]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
[PATCH] slab: minor cleanup to kmem_cache_alloc_node
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
543537bd 104#include <linux/string.h>
e498be7d 105#include <linux/nodemask.h>
dc85da15 106#include <linux/mempolicy.h>
fc0abb14 107#include <linux/mutex.h>
1da177e4
LT
108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
1da177e4
LT
135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
fa5b08d5 203typedef unsigned int kmem_bufctl_t;
1da177e4
LT
204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de
PE
246 struct rcu_head head;
247 kmem_cache_t *cachep;
248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d
CL
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
277/* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
1da177e4
LT
300};
301
e498be7d
CL
302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define CACHE_CACHE 0
308#define SIZE_AC 1
309#define SIZE_L3 (1 + MAX_NUMNODES)
310
311/*
7243cc05 312 * This function must be completely optimized away if
e498be7d
CL
313 * a constant is passed to it. Mostly the same as
314 * what is in linux/slab.h except it returns an
315 * index.
316 */
7243cc05 317static __always_inline int index_of(const size_t size)
e498be7d
CL
318{
319 if (__builtin_constant_p(size)) {
320 int i = 0;
321
322#define CACHE(x) \
323 if (size <=x) \
324 return i; \
325 else \
326 i++;
327#include "linux/kmalloc_sizes.h"
328#undef CACHE
329 {
330 extern void __bad_size(void);
331 __bad_size();
332 }
7243cc05
IK
333 } else
334 BUG();
e498be7d
CL
335 return 0;
336}
337
338#define INDEX_AC index_of(sizeof(struct arraycache_init))
339#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 340
e498be7d
CL
341static inline void kmem_list3_init(struct kmem_list3 *parent)
342{
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
351}
352
353#define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 } while (0)
358
359#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
1da177e4
LT
365
366/*
367 * kmem_cache_t
368 *
369 * manages a cache.
370 */
b28a02de 371
2109a2d1 372struct kmem_cache {
1da177e4 373/* 1) per-cpu data, touched during every alloc/free */
b28a02de
PE
374 struct array_cache *array[NR_CPUS];
375 unsigned int batchcount;
376 unsigned int limit;
377 unsigned int shared;
3dafccf2 378 unsigned int buffer_size;
e498be7d 379/* 2) touched by every alloc & free from the backend */
b28a02de
PE
380 struct kmem_list3 *nodelists[MAX_NUMNODES];
381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
383 spinlock_t spinlock;
1da177e4
LT
384
385/* 3) cache_grow/shrink */
386 /* order of pgs per slab (2^n) */
b28a02de 387 unsigned int gfporder;
1da177e4
LT
388
389 /* force GFP flags, e.g. GFP_DMA */
b28a02de 390 gfp_t gfpflags;
1da177e4 391
b28a02de
PE
392 size_t colour; /* cache colouring range */
393 unsigned int colour_off; /* colour offset */
394 unsigned int colour_next; /* cache colouring */
395 kmem_cache_t *slabp_cache;
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
1da177e4
LT
398
399 /* constructor func */
b28a02de 400 void (*ctor) (void *, kmem_cache_t *, unsigned long);
1da177e4
LT
401
402 /* de-constructor func */
b28a02de 403 void (*dtor) (void *, kmem_cache_t *, unsigned long);
1da177e4
LT
404
405/* 4) cache creation/removal */
b28a02de
PE
406 const char *name;
407 struct list_head next;
1da177e4
LT
408
409/* 5) statistics */
410#if STATS
b28a02de
PE
411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
1da177e4
LT
424#endif
425#if DEBUG
3dafccf2
MS
426 /*
427 * If debugging is enabled, then the allocator can add additional
428 * fields and/or padding to every object. buffer_size contains the total
429 * object size including these internal fields, the following two
430 * variables contain the offset to the user object and its size.
431 */
432 int obj_offset;
433 int obj_size;
1da177e4
LT
434#endif
435};
436
437#define CFLGS_OFF_SLAB (0x80000000UL)
438#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
439
440#define BATCHREFILL_LIMIT 16
441/* Optimization question: fewer reaps means less
442 * probability for unnessary cpucache drain/refill cycles.
443 *
dc6f3f27 444 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
445 * which could lock up otherwise freeable slabs.
446 */
447#define REAPTIMEOUT_CPUC (2*HZ)
448#define REAPTIMEOUT_LIST3 (4*HZ)
449
450#if STATS
451#define STATS_INC_ACTIVE(x) ((x)->num_active++)
452#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454#define STATS_INC_GROWN(x) ((x)->grown++)
455#define STATS_INC_REAPED(x) ((x)->reaped++)
456#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
457 (x)->high_mark = (x)->num_active; \
458 } while (0)
459#define STATS_INC_ERR(x) ((x)->errors++)
460#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 461#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
1da177e4
LT
462#define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \
464 (x)->max_freeable = i; \
465 } while (0)
466
467#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
470#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
471#else
472#define STATS_INC_ACTIVE(x) do { } while (0)
473#define STATS_DEC_ACTIVE(x) do { } while (0)
474#define STATS_INC_ALLOCED(x) do { } while (0)
475#define STATS_INC_GROWN(x) do { } while (0)
476#define STATS_INC_REAPED(x) do { } while (0)
477#define STATS_SET_HIGH(x) do { } while (0)
478#define STATS_INC_ERR(x) do { } while (0)
479#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 480#define STATS_INC_NODEFREES(x) do { } while (0)
1da177e4
LT
481#define STATS_SET_FREEABLE(x, i) \
482 do { } while (0)
483
484#define STATS_INC_ALLOCHIT(x) do { } while (0)
485#define STATS_INC_ALLOCMISS(x) do { } while (0)
486#define STATS_INC_FREEHIT(x) do { } while (0)
487#define STATS_INC_FREEMISS(x) do { } while (0)
488#endif
489
490#if DEBUG
491/* Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj.
493 */
494#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
495#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
496
497/* ...and for poisoning */
498#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
499#define POISON_FREE 0x6b /* for use-after-free poisoning */
500#define POISON_END 0xa5 /* end-byte of poisoning */
501
502/* memory layout of objects:
503 * 0 : objp
3dafccf2 504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
505 * the end of an object is aligned with the end of the real
506 * allocation. Catches writes behind the end of the allocation.
3dafccf2 507 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 508 * redzone word.
3dafccf2
MS
509 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
1da177e4 512 */
3dafccf2 513static int obj_offset(kmem_cache_t *cachep)
1da177e4 514{
3dafccf2 515 return cachep->obj_offset;
1da177e4
LT
516}
517
3dafccf2 518static int obj_size(kmem_cache_t *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_size;
1da177e4
LT
521}
522
523static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
524{
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 526 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
527}
528
529static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
530{
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 533 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 534 2 * BYTES_PER_WORD);
3dafccf2 535 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
536}
537
538static void **dbg_userword(kmem_cache_t *cachep, void *objp)
539{
540 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 541 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
542}
543
544#else
545
3dafccf2
MS
546#define obj_offset(x) 0
547#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
548#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
550#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
551
552#endif
553
554/*
555 * Maximum size of an obj (in 2^order pages)
556 * and absolute limit for the gfp order.
557 */
558#if defined(CONFIG_LARGE_ALLOCS)
559#define MAX_OBJ_ORDER 13 /* up to 32Mb */
560#define MAX_GFP_ORDER 13 /* up to 32Mb */
561#elif defined(CONFIG_MMU)
562#define MAX_OBJ_ORDER 5 /* 32 pages */
563#define MAX_GFP_ORDER 5 /* 32 pages */
564#else
565#define MAX_OBJ_ORDER 8 /* up to 1Mb */
566#define MAX_GFP_ORDER 8 /* up to 1Mb */
567#endif
568
569/*
570 * Do not go above this order unless 0 objects fit into the slab.
571 */
572#define BREAK_GFP_ORDER_HI 1
573#define BREAK_GFP_ORDER_LO 0
574static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
575
065d41cb 576/* Functions for storing/retrieving the cachep and or slab from the
1da177e4
LT
577 * global 'mem_map'. These are used to find the slab an obj belongs to.
578 * With kfree(), these are used to find the cache which an obj belongs to.
579 */
065d41cb
PE
580static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
581{
582 page->lru.next = (struct list_head *)cache;
583}
584
585static inline struct kmem_cache *page_get_cache(struct page *page)
586{
587 return (struct kmem_cache *)page->lru.next;
588}
589
590static inline void page_set_slab(struct page *page, struct slab *slab)
591{
592 page->lru.prev = (struct list_head *)slab;
593}
594
595static inline struct slab *page_get_slab(struct page *page)
596{
597 return (struct slab *)page->lru.prev;
598}
1da177e4
LT
599
600/* These are the default caches for kmalloc. Custom caches can have other sizes. */
601struct cache_sizes malloc_sizes[] = {
602#define CACHE(x) { .cs_size = (x) },
603#include <linux/kmalloc_sizes.h>
604 CACHE(ULONG_MAX)
605#undef CACHE
606};
607EXPORT_SYMBOL(malloc_sizes);
608
609/* Must match cache_sizes above. Out of line to keep cache footprint low. */
610struct cache_names {
611 char *name;
612 char *name_dma;
613};
614
615static struct cache_names __initdata cache_names[] = {
616#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
617#include <linux/kmalloc_sizes.h>
b28a02de 618 {NULL,}
1da177e4
LT
619#undef CACHE
620};
621
622static struct arraycache_init initarray_cache __initdata =
b28a02de 623 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 624static struct arraycache_init initarray_generic =
b28a02de 625 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
626
627/* internal cache of cache description objs */
628static kmem_cache_t cache_cache = {
b28a02de
PE
629 .batchcount = 1,
630 .limit = BOOT_CPUCACHE_ENTRIES,
631 .shared = 1,
3dafccf2 632 .buffer_size = sizeof(kmem_cache_t),
b28a02de
PE
633 .flags = SLAB_NO_REAP,
634 .spinlock = SPIN_LOCK_UNLOCKED,
635 .name = "kmem_cache",
1da177e4 636#if DEBUG
3dafccf2 637 .obj_size = sizeof(kmem_cache_t),
1da177e4
LT
638#endif
639};
640
641/* Guard access to the cache-chain. */
fc0abb14 642static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
643static struct list_head cache_chain;
644
645/*
646 * vm_enough_memory() looks at this to determine how many
647 * slab-allocated pages are possibly freeable under pressure
648 *
649 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
650 */
651atomic_t slab_reclaim_pages;
1da177e4
LT
652
653/*
654 * chicken and egg problem: delay the per-cpu array allocation
655 * until the general caches are up.
656 */
657static enum {
658 NONE,
e498be7d
CL
659 PARTIAL_AC,
660 PARTIAL_L3,
1da177e4
LT
661 FULL
662} g_cpucache_up;
663
664static DEFINE_PER_CPU(struct work_struct, reap_work);
665
b28a02de
PE
666static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
667static void enable_cpucache(kmem_cache_t *cachep);
668static void cache_reap(void *unused);
e498be7d 669static int __node_shrink(kmem_cache_t *cachep, int node);
1da177e4
LT
670
671static inline struct array_cache *ac_data(kmem_cache_t *cachep)
672{
673 return cachep->array[smp_processor_id()];
674}
675
dd0fc66f 676static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
1da177e4
LT
677{
678 struct cache_sizes *csizep = malloc_sizes;
679
680#if DEBUG
681 /* This happens if someone tries to call
b28a02de
PE
682 * kmem_cache_create(), or __kmalloc(), before
683 * the generic caches are initialized.
684 */
c7e43c78 685 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
686#endif
687 while (size > csizep->cs_size)
688 csizep++;
689
690 /*
0abf40c1 691 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
692 * has cs_{dma,}cachep==NULL. Thus no special case
693 * for large kmalloc calls required.
694 */
695 if (unlikely(gfpflags & GFP_DMA))
696 return csizep->cs_dmacachep;
697 return csizep->cs_cachep;
698}
699
dd0fc66f 700kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
701{
702 return __find_general_cachep(size, gfpflags);
703}
704EXPORT_SYMBOL(kmem_find_general_cachep);
705
1da177e4
LT
706/* Cal the num objs, wastage, and bytes left over for a given slab size. */
707static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
b28a02de 708 int flags, size_t *left_over, unsigned int *num)
1da177e4
LT
709{
710 int i;
b28a02de 711 size_t wastage = PAGE_SIZE << gfporder;
1da177e4
LT
712 size_t extra = 0;
713 size_t base = 0;
714
715 if (!(flags & CFLGS_OFF_SLAB)) {
716 base = sizeof(struct slab);
717 extra = sizeof(kmem_bufctl_t);
718 }
719 i = 0;
b28a02de 720 while (i * size + ALIGN(base + i * extra, align) <= wastage)
1da177e4
LT
721 i++;
722 if (i > 0)
723 i--;
724
725 if (i > SLAB_LIMIT)
726 i = SLAB_LIMIT;
727
728 *num = i;
b28a02de
PE
729 wastage -= i * size;
730 wastage -= ALIGN(base + i * extra, align);
1da177e4
LT
731 *left_over = wastage;
732}
733
734#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
735
736static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
737{
738 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 739 function, cachep->name, msg);
1da177e4
LT
740 dump_stack();
741}
742
743/*
744 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
745 * via the workqueue/eventd.
746 * Add the CPU number into the expiration time to minimize the possibility of
747 * the CPUs getting into lockstep and contending for the global cache chain
748 * lock.
749 */
750static void __devinit start_cpu_timer(int cpu)
751{
752 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
753
754 /*
755 * When this gets called from do_initcalls via cpucache_init(),
756 * init_workqueues() has already run, so keventd will be setup
757 * at that time.
