_cache_create(), or __kmalloc(), before
721 * the generic caches are initialized.
722 */
c7e43c78 723 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
724#endif
725 while (size > csizep->cs_size)
726 csizep++;
727
728 /*
0abf40c1 729 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
730 * has cs_{dma,}cachep==NULL. Thus no special case
731 * for large kmalloc calls required.
732 */
733 if (unlikely(gfpflags & GFP_DMA))
734 return csizep->cs_dmacachep;
735 return csizep->cs_cachep;
736}
737
343e0d7a 738struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
739{
740 return __find_general_cachep(size, gfpflags);
741}
742EXPORT_SYMBOL(kmem_find_general_cachep);
743
fbaccacf 744static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 745{
fbaccacf
SR
746 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
747}
1da177e4 748
a737b3e2
AM
749/*
750 * Calculate the number of objects and left-over bytes for a given buffer size.
751 */
fbaccacf
SR
752static void cache_estimate(unsigned long gfporder, size_t buffer_size,
753 size_t align, int flags, size_t *left_over,
754 unsigned int *num)
755{
756 int nr_objs;
757 size_t mgmt_size;
758 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 759
fbaccacf
SR
760 /*
761 * The slab management structure can be either off the slab or
762 * on it. For the latter case, the memory allocated for a
763 * slab is used for:
764 *
765 * - The struct slab
766 * - One kmem_bufctl_t for each object
767 * - Padding to respect alignment of @align
768 * - @buffer_size bytes for each object
769 *
770 * If the slab management structure is off the slab, then the
771 * alignment will already be calculated into the size. Because
772 * the slabs are all pages aligned, the objects will be at the
773 * correct alignment when allocated.
774 */
775 if (flags & CFLGS_OFF_SLAB) {
776 mgmt_size = 0;
777 nr_objs = slab_size / buffer_size;
778
779 if (nr_objs > SLAB_LIMIT)
780 nr_objs = SLAB_LIMIT;
781 } else {
782 /*
783 * Ignore padding for the initial guess. The padding
784 * is at most @align-1 bytes, and @buffer_size is at
785 * least @align. In the worst case, this result will
786 * be one greater than the number of objects that fit
787 * into the memory allocation when taking the padding
788 * into account.
789 */
790 nr_objs = (slab_size - sizeof(struct slab)) /
791 (buffer_size + sizeof(kmem_bufctl_t));
792
793 /*
794 * This calculated number will be either the right
795 * amount, or one greater than what we want.
796 */
797 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
798 > slab_size)
799 nr_objs--;
800
801 if (nr_objs > SLAB_LIMIT)
802 nr_objs = SLAB_LIMIT;
803
804 mgmt_size = slab_mgmt_size(nr_objs, align);
805 }
806 *num = nr_objs;
807 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
808}
809
810#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
811
a737b3e2
AM
812static void __slab_error(const char *function, struct kmem_cache *cachep,
813 char *msg)
1da177e4
LT
814{
815 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 816 function, cachep->name, msg);
1da177e4
LT
817 dump_stack();
818}
819
8fce4d8e
CL
820#ifdef CONFIG_NUMA
821/*
822 * Special reaping functions for NUMA systems called from cache_reap().
823 * These take care of doing round robin flushing of alien caches (containing
824 * objects freed on different nodes from which they were allocated) and the
825 * flushing of remote pcps by calling drain_node_pages.
826 */
827static DEFINE_PER_CPU(unsigned long, reap_node);
828
829static void init_reap_node(int cpu)
830{
831 int node;
832
833 node = next_node(cpu_to_node(cpu), node_online_map);
834 if (node == MAX_NUMNODES)
442295c9 835 node = first_node(node_online_map);
8fce4d8e
CL
836
837 __get_cpu_var(reap_node) = node;
838}
839
840static void next_reap_node(void)
841{
842 int node = __get_cpu_var(reap_node);
843
844 /*
845 * Also drain per cpu pages on remote zones
846 */
847 if (node != numa_node_id())
848 drain_node_pages(node);
849
850 node = next_node(node, node_online_map);
851 if (unlikely(node >= MAX_NUMNODES))
852 node = first_node(node_online_map);
853 __get_cpu_var(reap_node) = node;
854}
855
856#else
857#define init_reap_node(cpu) do { } while (0)
858#define next_reap_node(void) do { } while (0)
859#endif
860
1da177e4
LT
861/*
862 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
863 * via the workqueue/eventd.
864 * Add the CPU number into the expiration time to minimize the possibility of
865 * the CPUs getting into lockstep and contending for the global cache chain
866 * lock.
867 */
868static void __devinit start_cpu_timer(int cpu)
869{
870 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
871
872 /*
873 * When this gets called from do_initcalls via cpucache_init(),
874 * init_workqueues() has already run, so keventd will be setup
875 * at that time.
876 */
877 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 878 init_reap_node(cpu);
1da177e4
LT
879 INIT_WORK(reap_work, cache_reap, NULL);
880 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
881 }
882}
883
e498be7d 884static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 885 int batchcount)
1da177e4 886{
b28a02de 887 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
888 struct array_cache *nc = NULL;
889
e498be7d 890 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
891 if (nc) {
892 nc->avail = 0;
893 nc->limit = entries;
894 nc->batchcount = batchcount;
895 nc->touched = 0;
e498be7d 896 spin_lock_init(&nc->lock);
1da177e4
LT
897 }
898 return nc;
899}
900
3ded175a
CL
901/*
902 * Transfer objects in one arraycache to another.
903 * Locking must be handled by the caller.
904 *
905 * Return the number of entries transferred.
906 */
907static int transfer_objects(struct array_cache *to,
908 struct array_cache *from, unsigned int max)
909{
910 /* Figure out how many entries to transfer */
911 int nr = min(min(from->avail, max), to->limit - to->avail);
912
913 if (!nr)
914 return 0;
915
916 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
917 sizeof(void *) *nr);
918
919 from->avail -= nr;
920 to->avail += nr;
921 to->touched = 1;
922 return nr;
923}
924
e498be7d 925#ifdef CONFIG_NUMA
343e0d7a 926static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 927static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 928
5295a74c 929static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
930{
931 struct array_cache **ac_ptr;
b28a02de 932 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
933 int i;
934
935 if (limit > 1)
936 limit = 12;
937 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
938 if (ac_ptr) {
939 for_each_node(i) {
940 if (i == node || !node_online(i)) {
941 ac_ptr[i] = NULL;
942 continue;
943 }
944 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
945 if (!ac_ptr[i]) {
b28a02de 946 for (i--; i <= 0; i--)
e498be7d
CL
947 kfree(ac_ptr[i]);
948 kfree(ac_ptr);
949 return NULL;
950 }
951 }
952 }
953 return ac_ptr;
954}
955
5295a74c 956static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
957{
958 int i;
959
960 if (!ac_ptr)
961 return;
e498be7d 962 for_each_node(i)
b28a02de 963 kfree(ac_ptr[i]);
e498be7d
CL
964 kfree(ac_ptr);
965}
966
343e0d7a 967static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 968 struct array_cache *ac, int node)
e498be7d
CL
969{
970 struct kmem_list3 *rl3 = cachep->nodelists[node];
971
972 if (ac->avail) {
973 spin_lock(&rl3->list_lock);
e00946fe
CL
974 /*
975 * Stuff objects into the remote nodes shared array first.
976 * That way we could avoid the overhead of putting the objects
977 * into the free lists and getting them back later.
978 */
693f7d36
JS
979 if (rl3->shared)
980 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 981
ff69416e 982 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
983 ac->avail = 0;
984 spin_unlock(&rl3->list_lock);
985 }
986}
987
8fce4d8e
CL
988/*
989 * Called from cache_reap() to regularly drain alien caches round robin.
990 */
991static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
992{
993 int node = __get_cpu_var(reap_node);
994
995 if (l3->alien) {
996 struct array_cache *ac = l3->alien[node];
e00946fe
CL
997
998 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
999 __drain_alien_cache(cachep, ac, node);
1000 spin_unlock_irq(&ac->lock);
1001 }
1002 }
1003}
1004
a737b3e2
AM
1005static void drain_alien_cache(struct kmem_cache *cachep,
1006 struct array_cache **alien)
e498be7d 1007{
b28a02de 1008 int i = 0;
e498be7d
CL
1009 struct array_cache *ac;
1010 unsigned long flags;
1011
1012 for_each_online_node(i) {
4484ebf1 1013 ac = alien[i];
e498be7d
CL
1014 if (ac) {
1015 spin_lock_irqsave(&ac->lock, flags);
1016 __drain_alien_cache(cachep, ac, i);
1017 spin_unlock_irqrestore(&ac->lock, flags);
1018 }
1019 }
1020}
729bd0b7
PE
1021
1022static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1023{
1024 struct slab *slabp = virt_to_slab(objp);
1025 int nodeid = slabp->nodeid;
1026 struct kmem_list3 *l3;
1027 struct array_cache *alien = NULL;
1028
1029 /*
1030 * Make sure we are not freeing a object from another node to the array
1031 * cache on this cpu.
1032 */
1033 if (likely(slabp->nodeid == numa_node_id()))
1034 return 0;
1035
1036 l3 = cachep->nodelists[numa_node_id()];
1037 STATS_INC_NODEFREES(cachep);
1038 if (l3->alien && l3->alien[nodeid]) {
1039 alien = l3->alien[nodeid];
1040 spin_lock(&alien->lock);
1041 if (unlikely(alien->avail == alien->limit)) {
1042 STATS_INC_ACOVERFLOW(cachep);
1043 __drain_alien_cache(cachep, alien, nodeid);
1044 }
1045 alien->entry[alien->avail++] = objp;
1046 spin_unlock(&alien->lock);
1047 } else {
1048 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1049 free_block(cachep, &objp, 1, nodeid);
1050 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1051 }
1052 return 1;
1053}
1054
e498be7d 1055#else
7a21ef6f 1056
4484ebf1 1057#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1058#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1059
7a21ef6f
LT
1060static inline struct array_cache **alloc_alien_cache(int node, int limit)
1061{
1062 return (struct array_cache **) 0x01020304ul;
1063}
1064
4484ebf1
RT
1065static inline void free_alien_cache(struct array_cache **ac_ptr)
1066{
1067}
7a21ef6f 1068
729bd0b7
PE
1069static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1070{
1071 return 0;
1072}
1073
e498be7d
CL
1074#endif
1075
9c7b216d 1076static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1077 unsigned long action, void *hcpu)
1da177e4
LT
1078{
1079 long cpu = (long)hcpu;
343e0d7a 1080 struct kmem_cache *cachep;
e498be7d
CL
1081 struct kmem_list3 *l3 = NULL;
1082 int node = cpu_to_node(cpu);
1083 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1084
1085 switch (action) {
1086 case CPU_UP_PREPARE:
fc0abb14 1087 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1088 /*
1089 * We need to do this right in the beginning since
e498be7d
CL
1090 * alloc_arraycache's are going to use this list.
1091 * kmalloc_node allows us to add the slab to the right
1092 * kmem_list3 and not this cpu's kmem_list3
1093 */
1094
1da177e4 1095 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1096 /*
1097 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1098 * begin anything. Make sure some other cpu on this
1099 * node has not already allocated this
1100 */
1101 if (!cachep->nodelists[node]) {
a737b3e2
AM
1102 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1103 if (!l3)
e498be7d
CL
1104 goto bad;
1105 kmem_list3_init(l3);
1106 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1107 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1108
4484ebf1
RT
1109 /*
1110 * The l3s don't come and go as CPUs come and
1111 * go. cache_chain_mutex is sufficient
1112 * protection here.
1113 */
e498be7d
CL
1114 cachep->nodelists[node] = l3;
1115 }
1da177e4 1116
e498be7d
CL
1117 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1118 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1119 (1 + nr_cpus_node(node)) *
1120 cachep->batchcount + cachep->num;
e498be7d
CL
1121 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1122 }
1123
a737b3e2
AM
1124 /*
1125 * Now we can go ahead with allocating the shared arrays and
1126 * array caches
1127 */
e498be7d 1128 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1129 struct array_cache *nc;
4484ebf1
RT
1130 struct array_cache *shared;
1131 struct array_cache **alien;
cd105df4 1132
e498be7d 1133 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1134 cachep->batchcount);
1da177e4
LT
1135 if (!nc)
1136 goto bad;
4484ebf1
RT
1137 shared = alloc_arraycache(node,
1138 cachep->shared * cachep->batchcount,
1139 0xbaadf00d);
1140 if (!shared)
1141 goto bad;
7a21ef6f 1142
4484ebf1
RT
1143 alien = alloc_alien_cache(node, cachep->limit);
1144 if (!alien)
1145 goto bad;
1da177e4 1146 cachep->array[cpu] = nc;
e498be7d
CL
1147 l3 = cachep->nodelists[node];
1148 BUG_ON(!l3);
e498be7d 1149
4484ebf1
RT
1150 spin_lock_irq(&l3->list_lock);
1151 if (!l3->shared) {
1152 /*
1153 * We are serialised from CPU_DEAD or
1154 * CPU_UP_CANCELLED by the cpucontrol lock
1155 */
1156 l3->shared = shared;
1157 shared = NULL;
e498be7d 1158 }
4484ebf1
RT
1159#ifdef CONFIG_NUMA
1160 if (!l3->alien) {
1161 l3->alien = alien;
1162 alien = NULL;
1163 }
1164#endif
1165 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1166 kfree(shared);
1167 free_alien_cache(alien);
1da177e4 1168 }
fc0abb14 1169 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1170 break;
1171 case CPU_ONLINE:
1172 start_cpu_timer(cpu);
1173 break;
1174#ifdef CONFIG_HOTPLUG_CPU
1175 case CPU_DEAD:
4484ebf1
RT
1176 /*
1177 * Even if all the cpus of a node are down, we don't free the
1178 * kmem_list3 of any cache. This to avoid a race between
1179 * cpu_down, and a kmalloc allocation from another cpu for
1180 * memory from the node of the cpu going down. The list3
1181 * structure is usually allocated from kmem_cache_create() and
1182 * gets destroyed at kmem_cache_destroy().
