]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/rmap.c
[PATCH] /proc/<pid>/numa_maps to show on which nodes pages reside
[net-next-2.6.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_sem (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem
25 *
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29 * taken together; in truncation, i_sem is taken outermost.
30 *
31 * mm->mmap_sem
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
34 * anon_vma->lock
35 * mm->page_table_lock
36 * zone->lru_lock (in mark_page_accessed)
5d337b91 37 * swap_lock (in swap_duplicate, swap_info_get)
1da177e4 38 * mmlist_lock (in mmput, drain_mmlist and others)
1da177e4
LT
39 * mapping->private_lock (in __set_page_dirty_buffers)
40 * inode_lock (in set_page_dirty's __mark_inode_dirty)
41 * sb_lock (within inode_lock in fs/fs-writeback.c)
42 * mapping->tree_lock (widely used, in set_page_dirty,
43 * in arch-dependent flush_dcache_mmap_lock,
44 * within inode_lock in __sync_single_inode)
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
55
56#include <asm/tlbflush.h>
57
58//#define RMAP_DEBUG /* can be enabled only for debugging */
59
60kmem_cache_t *anon_vma_cachep;
61
62static inline void validate_anon_vma(struct vm_area_struct *find_vma)
63{
64#ifdef RMAP_DEBUG
65 struct anon_vma *anon_vma = find_vma->anon_vma;
66 struct vm_area_struct *vma;
67 unsigned int mapcount = 0;
68 int found = 0;
69
70 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
71 mapcount++;
72 BUG_ON(mapcount > 100000);
73 if (vma == find_vma)
74 found = 1;
75 }
76 BUG_ON(!found);
77#endif
78}
79
80/* This must be called under the mmap_sem. */
81int anon_vma_prepare(struct vm_area_struct *vma)
82{
83 struct anon_vma *anon_vma = vma->anon_vma;
84
85 might_sleep();
86 if (unlikely(!anon_vma)) {
87 struct mm_struct *mm = vma->vm_mm;
88 struct anon_vma *allocated, *locked;
89
90 anon_vma = find_mergeable_anon_vma(vma);
91 if (anon_vma) {
92 allocated = NULL;
93 locked = anon_vma;
94 spin_lock(&locked->lock);
95 } else {
96 anon_vma = anon_vma_alloc();
97 if (unlikely(!anon_vma))
98 return -ENOMEM;
99 allocated = anon_vma;
100 locked = NULL;
101 }
102
103 /* page_table_lock to protect against threads */
104 spin_lock(&mm->page_table_lock);
105 if (likely(!vma->anon_vma)) {
106 vma->anon_vma = anon_vma;
107 list_add(&vma->anon_vma_node, &anon_vma->head);
108 allocated = NULL;
109 }
110 spin_unlock(&mm->page_table_lock);
111
112 if (locked)
113 spin_unlock(&locked->lock);
114 if (unlikely(allocated))
115 anon_vma_free(allocated);
116 }
117 return 0;
118}
119
120void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
121{
122 BUG_ON(vma->anon_vma != next->anon_vma);
123 list_del(&next->anon_vma_node);
124}
125
126void __anon_vma_link(struct vm_area_struct *vma)
127{
128 struct anon_vma *anon_vma = vma->anon_vma;
129
130 if (anon_vma) {
131 list_add(&vma->anon_vma_node, &anon_vma->head);
132 validate_anon_vma(vma);
133 }
134}
135
136void anon_vma_link(struct vm_area_struct *vma)
137{
138 struct anon_vma *anon_vma = vma->anon_vma;
139
140 if (anon_vma) {
141 spin_lock(&anon_vma->lock);
142 list_add(&vma->anon_vma_node, &anon_vma->head);
143 validate_anon_vma(vma);
144 spin_unlock(&anon_vma->lock);
145 }
146}
147
148void anon_vma_unlink(struct vm_area_struct *vma)
149{
150 struct anon_vma *anon_vma = vma->anon_vma;
151 int empty;
152
153 if (!anon_vma)
154 return;
155
156 spin_lock(&anon_vma->lock);
157 validate_anon_vma(vma);
158 list_del(&vma->anon_vma_node);
159
160 /* We must garbage collect the anon_vma if it's empty */
161 empty = list_empty(&anon_vma->head);
162 spin_unlock(&anon_vma->lock);
163
164 if (empty)
165 anon_vma_free(anon_vma);
166}
167
168static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
169{
170 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
171 SLAB_CTOR_CONSTRUCTOR) {
172 struct anon_vma *anon_vma = data;
173
174 spin_lock_init(&anon_vma->lock);
175 INIT_LIST_HEAD(&anon_vma->head);
176 }
177}
178
179void __init anon_vma_init(void)
180{
181 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
182 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
183}
184
185/*
186 * Getting a lock on a stable anon_vma from a page off the LRU is
187 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
188 */
189static struct anon_vma *page_lock_anon_vma(struct page *page)
190{
191 struct anon_vma *anon_vma = NULL;
192 unsigned long anon_mapping;
193
194 rcu_read_lock();
195 anon_mapping = (unsigned long) page->mapping;
196 if (!(anon_mapping & PAGE_MAPPING_ANON))
197 goto out;
198 if (!page_mapped(page))
199 goto out;
200
201 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
202 spin_lock(&anon_vma->lock);
203out:
204 rcu_read_unlock();
205 return anon_vma;
206}
207
208/*
209 * At what user virtual address is page expected in vma?