758 */
759 if (keventd_up() && reap_work->func == NULL) {
760 INIT_WORK(reap_work, cache_reap, NULL);
761 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
762 }
763}
764
e498be7d 765static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 766 int batchcount)
1da177e4 767{
b28a02de 768 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
769 struct array_cache *nc = NULL;
770
e498be7d 771 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
772 if (nc) {
773 nc->avail = 0;
774 nc->limit = entries;
775 nc->batchcount = batchcount;
776 nc->touched = 0;
e498be7d 777 spin_lock_init(&nc->lock);
1da177e4
LT
778 }
779 return nc;
780}
781
e498be7d 782#ifdef CONFIG_NUMA
dc85da15
CL
783static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int);
784
e498be7d
CL
785static inline struct array_cache **alloc_alien_cache(int node, int limit)
786{
787 struct array_cache **ac_ptr;
b28a02de 788 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
789 int i;
790
791 if (limit > 1)
792 limit = 12;
793 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
794 if (ac_ptr) {
795 for_each_node(i) {
796 if (i == node || !node_online(i)) {
797 ac_ptr[i] = NULL;
798 continue;
799 }
800 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
801 if (!ac_ptr[i]) {
b28a02de 802 for (i--; i <= 0; i--)
e498be7d
CL
803 kfree(ac_ptr[i]);
804 kfree(ac_ptr);
805 return NULL;
806 }
807 }
808 }
809 return ac_ptr;
810}
811
812static inline void free_alien_cache(struct array_cache **ac_ptr)
813{
814 int i;
815
816 if (!ac_ptr)
817 return;
818
819 for_each_node(i)
b28a02de 820 kfree(ac_ptr[i]);
e498be7d
CL
821
822 kfree(ac_ptr);
823}
824
b28a02de
PE
825static inline void __drain_alien_cache(kmem_cache_t *cachep,
826 struct array_cache *ac, int node)
e498be7d
CL
827{
828 struct kmem_list3 *rl3 = cachep->nodelists[node];
829
830 if (ac->avail) {
831 spin_lock(&rl3->list_lock);
ff69416e 832 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
833 ac->avail = 0;
834 spin_unlock(&rl3->list_lock);
835 }
836}
837
838static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
839{
b28a02de 840 int i = 0;
e498be7d
CL
841 struct array_cache *ac;
842 unsigned long flags;
843
844 for_each_online_node(i) {
845 ac = l3->alien[i];
846 if (ac) {
847 spin_lock_irqsave(&ac->lock, flags);
848 __drain_alien_cache(cachep, ac, i);
849 spin_unlock_irqrestore(&ac->lock, flags);
850 }
851 }
852}
853#else
854#define alloc_alien_cache(node, limit) do { } while (0)
855#define free_alien_cache(ac_ptr) do { } while (0)
856#define drain_alien_cache(cachep, l3) do { } while (0)
857#endif
858
1da177e4 859static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 860 unsigned long action, void *hcpu)
1da177e4
LT
861{
862 long cpu = (long)hcpu;
b28a02de 863 kmem_cache_t *cachep;
e498be7d
CL
864 struct kmem_list3 *l3 = NULL;
865 int node = cpu_to_node(cpu);
866 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
867
868 switch (action) {
869 case CPU_UP_PREPARE:
fc0abb14 870 mutex_lock(&cache_chain_mutex);
e498be7d
CL
871 /* we need to do this right in the beginning since
872 * alloc_arraycache's are going to use this list.
873 * kmalloc_node allows us to add the slab to the right
874 * kmem_list3 and not this cpu's kmem_list3
875 */
876
1da177e4 877 list_for_each_entry(cachep, &cache_chain, next) {
e498be7d
CL
878 /* setup the size64 kmemlist for cpu before we can
879 * begin anything. Make sure some other cpu on this
880 * node has not already allocated this
881 */
882 if (!cachep->nodelists[node]) {
883 if (!(l3 = kmalloc_node(memsize,
b28a02de 884 GFP_KERNEL, node)))
e498be7d
CL
885 goto bad;
886 kmem_list3_init(l3);
887 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 888 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
889
890 cachep->nodelists[node] = l3;
891 }
1da177e4 892
e498be7d
CL
893 spin_lock_irq(&cachep->nodelists[node]->list_lock);
894 cachep->nodelists[node]->free_limit =
b28a02de
PE
895 (1 + nr_cpus_node(node)) *
896 cachep->batchcount + cachep->num;
e498be7d
CL
897 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
898 }
899
900 /* Now we can go ahead with allocating the shared array's
b28a02de 901 & array cache's */
e498be7d 902 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4
TK
903 struct array_cache *nc;
904
e498be7d 905 nc = alloc_arraycache(node, cachep->limit,
b28a02de 906 cachep->batchcount);
1da177e4
LT
907 if (!nc)
908 goto bad;
1da177e4 909 cachep->array[cpu] = nc;
1da177e4 910
e498be7d
CL
911 l3 = cachep->nodelists[node];
912 BUG_ON(!l3);
913 if (!l3->shared) {
914 if (!(nc = alloc_arraycache(node,
b28a02de
PE
915 cachep->shared *
916 cachep->batchcount,
917 0xbaadf00d)))
918 goto bad;
e498be7d
CL
919
920 /* we are serialised from CPU_DEAD or
b28a02de 921 CPU_UP_CANCELLED by the cpucontrol lock */
e498be7d
CL
922 l3->shared = nc;
923 }
1da177e4 924 }
fc0abb14 925 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
926 break;
927 case CPU_ONLINE:
928 start_cpu_timer(cpu);
929 break;
930#ifdef CONFIG_HOTPLUG_CPU
931 case CPU_DEAD:
932 /* fall thru */
933 case CPU_UP_CANCELED:
fc0abb14 934 mutex_lock(&cache_chain_mutex);
1da177e4
LT
935
936 list_for_each_entry(cachep, &cache_chain, next) {
937 struct array_cache *nc;
e498be7d 938 cpumask_t mask;
1da177e4 939
e498be7d 940 mask = node_to_cpumask(node);
1da177e4
LT
941 spin_lock_irq(&cachep->spinlock);
942 /* cpu is dead; no one can alloc from it. */
943 nc = cachep->array[cpu];
944 cachep->array[cpu] = NULL;
e498be7d
CL
945 l3 = cachep->nodelists[node];
946
947 if (!l3)
948 goto unlock_cache;
949
950 spin_lock(&l3->list_lock);
951
952 /* Free limit for this kmem_list3 */
953 l3->free_limit -= cachep->batchcount;
954 if (nc)
ff69416e 955 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
956
957 if (!cpus_empty(mask)) {
b28a02de
PE
958 spin_unlock(&l3->list_lock);
959 goto unlock_cache;
960 }
e498be7d
CL
961
962 if (l3->shared) {
963 free_block(cachep, l3->shared->entry,
b28a02de 964 l3->shared->avail, node);
e498be7d
CL
965 kfree(l3->shared);
966 l3->shared = NULL;
967 }
968 if (l3->alien) {
969 drain_alien_cache(cachep, l3);
970 free_alien_cache(l3->alien);
971 l3->alien = NULL;
972 }
973
974 /* free slabs belonging to this node */
975 if (__node_shrink(cachep, node)) {
976 cachep->nodelists[node] = NULL;
977 spin_unlock(&l3->list_lock);
978 kfree(l3);
979 } else {
980 spin_unlock(&l3->list_lock);
981 }
b28a02de 982 unlock_cache:
1da177e4
LT
983 spin_unlock_irq(&cachep->spinlock);
984 kfree(nc);
985 }
fc0abb14 986 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
987 break;
988#endif
989 }
990 return NOTIFY_OK;
b28a02de 991 bad:
fc0abb14 992 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
993 return NOTIFY_BAD;
994}
995
996static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
997
e498be7d
CL
998/*
999 * swap the static kmem_list3 with kmalloced memory
1000 */
b28a02de 1001static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
e498be7d
CL
1002{
1003 struct kmem_list3 *ptr;
1004
1005 BUG_ON(cachep->nodelists[nodeid] != list);
1006 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1007 BUG_ON(!ptr);
1008
1009 local_irq_disable();
1010 memcpy(ptr, list, sizeof(struct kmem_list3));
1011 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1012 cachep->nodelists[nodeid] = ptr;
1013 local_irq_enable();
1014}
1015
1da177e4
LT
1016/* Initialisation.
1017 * Called after the gfp() functions have been enabled, and before smp_init().
1018 */
1019void __init kmem_cache_init(void)
1020{
1021 size_t left_over;
1022 struct cache_sizes *sizes;
1023 struct cache_names *names;
e498be7d
CL
1024 int i;
1025
1026 for (i = 0; i < NUM_INIT_LISTS; i++) {
1027 kmem_list3_init(&initkmem_list3[i]);
1028 if (i < MAX_NUMNODES)
1029 cache_cache.nodelists[i] = NULL;
1030 }
1da177e4
LT
1031
1032 /*
1033 * Fragmentation resistance on low memory - only use bigger
1034 * page orders on machines with more than 32MB of memory.
1035 */
1036 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1037 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1038
1da177e4
LT
1039 /* Bootstrap is tricky, because several objects are allocated
1040 * from caches that do not exist yet:
1041 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1042 * structures of all caches, except cache_cache itself: cache_cache
1043 * is statically allocated.
e498be7d
CL
1044 * Initially an __init data area is used for the head array and the
1045 * kmem_list3 structures, it's replaced with a kmalloc allocated
1046 * array at the end of the bootstrap.
1da177e4 1047 * 2) Create the first kmalloc cache.
e498be7d
CL
1048 * The kmem_cache_t for the new cache is allocated normally.
1049 * An __init data area is used for the head array.
1050 * 3) Create the remaining kmalloc caches, with minimally sized
1051 * head arrays.
1da177e4
LT
1052 * 4) Replace the __init data head arrays for cache_cache and the first
1053 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1054 * 5) Replace the __init data for kmem_list3 for cache_cache and
1055 * the other cache's with kmalloc allocated memory.
1056 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1057 */
1058
1059 /* 1) create the cache_cache */
1da177e4
LT
1060 INIT_LIST_HEAD(&cache_chain);
1061 list_add(&cache_cache.next, &cache_chain);
1062 cache_cache.colour_off = cache_line_size();
1063 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1064 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1065
3dafccf2 1066 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1da177e4 1067
3dafccf2 1068 cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
b28a02de 1069 &left_over, &cache_cache.num);
1da177e4
LT
1070 if (!cache_cache.num)
1071 BUG();
1072
b28a02de 1073 cache_cache.colour = left_over / cache_cache.colour_off;
1da177e4 1074 cache_cache.colour_next = 0;
b28a02de
PE
1075 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1076 sizeof(struct slab), cache_line_size());
1da177e4
LT
1077
1078 /* 2+3) create the kmalloc caches */
1079 sizes = malloc_sizes;
1080 names = cache_names;
1081
e498be7d
CL
1082 /* Initialize the caches that provide memory for the array cache
1083 * and the kmem_list3 structures first.
1084 * Without this, further allocations will bug
1085 */
1086
1087 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
b28a02de
PE
1088 sizes[INDEX_AC].cs_size,
1089 ARCH_KMALLOC_MINALIGN,
1090 (ARCH_KMALLOC_FLAGS |
1091 SLAB_PANIC), NULL, NULL);
e498be7d
CL
1092
1093 if (INDEX_AC != INDEX_L3)
1094 sizes[INDEX_L3].cs_cachep =
b28a02de
PE
1095 kmem_cache_create(names[INDEX_L3].name,
1096 sizes[INDEX_L3].cs_size,
1097 ARCH_KMALLOC_MINALIGN,
1098 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1099 NULL);
e498be7d 1100
1da177e4 1101 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1102 /*
1103 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1104 * This should be particularly beneficial on SMP boxes, as it
1105 * eliminates "false sharing".
1106 * Note for systems short on memory removing the alignment will
e498be7d
CL
1107 * allow tighter packing of the smaller caches.
1108 */
b28a02de 1109 if (!sizes->cs_cachep)
e498be7d 1110 sizes->cs_cachep = kmem_cache_create(names->name,
b28a02de
PE
1111 sizes->cs_size,
1112 ARCH_KMALLOC_MINALIGN,
1113 (ARCH_KMALLOC_FLAGS
1114 | SLAB_PANIC),
1115 NULL, NULL);
1da177e4
LT
1116
1117 /* Inc off-slab bufctl limit until the ceiling is hit. */
1118 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1119 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1120 offslab_limit /= sizeof(kmem_bufctl_t);
1121 }
1122
1123 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
b28a02de
PE
1124 sizes->cs_size,
1125 ARCH_KMALLOC_MINALIGN,
1126 (ARCH_KMALLOC_FLAGS |
1127 SLAB_CACHE_DMA |
1128 SLAB_PANIC), NULL,
1129 NULL);
1da177e4
LT
1130
1131 sizes++;
1132 names++;
1133 }
1134 /* 4) Replace the bootstrap head arrays */
1135 {
b28a02de 1136 void *ptr;
e498be7d 1137
1da177e4 1138 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1139
1da177e4
LT
1140 local_irq_disable();
1141 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
e498be7d 1142 memcpy(ptr, ac_data(&cache_cache),
b28a02de 1143 sizeof(struct arraycache_init));
1da177e4
LT
1144 cache_cache.array[smp_processor_id()] = ptr;
1145 local_irq_enable();
e498be7d 1146
1da177e4 1147 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1148
1da177e4 1149 local_irq_disable();
e498be7d 1150 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1151 != &initarray_generic.cache);
e498be7d 1152 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1153 sizeof(struct arraycache_init));
e498be7d 1154 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1155 ptr;
1da177e4
LT
1156 local_irq_enable();
1157 }
e498be7d
CL
1158 /* 5) Replace the bootstrap kmem_list3's */
1159 {
1160 int node;
1161 /* Replace the static kmem_list3 structures for the boot cpu */
1162 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1163 numa_node_id());
e498be7d
CL
1164
1165 for_each_online_node(node) {
1166 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1167 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1168
1169 if (INDEX_AC != INDEX_L3) {
1170 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1171 &initkmem_list3[SIZE_L3 + node],
1172 node);
e498be7d
CL
1173 }
1174 }
1175 }
1da177e4 1176
e498be7d 1177 /* 6) resize the head arrays to their final sizes */
1da177e4
LT
1178 {
1179 kmem_cache_t *cachep;
fc0abb14 1180 mutex_lock(&cache_chain_mutex);
1da177e4 1181 list_for_each_entry(cachep, &cache_chain, next)
b28a02de 1182 enable_cpucache(cachep);
fc0abb14 1183 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1184 }
1185
1186 /* Done! */
1187 g_cpucache_up = FULL;
1188
1189 /* Register a cpu startup notifier callback
1190 * that initializes ac_data for all new cpus
1191 */
1192 register_cpu_notifier(&cpucache_notifier);
1da177e4
LT
1193
1194 /* The reap timers are started later, with a module init call:
1195 * That part of the kernel is not yet operational.