1183 */
1da177e4
LT
1184 /* fall thru */
1185 case CPU_UP_CANCELED:
fc0abb14 1186 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1187 list_for_each_entry(cachep, &cache_chain, next) {
1188 struct array_cache *nc;
4484ebf1
RT
1189 struct array_cache *shared;
1190 struct array_cache **alien;
e498be7d 1191 cpumask_t mask;
1da177e4 1192
e498be7d 1193 mask = node_to_cpumask(node);
1da177e4
LT
1194 /* cpu is dead; no one can alloc from it. */
1195 nc = cachep->array[cpu];
1196 cachep->array[cpu] = NULL;
e498be7d
CL
1197 l3 = cachep->nodelists[node];
1198
1199 if (!l3)
4484ebf1 1200 goto free_array_cache;
e498be7d 1201
ca3b9b91 1202 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1203
1204 /* Free limit for this kmem_list3 */
1205 l3->free_limit -= cachep->batchcount;
1206 if (nc)
ff69416e 1207 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1208
1209 if (!cpus_empty(mask)) {
ca3b9b91 1210 spin_unlock_irq(&l3->list_lock);
4484ebf1 1211 goto free_array_cache;
b28a02de 1212 }
e498be7d 1213
4484ebf1
RT
1214 shared = l3->shared;
1215 if (shared) {
e498be7d 1216 free_block(cachep, l3->shared->entry,
b28a02de 1217 l3->shared->avail, node);
e498be7d
CL
1218 l3->shared = NULL;
1219 }
e498be7d 1220
4484ebf1
RT
1221 alien = l3->alien;
1222 l3->alien = NULL;
1223
1224 spin_unlock_irq(&l3->list_lock);
1225
1226 kfree(shared);
1227 if (alien) {
1228 drain_alien_cache(cachep, alien);
1229 free_alien_cache(alien);
e498be7d 1230 }
4484ebf1 1231free_array_cache:
1da177e4
LT
1232 kfree(nc);
1233 }
4484ebf1
RT
1234 /*
1235 * In the previous loop, all the objects were freed to
1236 * the respective cache's slabs, now we can go ahead and
1237 * shrink each nodelist to its limit.
1238 */
1239 list_for_each_entry(cachep, &cache_chain, next) {
1240 l3 = cachep->nodelists[node];
1241 if (!l3)
1242 continue;
1243 spin_lock_irq(&l3->list_lock);
1244 /* free slabs belonging to this node */
1245 __node_shrink(cachep, node);
1246 spin_unlock_irq(&l3->list_lock);
1247 }
fc0abb14 1248 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1249 break;
1250#endif
1251 }
1252 return NOTIFY_OK;
a737b3e2 1253bad:
fc0abb14 1254 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1255 return NOTIFY_BAD;
1256}
1257
1258static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1259
e498be7d
CL
1260/*
1261 * swap the static kmem_list3 with kmalloced memory
1262 */
a737b3e2
AM
1263static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1264 int nodeid)
e498be7d
CL
1265{
1266 struct kmem_list3 *ptr;
1267
1268 BUG_ON(cachep->nodelists[nodeid] != list);
1269 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1270 BUG_ON(!ptr);
1271
1272 local_irq_disable();
1273 memcpy(ptr, list, sizeof(struct kmem_list3));
1274 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1275 cachep->nodelists[nodeid] = ptr;
1276 local_irq_enable();
1277}
1278
a737b3e2
AM
1279/*
1280 * Initialisation. Called after the page allocator have been initialised and
1281 * before smp_init().
1da177e4
LT
1282 */
1283void __init kmem_cache_init(void)
1284{
1285 size_t left_over;
1286 struct cache_sizes *sizes;
1287 struct cache_names *names;
e498be7d 1288 int i;
07ed76b2 1289 int order;
e498be7d
CL
1290
1291 for (i = 0; i < NUM_INIT_LISTS; i++) {
1292 kmem_list3_init(&initkmem_list3[i]);
1293 if (i < MAX_NUMNODES)
1294 cache_cache.nodelists[i] = NULL;
1295 }
1da177e4
LT
1296
1297 /*
1298 * Fragmentation resistance on low memory - only use bigger
1299 * page orders on machines with more than 32MB of memory.
1300 */
1301 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1302 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1303
1da177e4
LT
1304 /* Bootstrap is tricky, because several objects are allocated
1305 * from caches that do not exist yet:
a737b3e2
AM
1306 * 1) initialize the cache_cache cache: it contains the struct
1307 * kmem_cache structures of all caches, except cache_cache itself:
1308 * cache_cache is statically allocated.
e498be7d
CL
1309 * Initially an __init data area is used for the head array and the
1310 * kmem_list3 structures, it's replaced with a kmalloc allocated
1311 * array at the end of the bootstrap.
1da177e4 1312 * 2) Create the first kmalloc cache.
343e0d7a 1313 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1314 * An __init data area is used for the head array.
1315 * 3) Create the remaining kmalloc caches, with minimally sized
1316 * head arrays.
1da177e4
LT
1317 * 4) Replace the __init data head arrays for cache_cache and the first
1318 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1319 * 5) Replace the __init data for kmem_list3 for cache_cache and
1320 * the other cache's with kmalloc allocated memory.
1321 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1322 */
1323
1324 /* 1) create the cache_cache */
1da177e4
LT
1325 INIT_LIST_HEAD(&cache_chain);
1326 list_add(&cache_cache.next, &cache_chain);
1327 cache_cache.colour_off = cache_line_size();
1328 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1329 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1330
a737b3e2
AM
1331 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1332 cache_line_size());
1da177e4 1333
07ed76b2
JS
1334 for (order = 0; order < MAX_ORDER; order++) {
1335 cache_estimate(order, cache_cache.buffer_size,
1336 cache_line_size(), 0, &left_over, &cache_cache.num);
1337 if (cache_cache.num)
1338 break;
1339 }
40094fa6 1340 BUG_ON(!cache_cache.num);
07ed76b2 1341 cache_cache.gfporder = order;
b28a02de 1342 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1343 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1344 sizeof(struct slab), cache_line_size());
1da177e4
LT
1345
1346 /* 2+3) create the kmalloc caches */
1347 sizes = malloc_sizes;
1348 names = cache_names;
1349
a737b3e2
AM
1350 /*
1351 * Initialize the caches that provide memory for the array cache and the
1352 * kmem_list3 structures first. Without this, further allocations will
1353 * bug.
e498be7d
CL
1354 */
1355
1356 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1357 sizes[INDEX_AC].cs_size,
1358 ARCH_KMALLOC_MINALIGN,
1359 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1360 NULL, NULL);
e498be7d 1361
a737b3e2 1362 if (INDEX_AC != INDEX_L3) {
e498be7d 1363 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1364 kmem_cache_create(names[INDEX_L3].name,
1365 sizes[INDEX_L3].cs_size,
1366 ARCH_KMALLOC_MINALIGN,
1367 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1368 NULL, NULL);
1369 }
e498be7d 1370
e0a42726
IM
1371 slab_early_init = 0;
1372
1da177e4 1373 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1374 /*
1375 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1376 * This should be particularly beneficial on SMP boxes, as it
1377 * eliminates "false sharing".
1378 * Note for systems short on memory removing the alignment will
e498be7d
CL
1379 * allow tighter packing of the smaller caches.
1380 */
a737b3e2 1381 if (!sizes->cs_cachep) {
e498be7d 1382 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1383 sizes->cs_size,
1384 ARCH_KMALLOC_MINALIGN,
1385 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1386 NULL, NULL);
1387 }
1da177e4 1388
1da177e4 1389 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1390 sizes->cs_size,
1391 ARCH_KMALLOC_MINALIGN,
1392 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1393 SLAB_PANIC,
1394 NULL, NULL);
1da177e4
LT
1395 sizes++;
1396 names++;
1397 }
1398 /* 4) Replace the bootstrap head arrays */
1399 {
b28a02de 1400 void *ptr;
e498be7d 1401
1da177e4 1402 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1403
1da177e4 1404 local_irq_disable();
9a2dba4b
PE
1405 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1406 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1407 sizeof(struct arraycache_init));
1da177e4
LT
1408 cache_cache.array[smp_processor_id()] = ptr;
1409 local_irq_enable();
e498be7d 1410
1da177e4 1411 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1412
1da177e4 1413 local_irq_disable();
9a2dba4b 1414 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1415 != &initarray_generic.cache);
9a2dba4b 1416 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1417 sizeof(struct arraycache_init));
e498be7d 1418 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1419 ptr;
1da177e4
LT
1420 local_irq_enable();
1421 }
e498be7d
CL
1422 /* 5) Replace the bootstrap kmem_list3's */
1423 {
1424 int node;
1425 /* Replace the static kmem_list3 structures for the boot cpu */
1426 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1427 numa_node_id());
e498be7d
CL
1428
1429 for_each_online_node(node) {
1430 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1431 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1432
1433 if (INDEX_AC != INDEX_L3) {
1434 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1435 &initkmem_list3[SIZE_L3 + node],
1436 node);
e498be7d
CL
1437 }
1438 }
1439 }
1da177e4 1440
e498be7d 1441 /* 6) resize the head arrays to their final sizes */
1da177e4 1442 {
343e0d7a 1443 struct kmem_cache *cachep;
fc0abb14 1444 mutex_lock(&cache_chain_mutex);
1da177e4 1445 list_for_each_entry(cachep, &cache_chain, next)
a737b3e2 1446 enable_cpucache(cachep);
fc0abb14 1447 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1448 }
1449
1450 /* Done! */
1451 g_cpucache_up = FULL;
1452
a737b3e2
AM
1453 /*
1454 * Register a cpu startup notifier callback that initializes
1455 * cpu_cache_get for all new cpus
1da177e4
LT
1456 */
1457 register_cpu_notifier(&cpucache_notifier);
1da177e4 1458
a737b3e2
AM
1459 /*
1460 * The reap timers are started later, with a module init call: That part
1461 * of the kernel is not yet operational.
1da177e4
LT
1462 */
1463}
1464
1465static int __init cpucache_init(void)
1466{
1467 int cpu;
1468
a737b3e2
AM
1469 /*
1470 * Register the timers that return unneeded pages to the page allocator
1da177e4 1471 */
e498be7d 1472 for_each_online_cpu(cpu)
a737b3e2 1473 start_cpu_timer(cpu);
1da177e4
LT
1474 return 0;
1475}
1da177e4
LT
1476__initcall(cpucache_init);
1477
1478/*
1479 * Interface to system's page allocator. No need to hold the cache-lock.
1480 *
1481 * If we requested dmaable memory, we will get it. Even if we
1482 * did not request dmaable memory, we might get it, but that
1483 * would be relatively rare and ignorable.
1484 */
343e0d7a 1485static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1486{
1487 struct page *page;
e1b6aa6f 1488 int nr_pages;
1da177e4
LT
1489 int i;
1490
d6fef9da 1491#ifndef CONFIG_MMU
e1b6aa6f
CH
1492 /*
1493 * Nommu uses slab's for process anonymous memory allocations, and thus
1494 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1495 */
e1b6aa6f 1496 flags |= __GFP_COMP;
d6fef9da 1497#endif
e1b6aa6f
CH
1498 flags |= cachep->gfpflags;
1499
1500 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1501 if (!page)
1502 return NULL;
1da177e4 1503
e1b6aa6f 1504 nr_pages = (1 << cachep->gfporder);
1da177e4 1505 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
e1b6aa6f
CH
1506 atomic_add(nr_pages, &slab_reclaim_pages);
1507 add_page_state(nr_slab, nr_pages);
1508 for (i = 0; i < nr_pages; i++)
1509 __SetPageSlab(page + i);
1510 return page_address(page);
1da177e4
LT
1511}
1512
1513/*
1514 * Interface to system's page release.