210 */
211static inline unsigned long
212vma_address(struct page *page, struct vm_area_struct *vma)
213{
214 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
215 unsigned long address;
216
217 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
218 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
219 /* page should be within any vma from prio_tree_next */
220 BUG_ON(!PageAnon(page));
221 return -EFAULT;
222 }
223 return address;
224}
225
226/*
227 * At what user virtual address is page expected in vma? checking that the
228 * page matches the vma: currently only used by unuse_process, on anon pages.
229 */
230unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
231{
232 if (PageAnon(page)) {
233 if ((void *)vma->anon_vma !=
234 (void *)page->mapping - PAGE_MAPPING_ANON)
235 return -EFAULT;
236 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
237 if (vma->vm_file->f_mapping != page->mapping)
238 return -EFAULT;
239 } else
240 return -EFAULT;
241 return vma_address(page, vma);
242}
243
81b4082d
ND
244/*
245 * Check that @page is mapped at @address into @mm.
246 *
247 * On success returns with mapped pte and locked mm->page_table_lock.
248 */
ceffc078
CO
249pte_t *page_check_address(struct page *page, struct mm_struct *mm,
250 unsigned long address)
81b4082d
ND
251{
252 pgd_t *pgd;
253 pud_t *pud;
254 pmd_t *pmd;
255 pte_t *pte;
256
257 /*
258 * We need the page_table_lock to protect us from page faults,
259 * munmap, fork, etc...
260 */
261 spin_lock(&mm->page_table_lock);
262 pgd = pgd_offset(mm, address);
263 if (likely(pgd_present(*pgd))) {
264 pud = pud_offset(pgd, address);
265 if (likely(pud_present(*pud))) {
266 pmd = pmd_offset(pud, address);
267 if (likely(pmd_present(*pmd))) {
268 pte = pte_offset_map(pmd, address);
269 if (likely(pte_present(*pte) &&
270 page_to_pfn(page) == pte_pfn(*pte)))
271 return pte;
272 pte_unmap(pte);
273 }
274 }
275 }
276 spin_unlock(&mm->page_table_lock);
277 return ERR_PTR(-ENOENT);
278}
279
1da177e4
LT
280/*
281 * Subfunctions of page_referenced: page_referenced_one called
282 * repeatedly from either page_referenced_anon or page_referenced_file.
283 */
284static int page_referenced_one(struct page *page,
285 struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
286{
287 struct mm_struct *mm = vma->vm_mm;
288 unsigned long address;
1da177e4
LT
289 pte_t *pte;
290 int referenced = 0;
291
1da177e4
LT
292 address = vma_address(page, vma);
293 if (address == -EFAULT)
294 goto out;
295
81b4082d
ND
296 pte = page_check_address(page, mm, address);
297 if (!IS_ERR(pte)) {
298 if (ptep_clear_flush_young(vma, address, pte))
299 referenced++;
1da177e4 300
81b4082d
ND
301 if (mm != current->mm && !ignore_token && has_swap_token(mm))
302 referenced++;
1da177e4 303
81b4082d
ND
304 (*mapcount)--;
305 pte_unmap(pte);
306 spin_unlock(&mm->page_table_lock);
307 }
1da177e4
LT
308out:
309 return referenced;
310}
311
312static int page_referenced_anon(struct page *page, int ignore_token)
313{
314 unsigned int mapcount;
315 struct anon_vma *anon_vma;
316 struct vm_area_struct *vma;
317 int referenced = 0;
318
319 anon_vma = page_lock_anon_vma(page);
320 if (!anon_vma)
321 return referenced;
322
323 mapcount = page_mapcount(page);
324 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
325 referenced += page_referenced_one(page, vma, &mapcount,
326 ignore_token);
327 if (!mapcount)
328 break;
329 }
330 spin_unlock(&anon_vma->lock);
331 return referenced;
332}
333
334/**
335 * page_referenced_file - referenced check for object-based rmap
336 * @page: the page we're checking references on.
337 *
338 * For an object-based mapped page, find all the places it is mapped and
339 * check/clear the referenced flag. This is done by following the page->mapping
340 * pointer, then walking the chain of vmas it holds. It returns the number
341 * of references it found.
342 *
343 * This function is only called from page_referenced for object-based pages.
344 */
345static int page_referenced_file(struct page *page, int ignore_token)
346{
347 unsigned int mapcount;
348 struct address_space *mapping = page->mapping;
349 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
350 struct vm_area_struct *vma;
351 struct prio_tree_iter iter;
352 int referenced = 0;
353
354 /*
355 * The caller's checks on page->mapping and !PageAnon have made
356 * sure that this is a file page: the check for page->mapping
357 * excludes the case just before it gets set on an anon page.