1196 */
1197}
1198
1199static int __init cpucache_init(void)
1200{
1201 int cpu;
1202
1203 /*
1204 * Register the timers that return unneeded
1205 * pages to gfp.
1206 */
e498be7d 1207 for_each_online_cpu(cpu)
b28a02de 1208 start_cpu_timer(cpu);
1da177e4
LT
1209
1210 return 0;
1211}
1212
1213__initcall(cpucache_init);
1214
1215/*
1216 * Interface to system's page allocator. No need to hold the cache-lock.
1217 *
1218 * If we requested dmaable memory, we will get it. Even if we
1219 * did not request dmaable memory, we might get it, but that
1220 * would be relatively rare and ignorable.
1221 */
dd0fc66f 1222static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1223{
1224 struct page *page;
1225 void *addr;
1226 int i;
1227
1228 flags |= cachep->gfpflags;
50c85a19 1229 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1230 if (!page)
1231 return NULL;
1232 addr = page_address(page);
1233
1234 i = (1 << cachep->gfporder);
1235 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1236 atomic_add(i, &slab_reclaim_pages);
1237 add_page_state(nr_slab, i);
1238 while (i--) {
1239 SetPageSlab(page);
1240 page++;
1241 }
1242 return addr;
1243}
1244
1245/*
1246 * Interface to system's page release.
1247 */
1248static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1249{
b28a02de 1250 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1251 struct page *page = virt_to_page(addr);
1252 const unsigned long nr_freed = i;
1253
1254 while (i--) {
1255 if (!TestClearPageSlab(page))
1256 BUG();
1257 page++;
1258 }
1259 sub_page_state(nr_slab, nr_freed);
1260 if (current->reclaim_state)
1261 current->reclaim_state->reclaimed_slab += nr_freed;
1262 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1263 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1264 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1265}
1266
1267static void kmem_rcu_free(struct rcu_head *head)
1268{
b28a02de 1269 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1da177e4
LT
1270 kmem_cache_t *cachep = slab_rcu->cachep;
1271
1272 kmem_freepages(cachep, slab_rcu->addr);
1273 if (OFF_SLAB(cachep))
1274 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1275}
1276
1277#if DEBUG
1278
1279#ifdef CONFIG_DEBUG_PAGEALLOC
1280static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
b28a02de 1281 unsigned long caller)
1da177e4 1282{
3dafccf2 1283 int size = obj_size(cachep);
1da177e4 1284
3dafccf2 1285 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1286
b28a02de 1287 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1288 return;
1289
b28a02de
PE
1290 *addr++ = 0x12345678;
1291 *addr++ = caller;
1292 *addr++ = smp_processor_id();
1293 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1294 {
1295 unsigned long *sptr = &caller;
1296 unsigned long svalue;
1297
1298 while (!kstack_end(sptr)) {
1299 svalue = *sptr++;
1300 if (kernel_text_address(svalue)) {
b28a02de 1301 *addr++ = svalue;
1da177e4
LT
1302 size -= sizeof(unsigned long);
1303 if (size <= sizeof(unsigned long))
1304 break;
1305 }
1306 }
1307
1308 }
b28a02de 1309 *addr++ = 0x87654321;
1da177e4
LT
1310}
1311#endif
1312
1313static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1314{
3dafccf2
MS
1315 int size = obj_size(cachep);
1316 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1317
1318 memset(addr, val, size);
b28a02de 1319 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1320}
1321
1322static void dump_line(char *data, int offset, int limit)
1323{
1324 int i;
1325 printk(KERN_ERR "%03x:", offset);
b28a02de
PE
1326 for (i = 0; i < limit; i++) {
1327 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1328 }
1329 printk("\n");
1330}
1331#endif
1332
1333#if DEBUG
1334
1335static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1336{
1337 int i, size;
1338 char *realobj;
1339
1340 if (cachep->flags & SLAB_RED_ZONE) {
1341 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
b28a02de
PE
1342 *dbg_redzone1(cachep, objp),
1343 *dbg_redzone2(cachep, objp));
1da177e4
LT
1344 }
1345
1346 if (cachep->flags & SLAB_STORE_USER) {
1347 printk(KERN_ERR "Last user: [<%p>]",
b28a02de 1348 *dbg_userword(cachep, objp));
1da177e4 1349 print_symbol("(%s)",
b28a02de 1350 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1351 printk("\n");
1352 }
3dafccf2
MS
1353 realobj = (char *)objp + obj_offset(cachep);
1354 size = obj_size(cachep);
b28a02de 1355 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1356 int limit;
1357 limit = 16;
b28a02de
PE
1358 if (i + limit > size)
1359 limit = size - i;
1da177e4
LT
1360 dump_line(realobj, i, limit);
1361 }
1362}
1363
1364static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1365{
1366 char *realobj;
1367 int size, i;
1368 int lines = 0;
1369
3dafccf2
MS
1370 realobj = (char *)objp + obj_offset(cachep);
1371 size = obj_size(cachep);
1da177e4 1372
b28a02de 1373 for (i = 0; i < size; i++) {
1da177e4 1374 char exp = POISON_FREE;
b28a02de 1375 if (i == size - 1)
1da177e4
LT
1376 exp = POISON_END;
1377 if (realobj[i] != exp) {
1378 int limit;
1379 /* Mismatch ! */
1380 /* Print header */
1381 if (lines == 0) {
b28a02de
PE
1382 printk(KERN_ERR
1383 "Slab corruption: start=%p, len=%d\n",
1384 realobj, size);
1da177e4
LT
1385 print_objinfo(cachep, objp, 0);
1386 }
1387 /* Hexdump the affected line */
b28a02de 1388 i = (i / 16) * 16;
1da177e4 1389 limit = 16;
b28a02de
PE
1390 if (i + limit > size)
1391 limit = size - i;
1da177e4
LT
1392 dump_line(realobj, i, limit);
1393 i += 16;
1394 lines++;
1395 /* Limit to 5 lines */
1396 if (lines > 5)
1397 break;
1398 }
1399 }
1400 if (lines != 0) {
1401 /* Print some data about the neighboring objects, if they
1402 * exist:
1403 */
065d41cb 1404 struct slab *slabp = page_get_slab(virt_to_page(objp));
1da177e4
LT
1405 int objnr;
1406
3dafccf2 1407 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1da177e4 1408 if (objnr) {
3dafccf2
MS
1409 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1410 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1411 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1412 realobj, size);
1da177e4
LT
1413 print_objinfo(cachep, objp, 2);
1414 }
b28a02de 1415 if (objnr + 1 < cachep->num) {
3dafccf2
MS
1416 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1417 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1418 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1419 realobj, size);
1da177e4
LT
1420 print_objinfo(cachep, objp, 2);
1421 }
1422 }
1423}
1424#endif
1425
1426/* Destroy all the objs in a slab, and release the mem back to the system.
1427 * Before calling the slab must have been unlinked from the cache.
1428 * The cache-lock is not held/needed.
1429 */
b28a02de 1430static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1da177e4
LT
1431{
1432 void *addr = slabp->s_mem - slabp->colouroff;
1433
1434#if DEBUG
1435 int i;
1436 for (i = 0; i < cachep->num; i++) {
3dafccf2 1437 void *objp = slabp->s_mem + cachep->buffer_size * i;
1da177e4
LT
1438
1439 if (cachep->flags & SLAB_POISON) {
1440#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 1441 if ((cachep->buffer_size % PAGE_SIZE) == 0
b28a02de
PE
1442 && OFF_SLAB(cachep))
1443 kernel_map_pages(virt_to_page(objp),
3dafccf2 1444 cachep->buffer_size / PAGE_SIZE,
b28a02de 1445 1);
1da177e4
LT
1446 else
1447 check_poison_obj(cachep, objp);
1448#else
1449 check_poison_obj(cachep, objp);
1450#endif
1451 }
1452 if (cachep->flags & SLAB_RED_ZONE) {
1453 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1454 slab_error(cachep, "start of a freed object "
b28a02de 1455 "was overwritten");
1da177e4
LT
1456 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1457 slab_error(cachep, "end of a freed object "
b28a02de 1458 "was overwritten");
1da177e4
LT
1459 }
1460 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1461 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4
LT
1462 }
1463#else
1464 if (cachep->dtor) {
1465 int i;
1466 for (i = 0; i < cachep->num; i++) {
3dafccf2 1467 void *objp = slabp->s_mem + cachep->buffer_size * i;
b28a02de 1468 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1469 }
1470 }
1471#endif
1472
1473 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1474 struct slab_rcu *slab_rcu;
1475
b28a02de 1476 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1477 slab_rcu->cachep = cachep;
1478 slab_rcu->addr = addr;
1479 call_rcu(&slab_rcu->head, kmem_rcu_free);
1480 } else {
1481 kmem_freepages(cachep, addr);
1482 if (OFF_SLAB(cachep))
1483 kmem_cache_free(cachep->slabp_cache, slabp);
1484 }
1485}
1486
3dafccf2 1487/* For setting up all the kmem_list3s for cache whose buffer_size is same
e498be7d
CL
1488 as size of kmem_list3. */
1489static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1490{
1491 int node;
1492
1493 for_each_online_node(node) {
b28a02de 1494 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1495 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1496 REAPTIMEOUT_LIST3 +
1497 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1498 }
1499}
1500
4d268eba
PE
1501/**
1502 * calculate_slab_order - calculate size (page order) of slabs and the number
1503 * of objects per slab.
1504 *
1505 * This could be made much more intelligent. For now, try to avoid using
1506 * high order pages for slabs. When the gfp() functions are more friendly
1507 * towards high-order requests, this should be changed.
1508 */
1509static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1510 size_t align, gfp_t flags)
1511{
1512 size_t left_over = 0;
1513
b28a02de 1514 for (;; cachep->gfporder++) {
4d268eba
PE
1515 unsigned int num;
1516 size_t remainder;
1517
1518 if (cachep->gfporder > MAX_GFP_ORDER) {
1519 cachep->num = 0;
1520 break;
1521 }
1522
1523 cache_estimate(cachep->gfporder, size, align, flags,
1524 &remainder, &num);
1525 if (!num)
1526 continue;
1527 /* More than offslab_limit objects will cause problems */
1528 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1529 break;
1530
1531 cachep->num = num;
1532 left_over = remainder;
1533
1534 /*
1535 * Large number of objects is good, but very large slabs are
1536 * currently bad for the gfp()s.
1537 */
1538 if (cachep->gfporder >= slab_break_gfp_order)
1539 break;
1540
1541 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1542 /* Acceptable internal fragmentation */
1543 break;
1544 }
1545 return left_over;
1546}
1547
1da177e4
LT
1548/**
1549 * kmem_cache_create - Create a cache.
1550 * @name: A string which is used in /proc/slabinfo to identify this cache.
1551 * @size: The size of objects to be created in this cache.
1552 * @align: The required alignment for the objects.
1553 * @flags: SLAB flags
1554 * @ctor: A constructor for the objects.
1555 * @dtor: A destructor for the objects.
1556 *
1557 * Returns a ptr to the cache on success, NULL on failure.
1558 * Cannot be called within a int, but can be interrupted.
1559 * The @ctor is run when new pages are allocated by the cache
1560 * and the @dtor is run before the pages are handed back.
1561 *
1562 * @name must be valid until the cache is destroyed. This implies that
1563 * the module calling this has to destroy the cache before getting
1564 * unloaded.
1565 *
1566 * The flags are
1567 *
1568 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1569 * to catch references to uninitialised memory.
1570 *
1571 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1572 * for buffer overruns.
1573 *
1574 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1575 * memory pressure.
1576 *
1577 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1578 * cacheline. This can be beneficial if you're counting cycles as closely
1579 * as davem.
1580 */
1581kmem_cache_t *
1582kmem_cache_create (const char *name, size_t size, size_t align,
1583 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1584 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1585{
1586 size_t left_over, slab_size, ralign;
1587 kmem_cache_t *cachep = NULL;
4f12bb4f 1588 struct list_head *p;
1da177e4
LT
1589
1590 /*
1591 * Sanity checks... these are all serious usage bugs.
1592 */
1593 if ((!name) ||
b28a02de
PE
1594 in_interrupt() ||
1595 (size < BYTES_PER_WORD) ||
1596 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1597 printk(KERN_ERR "%s: Early error in slab %s\n",
1598 __FUNCTION__, name);
1599 BUG();
1600 }
1da177e4 1601
fc0abb14 1602 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1603
1604 list_for_each(p, &cache_chain) {
1605 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1606 mm_segment_t old_fs = get_fs();
1607 char tmp;
1608 int res;
1609
1610 /*
1611 * This happens when the module gets unloaded and doesn't
1612 * destroy its slab cache and no-one else reuses the vmalloc
1613 * area of the module. Print a warning.