1515 */
343e0d7a 1516static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1517{
b28a02de 1518 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1519 struct page *page = virt_to_page(addr);
1520 const unsigned long nr_freed = i;
1521
1522 while (i--) {
f205b2fe
NP
1523 BUG_ON(!PageSlab(page));
1524 __ClearPageSlab(page);
1da177e4
LT
1525 page++;
1526 }
1527 sub_page_state(nr_slab, nr_freed);
1528 if (current->reclaim_state)
1529 current->reclaim_state->reclaimed_slab += nr_freed;
1530 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1531 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1532 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1533}
1534
1535static void kmem_rcu_free(struct rcu_head *head)
1536{
b28a02de 1537 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1538 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1539
1540 kmem_freepages(cachep, slab_rcu->addr);
1541 if (OFF_SLAB(cachep))
1542 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1543}
1544
1545#if DEBUG
1546
1547#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1548static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1549 unsigned long caller)
1da177e4 1550{
3dafccf2 1551 int size = obj_size(cachep);
1da177e4 1552
3dafccf2 1553 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1554
b28a02de 1555 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1556 return;
1557
b28a02de
PE
1558 *addr++ = 0x12345678;
1559 *addr++ = caller;
1560 *addr++ = smp_processor_id();
1561 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1562 {
1563 unsigned long *sptr = &caller;
1564 unsigned long svalue;
1565
1566 while (!kstack_end(sptr)) {
1567 svalue = *sptr++;
1568 if (kernel_text_address(svalue)) {
b28a02de 1569 *addr++ = svalue;
1da177e4
LT
1570 size -= sizeof(unsigned long);
1571 if (size <= sizeof(unsigned long))
1572 break;
1573 }
1574 }
1575
1576 }
b28a02de 1577 *addr++ = 0x87654321;
1da177e4
LT
1578}
1579#endif
1580
343e0d7a 1581static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1582{
3dafccf2
MS
1583 int size = obj_size(cachep);
1584 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1585
1586 memset(addr, val, size);
b28a02de 1587 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1588}
1589
1590static void dump_line(char *data, int offset, int limit)
1591{
1592 int i;
1593 printk(KERN_ERR "%03x:", offset);
a737b3e2 1594 for (i = 0; i < limit; i++)
b28a02de 1595 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1596 printk("\n");
1597}
1598#endif
1599
1600#if DEBUG
1601
343e0d7a 1602static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1603{
1604 int i, size;
1605 char *realobj;
1606
1607 if (cachep->flags & SLAB_RED_ZONE) {
1608 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1609 *dbg_redzone1(cachep, objp),
1610 *dbg_redzone2(cachep, objp));
1da177e4
LT
1611 }
1612
1613 if (cachep->flags & SLAB_STORE_USER) {
1614 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1615 *dbg_userword(cachep, objp));
1da177e4 1616 print_symbol("(%s)",
a737b3e2 1617 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1618 printk("\n");
1619 }
3dafccf2
MS
1620 realobj = (char *)objp + obj_offset(cachep);
1621 size = obj_size(cachep);
b28a02de 1622 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1623 int limit;
1624 limit = 16;
b28a02de
PE
1625 if (i + limit > size)
1626 limit = size - i;
1da177e4
LT
1627 dump_line(realobj, i, limit);
1628 }
1629}
1630
343e0d7a 1631static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1632{
1633 char *realobj;
1634 int size, i;
1635 int lines = 0;
1636
3dafccf2
MS
1637 realobj = (char *)objp + obj_offset(cachep);
1638 size = obj_size(cachep);
1da177e4 1639
b28a02de 1640 for (i = 0; i < size; i++) {
1da177e4 1641 char exp = POISON_FREE;
b28a02de 1642 if (i == size - 1)
1da177e4
LT
1643 exp = POISON_END;
1644 if (realobj[i] != exp) {
1645 int limit;
1646 /* Mismatch ! */
1647 /* Print header */
1648 if (lines == 0) {
b28a02de 1649 printk(KERN_ERR
a737b3e2
AM
1650 "Slab corruption: start=%p, len=%d\n",
1651 realobj, size);
1da177e4
LT
1652 print_objinfo(cachep, objp, 0);
1653 }
1654 /* Hexdump the affected line */
b28a02de 1655 i = (i / 16) * 16;
1da177e4 1656 limit = 16;
b28a02de
PE
1657 if (i + limit > size)
1658 limit = size - i;
1da177e4
LT
1659 dump_line(realobj, i, limit);
1660 i += 16;
1661 lines++;
1662 /* Limit to 5 lines */
1663 if (lines > 5)
1664 break;
1665 }
1666 }
1667 if (lines != 0) {
1668 /* Print some data about the neighboring objects, if they
1669 * exist:
1670 */
6ed5eb22 1671 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1672 unsigned int objnr;
1da177e4 1673
8fea4e96 1674 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1675 if (objnr) {
8fea4e96 1676 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1677 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1678 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1679 realobj, size);
1da177e4
LT
1680 print_objinfo(cachep, objp, 2);
1681 }
b28a02de 1682 if (objnr + 1 < cachep->num) {
8fea4e96 1683 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1684 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1685 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1686 realobj, size);
1da177e4
LT
1687 print_objinfo(cachep, objp, 2);
1688 }
1689 }
1690}
1691#endif
1692
12dd36fa
MD
1693#if DEBUG
1694/**
911851e6
RD
1695 * slab_destroy_objs - destroy a slab and its objects
1696 * @cachep: cache pointer being destroyed
1697 * @slabp: slab pointer being destroyed
1698 *
1699 * Call the registered destructor for each object in a slab that is being
1700 * destroyed.
1da177e4 1701 */
343e0d7a 1702static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1703{
1da177e4
LT
1704 int i;
1705 for (i = 0; i < cachep->num; i++) {
8fea4e96 1706 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1707
1708 if (cachep->flags & SLAB_POISON) {
1709#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1710 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1711 OFF_SLAB(cachep))
b28a02de 1712 kernel_map_pages(virt_to_page(objp),
a737b3e2 1713 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1714 else
1715 check_poison_obj(cachep, objp);
1716#else
1717 check_poison_obj(cachep, objp);
1718#endif
1719 }
1720 if (cachep->flags & SLAB_RED_ZONE) {
1721 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1722 slab_error(cachep, "start of a freed object "
b28a02de 1723 "was overwritten");
1da177e4
LT
1724 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1725 slab_error(cachep, "end of a freed object "
b28a02de 1726 "was overwritten");
1da177e4
LT
1727 }
1728 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1729 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1730 }
12dd36fa 1731}
1da177e4 1732#else
343e0d7a 1733static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1734{
1da177e4
LT
1735 if (cachep->dtor) {
1736 int i;
1737 for (i = 0; i < cachep->num; i++) {
8fea4e96 1738 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1739 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1740 }
1741 }
12dd36fa 1742}
1da177e4
LT
1743#endif
1744
911851e6
RD
1745/**
1746 * slab_destroy - destroy and release all objects in a slab
1747 * @cachep: cache pointer being destroyed
1748 * @slabp: slab pointer being destroyed
1749 *
12dd36fa 1750 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1751 * Before calling the slab must have been unlinked from the cache. The
1752 * cache-lock is not held/needed.
12dd36fa 1753 */
343e0d7a 1754static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1755{
1756 void *addr = slabp->s_mem - slabp->colouroff;
1757
1758 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1759 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1760 struct slab_rcu *slab_rcu;
1761
b28a02de 1762 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1763 slab_rcu->cachep = cachep;
1764 slab_rcu->addr = addr;
1765 call_rcu(&slab_rcu->head, kmem_rcu_free);
1766 } else {
1767 kmem_freepages(cachep, addr);
1768 if (OFF_SLAB(cachep))
1769 kmem_cache_free(cachep->slabp_cache, slabp);
1770 }
1771}
1772
a737b3e2
AM
1773/*
1774 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1775 * size of kmem_list3.
1776 */
343e0d7a 1777static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1778{
1779 int node;
1780
1781 for_each_online_node(node) {
b28a02de 1782 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1783 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1784 REAPTIMEOUT_LIST3 +
1785 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1786 }
1787}
1788
4d268eba 1789/**
a70773dd
RD
1790 * calculate_slab_order - calculate size (page order) of slabs
1791 * @cachep: pointer to the cache that is being created
1792 * @size: size of objects to be created in this cache.
1793 * @align: required alignment for the objects.
1794 * @flags: slab allocation flags
1795 *
1796 * Also calculates the number of objects per slab.
4d268eba
PE
1797 *
1798 * This could be made much more intelligent. For now, try to avoid using
1799 * high order pages for slabs. When the gfp() functions are more friendly
1800 * towards high-order requests, this should be changed.
1801 */
a737b3e2 1802static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1803 size_t size, size_t align, unsigned long flags)
4d268eba 1804{
b1ab41c4 1805 unsigned long offslab_limit;
4d268eba 1806 size_t left_over = 0;
9888e6fa 1807 int gfporder;
4d268eba 1808
a737b3e2 1809 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1810 unsigned int num;
1811 size_t remainder;
1812
9888e6fa 1813 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1814 if (!num)
1815 continue;
9888e6fa 1816
b1ab41c4
IM
1817 if (flags & CFLGS_OFF_SLAB) {
1818 /*
1819 * Max number of objs-per-slab for caches which
1820 * use off-slab slabs. Needed to avoid a possible
1821 * looping condition in cache_grow().
1822 */
1823 offslab_limit = size - sizeof(struct slab);
1824 offslab_limit /= sizeof(kmem_bufctl_t);
1825
1826 if (num > offslab_limit)
1827 break;
1828 }
4d268eba 1829
9888e6fa 1830 /* Found something acceptable - save it away */
4d268eba 1831 cachep->num = num;
9888e6fa 1832 cachep->gfporder = gfporder;
4d268eba
PE
1833 left_over = remainder;
1834
f78bb8ad
LT
1835 /*
1836 * A VFS-reclaimable slab tends to have most allocations
1837 * as GFP_NOFS and we really don't want to have to be allocating
1838 * higher-order pages when we are unable to shrink dcache.
1839 */
1840 if (flags & SLAB_RECLAIM_ACCOUNT)
1841 break;
1842
4d268eba
PE
1843 /*
1844 * Large number of objects is good, but very large slabs are
1845 * currently bad for the gfp()s.
1846 */
9888e6fa 1847 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1848 break;
1849
9888e6fa
LT
1850 /*
1851 * Acceptable internal fragmentation?
1852 */
a737b3e2 1853 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1854 break;
1855 }
1856 return left_over;
1857}
1858
f30cf7d1
PE
1859static void setup_cpu_cache(struct kmem_cache *cachep)
1860{
1861 if (g_cpucache_up == FULL) {
1862 enable_cpucache(cachep);
1863 return;
1864 }
1865 if (g_cpucache_up == NONE) {
1866 /*
1867 * Note: the first kmem_cache_create must create the cache
1868 * that's used by kmalloc(24), otherwise the creation of
1869 * further caches will BUG().
1870 */
1871 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1872
1873 /*
1874 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1875 * the first cache, then we need to set up all its list3s,
1876 * otherwise the creation of further caches will BUG().
1877 */
1878 set_up_list3s(cachep, SIZE_AC);
1879 if (INDEX_AC == INDEX_L3)
1880 g_cpucache_up = PARTIAL_L3;
1881 else
1882 g_cpucache_up = PARTIAL_AC;
1883 } else {
1884 cachep->array[smp_processor_id()] =
1885 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1886
1887 if (g_cpucache_up == PARTIAL_AC) {
1888 set_up_list3s(cachep, SIZE_L3);
1889 g_cpucache_up = PARTIAL_L3;
1890 } else {
1891 int node;
1892 for_each_online_node(node) {
1893 cachep->nodelists[node] =
1894 kmalloc_node(sizeof(struct kmem_list3),
1895 GFP_KERNEL, node);
1896 BUG_ON(!cachep->nodelists[node]);
1897 kmem_list3_init(cachep->nodelists[node]);
1898 }
1899 }
1900 }
1901 cachep->nodelists[numa_node_id()]->next_reap =
1902 jiffies + REAPTIMEOUT_LIST3 +
1903 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1904
1905 cpu_cache_get(cachep)->avail = 0;
1906 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1907 cpu_cache_get(cachep)->batchcount = 1;
1908 cpu_cache_get(cachep)->touched = 0;
1909 cachep->batchcount = 1;
1910 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1911}
1912
1da177e4
LT
1913/**
1914 * kmem_cache_create - Create a cache.
1915 * @name: A string which is used in /proc/slabinfo to identify this cache.
1916 * @size: The size of objects to be created in this cache.
1917 * @align: The required alignment for the objects.
1918 * @flags: SLAB flags
1919 * @ctor: A constructor for the objects.
1920 * @dtor: A destructor for the objects.
1921 *
1922 * Returns a ptr to the cache on success, NULL on failure.
1923 * Cannot be called within a int, but can be interrupted.
1924 * The @ctor is run when new pages are allocated by the cache
1925 * and the @dtor is run before the pages are handed back.
1926 *
1927 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
1928 * the module calling this has to destroy the cache before getting unloaded.
1929 *
1da177e4
LT
1930 * The flags are
1931 *
1932 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1933 * to catch references to uninitialised memory.
1934 *
1935 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1936 * for buffer overruns.
1937 *
1da177e4
LT
1938 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1939 * cacheline. This can be beneficial if you're counting cycles as closely
1940 * as davem.
1941 */
343e0d7a 1942struct kmem_cache *
1da177e4 1943kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
1944 unsigned long flags,
1945 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 1946 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
1947{
1948 size_t left_over, slab_size, ralign;
7a7c381d 1949 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
1950
1951 /*
1952 * Sanity checks... these are all serious usage bugs.
1953 */
a737b3e2 1954 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 1955 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
1956 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1957 name);
b28a02de
PE
1958 BUG();
1959 }
1da177e4 1960
f0188f47
RT
1961 /*
1962 * Prevent CPUs from coming and going.
1963 * lock_cpu_hotplug() nests outside cache_chain_mutex
1964 */
1965 lock_cpu_hotplug();
1966
fc0abb14 1967 mutex_lock(&cache_chain_mutex);
4f12bb4f 1968
7a7c381d 1969 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
1970 mm_segment_t old_fs = get_fs();
1971 char tmp;
1972 int res;
1973
1974 /*
1975 * This happens when the module gets unloaded and doesn't
1976 * destroy its slab cache and no-one else reuses the vmalloc
1977 * area of the module. Print a warning.
1978 */
1979 set_fs(KERNEL_DS);
1980 res = __get_user(tmp, pc->name);
1981 set_fs(old_fs);
1982 if (res) {
1983 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1984 pc->buffer_size);
4f12bb4f
AM
1985 continue;
1986 }
1987
b28a02de 1988 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1989 printk("kmem_cache_create: duplicate cache %s\n", name);
1990 dump_stack();
1991 goto oops;
1992 }
1993 }
1994
1da177e4
LT
1995#if DEBUG
1996 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1997 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1998 /* No constructor, but inital state check requested */
1999 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2000 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2001 flags &= ~SLAB_DEBUG_INITIAL;
2002 }
1da177e4
LT
2003#if FORCED_DEBUG
2004 /*
2005 * Enable redzoning and last user accounting, except for caches with
2006 * large objects, if the increased size would increase the object size
2007 * above the next power of two: caches with object sizes just above a
2008 * power of two have a significant amount of internal fragmentation.
2009 */
a737b3e2 2010 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2011 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2012 if (!(flags & SLAB_DESTROY_BY_RCU))
2013 flags |= SLAB_POISON;
2014#endif
2015 if (flags & SLAB_DESTROY_BY_RCU)
2016 BUG_ON(flags & SLAB_POISON);
2017#endif
2018 if (flags & SLAB_DESTROY_BY_RCU)
2019 BUG_ON(dtor);
2020
2021 /*
a737b3e2
AM
2022 * Always checks flags, a caller might be expecting debug support which
2023 * isn't available.
1da177e4 2024 */
40094fa6 2025 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2026
a737b3e2
AM
2027 /*
2028 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2029 * unaligned accesses for some archs when redzoning is used, and makes
2030 * sure any on-slab bufctl's are also correctly aligned.
2031 */
b28a02de
PE
2032 if (size & (BYTES_PER_WORD - 1)) {
2033 size += (BYTES_PER_WORD - 1);
2034 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2035 }
2036
a737b3e2
AM
2037 /* calculate the final buffer alignment: */
2038
1da177e4
LT
2039 /* 1) arch recommendation: can be overridden for debug */
2040 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2041 /*
2042 * Default alignment: as specified by the arch code. Except if
2043 * an object is really small, then squeeze multiple objects into
2044 * one cacheline.
1da177e4
LT
2045 */
2046 ralign = cache_line_size();
b28a02de 2047 while (size <= ralign / 2)
1da177e4
LT
2048 ralign /= 2;
2049 } else {
2050 ralign = BYTES_PER_WORD;
2051 }
2052 /* 2) arch mandated alignment: disables debug if necessary */
2053 if (ralign < ARCH_SLAB_MINALIGN) {
2054 ralign = ARCH_SLAB_MINALIGN;
2055 if (ralign > BYTES_PER_WORD)
b28a02de 2056 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2057 }
2058 /* 3) caller mandated alignment: disables debug if necessary */
2059 if (ralign < align) {
2060 ralign = align;
2061 if (ralign > BYTES_PER_WORD)
b28a02de 2062 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2063 }
a737b3e2
AM
2064 /*
2065 * 4) Store it. Note that the debug code below can reduce
1da177e4
LT
2066 * the alignment to BYTES_PER_WORD.
2067 */
2068 align = ralign;
2069
2070 /* Get cache's description obj. */
c5e3b83e 2071 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2072 if (!cachep)
4f12bb4f 2073 goto oops;
1da177e4
LT
2074
2075#if DEBUG
3dafccf2 2076 cachep->obj_size = size;
1da177e4
LT
2077
2078 if (flags & SLAB_RED_ZONE) {
2079 /* redzoning only works with word aligned caches */
2080 align = BYTES_PER_WORD;
2081
2082 /* add space for red zone words */
3dafccf2 2083 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2084 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2085 }
2086 if (flags & SLAB_STORE_USER) {
2087 /* user store requires word alignment and
2088 * one word storage behind the end of the real
2089 * object.
2090 */
2091 align = BYTES_PER_WORD;
2092 size += BYTES_PER_WORD;
2093 }
2094#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2095 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2096 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2097 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2098 size = PAGE_SIZE;
2099 }
2100#endif
2101#endif
2102
e0a42726
IM
2103 /*
2104 * Determine if the slab management is 'on' or 'off' slab.
2105 * (bootstrapping cannot cope with offslab caches so don't do
2106 * it too early on.)
2107 */
2108 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2109 /*
2110 * Size is large, assume best to place the slab management obj
2111 * off-slab (should allow better packing of objs).
2112 */
2113 flags |= CFLGS_OFF_SLAB;
2114
2115 size = ALIGN(size, align);
2116
f78bb8ad 2117 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2118
2119 if (!cachep->num) {
2120 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2121 kmem_cache_free(&cache_cache, cachep);
2122 cachep = NULL;
4f12bb4f 2123 goto oops;
1da177e4 2124 }
b28a02de
PE
2125 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2126 + sizeof(struct slab), align);
1da177e4
LT
2127
2128 /*
2129 * If the slab has been placed off-slab, and we have enough space then
2130 * move it on-slab. This is at the expense of any extra colouring.
2131 */
2132 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2133 flags &= ~CFLGS_OFF_SLAB;
2134 left_over -= slab_size;
2135 }
2136
2137 if (flags & CFLGS_OFF_SLAB) {
2138 /* really off slab. No need for manual alignment */
b28a02de
PE
2139 slab_size =
2140 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2141 }
2142
2143 cachep->colour_off = cache_line_size();
2144 /* Offset must be a multiple of the alignment. */
2145 if (cachep->colour_off < align)
2146 cachep->colour_off = align;
b28a02de 2147 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2148 cachep->slab_size = slab_size;
2149 cachep->flags = flags;
2150 cachep->gfpflags = 0;
2151 if (flags & SLAB_CACHE_DMA)
2152 cachep->gfpflags |= GFP_DMA;
3dafccf2 2153 cachep->buffer_size = size;
1da177e4
LT
2154
2155 if (flags & CFLGS_OFF_SLAB)
b2d55073 2156 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
2157 cachep->ctor = ctor;
2158 cachep->dtor = dtor;
2159 cachep->name = name;
2160
1da177e4 2161
f30cf7d1 2162 setup_cpu_cache(cachep);
1da177e4 2163
1da177e4
LT
2164 /* cache setup completed, link it into the list */
2165 list_add(&cachep->next, &cache_chain);
a737b3e2 2166oops:
1da177e4
LT
2167 if (!cachep && (flags & SLAB_PANIC))
2168 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2169 name);
fc0abb14 2170 mutex_unlock(&cache_chain_mutex);
f0188f47 2171 unlock_cpu_hotplug();
1da177e4
LT
2172 return cachep;
2173}
2174EXPORT_SYMBOL(kmem_cache_create);
2175
2176#if DEBUG
2177static void check_irq_off(void)
2178{
2179 BUG_ON(!irqs_disabled());
2180}
2181
2182static void check_irq_on(void)
2183{
2184 BUG_ON(irqs_disabled());
2185}
2186
343e0d7a 2187static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2188{
2189#ifdef CONFIG_SMP
2190 check_irq_off();
e498be7d 2191 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2192#endif
2193}
e498be7d 2194
343e0d7a 2195static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2196{
2197#ifdef CONFIG_SMP
2198 check_irq_off();
2199 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2200#endif
2201}
2202
1da177e4
LT
2203#else
2204#define check_irq_off() do { } while(0)
2205#define check_irq_on() do { } while(0)
2206#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2207#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2208#endif
2209
aab2207c
CL
2210static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2211 struct array_cache *ac,
2212 int force, int node);
2213
1da177e4
LT
2214static void do_drain(void *arg)
2215{
a737b3e2 2216 struct kmem_cache *cachep = arg;
1da177e4 2217 struct array_cache *ac;
ff69416e 2218 int node = numa_node_id();
1da177e4
LT
2219
2220 check_irq_off();
9a2dba4b 2221 ac = cpu_cache_get(cachep);
ff69416e
CL
2222 spin_lock(&cachep->nodelists[node]->list_lock);
2223 free_block(cachep, ac->entry, ac->avail, node);
2224 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2225 ac->avail = 0;
2226}
2227
343e0d7a 2228static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2229{
e498be7d
CL
2230 struct kmem_list3 *l3;
2231 int node;
2232
a07fa394 2233 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2234 check_irq_on();
b28a02de 2235 for_each_online_node(node) {
e498be7d 2236 l3 = cachep->nodelists[node];
a4523a8b
RD
2237 if (l3 && l3->alien)
2238 drain_alien_cache(cachep, l3->alien);
2239 }
2240
2241 for_each_online_node(node) {
2242 l3 = cachep->nodelists[node];
2243 if (l3)
aab2207c 2244 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2245 }
1da177e4
LT
2246}
2247
343e0d7a 2248static int __node_shrink(struct kmem_cache *cachep, int node)
1da177e4
LT
2249{
2250 struct slab *slabp;
e498be7d 2251 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
2252 int ret;
2253
e498be7d 2254 for (;;) {
1da177e4
LT
2255 struct list_head *p;
2256
e498be7d
CL
2257 p = l3->slabs_free.prev;
2258 if (p == &l3->slabs_free)
1da177e4
LT
2259 break;
2260
e498be7d 2261 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4 2262#if DEBUG
40094fa6 2263 BUG_ON(slabp->inuse);
1da177e4
LT
2264#endif
2265 list_del(&slabp->list);
2266
e498be7d
CL
2267 l3->free_objects -= cachep->num;
2268 spin_unlock_irq(&l3->list_lock);
1da177e4 2269 slab_destroy(cachep, slabp);
e498be7d 2270 spin_lock_irq(&l3->list_lock);
1da177e4 2271 }
b28a02de 2272 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
2273 return ret;
2274}
2275
343e0d7a 2276static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2277{
2278 int ret = 0, i = 0;
2279 struct kmem_list3 *l3;
2280
2281 drain_cpu_caches(cachep);
2282
2283 check_irq_on();
2284 for_each_online_node(i) {
2285 l3 = cachep->nodelists[i];
2286 if (l3) {
2287 spin_lock_irq(&l3->list_lock);
2288 ret += __node_shrink(cachep, i);
2289 spin_unlock_irq(&l3->list_lock);
2290 }
2291 }
2292 return (ret ? 1 : 0);
2293}
2294
1da177e4
LT
2295/**
2296 * kmem_cache_shrink - Shrink a cache.
2297 * @cachep: The cache to shrink.
2298 *
2299 * Releases as many slabs as possible for a cache.
2300 * To help debugging, a zero exit status indicates all slabs were released.
2301 */
343e0d7a 2302int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2303{
40094fa6 2304 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2305
2306 return __cache_shrink(cachep);
2307}
2308EXPORT_SYMBOL(kmem_cache_shrink);
2309
2310/**
2311 * kmem_cache_destroy - delete a cache
2312 * @cachep: the cache to destroy
2313 *
343e0d7a 2314 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2315 * Returns 0 on success.
2316 *
2317 * It is expected this function will be called by a module when it is
2318 * unloaded. This will remove the cache completely, and avoid a duplicate
2319 * cache being allocated each time a module is loaded and unloaded, if the
2320 * module doesn't have persistent in-kernel storage across loads and unloads.
2321 *
2322 * The cache must be empty before calling this function.
2323 *
2324 * The caller must guarantee that noone will allocate memory from the cache
2325 * during the kmem_cache_destroy().
2326 */
343e0d7a 2327int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4
LT
2328{
2329 int i;
e498be7d 2330 struct kmem_list3 *l3;
1da177e4 2331
40094fa6 2332 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2333
2334 /* Don't let CPUs to come and go */
2335 lock_cpu_hotplug();
2336
2337 /* Find the cache in the chain of caches. */
fc0abb14 2338 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2339 /*
2340 * the chain is never empty, cache_cache is never destroyed
2341 */
2342 list_del(&cachep->next);
fc0abb14 2343 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2344
2345 if (__cache_shrink(cachep)) {
2346 slab_error(cachep, "Can't free all objects");
fc0abb14 2347 mutex_lock(&cache_chain_mutex);
b28a02de 2348 list_add(&cachep->next, &cache_chain);
fc0abb14 2349 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2350 unlock_cpu_hotplug();
2351 return 1;
2352 }
2353
2354 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2355 synchronize_rcu();
1da177e4 2356
e498be7d 2357 for_each_online_cpu(i)
b28a02de 2358 kfree(cachep->array[i]);
1da177e4
LT
2359
2360 /* NUMA: free the list3 structures */
e498be7d 2361 for_each_online_node(i) {
a737b3e2
AM
2362 l3 = cachep->nodelists[i];
2363 if (l3) {
e498be7d
CL
2364 kfree(l3->shared);
2365 free_alien_cache(l3->alien);
2366 kfree(l3);
2367 }
2368 }
1da177e4 2369 kmem_cache_free(&cache_cache, cachep);
1da177e4 2370 unlock_cpu_hotplug();
1da177e4
LT
2371 return 0;
2372}
2373EXPORT_SYMBOL(kmem_cache_destroy);
2374
2375/* Get the memory for a slab management obj. */
343e0d7a 2376static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2377 int colour_off, gfp_t local_flags,
2378 int nodeid)
1da177e4
LT
2379{
2380 struct slab *slabp;
b28a02de 2381
1da177e4
LT
2382 if (OFF_SLAB(cachep)) {
2383 /* Slab management obj is off-slab. */
5b74ada7
RT
2384 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2385 local_flags, nodeid);
1da177e4
LT
2386 if (!slabp)
2387 return NULL;
2388 } else {
b28a02de 2389 slabp = objp + colour_off;
1da177e4
LT
2390 colour_off += cachep->slab_size;
2391 }
2392 slabp->inuse = 0;
2393 slabp->colouroff = colour_off;
b28a02de 2394 slabp->s_mem = objp + colour_off;
5b74ada7 2395 slabp->nodeid = nodeid;
1da177e4
LT
2396 return slabp;
2397}
2398
2399static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2400{
b28a02de 2401 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2402}
2403
343e0d7a 2404static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2405 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2406{
2407 int i;
2408
2409 for (i = 0; i < cachep->num; i++) {
8fea4e96 2410 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2411#if DEBUG
2412 /* need to poison the objs? */
2413 if (cachep->flags & SLAB_POISON)
2414 poison_obj(cachep, objp, POISON_FREE);
2415 if (cachep->flags & SLAB_STORE_USER)
2416 *dbg_userword(cachep, objp) = NULL;
2417
2418 if (cachep->flags & SLAB_RED_ZONE) {
2419 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2420 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2421 }
2422 /*
a737b3e2
AM
2423 * Constructors are not allowed to allocate memory from the same
2424 * cache which they are a constructor for. Otherwise, deadlock.
2425 * They must also be threaded.