1614 */
1615 set_fs(KERNEL_DS);
1616 res = __get_user(tmp, pc->name);
1617 set_fs(old_fs);
1618 if (res) {
1619 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1620 pc->buffer_size);
4f12bb4f
AM
1621 continue;
1622 }
1623
b28a02de 1624 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1625 printk("kmem_cache_create: duplicate cache %s\n", name);
1626 dump_stack();
1627 goto oops;
1628 }
1629 }
1630
1da177e4
LT
1631#if DEBUG
1632 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1633 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1634 /* No constructor, but inital state check requested */
1635 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1636 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1637 flags &= ~SLAB_DEBUG_INITIAL;
1638 }
1da177e4
LT
1639#if FORCED_DEBUG
1640 /*
1641 * Enable redzoning and last user accounting, except for caches with
1642 * large objects, if the increased size would increase the object size
1643 * above the next power of two: caches with object sizes just above a
1644 * power of two have a significant amount of internal fragmentation.
1645 */
b28a02de
PE
1646 if ((size < 4096
1647 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1648 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1649 if (!(flags & SLAB_DESTROY_BY_RCU))
1650 flags |= SLAB_POISON;
1651#endif
1652 if (flags & SLAB_DESTROY_BY_RCU)
1653 BUG_ON(flags & SLAB_POISON);
1654#endif
1655 if (flags & SLAB_DESTROY_BY_RCU)
1656 BUG_ON(dtor);
1657
1658 /*
1659 * Always checks flags, a caller might be expecting debug
1660 * support which isn't available.
1661 */
1662 if (flags & ~CREATE_MASK)
1663 BUG();
1664
1665 /* Check that size is in terms of words. This is needed to avoid
1666 * unaligned accesses for some archs when redzoning is used, and makes
1667 * sure any on-slab bufctl's are also correctly aligned.
1668 */
b28a02de
PE
1669 if (size & (BYTES_PER_WORD - 1)) {
1670 size += (BYTES_PER_WORD - 1);
1671 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1672 }
1673
1674 /* calculate out the final buffer alignment: */
1675 /* 1) arch recommendation: can be overridden for debug */
1676 if (flags & SLAB_HWCACHE_ALIGN) {
1677 /* Default alignment: as specified by the arch code.
1678 * Except if an object is really small, then squeeze multiple
1679 * objects into one cacheline.
1680 */
1681 ralign = cache_line_size();
b28a02de 1682 while (size <= ralign / 2)
1da177e4
LT
1683 ralign /= 2;
1684 } else {
1685 ralign = BYTES_PER_WORD;
1686 }
1687 /* 2) arch mandated alignment: disables debug if necessary */
1688 if (ralign < ARCH_SLAB_MINALIGN) {
1689 ralign = ARCH_SLAB_MINALIGN;
1690 if (ralign > BYTES_PER_WORD)
b28a02de 1691 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1692 }
1693 /* 3) caller mandated alignment: disables debug if necessary */
1694 if (ralign < align) {
1695 ralign = align;
1696 if (ralign > BYTES_PER_WORD)
b28a02de 1697 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1698 }
1699 /* 4) Store it. Note that the debug code below can reduce
1700 * the alignment to BYTES_PER_WORD.
1701 */
1702 align = ralign;
1703
1704 /* Get cache's description obj. */
1705 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1706 if (!cachep)
4f12bb4f 1707 goto oops;
1da177e4
LT
1708 memset(cachep, 0, sizeof(kmem_cache_t));
1709
1710#if DEBUG
3dafccf2 1711 cachep->obj_size = size;
1da177e4
LT
1712
1713 if (flags & SLAB_RED_ZONE) {
1714 /* redzoning only works with word aligned caches */
1715 align = BYTES_PER_WORD;
1716
1717 /* add space for red zone words */
3dafccf2 1718 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 1719 size += 2 * BYTES_PER_WORD;
1da177e4
LT
1720 }
1721 if (flags & SLAB_STORE_USER) {
1722 /* user store requires word alignment and
1723 * one word storage behind the end of the real
1724 * object.
1725 */
1726 align = BYTES_PER_WORD;
1727 size += BYTES_PER_WORD;
1728 }
1729#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 1730 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
1731 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1732 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
1733 size = PAGE_SIZE;
1734 }
1735#endif
1736#endif
1737
1738 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 1739 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
1740 /*
1741 * Size is large, assume best to place the slab management obj
1742 * off-slab (should allow better packing of objs).
1743 */
1744 flags |= CFLGS_OFF_SLAB;
1745
1746 size = ALIGN(size, align);
1747
1748 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1749 /*
1750 * A VFS-reclaimable slab tends to have most allocations
1751 * as GFP_NOFS and we really don't want to have to be allocating
1752 * higher-order pages when we are unable to shrink dcache.
1753 */
1754 cachep->gfporder = 0;
1755 cache_estimate(cachep->gfporder, size, align, flags,
b28a02de 1756 &left_over, &cachep->num);
4d268eba
PE
1757 } else
1758 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
1759
1760 if (!cachep->num) {
1761 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1762 kmem_cache_free(&cache_cache, cachep);
1763 cachep = NULL;
4f12bb4f 1764 goto oops;
1da177e4 1765 }
b28a02de
PE
1766 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1767 + sizeof(struct slab), align);
1da177e4
LT
1768
1769 /*
1770 * If the slab has been placed off-slab, and we have enough space then
1771 * move it on-slab. This is at the expense of any extra colouring.
1772 */
1773 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1774 flags &= ~CFLGS_OFF_SLAB;
1775 left_over -= slab_size;
1776 }
1777
1778 if (flags & CFLGS_OFF_SLAB) {
1779 /* really off slab. No need for manual alignment */
b28a02de
PE
1780 slab_size =
1781 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
1782 }
1783
1784 cachep->colour_off = cache_line_size();
1785 /* Offset must be a multiple of the alignment. */
1786 if (cachep->colour_off < align)
1787 cachep->colour_off = align;
b28a02de 1788 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
1789 cachep->slab_size = slab_size;
1790 cachep->flags = flags;
1791 cachep->gfpflags = 0;
1792 if (flags & SLAB_CACHE_DMA)
1793 cachep->gfpflags |= GFP_DMA;
1794 spin_lock_init(&cachep->spinlock);
3dafccf2 1795 cachep->buffer_size = size;
1da177e4
LT
1796
1797 if (flags & CFLGS_OFF_SLAB)
b2d55073 1798 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
1799 cachep->ctor = ctor;
1800 cachep->dtor = dtor;
1801 cachep->name = name;
1802
1803 /* Don't let CPUs to come and go */
1804 lock_cpu_hotplug();
1805
1806 if (g_cpucache_up == FULL) {
1807 enable_cpucache(cachep);
1808 } else {
1809 if (g_cpucache_up == NONE) {
1810 /* Note: the first kmem_cache_create must create
1811 * the cache that's used by kmalloc(24), otherwise
1812 * the creation of further caches will BUG().
1813 */
e498be7d 1814 cachep->array[smp_processor_id()] =
b28a02de 1815 &initarray_generic.cache;
e498be7d
CL
1816
1817 /* If the cache that's used by
1818 * kmalloc(sizeof(kmem_list3)) is the first cache,
1819 * then we need to set up all its list3s, otherwise
1820 * the creation of further caches will BUG().
1821 */
1822 set_up_list3s(cachep, SIZE_AC);
1823 if (INDEX_AC == INDEX_L3)
1824 g_cpucache_up = PARTIAL_L3;
1825 else
1826 g_cpucache_up = PARTIAL_AC;
1da177e4 1827 } else {
e498be7d 1828 cachep->array[smp_processor_id()] =
b28a02de 1829 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d
CL
1830
1831 if (g_cpucache_up == PARTIAL_AC) {
1832 set_up_list3s(cachep, SIZE_L3);
1833 g_cpucache_up = PARTIAL_L3;
1834 } else {
1835 int node;
1836 for_each_online_node(node) {
1837
1838 cachep->nodelists[node] =
b28a02de
PE
1839 kmalloc_node(sizeof
1840 (struct kmem_list3),
1841 GFP_KERNEL, node);
e498be7d 1842 BUG_ON(!cachep->nodelists[node]);
b28a02de
PE
1843 kmem_list3_init(cachep->
1844 nodelists[node]);
e498be7d
CL
1845 }
1846 }
1da177e4 1847 }
e498be7d 1848 cachep->nodelists[numa_node_id()]->next_reap =
b28a02de
PE
1849 jiffies + REAPTIMEOUT_LIST3 +
1850 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1851
1da177e4
LT
1852 BUG_ON(!ac_data(cachep));
1853 ac_data(cachep)->avail = 0;
1854 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1855 ac_data(cachep)->batchcount = 1;
1856 ac_data(cachep)->touched = 0;
1857 cachep->batchcount = 1;
1858 cachep->limit = BOOT_CPUCACHE_ENTRIES;
b28a02de 1859 }
1da177e4 1860
1da177e4
LT
1861 /* cache setup completed, link it into the list */
1862 list_add(&cachep->next, &cache_chain);
1da177e4 1863 unlock_cpu_hotplug();
b28a02de 1864 oops:
1da177e4
LT
1865 if (!cachep && (flags & SLAB_PANIC))
1866 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 1867 name);
fc0abb14 1868 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1869 return cachep;
1870}
1871EXPORT_SYMBOL(kmem_cache_create);
1872
1873#if DEBUG
1874static void check_irq_off(void)
1875{
1876 BUG_ON(!irqs_disabled());
1877}
1878
1879static void check_irq_on(void)
1880{
1881 BUG_ON(irqs_disabled());
1882}
1883
1884static void check_spinlock_acquired(kmem_cache_t *cachep)
1885{
1886#ifdef CONFIG_SMP
1887 check_irq_off();
e498be7d 1888 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
1889#endif
1890}
e498be7d
CL
1891
1892static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1893{
1894#ifdef CONFIG_SMP
1895 check_irq_off();
1896 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1897#endif
1898}
1899
1da177e4
LT
1900#else
1901#define check_irq_off() do { } while(0)
1902#define check_irq_on() do { } while(0)
1903#define check_spinlock_acquired(x) do { } while(0)
e498be7d 1904#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
1905#endif
1906
1907/*
1908 * Waits for all CPUs to execute func().
1909 */
b28a02de 1910static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1da177e4
LT
1911{
1912 check_irq_on();
1913 preempt_disable();
1914
1915 local_irq_disable();
1916 func(arg);
1917 local_irq_enable();
1918
1919 if (smp_call_function(func, arg, 1, 1))
1920 BUG();
1921
1922 preempt_enable();
1923}
1924
b28a02de
PE
1925static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
1926 int force, int node);
1da177e4
LT
1927
1928static void do_drain(void *arg)
1929{
b28a02de 1930 kmem_cache_t *cachep = (kmem_cache_t *) arg;
1da177e4 1931 struct array_cache *ac;
ff69416e 1932 int node = numa_node_id();
1da177e4
LT
1933
1934 check_irq_off();
1935 ac = ac_data(cachep);
ff69416e
CL
1936 spin_lock(&cachep->nodelists[node]->list_lock);
1937 free_block(cachep, ac->entry, ac->avail, node);
1938 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
1939 ac->avail = 0;
1940}
1941
1942static void drain_cpu_caches(kmem_cache_t *cachep)
1943{
e498be7d
CL
1944 struct kmem_list3 *l3;
1945 int node;
1946
1da177e4
LT
1947 smp_call_function_all_cpus(do_drain, cachep);
1948 check_irq_on();
1949 spin_lock_irq(&cachep->spinlock);
b28a02de 1950 for_each_online_node(node) {
e498be7d
CL
1951 l3 = cachep->nodelists[node];
1952 if (l3) {
1953 spin_lock(&l3->list_lock);
1954 drain_array_locked(cachep, l3->shared, 1, node);
1955 spin_unlock(&l3->list_lock);
1956 if (l3->alien)
1957 drain_alien_cache(cachep, l3);
1958 }
1959 }
1da177e4
LT
1960 spin_unlock_irq(&cachep->spinlock);
1961}
1962
e498be7d 1963static int __node_shrink(kmem_cache_t *cachep, int node)
1da177e4
LT
1964{
1965 struct slab *slabp;
e498be7d 1966 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
1967 int ret;
1968
e498be7d 1969 for (;;) {
1da177e4
LT
1970 struct list_head *p;
1971
e498be7d
CL
1972 p = l3->slabs_free.prev;
1973 if (p == &l3->slabs_free)
1da177e4
LT
1974 break;
1975
e498be7d 1976 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4
LT
1977#if DEBUG
1978 if (slabp->inuse)
1979 BUG();
1980#endif
1981 list_del(&slabp->list);
1982
e498be7d
CL
1983 l3->free_objects -= cachep->num;
1984 spin_unlock_irq(&l3->list_lock);
1da177e4 1985 slab_destroy(cachep, slabp);
e498be7d 1986 spin_lock_irq(&l3->list_lock);
1da177e4 1987 }
b28a02de 1988 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
1989 return ret;
1990}
1991
e498be7d
CL
1992static int __cache_shrink(kmem_cache_t *cachep)
1993{
1994 int ret = 0, i = 0;
1995 struct kmem_list3 *l3;
1996
1997 drain_cpu_caches(cachep);
1998
1999 check_irq_on();
2000 for_each_online_node(i) {
2001 l3 = cachep->nodelists[i];
2002 if (l3) {
2003 spin_lock_irq(&l3->list_lock);
2004 ret += __node_shrink(cachep, i);
2005 spin_unlock_irq(&l3->list_lock);
2006 }
2007 }
2008 return (ret ? 1 : 0);
2009}
2010
1da177e4
LT
2011/**
2012 * kmem_cache_shrink - Shrink a cache.
2013 * @cachep: The cache to shrink.
2014 *
2015 * Releases as many slabs as possible for a cache.
2016 * To help debugging, a zero exit status indicates all slabs were released.
2017 */
2018int kmem_cache_shrink(kmem_cache_t *cachep)
2019{
2020 if (!cachep || in_interrupt())
2021 BUG();
2022
2023 return __cache_shrink(cachep);
2024}
2025EXPORT_SYMBOL(kmem_cache_shrink);
2026
2027/**
2028 * kmem_cache_destroy - delete a cache
2029 * @cachep: the cache to destroy
2030 *
2031 * Remove a kmem_cache_t object from the slab cache.