1da177e4
LT
2426 */
2427 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2428 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2429 ctor_flags);
1da177e4
LT
2430
2431 if (cachep->flags & SLAB_RED_ZONE) {
2432 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2433 slab_error(cachep, "constructor overwrote the"
b28a02de 2434 " end of an object");
1da177e4
LT
2435 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2436 slab_error(cachep, "constructor overwrote the"
b28a02de 2437 " start of an object");
1da177e4 2438 }
a737b3e2
AM
2439 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2440 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2441 kernel_map_pages(virt_to_page(objp),
3dafccf2 2442 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2443#else
2444 if (cachep->ctor)
2445 cachep->ctor(objp, cachep, ctor_flags);
2446#endif
b28a02de 2447 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2448 }
b28a02de 2449 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2450 slabp->free = 0;
2451}
2452
343e0d7a 2453static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2454{
a737b3e2
AM
2455 if (flags & SLAB_DMA)
2456 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2457 else
2458 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2459}
2460
a737b3e2
AM
2461static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2462 int nodeid)
78d382d7 2463{
8fea4e96 2464 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2465 kmem_bufctl_t next;
2466
2467 slabp->inuse++;
2468 next = slab_bufctl(slabp)[slabp->free];
2469#if DEBUG
2470 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2471 WARN_ON(slabp->nodeid != nodeid);
2472#endif
2473 slabp->free = next;
2474
2475 return objp;
2476}
2477
a737b3e2
AM
2478static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2479 void *objp, int nodeid)
78d382d7 2480{
8fea4e96 2481 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2482
2483#if DEBUG
2484 /* Verify that the slab belongs to the intended node */
2485 WARN_ON(slabp->nodeid != nodeid);
2486
871751e2 2487 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2488 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2489 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2490 BUG();
2491 }
2492#endif
2493 slab_bufctl(slabp)[objnr] = slabp->free;
2494 slabp->free = objnr;
2495 slabp->inuse--;
2496}
2497
4776874f
PE
2498/*
2499 * Map pages beginning at addr to the given cache and slab. This is required
2500 * for the slab allocator to be able to lookup the cache and slab of a
2501 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2502 */
2503static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2504 void *addr)
1da177e4 2505{
4776874f 2506 int nr_pages;
1da177e4
LT
2507 struct page *page;
2508
4776874f 2509 page = virt_to_page(addr);
84097518 2510
4776874f 2511 nr_pages = 1;
84097518 2512 if (likely(!PageCompound(page)))
4776874f
PE
2513 nr_pages <<= cache->gfporder;
2514
1da177e4 2515 do {
4776874f
PE
2516 page_set_cache(page, cache);
2517 page_set_slab(page, slab);
1da177e4 2518 page++;
4776874f 2519 } while (--nr_pages);
1da177e4
LT
2520}
2521
2522/*
2523 * Grow (by 1) the number of slabs within a cache. This is called by
2524 * kmem_cache_alloc() when there are no active objs left in a cache.
2525 */
343e0d7a 2526static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2527{
b28a02de
PE
2528 struct slab *slabp;
2529 void *objp;
2530 size_t offset;
2531 gfp_t local_flags;
2532 unsigned long ctor_flags;
e498be7d 2533 struct kmem_list3 *l3;
1da177e4 2534
a737b3e2
AM
2535 /*
2536 * Be lazy and only check for valid flags here, keeping it out of the
2537 * critical path in kmem_cache_alloc().
1da177e4 2538 */
40094fa6 2539 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2540 if (flags & SLAB_NO_GROW)
2541 return 0;
2542
2543 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2544 local_flags = (flags & SLAB_LEVEL_MASK);
2545 if (!(local_flags & __GFP_WAIT))
2546 /*
2547 * Not allowed to sleep. Need to tell a constructor about
2548 * this - it might need to know...
2549 */
2550 ctor_flags |= SLAB_CTOR_ATOMIC;
2551
2e1217cf 2552 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2553 check_irq_off();
2e1217cf
RT
2554 l3 = cachep->nodelists[nodeid];
2555 spin_lock(&l3->list_lock);
1da177e4
LT
2556
2557 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2558 offset = l3->colour_next;
2559 l3->colour_next++;
2560 if (l3->colour_next >= cachep->colour)
2561 l3->colour_next = 0;
2562 spin_unlock(&l3->list_lock);
1da177e4 2563
2e1217cf 2564 offset *= cachep->colour_off;
1da177e4
LT
2565
2566 if (local_flags & __GFP_WAIT)
2567 local_irq_enable();
2568
2569 /*
2570 * The test for missing atomic flag is performed here, rather than
2571 * the more obvious place, simply to reduce the critical path length
2572 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2573 * will eventually be caught here (where it matters).
2574 */
2575 kmem_flagcheck(cachep, flags);
2576
a737b3e2
AM
2577 /*
2578 * Get mem for the objs. Attempt to allocate a physical page from
2579 * 'nodeid'.
e498be7d 2580 */
a737b3e2
AM
2581 objp = kmem_getpages(cachep, flags, nodeid);
2582 if (!objp)
1da177e4
LT
2583 goto failed;
2584
2585 /* Get slab management. */
5b74ada7 2586 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2587 if (!slabp)
1da177e4
LT
2588 goto opps1;
2589
e498be7d 2590 slabp->nodeid = nodeid;
4776874f 2591 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2592
2593 cache_init_objs(cachep, slabp, ctor_flags);
2594
2595 if (local_flags & __GFP_WAIT)
2596 local_irq_disable();
2597 check_irq_off();
e498be7d 2598 spin_lock(&l3->list_lock);
1da177e4
LT
2599
2600 /* Make slab active. */
e498be7d 2601 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2602 STATS_INC_GROWN(cachep);
e498be7d
CL
2603 l3->free_objects += cachep->num;
2604 spin_unlock(&l3->list_lock);
1da177e4 2605 return 1;
a737b3e2 2606opps1:
1da177e4 2607 kmem_freepages(cachep, objp);
a737b3e2 2608failed:
1da177e4
LT
2609 if (local_flags & __GFP_WAIT)
2610 local_irq_disable();
2611 return 0;
2612}
2613
2614#if DEBUG
2615
2616/*
2617 * Perform extra freeing checks:
2618 * - detect bad pointers.
2619 * - POISON/RED_ZONE checking
2620 * - destructor calls, for caches with POISON+dtor
2621 */
2622static void kfree_debugcheck(const void *objp)
2623{
2624 struct page *page;
2625
2626 if (!virt_addr_valid(objp)) {
2627 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2628 (unsigned long)objp);
2629 BUG();
1da177e4
LT
2630 }
2631 page = virt_to_page(objp);
2632 if (!PageSlab(page)) {
b28a02de
PE
2633 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2634 (unsigned long)objp);
1da177e4
LT
2635 BUG();
2636 }
2637}
2638
58ce1fd5
PE
2639static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2640{
2641 unsigned long redzone1, redzone2;
2642
2643 redzone1 = *dbg_redzone1(cache, obj);
2644 redzone2 = *dbg_redzone2(cache, obj);
2645
2646 /*
2647 * Redzone is ok.
2648 */
2649 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2650 return;
2651
2652 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2653 slab_error(cache, "double free detected");
2654 else
2655 slab_error(cache, "memory outside object was overwritten");
2656
2657 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2658 obj, redzone1, redzone2);
2659}
2660
343e0d7a 2661static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2662 void *caller)
1da177e4
LT
2663{
2664 struct page *page;
2665 unsigned int objnr;
2666 struct slab *slabp;
2667
3dafccf2 2668 objp -= obj_offset(cachep);
1da177e4
LT
2669 kfree_debugcheck(objp);
2670 page = virt_to_page(objp);
2671
065d41cb 2672 slabp = page_get_slab(page);
1da177e4
LT
2673
2674 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2675 verify_redzone_free(cachep, objp);
1da177e4
LT
2676 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2677 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2678 }
2679 if (cachep->flags & SLAB_STORE_USER)
2680 *dbg_userword(cachep, objp) = caller;
2681
8fea4e96 2682 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2683
2684 BUG_ON(objnr >= cachep->num);
8fea4e96 2685 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2686
2687 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2688 /*
2689 * Need to call the slab's constructor so the caller can
2690 * perform a verify of its state (debugging). Called without
2691 * the cache-lock held.
1da177e4 2692 */
3dafccf2 2693 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2694 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2695 }
2696 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2697 /* we want to cache poison the object,
2698 * call the destruction callback
2699 */
3dafccf2 2700 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2701 }
871751e2
AV
2702#ifdef CONFIG_DEBUG_SLAB_LEAK
2703 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2704#endif
1da177e4
LT
2705 if (cachep->flags & SLAB_POISON) {
2706#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2707 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2708 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2709 kernel_map_pages(virt_to_page(objp),
3dafccf2 2710 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2711 } else {
2712 poison_obj(cachep, objp, POISON_FREE);
2713 }
2714#else
2715 poison_obj(cachep, objp, POISON_FREE);
2716#endif
2717 }
2718 return objp;
2719}
2720
343e0d7a 2721static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2722{
2723 kmem_bufctl_t i;
2724 int entries = 0;
b28a02de 2725
1da177e4
LT
2726 /* Check slab's freelist to see if this obj is there. */
2727 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2728 entries++;
2729 if (entries > cachep->num || i >= cachep->num)
2730 goto bad;
2731 }
2732 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2733bad:
2734 printk(KERN_ERR "slab: Internal list corruption detected in "
2735 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2736 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2737 for (i = 0;
264132bc 2738 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2739 i++) {
a737b3e2 2740 if (i % 16 == 0)
1da177e4 2741 printk("\n%03x:", i);
b28a02de 2742 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2743 }
2744 printk("\n");
2745 BUG();
2746 }
2747}
2748#else
2749#define kfree_debugcheck(x) do { } while(0)
2750#define cache_free_debugcheck(x,objp,z) (objp)
2751#define check_slabp(x,y) do { } while(0)
2752#endif
2753
343e0d7a 2754static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2755{
2756 int batchcount;
2757 struct kmem_list3 *l3;
2758 struct array_cache *ac;
2759
2760 check_irq_off();
9a2dba4b 2761 ac = cpu_cache_get(cachep);
a737b3e2 2762retry:
1da177e4
LT
2763 batchcount = ac->batchcount;
2764 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2765 /*
2766 * If there was little recent activity on this cache, then
2767 * perform only a partial refill. Otherwise we could generate
2768 * refill bouncing.
1da177e4
LT
2769 */
2770 batchcount = BATCHREFILL_LIMIT;
2771 }
e498be7d
CL
2772 l3 = cachep->nodelists[numa_node_id()];
2773
2774 BUG_ON(ac->avail > 0 || !l3);
2775 spin_lock(&l3->list_lock);
1da177e4 2776
3ded175a
CL
2777 /* See if we can refill from the shared array */
2778 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2779 goto alloc_done;
2780
1da177e4
LT
2781 while (batchcount > 0) {
2782 struct list_head *entry;
2783 struct slab *slabp;
2784 /* Get slab alloc is to come from. */
2785 entry = l3->slabs_partial.next;
2786 if (entry == &l3->slabs_partial) {
2787 l3->free_touched = 1;
2788 entry = l3->slabs_free.next;
2789 if (entry == &l3->slabs_free)
2790 goto must_grow;
2791 }
2792
2793 slabp = list_entry(entry, struct slab, list);
2794 check_slabp(cachep, slabp);
2795 check_spinlock_acquired(cachep);
2796 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2797 STATS_INC_ALLOCED(cachep);
2798 STATS_INC_ACTIVE(cachep);
2799 STATS_SET_HIGH(cachep);
2800
78d382d7
MD
2801 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2802 numa_node_id());
1da177e4
LT
2803 }
2804 check_slabp(cachep, slabp);
2805
2806 /* move slabp to correct slabp list: */
2807 list_del(&slabp->list);
2808 if (slabp->free == BUFCTL_END)
2809 list_add(&slabp->list, &l3->slabs_full);
2810 else
2811 list_add(&slabp->list, &l3->slabs_partial);
2812 }
2813
a737b3e2 2814must_grow:
1da177e4 2815 l3->free_objects -= ac->avail;
a737b3e2 2816alloc_done:
e498be7d 2817 spin_unlock(&l3->list_lock);
1da177e4
LT
2818
2819 if (unlikely(!ac->avail)) {
2820 int x;
e498be7d
CL
2821 x = cache_grow(cachep, flags, numa_node_id());
2822
a737b3e2 2823 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2824 ac = cpu_cache_get(cachep);
a737b3e2 2825 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2826 return NULL;
2827
a737b3e2 2828 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2829 goto retry;
2830 }
2831 ac->touched = 1;
e498be7d 2832 return ac->entry[--ac->avail];
1da177e4
LT
2833}
2834
a737b3e2
AM
2835static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2836 gfp_t flags)
1da177e4
LT
2837{
2838 might_sleep_if(flags & __GFP_WAIT);
2839#if DEBUG
2840 kmem_flagcheck(cachep, flags);
2841#endif
2842}
2843
2844#if DEBUG
a737b3e2
AM
2845static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2846 gfp_t flags, void *objp, void *caller)
1da177e4 2847{
b28a02de 2848 if (!objp)
1da177e4 2849 return objp;
b28a02de 2850 if (cachep->flags & SLAB_POISON) {
1da177e4 2851#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2852 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2853 kernel_map_pages(virt_to_page(objp),
3dafccf2 2854 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2855 else
2856 check_poison_obj(cachep, objp);
2857#else
2858 check_poison_obj(cachep, objp);
2859#endif
2860 poison_obj(cachep, objp, POISON_INUSE);
2861 }
2862 if (cachep->flags & SLAB_STORE_USER)
2863 *dbg_userword(cachep, objp) = caller;
2864
2865 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2866 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2867 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2868 slab_error(cachep, "double free, or memory outside"
2869 " object was overwritten");
b28a02de 2870 printk(KERN_ERR
a737b3e2
AM
2871 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2872 objp, *dbg_redzone1(cachep, objp),
2873 *dbg_redzone2(cachep, objp));
1da177e4
LT
2874 }
2875 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2876 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2877 }
871751e2
AV
2878#ifdef CONFIG_DEBUG_SLAB_LEAK
2879 {
2880 struct slab *slabp;
2881 unsigned objnr;
2882
2883 slabp = page_get_slab(virt_to_page(objp));
2884 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2885 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2886 }
2887#endif
3dafccf2 2888 objp += obj_offset(cachep);
1da177e4 2889 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2890 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2891
2892 if (!(flags & __GFP_WAIT))
2893 ctor_flags |= SLAB_CTOR_ATOMIC;
2894
2895 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2896 }
1da177e4
LT
2897 return objp;
2898}
2899#else
2900#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2901#endif
2902
343e0d7a 2903static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2904{
b28a02de 2905 void *objp;
1da177e4
LT
2906 struct array_cache *ac;
2907
dc85da15 2908#ifdef CONFIG_NUMA
b2455396 2909 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
2910 objp = alternate_node_alloc(cachep, flags);
2911 if (objp != NULL)
2912 return objp;
dc85da15
CL
2913 }
2914#endif
2915
5c382300 2916 check_irq_off();
9a2dba4b 2917 ac = cpu_cache_get(cachep);
1da177e4
LT
2918 if (likely(ac->avail)) {
2919 STATS_INC_ALLOCHIT(cachep);
2920 ac->touched = 1;
e498be7d 2921 objp = ac->entry[--ac->avail];
1da177e4
LT
2922 } else {
2923 STATS_INC_ALLOCMISS(cachep);
2924 objp = cache_alloc_refill(cachep, flags);
2925 }
5c382300
AK
2926 return objp;
2927}
2928
a737b3e2
AM
2929static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2930 gfp_t flags, void *caller)
5c382300
AK
2931{
2932 unsigned long save_flags;
b28a02de 2933 void *objp;
5c382300
AK
2934
2935 cache_alloc_debugcheck_before(cachep, flags);
2936
2937 local_irq_save(save_flags);
2938 objp = ____cache_alloc(cachep, flags);
1da177e4 2939 local_irq_restore(save_flags);
34342e86 2940 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 2941 caller);
34342e86 2942 prefetchw(objp);
1da177e4
LT
2943 return objp;
2944}
2945
e498be7d 2946#ifdef CONFIG_NUMA
c61afb18 2947/*
b2455396 2948 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
2949 *
2950 * If we are in_interrupt, then process context, including cpusets and
2951 * mempolicy, may not apply and should not be used for allocation policy.
2952 */
2953static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2954{
2955 int nid_alloc, nid_here;
2956
2957 if (in_interrupt())
2958 return NULL;
2959 nid_alloc = nid_here = numa_node_id();
2960 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2961 nid_alloc = cpuset_mem_spread_node();
2962 else if (current->mempolicy)
2963 nid_alloc = slab_node(current->mempolicy);
2964 if (nid_alloc != nid_here)
2965 return __cache_alloc_node(cachep, flags, nid_alloc);
2966 return NULL;
2967}
2968
e498be7d
CL
2969/*
2970 * A interface to enable slab creation on nodeid
1da177e4 2971 */
a737b3e2
AM
2972static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2973 int nodeid)
e498be7d
CL
2974{
2975 struct list_head *entry;
b28a02de
PE
2976 struct slab *slabp;
2977 struct kmem_list3 *l3;
2978 void *obj;
b28a02de
PE
2979 int x;
2980
2981 l3 = cachep->nodelists[nodeid];
2982 BUG_ON(!l3);
2983
a737b3e2 2984retry:
ca3b9b91 2985 check_irq_off();
b28a02de
PE
2986 spin_lock(&l3->list_lock);
2987 entry = l3->slabs_partial.next;
2988 if (entry == &l3->slabs_partial) {
2989 l3->free_touched = 1;
2990 entry = l3->slabs_free.next;
2991 if (entry == &l3->slabs_free)
2992 goto must_grow;
2993 }
2994
2995 slabp = list_entry(entry, struct slab, list);
2996 check_spinlock_acquired_node(cachep, nodeid);
2997 check_slabp(cachep, slabp);
2998
2999 STATS_INC_NODEALLOCS(cachep);
3000 STATS_INC_ACTIVE(cachep);
3001 STATS_SET_HIGH(cachep);
3002
3003 BUG_ON(slabp->inuse == cachep->num);
3004
78d382d7 3005 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3006 check_slabp(cachep, slabp);
3007 l3->free_objects--;
3008 /* move slabp to correct slabp list: */
3009 list_del(&slabp->list);
3010
a737b3e2 3011 if (slabp->free == BUFCTL_END)
b28a02de 3012 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3013 else
b28a02de 3014 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3015
b28a02de
PE
3016 spin_unlock(&l3->list_lock);
3017 goto done;
e498be7d 3018
a737b3e2 3019must_grow:
b28a02de
PE
3020 spin_unlock(&l3->list_lock);
3021 x = cache_grow(cachep, flags, nodeid);
1da177e4 3022
b28a02de
PE
3023 if (!x)
3024 return NULL;
e498be7d 3025
b28a02de 3026 goto retry;
a737b3e2 3027done:
b28a02de 3028 return obj;
e498be7d
CL
3029}
3030#endif
3031
3032/*
3033 * Caller needs to acquire correct kmem_list's list_lock
3034 */
343e0d7a 3035static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3036 int node)
1da177e4
LT
3037{
3038 int i;
e498be7d 3039 struct kmem_list3 *l3;
1da177e4
LT
3040
3041 for (i = 0; i < nr_objects; i++) {
3042 void *objp = objpp[i];
3043 struct slab *slabp;
1da177e4 3044
6ed5eb22 3045 slabp = virt_to_slab(objp);
ff69416e 3046 l3 = cachep->nodelists[node];
1da177e4 3047 list_del(&slabp->list);
ff69416e 3048 check_spinlock_acquired_node(cachep, node);
1da177e4 3049 check_slabp(cachep, slabp);
78d382d7 3050 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3051 STATS_DEC_ACTIVE(cachep);
e498be7d 3052 l3->free_objects++;
1da177e4
LT
3053 check_slabp(cachep, slabp);
3054
3055 /* fixup slab chains */
3056 if (slabp->inuse == 0) {
e498be7d
CL
3057 if (l3->free_objects > l3->free_limit) {
3058 l3->free_objects -= cachep->num;
1da177e4
LT
3059 slab_destroy(cachep, slabp);
3060 } else {
e498be7d 3061 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3062 }
3063 } else {
3064 /* Unconditionally move a slab to the end of the
3065 * partial list on free - maximum time for the
3066 * other objects to be freed, too.
3067 */
e498be7d 3068 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3069 }
3070 }
3071}
3072
343e0d7a 3073static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3074{
3075 int batchcount;
e498be7d 3076 struct kmem_list3 *l3;
ff69416e 3077 int node = numa_node_id();
1da177e4
LT
3078
3079 batchcount = ac->batchcount;
3080#if DEBUG
3081 BUG_ON(!batchcount || batchcount > ac->avail);
3082#endif
3083 check_irq_off();
ff69416e 3084 l3 = cachep->nodelists[node];
e498be7d
CL
3085 spin_lock(&l3->list_lock);
3086 if (l3->shared) {
3087 struct array_cache *shared_array = l3->shared;
b28a02de 3088 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3089 if (max) {
3090 if (batchcount > max)
3091 batchcount = max;
e498be7d 3092 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3093 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3094 shared_array->avail += batchcount;
3095 goto free_done;
3096 }
3097 }
3098
ff69416e 3099 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3100free_done:
1da177e4
LT
3101#if STATS
3102 {
3103 int i = 0;
3104 struct list_head *p;
3105
e498be7d
CL
3106 p = l3->slabs_free.next;
3107 while (p != &(l3->slabs_free)) {
1da177e4
LT
3108 struct slab *slabp;
3109
3110 slabp = list_entry(p, struct slab, list);
3111 BUG_ON(slabp->inuse);
3112
3113 i++;
3114 p = p->next;
3115 }
3116 STATS_SET_FREEABLE(cachep, i);
3117 }
3118#endif
e498be7d 3119 spin_unlock(&l3->list_lock);
1da177e4 3120 ac->avail -= batchcount;
a737b3e2 3121 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3122}
3123
3124/*
a737b3e2
AM
3125 * Release an obj back to its cache. If the obj has a constructed state, it must
3126 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3127 */
343e0d7a 3128static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3129{
9a2dba4b 3130 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3131
3132 check_irq_off();
3133 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3134
729bd0b7
PE
3135 if (cache_free_alien(cachep, objp))
3136 return;
3137
1da177e4
LT
3138 if (likely(ac->avail < ac->limit)) {
3139 STATS_INC_FREEHIT(cachep);
e498be7d 3140 ac->entry[ac->avail++] = objp;
1da177e4
LT
3141 return;
3142 } else {
3143 STATS_INC_FREEMISS(cachep);
3144 cache_flusharray(cachep, ac);
e498be7d 3145 ac->entry[ac->avail++] = objp;
1da177e4
LT
3146 }
3147}
3148
3149/**
3150 * kmem_cache_alloc - Allocate an object
3151 * @cachep: The cache to allocate from.
3152 * @flags: See kmalloc().
3153 *
3154 * Allocate an object from this cache. The flags are only relevant
3155 * if the cache has no available objects.
3156 */
343e0d7a 3157void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3158{
7fd6b141 3159 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3160}
3161EXPORT_SYMBOL(kmem_cache_alloc);
3162
a8c0f9a4
PE
3163/**
3164 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3165 * @cache: The cache to allocate from.
3166 * @flags: See kmalloc().
3167 *
3168 * Allocate an object from this cache and set the allocated memory to zero.
3169 * The flags are only relevant if the cache has no available objects.
3170 */
3171void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3172{
3173 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3174 if (ret)
3175 memset(ret, 0, obj_size(cache));
3176 return ret;
3177}
3178EXPORT_SYMBOL(kmem_cache_zalloc);
3179
1da177e4
LT
3180/**
3181 * kmem_ptr_validate - check if an untrusted pointer might
3182 * be a slab entry.
3183 * @cachep: the cache we're checking against
3184 * @ptr: pointer to validate
3185 *
3186 * This verifies that the untrusted pointer looks sane:
3187 * it is _not_ a guarantee that the pointer is actually
3188 * part of the slab cache in question, but it at least
3189 * validates that the pointer can be dereferenced and
3190 * looks half-way sane.
3191 *
3192 * Currently only used for dentry validation.
3193 */
343e0d7a 3194int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3195{
b28a02de 3196 unsigned long addr = (unsigned long)ptr;
1da177e4 3197 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3198 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3199 unsigned long size = cachep->buffer_size;
1da177e4
LT
3200 struct page *page;
3201
3202 if (unlikely(addr < min_addr))
3203 goto out;
3204 if (unlikely(addr > (unsigned long)high_memory - size))
3205 goto out;
3206 if (unlikely(addr & align_mask))
3207 goto out;
3208 if (unlikely(!kern_addr_valid(addr)))
3209 goto out;
3210 if (unlikely(!kern_addr_valid(addr + size - 1)))
3211 goto out;
3212 page = virt_to_page(ptr);
3213 if (unlikely(!PageSlab(page)))
3214 goto out;
065d41cb 3215 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3216 goto out;
3217 return 1;
a737b3e2 3218out:
1da177e4
LT
3219 return 0;
3220}
3221
3222#ifdef CONFIG_NUMA
3223/**
3224 * kmem_cache_alloc_node - Allocate an object on the specified node
3225 * @cachep: The cache to allocate from.
3226 * @flags: See kmalloc().
3227 * @nodeid: node number of the target node.
3228 *
3229 * Identical to kmem_cache_alloc, except that this function is slow
3230 * and can sleep. And it will allocate memory on the given node, which
3231 * can improve the performance for cpu bound structures.
e498be7d
CL
3232 * New and improved: it will now make sure that the object gets
3233 * put on the correct node list so that there is no false sharing.
1da177e4 3234 */
343e0d7a 3235void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3236{
e498be7d
CL
3237 unsigned long save_flags;
3238 void *ptr;
1da177e4 3239
e498be7d
CL
3240 cache_alloc_debugcheck_before(cachep, flags);
3241 local_irq_save(save_flags);
18f820f6
CL
3242
3243 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3244 !cachep->nodelists[nodeid])
5c382300
AK
3245 ptr = ____cache_alloc(cachep, flags);
3246 else
3247 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3248 local_irq_restore(save_flags);
18f820f6
CL
3249
3250 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3251 __builtin_return_address(0));
1da177e4 3252
e498be7d 3253 return ptr;
1da177e4
LT
3254}
3255EXPORT_SYMBOL(kmem_cache_alloc_node);
3256
dd0fc66f 3257void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3258{
343e0d7a 3259 struct kmem_cache *cachep;
97e2bde4
MS
3260
3261 cachep = kmem_find_general_cachep(size, flags);
3262 if (unlikely(cachep == NULL))
3263 return NULL;
3264 return kmem_cache_alloc_node(cachep, flags, node);
3265}
3266EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
3267#endif
3268
3269/**
800590f5 3270 * __do_kmalloc - allocate memory
1da177e4 3271 * @size: how many bytes of memory are required.
800590f5 3272 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3273 * @caller: function caller for debug tracking of the caller
1da177e4 3274 */
7fd6b141
PE
3275static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3276 void *caller)
1da177e4 3277{
343e0d7a 3278 struct kmem_cache *cachep;
1da177e4 3279
97e2bde4
MS
3280 /* If you want to save a few bytes .text space: replace
3281 * __ with kmem_.
3282 * Then kmalloc uses the uninlined functions instead of the inline
3283 * functions.
3284 */
3285 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3286 if (unlikely(cachep == NULL))
3287 return NULL;
7fd6b141
PE
3288 return __cache_alloc(cachep, flags, caller);
3289}
3290
7fd6b141
PE
3291
3292void *__kmalloc(size_t size, gfp_t flags)
3293{
871751e2 3294#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3295 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3296#else
3297 return __do_kmalloc(size, flags, __builtin_return_address(0));
3298#endif
1da177e4
LT
3299}
3300EXPORT_SYMBOL(__kmalloc);
3301
871751e2 3302#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3303void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3304{
3305 return __do_kmalloc(size, flags, caller);
3306}
3307EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3308#endif
3309
1da177e4
LT
3310#ifdef CONFIG_SMP
3311/**
3312 * __alloc_percpu - allocate one copy of the object for every present
3313 * cpu in the system, zeroing them.