2032 * Returns 0 on success.
2033 *
2034 * It is expected this function will be called by a module when it is
2035 * unloaded. This will remove the cache completely, and avoid a duplicate
2036 * cache being allocated each time a module is loaded and unloaded, if the
2037 * module doesn't have persistent in-kernel storage across loads and unloads.
2038 *
2039 * The cache must be empty before calling this function.
2040 *
2041 * The caller must guarantee that noone will allocate memory from the cache
2042 * during the kmem_cache_destroy().
2043 */
b28a02de 2044int kmem_cache_destroy(kmem_cache_t *cachep)
1da177e4
LT
2045{
2046 int i;
e498be7d 2047 struct kmem_list3 *l3;
1da177e4
LT
2048
2049 if (!cachep || in_interrupt())
2050 BUG();
2051
2052 /* Don't let CPUs to come and go */
2053 lock_cpu_hotplug();
2054
2055 /* Find the cache in the chain of caches. */
fc0abb14 2056 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2057 /*
2058 * the chain is never empty, cache_cache is never destroyed
2059 */
2060 list_del(&cachep->next);
fc0abb14 2061 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2062
2063 if (__cache_shrink(cachep)) {
2064 slab_error(cachep, "Can't free all objects");
fc0abb14 2065 mutex_lock(&cache_chain_mutex);
b28a02de 2066 list_add(&cachep->next, &cache_chain);
fc0abb14 2067 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2068 unlock_cpu_hotplug();
2069 return 1;
2070 }
2071
2072 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2073 synchronize_rcu();
1da177e4 2074
e498be7d 2075 for_each_online_cpu(i)
b28a02de 2076 kfree(cachep->array[i]);
1da177e4
LT
2077
2078 /* NUMA: free the list3 structures */
e498be7d
CL
2079 for_each_online_node(i) {
2080 if ((l3 = cachep->nodelists[i])) {
2081 kfree(l3->shared);
2082 free_alien_cache(l3->alien);
2083 kfree(l3);
2084 }
2085 }
1da177e4
LT
2086 kmem_cache_free(&cache_cache, cachep);
2087
2088 unlock_cpu_hotplug();
2089
2090 return 0;
2091}
2092EXPORT_SYMBOL(kmem_cache_destroy);
2093
2094/* Get the memory for a slab management obj. */
b28a02de
PE
2095static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2096 int colour_off, gfp_t local_flags)
1da177e4
LT
2097{
2098 struct slab *slabp;
b28a02de 2099
1da177e4
LT
2100 if (OFF_SLAB(cachep)) {
2101 /* Slab management obj is off-slab. */
2102 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2103 if (!slabp)
2104 return NULL;
2105 } else {
b28a02de 2106 slabp = objp + colour_off;
1da177e4
LT
2107 colour_off += cachep->slab_size;
2108 }
2109 slabp->inuse = 0;
2110 slabp->colouroff = colour_off;
b28a02de 2111 slabp->s_mem = objp + colour_off;
1da177e4
LT
2112
2113 return slabp;
2114}
2115
2116static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2117{
b28a02de 2118 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2119}
2120
2121static void cache_init_objs(kmem_cache_t *cachep,
b28a02de 2122 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2123{
2124 int i;
2125
2126 for (i = 0; i < cachep->num; i++) {
3dafccf2 2127 void *objp = slabp->s_mem + cachep->buffer_size * i;
1da177e4
LT
2128#if DEBUG
2129 /* need to poison the objs? */
2130 if (cachep->flags & SLAB_POISON)
2131 poison_obj(cachep, objp, POISON_FREE);
2132 if (cachep->flags & SLAB_STORE_USER)
2133 *dbg_userword(cachep, objp) = NULL;
2134
2135 if (cachep->flags & SLAB_RED_ZONE) {
2136 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2137 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2138 }
2139 /*
2140 * Constructors are not allowed to allocate memory from
2141 * the same cache which they are a constructor for.
2142 * Otherwise, deadlock. They must also be threaded.
2143 */
2144 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2145 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2146 ctor_flags);
1da177e4
LT
2147
2148 if (cachep->flags & SLAB_RED_ZONE) {
2149 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2150 slab_error(cachep, "constructor overwrote the"
b28a02de 2151 " end of an object");
1da177e4
LT
2152 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2153 slab_error(cachep, "constructor overwrote the"
b28a02de 2154 " start of an object");
1da177e4 2155 }
3dafccf2 2156 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
b28a02de
PE
2157 && cachep->flags & SLAB_POISON)
2158 kernel_map_pages(virt_to_page(objp),
3dafccf2 2159 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2160#else
2161 if (cachep->ctor)
2162 cachep->ctor(objp, cachep, ctor_flags);
2163#endif
b28a02de 2164 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2165 }
b28a02de 2166 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2167 slabp->free = 0;
2168}
2169
6daa0e28 2170static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2171{
2172 if (flags & SLAB_DMA) {
2173 if (!(cachep->gfpflags & GFP_DMA))
2174 BUG();
2175 } else {
2176 if (cachep->gfpflags & GFP_DMA)
2177 BUG();
2178 }
2179}
2180
2181static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2182{
2183 int i;
2184 struct page *page;
2185
2186 /* Nasty!!!!!! I hope this is OK. */
2187 i = 1 << cachep->gfporder;
2188 page = virt_to_page(objp);
2189 do {
065d41cb
PE
2190 page_set_cache(page, cachep);
2191 page_set_slab(page, slabp);
1da177e4
LT
2192 page++;
2193 } while (--i);
2194}
2195
2196/*
2197 * Grow (by 1) the number of slabs within a cache. This is called by
2198 * kmem_cache_alloc() when there are no active objs left in a cache.
2199 */
dd0fc66f 2200static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4 2201{
b28a02de
PE
2202 struct slab *slabp;
2203 void *objp;
2204 size_t offset;
2205 gfp_t local_flags;
2206 unsigned long ctor_flags;
e498be7d 2207 struct kmem_list3 *l3;
1da177e4
LT
2208
2209 /* Be lazy and only check for valid flags here,
b28a02de 2210 * keeping it out of the critical path in kmem_cache_alloc().
1da177e4 2211 */
b28a02de 2212 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
1da177e4
LT
2213 BUG();
2214 if (flags & SLAB_NO_GROW)
2215 return 0;
2216
2217 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2218 local_flags = (flags & SLAB_LEVEL_MASK);
2219 if (!(local_flags & __GFP_WAIT))
2220 /*
2221 * Not allowed to sleep. Need to tell a constructor about
2222 * this - it might need to know...
2223 */
2224 ctor_flags |= SLAB_CTOR_ATOMIC;
2225
2226 /* About to mess with non-constant members - lock. */
2227 check_irq_off();
2228 spin_lock(&cachep->spinlock);
2229
2230 /* Get colour for the slab, and cal the next value. */
2231 offset = cachep->colour_next;
2232 cachep->colour_next++;
2233 if (cachep->colour_next >= cachep->colour)
2234 cachep->colour_next = 0;
2235 offset *= cachep->colour_off;
2236
2237 spin_unlock(&cachep->spinlock);
2238
e498be7d 2239 check_irq_off();
1da177e4
LT
2240 if (local_flags & __GFP_WAIT)
2241 local_irq_enable();
2242
2243 /*
2244 * The test for missing atomic flag is performed here, rather than
2245 * the more obvious place, simply to reduce the critical path length
2246 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2247 * will eventually be caught here (where it matters).
2248 */
2249 kmem_flagcheck(cachep, flags);
2250
e498be7d
CL
2251 /* Get mem for the objs.
2252 * Attempt to allocate a physical page from 'nodeid',
2253 */
1da177e4
LT
2254 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2255 goto failed;
2256
2257 /* Get slab management. */
2258 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2259 goto opps1;
2260
e498be7d 2261 slabp->nodeid = nodeid;
1da177e4
LT
2262 set_slab_attr(cachep, slabp, objp);
2263
2264 cache_init_objs(cachep, slabp, ctor_flags);
2265
2266 if (local_flags & __GFP_WAIT)
2267 local_irq_disable();
2268 check_irq_off();
e498be7d
CL
2269 l3 = cachep->nodelists[nodeid];
2270 spin_lock(&l3->list_lock);
1da177e4
LT
2271
2272 /* Make slab active. */
e498be7d 2273 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2274 STATS_INC_GROWN(cachep);
e498be7d
CL
2275 l3->free_objects += cachep->num;
2276 spin_unlock(&l3->list_lock);
1da177e4 2277 return 1;
b28a02de 2278 opps1:
1da177e4 2279 kmem_freepages(cachep, objp);
b28a02de 2280 failed:
1da177e4
LT
2281 if (local_flags & __GFP_WAIT)
2282 local_irq_disable();
2283 return 0;
2284}
2285
2286#if DEBUG
2287
2288/*
2289 * Perform extra freeing checks:
2290 * - detect bad pointers.
2291 * - POISON/RED_ZONE checking
2292 * - destructor calls, for caches with POISON+dtor
2293 */
2294static void kfree_debugcheck(const void *objp)
2295{
2296 struct page *page;
2297
2298 if (!virt_addr_valid(objp)) {
2299 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2300 (unsigned long)objp);
2301 BUG();
1da177e4
LT
2302 }
2303 page = virt_to_page(objp);
2304 if (!PageSlab(page)) {
b28a02de
PE
2305 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2306 (unsigned long)objp);
1da177e4
LT
2307 BUG();
2308 }
2309}
2310
2311static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
b28a02de 2312 void *caller)
1da177e4
LT
2313{
2314 struct page *page;
2315 unsigned int objnr;
2316 struct slab *slabp;
2317
3dafccf2 2318 objp -= obj_offset(cachep);
1da177e4
LT
2319 kfree_debugcheck(objp);
2320 page = virt_to_page(objp);
2321
065d41cb 2322 if (page_get_cache(page) != cachep) {
b28a02de
PE
2323 printk(KERN_ERR
2324 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2325 page_get_cache(page), cachep);
1da177e4 2326 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2327 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2328 page_get_cache(page)->name);
1da177e4
LT
2329 WARN_ON(1);
2330 }
065d41cb 2331 slabp = page_get_slab(page);
1da177e4
LT
2332
2333 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2334 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2335 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2336 slab_error(cachep,
2337 "double free, or memory outside"
2338 " object was overwritten");
2339 printk(KERN_ERR
2340 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2341 objp, *dbg_redzone1(cachep, objp),
2342 *dbg_redzone2(cachep, objp));
1da177e4
LT
2343 }
2344 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2345 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2346 }
2347 if (cachep->flags & SLAB_STORE_USER)
2348 *dbg_userword(cachep, objp) = caller;
2349
3dafccf2 2350 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1da177e4
LT
2351
2352 BUG_ON(objnr >= cachep->num);
3dafccf2 2353 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
1da177e4
LT
2354
2355 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2356 /* Need to call the slab's constructor so the
2357 * caller can perform a verify of its state (debugging).
2358 * Called without the cache-lock held.
2359 */
3dafccf2 2360 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2361 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2362 }
2363 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2364 /* we want to cache poison the object,
2365 * call the destruction callback
2366 */
3dafccf2 2367 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4
LT
2368 }
2369 if (cachep->flags & SLAB_POISON) {
2370#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2371 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
1da177e4 2372 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2373 kernel_map_pages(virt_to_page(objp),
3dafccf2 2374 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2375 } else {
2376 poison_obj(cachep, objp, POISON_FREE);
2377 }
2378#else
2379 poison_obj(cachep, objp, POISON_FREE);
2380#endif
2381 }
2382 return objp;
2383}
2384
2385static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2386{
2387 kmem_bufctl_t i;
2388 int entries = 0;
b28a02de 2389
1da177e4
LT
2390 /* Check slab's freelist to see if this obj is there. */
2391 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2392 entries++;
2393 if (entries > cachep->num || i >= cachep->num)
2394 goto bad;
2395 }
2396 if (entries != cachep->num - slabp->inuse) {
b28a02de
PE
2397 bad:
2398 printk(KERN_ERR
2399 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2400 cachep->name, cachep->num, slabp, slabp->inuse);
2401 for (i = 0;
2402 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2403 i++) {
2404 if ((i % 16) == 0)
1da177e4 2405 printk("\n%03x:", i);
b28a02de 2406 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2407 }
2408 printk("\n");
2409 BUG();
2410 }
2411}
2412#else
2413#define kfree_debugcheck(x) do { } while(0)
2414#define cache_free_debugcheck(x,objp,z) (objp)
2415#define check_slabp(x,y) do { } while(0)
2416#endif
2417
dd0fc66f 2418static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2419{
2420 int batchcount;
2421 struct kmem_list3 *l3;
2422 struct array_cache *ac;
2423
2424 check_irq_off();
2425 ac = ac_data(cachep);
b28a02de 2426 retry:
1da177e4
LT
2427 batchcount = ac->batchcount;
2428 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2429 /* if there was little recent activity on this
2430 * cache, then perform only a partial refill.
2431 * Otherwise we could generate refill bouncing.