3314 * Objects should be dereferenced using the per_cpu_ptr macro only.
3315 *
3316 * @size: how many bytes of memory are required.
1da177e4 3317 */
f9f75005 3318void *__alloc_percpu(size_t size)
1da177e4
LT
3319{
3320 int i;
b28a02de 3321 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3322
3323 if (!pdata)
3324 return NULL;
3325
e498be7d
CL
3326 /*
3327 * Cannot use for_each_online_cpu since a cpu may come online
3328 * and we have no way of figuring out how to fix the array
3329 * that we have allocated then....
3330 */
0a945022 3331 for_each_possible_cpu(i) {
e498be7d
CL
3332 int node = cpu_to_node(i);
3333
3334 if (node_online(node))
3335 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3336 else
3337 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3338
3339 if (!pdata->ptrs[i])
3340 goto unwind_oom;
3341 memset(pdata->ptrs[i], 0, size);
3342 }
3343
3344 /* Catch derefs w/o wrappers */
b28a02de 3345 return (void *)(~(unsigned long)pdata);
1da177e4 3346
a737b3e2 3347unwind_oom:
1da177e4
LT
3348 while (--i >= 0) {
3349 if (!cpu_possible(i))
3350 continue;
3351 kfree(pdata->ptrs[i]);
3352 }
3353 kfree(pdata);
3354 return NULL;
3355}
3356EXPORT_SYMBOL(__alloc_percpu);
3357#endif
3358
3359/**
3360 * kmem_cache_free - Deallocate an object
3361 * @cachep: The cache the allocation was from.
3362 * @objp: The previously allocated object.
3363 *
3364 * Free an object which was previously allocated from this
3365 * cache.
3366 */
343e0d7a 3367void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3368{
3369 unsigned long flags;
3370
ddc2e812
PE
3371 BUG_ON(virt_to_cache(objp) != cachep);
3372
1da177e4
LT
3373 local_irq_save(flags);
3374 __cache_free(cachep, objp);
3375 local_irq_restore(flags);
3376}
3377EXPORT_SYMBOL(kmem_cache_free);
3378
1da177e4
LT
3379/**
3380 * kfree - free previously allocated memory
3381 * @objp: pointer returned by kmalloc.
3382 *
80e93eff
PE
3383 * If @objp is NULL, no operation is performed.
3384 *
1da177e4
LT
3385 * Don't free memory not originally allocated by kmalloc()
3386 * or you will run into trouble.
3387 */
3388void kfree(const void *objp)
3389{
343e0d7a 3390 struct kmem_cache *c;
1da177e4
LT
3391 unsigned long flags;
3392
3393 if (unlikely(!objp))
3394 return;
3395 local_irq_save(flags);
3396 kfree_debugcheck(objp);
6ed5eb22 3397 c = virt_to_cache(objp);
3dafccf2 3398 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3399 __cache_free(c, (void *)objp);
1da177e4
LT
3400 local_irq_restore(flags);
3401}
3402EXPORT_SYMBOL(kfree);
3403
3404#ifdef CONFIG_SMP
3405/**
3406 * free_percpu - free previously allocated percpu memory
3407 * @objp: pointer returned by alloc_percpu.
3408 *
3409 * Don't free memory not originally allocated by alloc_percpu()
3410 * The complemented objp is to check for that.
3411 */
b28a02de 3412void free_percpu(const void *objp)
1da177e4
LT
3413{
3414 int i;
b28a02de 3415 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3416
e498be7d
CL
3417 /*
3418 * We allocate for all cpus so we cannot use for online cpu here.
3419 */
0a945022 3420 for_each_possible_cpu(i)
b28a02de 3421 kfree(p->ptrs[i]);
1da177e4
LT
3422 kfree(p);
3423}
3424EXPORT_SYMBOL(free_percpu);
3425#endif
3426
343e0d7a 3427unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3428{
3dafccf2 3429 return obj_size(cachep);
1da177e4
LT
3430}
3431EXPORT_SYMBOL(kmem_cache_size);
3432
343e0d7a 3433const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3434{
3435 return cachep->name;
3436}
3437EXPORT_SYMBOL_GPL(kmem_cache_name);
3438
e498be7d 3439/*
0718dc2a 3440 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3441 */
343e0d7a 3442static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3443{
3444 int node;
3445 struct kmem_list3 *l3;
cafeb02e
CL
3446 struct array_cache *new_shared;
3447 struct array_cache **new_alien;
e498be7d
CL
3448
3449 for_each_online_node(node) {
cafeb02e 3450
a737b3e2
AM
3451 new_alien = alloc_alien_cache(node, cachep->limit);
3452 if (!new_alien)
e498be7d 3453 goto fail;
cafeb02e 3454
0718dc2a
CL
3455 new_shared = alloc_arraycache(node,
3456 cachep->shared*cachep->batchcount,
a737b3e2 3457 0xbaadf00d);
0718dc2a
CL
3458 if (!new_shared) {
3459 free_alien_cache(new_alien);
e498be7d 3460 goto fail;
0718dc2a 3461 }
cafeb02e 3462
a737b3e2
AM
3463 l3 = cachep->nodelists[node];
3464 if (l3) {
cafeb02e
CL
3465 struct array_cache *shared = l3->shared;
3466
e498be7d
CL
3467 spin_lock_irq(&l3->list_lock);
3468
cafeb02e 3469 if (shared)
0718dc2a
CL
3470 free_block(cachep, shared->entry,
3471 shared->avail, node);
e498be7d 3472
cafeb02e
CL
3473 l3->shared = new_shared;
3474 if (!l3->alien) {
e498be7d
CL
3475 l3->alien = new_alien;
3476 new_alien = NULL;
3477 }
b28a02de 3478 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3479 cachep->batchcount + cachep->num;
e498be7d 3480 spin_unlock_irq(&l3->list_lock);
cafeb02e 3481 kfree(shared);
e498be7d
CL
3482 free_alien_cache(new_alien);
3483 continue;
3484 }
a737b3e2 3485 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3486 if (!l3) {
3487 free_alien_cache(new_alien);
3488 kfree(new_shared);
e498be7d 3489 goto fail;
0718dc2a 3490 }
e498be7d
CL
3491
3492 kmem_list3_init(l3);
3493 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3494 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3495 l3->shared = new_shared;
e498be7d 3496 l3->alien = new_alien;
b28a02de 3497 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3498 cachep->batchcount + cachep->num;
e498be7d
CL
3499 cachep->nodelists[node] = l3;
3500 }
cafeb02e 3501 return 0;
0718dc2a 3502
a737b3e2 3503fail:
0718dc2a
CL
3504 if (!cachep->next.next) {
3505 /* Cache is not active yet. Roll back what we did */
3506 node--;
3507 while (node >= 0) {
3508 if (cachep->nodelists[node]) {
3509 l3 = cachep->nodelists[node];
3510
3511 kfree(l3->shared);
3512 free_alien_cache(l3->alien);
3513 kfree(l3);
3514 cachep->nodelists[node] = NULL;
3515 }
3516 node--;
3517 }
3518 }
cafeb02e 3519 return -ENOMEM;
e498be7d
CL
3520}
3521
1da177e4 3522struct ccupdate_struct {
343e0d7a 3523 struct kmem_cache *cachep;
1da177e4
LT
3524 struct array_cache *new[NR_CPUS];
3525};
3526
3527static void do_ccupdate_local(void *info)
3528{
a737b3e2 3529 struct ccupdate_struct *new = info;
1da177e4
LT
3530 struct array_cache *old;
3531
3532 check_irq_off();
9a2dba4b 3533 old = cpu_cache_get(new->cachep);
e498be7d 3534
1da177e4
LT
3535 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3536 new->new[smp_processor_id()] = old;
3537}
3538
b5d8ca7c 3539/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3540static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3541 int batchcount, int shared)
1da177e4
LT
3542{
3543 struct ccupdate_struct new;
e498be7d 3544 int i, err;
1da177e4 3545
b28a02de 3546 memset(&new.new, 0, sizeof(new.new));
e498be7d 3547 for_each_online_cpu(i) {
a737b3e2
AM
3548 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3549 batchcount);
e498be7d 3550 if (!new.new[i]) {
b28a02de
PE
3551 for (i--; i >= 0; i--)
3552 kfree(new.new[i]);
e498be7d 3553 return -ENOMEM;
1da177e4
LT
3554 }
3555 }
3556 new.cachep = cachep;
3557
a07fa394 3558 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
e498be7d 3559
1da177e4 3560 check_irq_on();
1da177e4
LT
3561 cachep->batchcount = batchcount;
3562 cachep->limit = limit;
e498be7d 3563 cachep->shared = shared;
1da177e4 3564
e498be7d 3565 for_each_online_cpu(i) {
1da177e4
LT
3566 struct array_cache *ccold = new.new[i];
3567 if (!ccold)
3568 continue;
e498be7d 3569 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3570 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3571 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3572 kfree(ccold);
3573 }
1da177e4 3574
e498be7d
CL
3575 err = alloc_kmemlist(cachep);
3576 if (err) {
3577 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3578 cachep->name, -err);
e498be7d 3579 BUG();
1da177e4 3580 }
1da177e4
LT
3581 return 0;
3582}
3583
b5d8ca7c 3584/* Called with cache_chain_mutex held always */
343e0d7a 3585static void enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3586{
3587 int err;
3588 int limit, shared;
3589
a737b3e2
AM
3590 /*
3591 * The head array serves three purposes:
1da177e4
LT
3592 * - create a LIFO ordering, i.e. return objects that are cache-warm
3593 * - reduce the number of spinlock operations.
a737b3e2 3594 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3595 * bufctl chains: array operations are cheaper.
3596 * The numbers are guessed, we should auto-tune as described by
3597 * Bonwick.
3598 */
3dafccf2 3599 if (cachep->buffer_size > 131072)
1da177e4 3600 limit = 1;
3dafccf2 3601 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3602 limit = 8;
3dafccf2 3603 else if (cachep->buffer_size > 1024)
1da177e4 3604 limit = 24;
3dafccf2 3605 else if (cachep->buffer_size > 256)
1da177e4
LT
3606 limit = 54;
3607 else
3608 limit = 120;
3609
a737b3e2
AM
3610 /*
3611 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3612 * allocation behaviour: Most allocs on one cpu, most free operations
3613 * on another cpu. For these cases, an efficient object passing between
3614 * cpus is necessary. This is provided by a shared array. The array
3615 * replaces Bonwick's magazine layer.
3616 * On uniprocessor, it's functionally equivalent (but less efficient)
3617 * to a larger limit. Thus disabled by default.
3618 */
3619 shared = 0;
3620#ifdef CONFIG_SMP
3dafccf2 3621 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3622 shared = 8;
3623#endif
3624
3625#if DEBUG
a737b3e2
AM
3626 /*
3627 * With debugging enabled, large batchcount lead to excessively long
3628 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3629 */
3630 if (limit > 32)
3631 limit = 32;
3632#endif
b28a02de 3633 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3634 if (err)
3635 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3636 cachep->name, -err);
1da177e4
LT
3637}
3638
1b55253a
CL
3639/*
3640 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3641 * necessary. Note that the l3 listlock also protects the array_cache
3642 * if drain_array() is used on the shared array.
1b55253a
CL
3643 */
3644void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3645 struct array_cache *ac, int force, int node)
1da177e4
LT
3646{
3647 int tofree;
3648
1b55253a
CL
3649 if (!ac || !ac->avail)
3650 return;
1da177e4
LT
3651 if (ac->touched && !force) {
3652 ac->touched = 0;
b18e7e65 3653 } else {
1b55253a 3654 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3655 if (ac->avail) {
3656 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3657 if (tofree > ac->avail)
3658 tofree = (ac->avail + 1) / 2;
3659 free_block(cachep, ac->entry, tofree, node);
3660 ac->avail -= tofree;
3661 memmove(ac->entry, &(ac->entry[tofree]),
3662 sizeof(void *) * ac->avail);
3663 }
1b55253a 3664 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3665 }
3666}
3667
3668/**
3669 * cache_reap - Reclaim memory from caches.
1e5d5331 3670 * @unused: unused parameter
1da177e4
LT
3671 *
3672 * Called from workqueue/eventd every few seconds.
3673 * Purpose:
3674 * - clear the per-cpu caches for this CPU.
3675 * - return freeable pages to the main free memory pool.
3676 *
a737b3e2
AM
3677 * If we cannot acquire the cache chain mutex then just give up - we'll try
3678 * again on the next iteration.
1da177e4
LT
3679 */
3680static void cache_reap(void *unused)
3681{
7a7c381d 3682 struct kmem_cache *searchp;
e498be7d 3683 struct kmem_list3 *l3;
aab2207c 3684 int node = numa_node_id();
1da177e4 3685
fc0abb14 3686 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3687 /* Give up. Setup the next iteration. */
b28a02de
PE
3688 schedule_delayed_work(&__get_cpu_var(reap_work),
3689 REAPTIMEOUT_CPUC);
1da177e4
LT
3690 return;
3691 }
3692
7a7c381d 3693 list_for_each_entry(searchp, &cache_chain, next) {
b28a02de 3694 struct list_head *p;
1da177e4
LT
3695 int tofree;
3696 struct slab *slabp;
3697
1da177e4
LT
3698 check_irq_on();
3699
35386e3b
CL
3700 /*
3701 * We only take the l3 lock if absolutely necessary and we
3702 * have established with reasonable certainty that
3703 * we can do some work if the lock was obtained.
3704 */
aab2207c 3705 l3 = searchp->nodelists[node];
35386e3b 3706
8fce4d8e 3707 reap_alien(searchp, l3);
1da177e4 3708
aab2207c 3709 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3710
35386e3b
CL
3711 /*
3712 * These are racy checks but it does not matter
3713 * if we skip one check or scan twice.