2432 */
2433 batchcount = BATCHREFILL_LIMIT;
2434 }
e498be7d
CL
2435 l3 = cachep->nodelists[numa_node_id()];
2436
2437 BUG_ON(ac->avail > 0 || !l3);
2438 spin_lock(&l3->list_lock);
1da177e4 2439
1da177e4
LT
2440 if (l3->shared) {
2441 struct array_cache *shared_array = l3->shared;
2442 if (shared_array->avail) {
2443 if (batchcount > shared_array->avail)
2444 batchcount = shared_array->avail;
2445 shared_array->avail -= batchcount;
2446 ac->avail = batchcount;
e498be7d 2447 memcpy(ac->entry,
b28a02de
PE
2448 &(shared_array->entry[shared_array->avail]),
2449 sizeof(void *) * batchcount);
1da177e4
LT
2450 shared_array->touched = 1;
2451 goto alloc_done;
2452 }
2453 }
2454 while (batchcount > 0) {
2455 struct list_head *entry;
2456 struct slab *slabp;
2457 /* Get slab alloc is to come from. */
2458 entry = l3->slabs_partial.next;
2459 if (entry == &l3->slabs_partial) {
2460 l3->free_touched = 1;
2461 entry = l3->slabs_free.next;
2462 if (entry == &l3->slabs_free)
2463 goto must_grow;
2464 }
2465
2466 slabp = list_entry(entry, struct slab, list);
2467 check_slabp(cachep, slabp);
2468 check_spinlock_acquired(cachep);
2469 while (slabp->inuse < cachep->num && batchcount--) {
2470 kmem_bufctl_t next;
2471 STATS_INC_ALLOCED(cachep);
2472 STATS_INC_ACTIVE(cachep);
2473 STATS_SET_HIGH(cachep);
2474
2475 /* get obj pointer */
e498be7d 2476 ac->entry[ac->avail++] = slabp->s_mem +
3dafccf2 2477 slabp->free * cachep->buffer_size;
1da177e4
LT
2478
2479 slabp->inuse++;
2480 next = slab_bufctl(slabp)[slabp->free];
2481#if DEBUG
2482 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
09ad4bbc 2483 WARN_ON(numa_node_id() != slabp->nodeid);
1da177e4 2484#endif
b28a02de 2485 slabp->free = next;
1da177e4
LT
2486 }
2487 check_slabp(cachep, slabp);
2488
2489 /* move slabp to correct slabp list: */
2490 list_del(&slabp->list);
2491 if (slabp->free == BUFCTL_END)
2492 list_add(&slabp->list, &l3->slabs_full);
2493 else
2494 list_add(&slabp->list, &l3->slabs_partial);
2495 }
2496
b28a02de 2497 must_grow:
1da177e4 2498 l3->free_objects -= ac->avail;
b28a02de 2499 alloc_done:
e498be7d 2500 spin_unlock(&l3->list_lock);
1da177e4
LT
2501
2502 if (unlikely(!ac->avail)) {
2503 int x;
e498be7d
CL
2504 x = cache_grow(cachep, flags, numa_node_id());
2505
1da177e4
LT
2506 // cache_grow can reenable interrupts, then ac could change.
2507 ac = ac_data(cachep);
2508 if (!x && ac->avail == 0) // no objects in sight? abort
2509 return NULL;
2510
b28a02de 2511 if (!ac->avail) // objects refilled by interrupt?
1da177e4
LT
2512 goto retry;
2513 }
2514 ac->touched = 1;
e498be7d 2515 return ac->entry[--ac->avail];
1da177e4
LT
2516}
2517
2518static inline void
dd0fc66f 2519cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2520{
2521 might_sleep_if(flags & __GFP_WAIT);
2522#if DEBUG
2523 kmem_flagcheck(cachep, flags);
2524#endif
2525}
2526
2527#if DEBUG
b28a02de
PE
2528static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2529 void *objp, void *caller)
1da177e4 2530{
b28a02de 2531 if (!objp)
1da177e4 2532 return objp;
b28a02de 2533 if (cachep->flags & SLAB_POISON) {
1da177e4 2534#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2535 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2536 kernel_map_pages(virt_to_page(objp),
3dafccf2 2537 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2538 else
2539 check_poison_obj(cachep, objp);
2540#else
2541 check_poison_obj(cachep, objp);
2542#endif
2543 poison_obj(cachep, objp, POISON_INUSE);
2544 }
2545 if (cachep->flags & SLAB_STORE_USER)
2546 *dbg_userword(cachep, objp) = caller;
2547
2548 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2549 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2550 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2551 slab_error(cachep,
2552 "double free, or memory outside"
2553 " object was overwritten");
2554 printk(KERN_ERR
2555 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2556 objp, *dbg_redzone1(cachep, objp),
2557 *dbg_redzone2(cachep, objp));
1da177e4
LT
2558 }
2559 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2560 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2561 }
3dafccf2 2562 objp += obj_offset(cachep);
1da177e4 2563 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2564 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2565
2566 if (!(flags & __GFP_WAIT))
2567 ctor_flags |= SLAB_CTOR_ATOMIC;
2568
2569 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2570 }
1da177e4
LT
2571 return objp;
2572}
2573#else
2574#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2575#endif
2576
dd0fc66f 2577static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
1da177e4 2578{
b28a02de 2579 void *objp;
1da177e4
LT
2580 struct array_cache *ac;
2581
dc85da15 2582#ifdef CONFIG_NUMA
86c562a9 2583 if (unlikely(current->mempolicy && !in_interrupt())) {
dc85da15
CL
2584 int nid = slab_node(current->mempolicy);
2585
2586 if (nid != numa_node_id())
2587 return __cache_alloc_node(cachep, flags, nid);
2588 }
2589#endif
2590
5c382300 2591 check_irq_off();
1da177e4
LT
2592 ac = ac_data(cachep);
2593 if (likely(ac->avail)) {
2594 STATS_INC_ALLOCHIT(cachep);
2595 ac->touched = 1;
e498be7d 2596 objp = ac->entry[--ac->avail];
1da177e4
LT
2597 } else {
2598 STATS_INC_ALLOCMISS(cachep);
2599 objp = cache_alloc_refill(cachep, flags);
2600 }
5c382300
AK
2601 return objp;
2602}
2603
dd0fc66f 2604static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
5c382300
AK
2605{
2606 unsigned long save_flags;
b28a02de 2607 void *objp;
5c382300
AK
2608
2609 cache_alloc_debugcheck_before(cachep, flags);
2610
2611 local_irq_save(save_flags);
2612 objp = ____cache_alloc(cachep, flags);
1da177e4 2613 local_irq_restore(save_flags);
34342e86 2614 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
b28a02de 2615 __builtin_return_address(0));
34342e86 2616 prefetchw(objp);
1da177e4
LT
2617 return objp;
2618}
2619
e498be7d
CL
2620#ifdef CONFIG_NUMA
2621/*
2622 * A interface to enable slab creation on nodeid
1da177e4 2623 */
6daa0e28 2624static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
e498be7d
CL
2625{
2626 struct list_head *entry;
b28a02de
PE
2627 struct slab *slabp;
2628 struct kmem_list3 *l3;
2629 void *obj;
2630 kmem_bufctl_t next;
2631 int x;
2632
2633 l3 = cachep->nodelists[nodeid];
2634 BUG_ON(!l3);
2635
2636 retry:
2637 spin_lock(&l3->list_lock);
2638 entry = l3->slabs_partial.next;
2639 if (entry == &l3->slabs_partial) {
2640 l3->free_touched = 1;
2641 entry = l3->slabs_free.next;
2642 if (entry == &l3->slabs_free)
2643 goto must_grow;
2644 }
2645
2646 slabp = list_entry(entry, struct slab, list);
2647 check_spinlock_acquired_node(cachep, nodeid);
2648 check_slabp(cachep, slabp);
2649
2650 STATS_INC_NODEALLOCS(cachep);
2651 STATS_INC_ACTIVE(cachep);
2652 STATS_SET_HIGH(cachep);
2653
2654 BUG_ON(slabp->inuse == cachep->num);
2655
2656 /* get obj pointer */
3dafccf2 2657 obj = slabp->s_mem + slabp->free * cachep->buffer_size;
b28a02de
PE
2658 slabp->inuse++;
2659 next = slab_bufctl(slabp)[slabp->free];
e498be7d 2660#if DEBUG
b28a02de 2661 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
e498be7d 2662#endif
b28a02de
PE
2663 slabp->free = next;
2664 check_slabp(cachep, slabp);
2665 l3->free_objects--;
2666 /* move slabp to correct slabp list: */
2667 list_del(&slabp->list);
2668
2669 if (slabp->free == BUFCTL_END) {
2670 list_add(&slabp->list, &l3->slabs_full);
2671 } else {
2672 list_add(&slabp->list, &l3->slabs_partial);
2673 }
e498be7d 2674
b28a02de
PE
2675 spin_unlock(&l3->list_lock);
2676 goto done;
e498be7d 2677
b28a02de
PE
2678 must_grow:
2679 spin_unlock(&l3->list_lock);
2680 x = cache_grow(cachep, flags, nodeid);
1da177e4 2681
b28a02de
PE
2682 if (!x)
2683 return NULL;
e498be7d 2684
b28a02de
PE
2685 goto retry;
2686 done:
2687 return obj;
e498be7d
CL
2688}
2689#endif
2690
2691/*
2692 * Caller needs to acquire correct kmem_list's list_lock
2693 */
b28a02de
PE
2694static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2695 int node)
1da177e4
LT
2696{
2697 int i;
e498be7d 2698 struct kmem_list3 *l3;
1da177e4
LT
2699
2700 for (i = 0; i < nr_objects; i++) {
2701 void *objp = objpp[i];
2702 struct slab *slabp;
2703 unsigned int objnr;
2704
065d41cb 2705 slabp = page_get_slab(virt_to_page(objp));
ff69416e 2706 l3 = cachep->nodelists[node];
1da177e4 2707 list_del(&slabp->list);
3dafccf2 2708 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
ff69416e 2709 check_spinlock_acquired_node(cachep, node);
1da177e4 2710 check_slabp(cachep, slabp);
e498be7d 2711
1da177e4 2712#if DEBUG
09ad4bbc
CL
2713 /* Verify that the slab belongs to the intended node */
2714 WARN_ON(slabp->nodeid != node);
2715
1da177e4 2716 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
e498be7d 2717 printk(KERN_ERR "slab: double free detected in cache "
b28a02de 2718 "'%s', objp %p\n", cachep->name, objp);
1da177e4
LT
2719 BUG();
2720 }
2721#endif
2722 slab_bufctl(slabp)[objnr] = slabp->free;
2723 slabp->free = objnr;
2724 STATS_DEC_ACTIVE(cachep);
2725 slabp->inuse--;
e498be7d 2726 l3->free_objects++;
1da177e4
LT
2727 check_slabp(cachep, slabp);
2728
2729 /* fixup slab chains */
2730 if (slabp->inuse == 0) {
e498be7d
CL
2731 if (l3->free_objects > l3->free_limit) {
2732 l3->free_objects -= cachep->num;
1da177e4
LT
2733 slab_destroy(cachep, slabp);
2734 } else {
e498be7d 2735 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2736 }
2737 } else {
2738 /* Unconditionally move a slab to the end of the
2739 * partial list on free - maximum time for the
2740 * other objects to be freed, too.
2741 */
e498be7d 2742 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
2743 }
2744 }
2745}
2746
2747static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2748{
2749 int batchcount;
e498be7d 2750 struct kmem_list3 *l3;
ff69416e 2751 int node = numa_node_id();
1da177e4
LT
2752
2753 batchcount = ac->batchcount;
2754#if DEBUG
2755 BUG_ON(!batchcount || batchcount > ac->avail);
2756#endif
2757 check_irq_off();
ff69416e 2758 l3 = cachep->nodelists[node];
e498be7d
CL
2759 spin_lock(&l3->list_lock);
2760 if (l3->shared) {
2761 struct array_cache *shared_array = l3->shared;
b28a02de 2762 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
2763 if (max) {
2764 if (batchcount > max)
2765 batchcount = max;
e498be7d 2766 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 2767 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
2768 shared_array->avail += batchcount;
2769 goto free_done;
2770 }
2771 }
2772
ff69416e 2773 free_block(cachep, ac->entry, batchcount, node);
b28a02de 2774 free_done:
1da177e4
LT
2775#if STATS
2776 {
2777 int i = 0;
2778 struct list_head *p;
2779
e498be7d
CL
2780 p = l3->slabs_free.next;
2781 while (p != &(l3->slabs_free)) {
1da177e4
LT
2782 struct slab *slabp;
2783
2784 slabp = list_entry(p, struct slab, list);
2785 BUG_ON(slabp->inuse);
2786
2787 i++;
2788 p = p->next;
2789 }
2790 STATS_SET_FREEABLE(cachep, i);
2791 }
2792#endif
e498be7d 2793 spin_unlock(&l3->list_lock);
1da177e4 2794 ac->avail -= batchcount;
e498be7d 2795 memmove(ac->entry, &(ac->entry[batchcount]),
b28a02de 2796 sizeof(void *) * ac->avail);
1da177e4
LT
2797}
2798
2799/*
2800 * __cache_free
2801 * Release an obj back to its cache. If the obj has a constructed
2802 * state, it must be in this state _before_ it is released.
2803 *
2804 * Called with disabled ints.
2805 */
2806static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2807{
2808 struct array_cache *ac = ac_data(cachep);
2809
2810 check_irq_off();
2811 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2812
e498be7d
CL
2813 /* Make sure we are not freeing a object from another
2814 * node to the array cache on this cpu.
2815 */
2816#ifdef CONFIG_NUMA
2817 {
2818 struct slab *slabp;
065d41cb 2819 slabp = page_get_slab(virt_to_page(objp));
e498be7d
CL
2820 if (unlikely(slabp->nodeid != numa_node_id())) {
2821 struct array_cache *alien = NULL;
2822 int nodeid = slabp->nodeid;
b28a02de
PE
2823 struct kmem_list3 *l3 =
2824 cachep->nodelists[numa_node_id()];
e498be7d
CL
2825
2826 STATS_INC_NODEFREES(cachep);
2827 if (l3->alien && l3->alien[nodeid]) {
2828 alien = l3->alien[nodeid];
2829 spin_lock(&alien->lock);
2830 if (unlikely(alien->avail == alien->limit))
2831 __drain_alien_cache(cachep,
b28a02de 2832 alien, nodeid);
e498be7d
CL
2833 alien->entry[alien->avail++] = objp;
2834 spin_unlock(&alien->lock);
2835 } else {
2836 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 2837 list_lock);
ff69416e 2838 free_block(cachep, &objp, 1, nodeid);
e498be7d 2839 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 2840 list_lock);
e498be7d
CL
2841 }
2842 return;
2843 }
2844 }
2845#endif
1da177e4
LT
2846 if (likely(ac->avail < ac->limit)) {
2847 STATS_INC_FREEHIT(cachep);
e498be7d 2848 ac->entry[ac->avail++] = objp;
1da177e4
LT
2849 return;
2850 } else {
2851 STATS_INC_FREEMISS(cachep);
2852 cache_flusharray(cachep, ac);
e498be7d 2853 ac->entry[ac->avail++] = objp;
1da177e4
LT
2854 }
2855}
2856
2857/**
2858 * kmem_cache_alloc - Allocate an object
2859 * @cachep: The cache to allocate from.
2860 * @flags: See kmalloc().
2861 *
2862 * Allocate an object from this cache. The flags are only relevant
2863 * if the cache has no available objects.
2864 */
dd0fc66f 2865void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2866{
2867 return __cache_alloc(cachep, flags);
2868}
2869EXPORT_SYMBOL(kmem_cache_alloc);
2870
2871/**
2872 * kmem_ptr_validate - check if an untrusted pointer might
2873 * be a slab entry.
2874 * @cachep: the cache we're checking against
2875 * @ptr: pointer to validate
2876 *
2877 * This verifies that the untrusted pointer looks sane:
2878 * it is _not_ a guarantee that the pointer is actually
2879 * part of the slab cache in question, but it at least
2880 * validates that the pointer can be dereferenced and
2881 * looks half-way sane.
2882 *
2883 * Currently only used for dentry validation.
2884 */
2885int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2886{
b28a02de 2887 unsigned long addr = (unsigned long)ptr;
1da177e4 2888 unsigned long min_addr = PAGE_OFFSET;
b28a02de 2889 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 2890 unsigned long size = cachep->buffer_size;
1da177e4
LT
2891 struct page *page;
2892
2893 if (unlikely(addr < min_addr))
2894 goto out;
2895 if (unlikely(addr > (unsigned long)high_memory - size))
2896 goto out;
2897 if (unlikely(addr & align_mask))
2898 goto out;
2899 if (unlikely(!kern_addr_valid(addr)))
2900 goto out;
2901 if (unlikely(!kern_addr_valid(addr + size - 1)))
2902 goto out;
2903 page = virt_to_page(ptr);
2904 if (unlikely(!PageSlab(page)))
2905 goto out;
065d41cb 2906 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
2907 goto out;
2908 return 1;
b28a02de 2909 out:
1da177e4
LT
2910 return 0;
2911}
2912
2913#ifdef CONFIG_NUMA
2914/**
2915 * kmem_cache_alloc_node - Allocate an object on the specified node
2916 * @cachep: The cache to allocate from.
2917 * @flags: See kmalloc().
2918 * @nodeid: node number of the target node.
2919 *
2920 * Identical to kmem_cache_alloc, except that this function is slow
2921 * and can sleep. And it will allocate memory on the given node, which
2922 * can improve the performance for cpu bound structures.
e498be7d
CL
2923 * New and improved: it will now make sure that the object gets
2924 * put on the correct node list so that there is no false sharing.
1da177e4 2925 */
dd0fc66f 2926void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4 2927{
e498be7d
CL
2928 unsigned long save_flags;
2929 void *ptr;
1da177e4 2930
e498be7d
CL
2931 cache_alloc_debugcheck_before(cachep, flags);
2932 local_irq_save(save_flags);
18f820f6
CL
2933
2934 if (nodeid == -1 || nodeid == numa_node_id() ||
2935 !cachep->nodelists[nodeid])
5c382300
AK
2936 ptr = ____cache_alloc(cachep, flags);
2937 else
2938 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 2939 local_irq_restore(save_flags);
18f820f6
CL
2940
2941 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
2942 __builtin_return_address(0));
1da177e4 2943
e498be7d 2944 return ptr;
1da177e4
LT
2945}
2946EXPORT_SYMBOL(kmem_cache_alloc_node);
2947
dd0fc66f 2948void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4
MS
2949{
2950 kmem_cache_t *cachep;
2951
2952 cachep = kmem_find_general_cachep(size, flags);
2953 if (unlikely(cachep == NULL))
2954 return NULL;
2955 return kmem_cache_alloc_node(cachep, flags, node);
2956}
2957EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
2958#endif
2959
2960/**
2961 * kmalloc - allocate memory
2962 * @size: how many bytes of memory are required.
2963 * @flags: the type of memory to allocate.
2964 *
2965 * kmalloc is the normal method of allocating memory
2966 * in the kernel.
2967 *
2968 * The @flags argument may be one of:
2969 *
2970 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2971 *
2972 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2973 *
2974 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2975 *
2976 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2977 * must be suitable for DMA. This can mean different things on different
2978 * platforms. For example, on i386, it means that the memory must come
2979 * from the first 16MB.
2980 */
dd0fc66f 2981void *__kmalloc(size_t size, gfp_t flags)
1da177e4
LT
2982{
2983 kmem_cache_t *cachep;
2984
97e2bde4
MS
2985 /* If you want to save a few bytes .text space: replace
2986 * __ with kmem_.
2987 * Then kmalloc uses the uninlined functions instead of the inline
2988 * functions.
2989 */
2990 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
2991 if (unlikely(cachep == NULL))
2992 return NULL;
1da177e4
LT
2993 return __cache_alloc(cachep, flags);
2994}
2995EXPORT_SYMBOL(__kmalloc);
2996
2997#ifdef CONFIG_SMP
2998/**
2999 * __alloc_percpu - allocate one copy of the object for every present
3000 * cpu in the system, zeroing them.
3001 * Objects should be dereferenced using the per_cpu_ptr macro only.
3002 *
3003 * @size: how many bytes of memory are required.
1da177e4 3004 */
f9f75005 3005void *__alloc_percpu(size_t size)
1da177e4
LT
3006{
3007 int i;
b28a02de 3008 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3009
3010 if (!pdata)
3011 return NULL;
3012
e498be7d
CL
3013 /*
3014 * Cannot use for_each_online_cpu since a cpu may come online
3015 * and we have no way of figuring out how to fix the array
3016 * that we have allocated then....
3017 */
3018 for_each_cpu(i) {
3019 int node = cpu_to_node(i);
3020
3021 if (node_online(node))
3022 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3023 else
3024 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3025
3026 if (!pdata->ptrs[i])
3027 goto unwind_oom;
3028 memset(pdata->ptrs[i], 0, size);
3029 }
3030
3031 /* Catch derefs w/o wrappers */
b28a02de 3032 return (void *)(~(unsigned long)pdata);
1da177e4 3033
b28a02de 3034 unwind_oom:
1da177e4
LT
3035 while (--i >= 0) {
3036 if (!cpu_possible(i))
3037 continue;
3038 kfree(pdata->ptrs[i]);
3039 }
3040 kfree(pdata);
3041 return NULL;
3042}
3043EXPORT_SYMBOL(__alloc_percpu);
3044#endif
3045
3046/**
3047 * kmem_cache_free - Deallocate an object
3048 * @cachep: The cache the allocation was from.
3049 * @objp: The previously allocated object.
3050 *
3051 * Free an object which was previously allocated from this
3052 * cache.
3053 */
3054void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3055{
3056 unsigned long flags;
3057
3058 local_irq_save(flags);
3059 __cache_free(cachep, objp);
3060 local_irq_restore(flags);
3061}
3062EXPORT_SYMBOL(kmem_cache_free);
3063
1da177e4
LT
3064/**
3065 * kfree - free previously allocated memory
3066 * @objp: pointer returned by kmalloc.
3067 *
80e93eff
PE
3068 * If @objp is NULL, no operation is performed.
3069 *
1da177e4
LT
3070 * Don't free memory not originally allocated by kmalloc()
3071 * or you will run into trouble.
3072 */
3073void kfree(const void *objp)
3074{
3075 kmem_cache_t *c;
3076 unsigned long flags;
3077
3078 if (unlikely(!objp))
3079 return;
3080 local_irq_save(flags);
3081 kfree_debugcheck(objp);
065d41cb 3082 c = page_get_cache(virt_to_page(objp));
3dafccf2 3083 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3084 __cache_free(c, (void *)objp);
1da177e4
LT
3085 local_irq_restore(flags);
3086}
3087EXPORT_SYMBOL(kfree);
3088
3089#ifdef CONFIG_SMP
3090/**
3091 * free_percpu - free previously allocated percpu memory
3092 * @objp: pointer returned by alloc_percpu.
3093 *
3094 * Don't free memory not originally allocated by alloc_percpu()
3095 * The complemented objp is to check for that.
3096 */
b28a02de 3097void free_percpu(const void *objp)
1da177e4
LT
3098{
3099 int i;
b28a02de 3100 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3101
e498be7d
CL
3102 /*
3103 * We allocate for all cpus so we cannot use for online cpu here.
3104 */
3105 for_each_cpu(i)
b28a02de 3106 kfree(p->ptrs[i]);
1da177e4
LT
3107 kfree(p);
3108}
3109EXPORT_SYMBOL(free_percpu);
3110#endif
3111
3112unsigned int kmem_cache_size(kmem_cache_t *cachep)
3113{
3dafccf2 3114 return obj_size(cachep);
1da177e4
LT
3115}
3116EXPORT_SYMBOL(kmem_cache_size);
3117
1944972d
ACM
3118const char *kmem_cache_name(kmem_cache_t *cachep)
3119{
3120 return cachep->name;
3121}
3122EXPORT_SYMBOL_GPL(kmem_cache_name);
3123
e498be7d
CL
3124/*
3125 * This initializes kmem_list3 for all nodes.
3126 */
3127static int alloc_kmemlist(kmem_cache_t *cachep)
3128{
3129 int node;
3130 struct kmem_list3 *l3;
3131 int err = 0;
3132
3133 for_each_online_node(node) {
3134 struct array_cache *nc = NULL, *new;
3135 struct array_cache **new_alien = NULL;
3136#ifdef CONFIG_NUMA
3137 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3138 goto fail;
3139#endif
b28a02de
PE
3140 if (!(new = alloc_arraycache(node, (cachep->shared *
3141 cachep->batchcount),
3142 0xbaadf00d)))
e498be7d
CL
3143 goto fail;
3144 if ((l3 = cachep->nodelists[node])) {
3145
3146 spin_lock_irq(&l3->list_lock);
3147
3148 if ((nc = cachep->nodelists[node]->shared))
b28a02de 3149 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
3150
3151 l3->shared = new;
3152 if (!cachep->nodelists[node]->alien) {
3153 l3->alien = new_alien;
3154 new_alien = NULL;
3155 }
b28a02de
PE
3156 l3->free_limit = (1 + nr_cpus_node(node)) *
3157 cachep->batchcount + cachep->num;
e498be7d
CL
3158 spin_unlock_irq(&l3->list_lock);
3159 kfree(nc);
3160 free_alien_cache(new_alien);
3161 continue;
3162 }
3163 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
b28a02de 3164 GFP_KERNEL, node)))
e498be7d
CL
3165 goto fail;
3166
3167 kmem_list3_init(l3);
3168 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 3169 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
3170 l3->shared = new;
3171 l3->alien = new_alien;
b28a02de
PE
3172 l3->free_limit = (1 + nr_cpus_node(node)) *
3173 cachep->batchcount + cachep->num;
e498be7d
CL
3174 cachep->nodelists[node] = l3;
3175 }
3176 return err;
b28a02de 3177 fail:
e498be7d
CL
3178 err = -ENOMEM;
3179 return err;
3180}
3181
1da177e4
LT
3182struct ccupdate_struct {
3183 kmem_cache_t *cachep;
3184 struct array_cache *new[NR_CPUS];
3185};
3186
3187static void do_ccupdate_local(void *info)
3188{
3189 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3190 struct array_cache *old;
3191
3192 check_irq_off();
3193 old = ac_data(new->cachep);
e498be7d 3194
1da177e4
LT
3195 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3196 new->new[smp_processor_id()] = old;
3197}
3198
1da177e4 3199static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
b28a02de 3200 int shared)
1da177e4
LT
3201{
3202 struct ccupdate_struct new;
e498be7d 3203 int i, err;
1da177e4 3204
b28a02de 3205 memset(&new.new, 0, sizeof(new.new));
e498be7d 3206 for_each_online_cpu(i) {
b28a02de
PE
3207 new.new[i] =
3208 alloc_arraycache(cpu_to_node(i), limit, batchcount);
e498be7d 3209 if (!new.new[i]) {
b28a02de
PE
3210 for (i--; i >= 0; i--)
3211 kfree(new.new[i]);
e498be7d 3212 return -ENOMEM;
1da177e4
LT
3213 }
3214 }
3215 new.cachep = cachep;
3216
3217 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
e498be7d 3218
1da177e4
LT
3219 check_irq_on();
3220 spin_lock_irq(&cachep->spinlock);
3221 cachep->batchcount = batchcount;
3222 cachep->limit = limit;
e498be7d 3223 cachep->shared = shared;
1da177e4
LT
3224 spin_unlock_irq(&cachep->spinlock);
3225
e498be7d 3226 for_each_online_cpu(i) {
1da177e4
LT
3227 struct array_cache *ccold = new.new[i];
3228 if (!ccold)
3229 continue;
e498be7d 3230 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3231 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3232 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3233 kfree(ccold);
3234 }
1da177e4 3235
e498be7d
CL
3236 err = alloc_kmemlist(cachep);
3237 if (err) {
3238 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3239 cachep->name, -err);
e498be7d 3240 BUG();
1da177e4 3241 }
1da177e4
LT
3242 return 0;
3243}
3244
1da177e4
LT
3245static void enable_cpucache(kmem_cache_t *cachep)
3246{
3247 int err;
3248 int limit, shared;
3249
3250 /* The head array serves three purposes:
3251 * - create a LIFO ordering, i.e. return objects that are cache-warm
3252 * - reduce the number of spinlock operations.
3253 * - reduce the number of linked list operations on the slab and
3254 * bufctl chains: array operations are cheaper.
3255 * The numbers are guessed, we should auto-tune as described by
3256 * Bonwick.