3714 */
e498be7d 3715 if (time_after(l3->next_reap, jiffies))
35386e3b 3716 goto next;
1da177e4 3717
e498be7d 3718 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3719
aab2207c 3720 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3721
e498be7d
CL
3722 if (l3->free_touched) {
3723 l3->free_touched = 0;
35386e3b 3724 goto next;
1da177e4
LT
3725 }
3726
a737b3e2
AM
3727 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3728 (5 * searchp->num);
1da177e4 3729 do {
35386e3b
CL
3730 /*
3731 * Do not lock if there are no free blocks.
3732 */
3733 if (list_empty(&l3->slabs_free))
3734 break;
3735
3736 spin_lock_irq(&l3->list_lock);
e498be7d 3737 p = l3->slabs_free.next;
35386e3b
CL
3738 if (p == &(l3->slabs_free)) {
3739 spin_unlock_irq(&l3->list_lock);
1da177e4 3740 break;
35386e3b 3741 }
1da177e4
LT
3742
3743 slabp = list_entry(p, struct slab, list);
3744 BUG_ON(slabp->inuse);
3745 list_del(&slabp->list);
3746 STATS_INC_REAPED(searchp);
3747
a737b3e2
AM
3748 /*
3749 * Safe to drop the lock. The slab is no longer linked
3750 * to the cache. searchp cannot disappear, we hold
1da177e4
LT
3751 * cache_chain_lock
3752 */
e498be7d
CL
3753 l3->free_objects -= searchp->num;
3754 spin_unlock_irq(&l3->list_lock);
1da177e4 3755 slab_destroy(searchp, slabp);
b28a02de 3756 } while (--tofree > 0);
35386e3b 3757next:
1da177e4
LT
3758 cond_resched();
3759 }
3760 check_irq_on();
fc0abb14 3761 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3762 next_reap_node();
a737b3e2 3763 /* Set up the next iteration */
cd61ef62 3764 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3765}
3766
3767#ifdef CONFIG_PROC_FS
3768
85289f98 3769static void print_slabinfo_header(struct seq_file *m)
1da177e4 3770{
85289f98
PE
3771 /*
3772 * Output format version, so at least we can change it
3773 * without _too_ many complaints.
3774 */
1da177e4 3775#if STATS
85289f98 3776 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3777#else
85289f98 3778 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3779#endif
85289f98
PE
3780 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3781 "<objperslab> <pagesperslab>");
3782 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3783 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3784#if STATS
85289f98 3785 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3786 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3787 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3788#endif
85289f98
PE
3789 seq_putc(m, '\n');
3790}
3791
3792static void *s_start(struct seq_file *m, loff_t *pos)
3793{
3794 loff_t n = *pos;
3795 struct list_head *p;
3796
fc0abb14 3797 mutex_lock(&cache_chain_mutex);
85289f98
PE
3798 if (!n)
3799 print_slabinfo_header(m);
1da177e4
LT
3800 p = cache_chain.next;
3801 while (n--) {
3802 p = p->next;
3803 if (p == &cache_chain)
3804 return NULL;
3805 }
343e0d7a 3806 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3807}
3808
3809static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3810{
343e0d7a 3811 struct kmem_cache *cachep = p;
1da177e4 3812 ++*pos;
a737b3e2
AM
3813 return cachep->next.next == &cache_chain ?
3814 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3815}
3816
3817static void s_stop(struct seq_file *m, void *p)
3818{
fc0abb14 3819 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3820}
3821
3822static int s_show(struct seq_file *m, void *p)
3823{
343e0d7a 3824 struct kmem_cache *cachep = p;
b28a02de
PE
3825 struct slab *slabp;
3826 unsigned long active_objs;
3827 unsigned long num_objs;
3828 unsigned long active_slabs = 0;
3829 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3830 const char *name;
1da177e4 3831 char *error = NULL;
e498be7d
CL
3832 int node;
3833 struct kmem_list3 *l3;
1da177e4 3834
1da177e4
LT
3835 active_objs = 0;
3836 num_slabs = 0;
e498be7d
CL
3837 for_each_online_node(node) {
3838 l3 = cachep->nodelists[node];
3839 if (!l3)
3840 continue;
3841
ca3b9b91
RT
3842 check_irq_on();
3843 spin_lock_irq(&l3->list_lock);
e498be7d 3844
7a7c381d 3845 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3846 if (slabp->inuse != cachep->num && !error)
3847 error = "slabs_full accounting error";
3848 active_objs += cachep->num;
3849 active_slabs++;
3850 }
7a7c381d 3851 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3852 if (slabp->inuse == cachep->num && !error)
3853 error = "slabs_partial inuse accounting error";
3854 if (!slabp->inuse && !error)
3855 error = "slabs_partial/inuse accounting error";
3856 active_objs += slabp->inuse;
3857 active_slabs++;
3858 }
7a7c381d 3859 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3860 if (slabp->inuse && !error)
3861 error = "slabs_free/inuse accounting error";
3862 num_slabs++;
3863 }
3864 free_objects += l3->free_objects;
4484ebf1
RT
3865 if (l3->shared)
3866 shared_avail += l3->shared->avail;
e498be7d 3867
ca3b9b91 3868 spin_unlock_irq(&l3->list_lock);
1da177e4 3869 }
b28a02de
PE
3870 num_slabs += active_slabs;
3871 num_objs = num_slabs * cachep->num;
e498be7d 3872 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3873 error = "free_objects accounting error";
3874
b28a02de 3875 name = cachep->name;
1da177e4
LT
3876 if (error)
3877 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3878
3879 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3880 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3881 cachep->num, (1 << cachep->gfporder));
1da177e4 3882 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3883 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3884 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3885 active_slabs, num_slabs, shared_avail);
1da177e4 3886#if STATS
b28a02de 3887 { /* list3 stats */
1da177e4
LT
3888 unsigned long high = cachep->high_mark;
3889 unsigned long allocs = cachep->num_allocations;
3890 unsigned long grown = cachep->grown;
3891 unsigned long reaped = cachep->reaped;
3892 unsigned long errors = cachep->errors;
3893 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3894 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3895 unsigned long node_frees = cachep->node_frees;
fb7faf33 3896 unsigned long overflows = cachep->node_overflow;
1da177e4 3897
e498be7d 3898 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3899 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3900 reaped, errors, max_freeable, node_allocs,
fb7faf33 3901 node_frees, overflows);
1da177e4
LT
3902 }
3903 /* cpu stats */
3904 {
3905 unsigned long allochit = atomic_read(&cachep->allochit);
3906 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3907 unsigned long freehit = atomic_read(&cachep->freehit);
3908 unsigned long freemiss = atomic_read(&cachep->freemiss);
3909
3910 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3911 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3912 }
3913#endif
3914 seq_putc(m, '\n');
1da177e4
LT
3915 return 0;
3916}
3917
3918/*
3919 * slabinfo_op - iterator that generates /proc/slabinfo
3920 *
3921 * Output layout:
3922 * cache-name
3923 * num-active-objs
3924 * total-objs
3925 * object size
3926 * num-active-slabs
3927 * total-slabs
3928 * num-pages-per-slab
3929 * + further values on SMP and with statistics enabled
3930 */
3931
3932struct seq_operations slabinfo_op = {
b28a02de
PE
3933 .start = s_start,
3934 .next = s_next,
3935 .stop = s_stop,
3936 .show = s_show,
1da177e4
LT
3937};
3938
3939#define MAX_SLABINFO_WRITE 128
3940/**
3941 * slabinfo_write - Tuning for the slab allocator
3942 * @file: unused
3943 * @buffer: user buffer
3944 * @count: data length
3945 * @ppos: unused
3946 */
b28a02de
PE
3947ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3948 size_t count, loff_t *ppos)
1da177e4 3949{
b28a02de 3950 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 3951 int limit, batchcount, shared, res;
7a7c381d 3952 struct kmem_cache *cachep;
b28a02de 3953
1da177e4
LT
3954 if (count > MAX_SLABINFO_WRITE)
3955 return -EINVAL;
3956 if (copy_from_user(&kbuf, buffer, count))
3957 return -EFAULT;
b28a02de 3958 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3959
3960 tmp = strchr(kbuf, ' ');
3961 if (!tmp)
3962 return -EINVAL;
3963 *tmp = '\0';
3964 tmp++;
3965 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3966 return -EINVAL;
3967
3968 /* Find the cache in the chain of caches. */
fc0abb14 3969 mutex_lock(&cache_chain_mutex);
1da177e4 3970 res = -EINVAL;
7a7c381d 3971 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 3972 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
3973 if (limit < 1 || batchcount < 1 ||
3974 batchcount > limit || shared < 0) {
e498be7d 3975 res = 0;
1da177e4 3976 } else {
e498be7d 3977 res = do_tune_cpucache(cachep, limit,
b28a02de 3978 batchcount, shared);
1da177e4
LT
3979 }
3980 break;
3981 }
3982 }
fc0abb14 3983 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3984 if (res >= 0)
3985 res = count;
3986 return res;
3987}
871751e2
AV
3988
3989#ifdef CONFIG_DEBUG_SLAB_LEAK
3990
3991static void *leaks_start(struct seq_file *m, loff_t *pos)
3992{
3993 loff_t n = *pos;
3994 struct list_head *p;
3995
3996 mutex_lock(&cache_chain_mutex);
3997 p = cache_chain.next;
3998 while (n--) {
3999 p = p->next;
4000 if (p == &cache_chain)
4001 return NULL;
4002 }
4003 return list_entry(p, struct kmem_cache, next);
4004}
4005
4006static inline int add_caller(unsigned long *n, unsigned long v)
4007{
4008 unsigned long *p;
4009 int l;
4010 if (!v)
4011 return 1;
4012 l = n[1];
4013 p = n + 2;
4014 while (l) {
4015 int i = l/2;
4016 unsigned long *q = p + 2 * i;
4017 if (*q == v) {
4018 q[1]++;
4019 return 1;
4020 }
4021 if (*q > v) {
4022 l = i;
4023 } else {
4024 p = q + 2;
4025 l -= i + 1;
4026 }
4027 }
4028 if (++n[1] == n[0])
4029 return 0;
4030 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4031 p[0] = v;
4032 p[1] = 1;
4033 return 1;
4034}
4035
4036static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4037{
4038 void *p;
4039 int i;
4040 if (n[0] == n[1])
4041 return;
4042 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4043 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4044 continue;
4045 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4046 return;
4047 }
4048}
4049
4050static void show_symbol(struct seq_file *m, unsigned long address)
4051{
4052#ifdef CONFIG_KALLSYMS
4053 char *modname;
4054 const char *name;
4055 unsigned long offset, size;
4056 char namebuf[KSYM_NAME_LEN+1];
4057
4058 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4059
4060 if (name) {
4061 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4062 if (modname)
4063 seq_printf(m, " [%s]", modname);
4064 return;
4065 }
4066#endif
4067 seq_printf(m, "%p", (void *)address);
4068}
4069
4070static int leaks_show(struct seq_file *m, void *p)
4071{
4072 struct kmem_cache *cachep = p;
871751e2
AV
4073 struct slab *slabp;
4074 struct kmem_list3 *l3;
4075 const char *name;
4076 unsigned long *n = m->private;
4077 int node;
4078 int i;
4079
4080 if (!(cachep->flags & SLAB_STORE_USER))
4081 return 0;
4082 if (!(cachep->flags & SLAB_RED_ZONE))
4083 return 0;
4084
4085 /* OK, we can do it */
4086
4087 n[1] = 0;
4088
4089 for_each_online_node(node) {
4090 l3 = cachep->nodelists[node];
4091 if (!l3)
4092 continue;
4093
4094 check_irq_on();
4095 spin_lock_irq(&l3->list_lock);
4096
7a7c381d 4097 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4098 handle_slab(n, cachep, slabp);
7a7c381d 4099 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4100 handle_slab(n, cachep, slabp);
871751e2
AV
4101 spin_unlock_irq(&l3->list_lock);
4102 }
4103 name = cachep->name;
4104 if (n[0] == n[1]) {
4105 /* Increase the buffer size */
4106 mutex_unlock(&cache_chain_mutex);
4107 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4108 if (!m->private) {
4109 /* Too bad, we are really out */
4110 m->private = n;
4111 mutex_lock(&cache_chain_mutex);
4112 return -ENOMEM;
4113 }
4114 *(unsigned long *)m->private = n[0] * 2;
4115 kfree(n);
4116 mutex_lock(&cache_chain_mutex);
4117 /* Now make sure this entry will be retried */
4118 m->count = m->size;
4119 return 0;
4120 }
4121 for (i = 0; i < n[1]; i++) {
4122 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4123 show_symbol(m, n[2*i+2]);
4124 seq_putc(m, '\n');
4125 }
4126 return 0;
4127}
4128
4129struct seq_operations slabstats_op = {
4130 .start = leaks_start,
4131 .next = s_next,
4132 .stop = s_stop,
4133 .show = leaks_show,
4134};
4135#endif
1da177e4
LT
4136#endif
4137
00e145b6
MS
4138/**
4139 * ksize - get the actual amount of memory allocated for a given object
4140 * @objp: Pointer to the object
4141 *
4142 * kmalloc may internally round up allocations and return more memory
4143 * than requested. ksize() can be used to determine the actual amount of
4144 * memory allocated. The caller may use this additional memory, even though
4145 * a smaller amount of memory was initially specified with the kmalloc call.
4146 * The caller must guarantee that objp points to a valid object previously
4147 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4148 * must not be freed during the duration of the call.
4149 */
1da177e4
LT
4150unsigned int ksize(const void *objp)
4151{
00e145b6
MS
4152 if (unlikely(objp == NULL))
4153 return 0;
1da177e4 4154
6ed5eb22 4155 return obj_size(virt_to_cache(objp));
1da177e4 4156}