3257 */
3dafccf2 3258 if (cachep->buffer_size > 131072)
1da177e4 3259 limit = 1;
3dafccf2 3260 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3261 limit = 8;
3dafccf2 3262 else if (cachep->buffer_size > 1024)
1da177e4 3263 limit = 24;
3dafccf2 3264 else if (cachep->buffer_size > 256)
1da177e4
LT
3265 limit = 54;
3266 else
3267 limit = 120;
3268
3269 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3270 * allocation behaviour: Most allocs on one cpu, most free operations
3271 * on another cpu. For these cases, an efficient object passing between
3272 * cpus is necessary. This is provided by a shared array. The array
3273 * replaces Bonwick's magazine layer.
3274 * On uniprocessor, it's functionally equivalent (but less efficient)
3275 * to a larger limit. Thus disabled by default.
3276 */
3277 shared = 0;
3278#ifdef CONFIG_SMP
3dafccf2 3279 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3280 shared = 8;
3281#endif
3282
3283#if DEBUG
3284 /* With debugging enabled, large batchcount lead to excessively
3285 * long periods with disabled local interrupts. Limit the
3286 * batchcount
3287 */
3288 if (limit > 32)
3289 limit = 32;
3290#endif
b28a02de 3291 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3292 if (err)
3293 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3294 cachep->name, -err);
1da177e4
LT
3295}
3296
b28a02de
PE
3297static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
3298 int force, int node)
1da177e4
LT
3299{
3300 int tofree;
3301
e498be7d 3302 check_spinlock_acquired_node(cachep, node);
1da177e4
LT
3303 if (ac->touched && !force) {
3304 ac->touched = 0;
3305 } else if (ac->avail) {
b28a02de 3306 tofree = force ? ac->avail : (ac->limit + 4) / 5;
1da177e4 3307 if (tofree > ac->avail) {
b28a02de 3308 tofree = (ac->avail + 1) / 2;
1da177e4 3309 }
ff69416e 3310 free_block(cachep, ac->entry, tofree, node);
1da177e4 3311 ac->avail -= tofree;
e498be7d 3312 memmove(ac->entry, &(ac->entry[tofree]),
b28a02de 3313 sizeof(void *) * ac->avail);
1da177e4
LT
3314 }
3315}
3316
3317/**
3318 * cache_reap - Reclaim memory from caches.
1e5d5331 3319 * @unused: unused parameter
1da177e4
LT
3320 *
3321 * Called from workqueue/eventd every few seconds.
3322 * Purpose:
3323 * - clear the per-cpu caches for this CPU.
3324 * - return freeable pages to the main free memory pool.
3325 *
fc0abb14 3326 * If we cannot acquire the cache chain mutex then just give up - we'll
1da177e4
LT
3327 * try again on the next iteration.
3328 */
3329static void cache_reap(void *unused)
3330{
3331 struct list_head *walk;
e498be7d 3332 struct kmem_list3 *l3;
1da177e4 3333
fc0abb14 3334 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3335 /* Give up. Setup the next iteration. */
b28a02de
PE
3336 schedule_delayed_work(&__get_cpu_var(reap_work),
3337 REAPTIMEOUT_CPUC);
1da177e4
LT
3338 return;
3339 }
3340
3341 list_for_each(walk, &cache_chain) {
3342 kmem_cache_t *searchp;
b28a02de 3343 struct list_head *p;
1da177e4
LT
3344 int tofree;
3345 struct slab *slabp;
3346
3347 searchp = list_entry(walk, kmem_cache_t, next);
3348
3349 if (searchp->flags & SLAB_NO_REAP)
3350 goto next;
3351
3352 check_irq_on();
3353
e498be7d
CL
3354 l3 = searchp->nodelists[numa_node_id()];
3355 if (l3->alien)
3356 drain_alien_cache(searchp, l3);
3357 spin_lock_irq(&l3->list_lock);
1da177e4 3358
e498be7d 3359 drain_array_locked(searchp, ac_data(searchp), 0,
b28a02de 3360 numa_node_id());
1da177e4 3361
e498be7d 3362 if (time_after(l3->next_reap, jiffies))
1da177e4
LT
3363 goto next_unlock;
3364
e498be7d 3365 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3366
e498be7d
CL
3367 if (l3->shared)
3368 drain_array_locked(searchp, l3->shared, 0,
b28a02de 3369 numa_node_id());
1da177e4 3370
e498be7d
CL
3371 if (l3->free_touched) {
3372 l3->free_touched = 0;
1da177e4
LT
3373 goto next_unlock;
3374 }
3375
b28a02de
PE
3376 tofree =
3377 (l3->free_limit + 5 * searchp->num -
3378 1) / (5 * searchp->num);
1da177e4 3379 do {
e498be7d
CL
3380 p = l3->slabs_free.next;
3381 if (p == &(l3->slabs_free))
1da177e4
LT
3382 break;
3383
3384 slabp = list_entry(p, struct slab, list);
3385 BUG_ON(slabp->inuse);
3386 list_del(&slabp->list);
3387 STATS_INC_REAPED(searchp);
3388
3389 /* Safe to drop the lock. The slab is no longer
3390 * linked to the cache.
3391 * searchp cannot disappear, we hold
3392 * cache_chain_lock
3393 */
e498be7d
CL
3394 l3->free_objects -= searchp->num;
3395 spin_unlock_irq(&l3->list_lock);
1da177e4 3396 slab_destroy(searchp, slabp);
e498be7d 3397 spin_lock_irq(&l3->list_lock);
b28a02de
PE
3398 } while (--tofree > 0);
3399 next_unlock:
e498be7d 3400 spin_unlock_irq(&l3->list_lock);
b28a02de 3401 next:
1da177e4
LT
3402 cond_resched();
3403 }
3404 check_irq_on();
fc0abb14 3405 mutex_unlock(&cache_chain_mutex);
4ae7c039 3406 drain_remote_pages();
1da177e4 3407 /* Setup the next iteration */
cd61ef62 3408 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3409}
3410
3411#ifdef CONFIG_PROC_FS
3412
85289f98 3413static void print_slabinfo_header(struct seq_file *m)
1da177e4 3414{
85289f98
PE
3415 /*
3416 * Output format version, so at least we can change it
3417 * without _too_ many complaints.
3418 */
1da177e4 3419#if STATS
85289f98 3420 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3421#else
85289f98 3422 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3423#endif
85289f98
PE
3424 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3425 "<objperslab> <pagesperslab>");
3426 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3427 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3428#if STATS
85289f98
PE
3429 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3430 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3431 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3432#endif
85289f98
PE
3433 seq_putc(m, '\n');
3434}
3435
3436static void *s_start(struct seq_file *m, loff_t *pos)
3437{
3438 loff_t n = *pos;
3439 struct list_head *p;
3440
fc0abb14 3441 mutex_lock(&cache_chain_mutex);
85289f98
PE
3442 if (!n)
3443 print_slabinfo_header(m);
1da177e4
LT
3444 p = cache_chain.next;
3445 while (n--) {
3446 p = p->next;
3447 if (p == &cache_chain)
3448 return NULL;
3449 }
3450 return list_entry(p, kmem_cache_t, next);
3451}
3452
3453static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3454{
3455 kmem_cache_t *cachep = p;
3456 ++*pos;
3457 return cachep->next.next == &cache_chain ? NULL
b28a02de 3458 : list_entry(cachep->next.next, kmem_cache_t, next);
1da177e4
LT
3459}
3460
3461static void s_stop(struct seq_file *m, void *p)
3462{
fc0abb14 3463 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3464}
3465
3466static int s_show(struct seq_file *m, void *p)
3467{
3468 kmem_cache_t *cachep = p;
3469 struct list_head *q;
b28a02de
PE
3470 struct slab *slabp;
3471 unsigned long active_objs;
3472 unsigned long num_objs;
3473 unsigned long active_slabs = 0;
3474 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3475 const char *name;
1da177e4 3476 char *error = NULL;
e498be7d
CL
3477 int node;
3478 struct kmem_list3 *l3;
1da177e4
LT
3479
3480 check_irq_on();
3481 spin_lock_irq(&cachep->spinlock);
3482 active_objs = 0;
3483 num_slabs = 0;
e498be7d
CL
3484 for_each_online_node(node) {
3485 l3 = cachep->nodelists[node];
3486 if (!l3)
3487 continue;
3488
3489 spin_lock(&l3->list_lock);
3490
b28a02de 3491 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3492 slabp = list_entry(q, struct slab, list);
3493 if (slabp->inuse != cachep->num && !error)
3494 error = "slabs_full accounting error";
3495 active_objs += cachep->num;
3496 active_slabs++;
3497 }
b28a02de 3498 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3499 slabp = list_entry(q, struct slab, list);
3500 if (slabp->inuse == cachep->num && !error)
3501 error = "slabs_partial inuse accounting error";
3502 if (!slabp->inuse && !error)
3503 error = "slabs_partial/inuse accounting error";
3504 active_objs += slabp->inuse;
3505 active_slabs++;
3506 }
b28a02de 3507 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3508 slabp = list_entry(q, struct slab, list);
3509 if (slabp->inuse && !error)
3510 error = "slabs_free/inuse accounting error";
3511 num_slabs++;
3512 }
3513 free_objects += l3->free_objects;
3514 shared_avail += l3->shared->avail;
3515
3516 spin_unlock(&l3->list_lock);
1da177e4 3517 }
b28a02de
PE
3518 num_slabs += active_slabs;
3519 num_objs = num_slabs * cachep->num;
e498be7d 3520 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3521 error = "free_objects accounting error";
3522
b28a02de 3523 name = cachep->name;
1da177e4
LT
3524 if (error)
3525 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3526
3527 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3528 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3529 cachep->num, (1 << cachep->gfporder));
1da177e4 3530 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3531 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3532 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3533 active_slabs, num_slabs, shared_avail);
1da177e4 3534#if STATS
b28a02de 3535 { /* list3 stats */
1da177e4
LT
3536 unsigned long high = cachep->high_mark;
3537 unsigned long allocs = cachep->num_allocations;
3538 unsigned long grown = cachep->grown;
3539 unsigned long reaped = cachep->reaped;
3540 unsigned long errors = cachep->errors;
3541 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3542 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3543 unsigned long node_frees = cachep->node_frees;
1da177e4 3544
e498be7d 3545 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
b28a02de 3546 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
1da177e4
LT
3547 }
3548 /* cpu stats */
3549 {
3550 unsigned long allochit = atomic_read(&cachep->allochit);
3551 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3552 unsigned long freehit = atomic_read(&cachep->freehit);
3553 unsigned long freemiss = atomic_read(&cachep->freemiss);
3554
3555 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3556 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3557 }
3558#endif
3559 seq_putc(m, '\n');
3560 spin_unlock_irq(&cachep->spinlock);
3561 return 0;
3562}
3563
3564/*
3565 * slabinfo_op - iterator that generates /proc/slabinfo
3566 *
3567 * Output layout:
3568 * cache-name
3569 * num-active-objs
3570 * total-objs
3571 * object size
3572 * num-active-slabs
3573 * total-slabs
3574 * num-pages-per-slab
3575 * + further values on SMP and with statistics enabled
3576 */
3577
3578struct seq_operations slabinfo_op = {
b28a02de
PE
3579 .start = s_start,
3580 .next = s_next,
3581 .stop = s_stop,
3582 .show = s_show,
1da177e4
LT
3583};
3584
3585#define MAX_SLABINFO_WRITE 128
3586/**
3587 * slabinfo_write - Tuning for the slab allocator
3588 * @file: unused
3589 * @buffer: user buffer
3590 * @count: data length
3591 * @ppos: unused
3592 */
b28a02de
PE
3593ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3594 size_t count, loff_t *ppos)
1da177e4 3595{
b28a02de 3596 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3597 int limit, batchcount, shared, res;
3598 struct list_head *p;
b28a02de 3599
1da177e4
LT
3600 if (count > MAX_SLABINFO_WRITE)
3601 return -EINVAL;
3602 if (copy_from_user(&kbuf, buffer, count))
3603 return -EFAULT;
b28a02de 3604 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3605
3606 tmp = strchr(kbuf, ' ');
3607 if (!tmp)
3608 return -EINVAL;
3609 *tmp = '\0';
3610 tmp++;
3611 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3612 return -EINVAL;
3613
3614 /* Find the cache in the chain of caches. */
fc0abb14 3615 mutex_lock(&cache_chain_mutex);
1da177e4 3616 res = -EINVAL;
b28a02de 3617 list_for_each(p, &cache_chain) {
1da177e4
LT
3618 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3619
3620 if (!strcmp(cachep->name, kbuf)) {
3621 if (limit < 1 ||
3622 batchcount < 1 ||
b28a02de 3623 batchcount > limit || shared < 0) {
e498be7d 3624 res = 0;
1da177e4 3625 } else {
e498be7d 3626 res = do_tune_cpucache(cachep, limit,
b28a02de 3627 batchcount, shared);
1da177e4
LT
3628 }
3629 break;
3630 }
3631 }
fc0abb14 3632 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3633 if (res >= 0)
3634 res = count;
3635 return res;
3636}
3637#endif
3638
00e145b6
MS
3639/**
3640 * ksize - get the actual amount of memory allocated for a given object
3641 * @objp: Pointer to the object
3642 *
3643 * kmalloc may internally round up allocations and return more memory
3644 * than requested. ksize() can be used to determine the actual amount of
3645 * memory allocated. The caller may use this additional memory, even though
3646 * a smaller amount of memory was initially specified with the kmalloc call.
3647 * The caller must guarantee that objp points to a valid object previously
3648 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3649 * must not be freed during the duration of the call.
3650 */
1da177e4
LT
3651unsigned int ksize(const void *objp)
3652{
00e145b6
MS
3653 if (unlikely(objp == NULL))
3654 return 0;
1da177e4 3655
3dafccf2 3656 return obj_size(page_get_cache(virt_to_page(objp)));
1da177e4 3657}