358 */
359 BUG_ON(PageAnon(page));
360
361 /*
362 * The page lock not only makes sure that page->mapping cannot
363 * suddenly be NULLified by truncation, it makes sure that the
364 * structure at mapping cannot be freed and reused yet,
365 * so we can safely take mapping->i_mmap_lock.
366 */
367 BUG_ON(!PageLocked(page));
368
369 spin_lock(&mapping->i_mmap_lock);
370
371 /*
372 * i_mmap_lock does not stabilize mapcount at all, but mapcount
373 * is more likely to be accurate if we note it after spinning.
374 */
375 mapcount = page_mapcount(page);
376
377 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
378 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
379 == (VM_LOCKED|VM_MAYSHARE)) {
380 referenced++;
381 break;
382 }
383 referenced += page_referenced_one(page, vma, &mapcount,
384 ignore_token);
385 if (!mapcount)
386 break;
387 }
388
389 spin_unlock(&mapping->i_mmap_lock);
390 return referenced;
391}
392
393/**
394 * page_referenced - test if the page was referenced
395 * @page: the page to test
396 * @is_locked: caller holds lock on the page
397 *
398 * Quick test_and_clear_referenced for all mappings to a page,
399 * returns the number of ptes which referenced the page.
400 */
401int page_referenced(struct page *page, int is_locked, int ignore_token)
402{
403 int referenced = 0;
404
405 if (!swap_token_default_timeout)
406 ignore_token = 1;
407
408 if (page_test_and_clear_young(page))
409 referenced++;
410
411 if (TestClearPageReferenced(page))
412 referenced++;
413
414 if (page_mapped(page) && page->mapping) {
415 if (PageAnon(page))
416 referenced += page_referenced_anon(page, ignore_token);
417 else if (is_locked)
418 referenced += page_referenced_file(page, ignore_token);
419 else if (TestSetPageLocked(page))
420 referenced++;
421 else {
422 if (page->mapping)
423 referenced += page_referenced_file(page,
424 ignore_token);
425 unlock_page(page);
426 }
427 }
428 return referenced;
429}
430
431/**
432 * page_add_anon_rmap - add pte mapping to an anonymous page
433 * @page: the page to add the mapping to
434 * @vma: the vm area in which the mapping is added
435 * @address: the user virtual address mapped
436 *
437 * The caller needs to hold the mm->page_table_lock.
438 */
439void page_add_anon_rmap(struct page *page,
440 struct vm_area_struct *vma, unsigned long address)
441{
442 struct anon_vma *anon_vma = vma->anon_vma;
443 pgoff_t index;
444
445 BUG_ON(PageReserved(page));
446 BUG_ON(!anon_vma);
447
448 inc_mm_counter(vma->vm_mm, anon_rss);
449
450 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
451 index = (address - vma->vm_start) >> PAGE_SHIFT;
452 index += vma->vm_pgoff;
453 index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
454
455 if (atomic_inc_and_test(&page->_mapcount)) {
456 page->index = index;
457 page->mapping = (struct address_space *) anon_vma;
458 inc_page_state(nr_mapped);
459 }
460 /* else checking page index and mapping is racy */
461}
462
463/**
464 * page_add_file_rmap - add pte mapping to a file page
465 * @page: the page to add the mapping to
466 *
467 * The caller needs to hold the mm->page_table_lock.
468 */
469void page_add_file_rmap(struct page *page)
470{
471 BUG_ON(PageAnon(page));
472 if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
473 return;
474
475 if (atomic_inc_and_test(&page->_mapcount))
476 inc_page_state(nr_mapped);
477}
478
479/**
480 * page_remove_rmap - take down pte mapping from a page
481 * @page: page to remove mapping from
482 *
483 * Caller needs to hold the mm->page_table_lock.
484 */
485void page_remove_rmap(struct page *page)
486{
487 BUG_ON(PageReserved(page));
488
489 if (atomic_add_negative(-1, &page->_mapcount)) {
490 BUG_ON(page_mapcount(page) < 0);
491 /*
492 * It would be tidy to reset the PageAnon mapping here,
493 * but that might overwrite a racing page_add_anon_rmap
494 * which increments mapcount after us but sets mapping
495 * before us: so leave the reset to free_hot_cold_page,
496 * and remember that it's only reliable while mapped.
497 * Leaving it set also helps swapoff to reinstate ptes
498 * faster for those pages still in swapcache.
499 */
500 if (page_test_and_clear_dirty(page))
501 set_page_dirty(page);
502 dec_page_state(nr_mapped);
503 }
504}
505
506/*
507 * Subfunctions of try_to_unmap: try_to_unmap_one called
508 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
509 */
510static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
511{
512 struct mm_struct *mm = vma->vm_mm;
513 unsigned long address;
1da177e4
LT
514 pte_t *pte;
515 pte_t pteval;
516 int ret = SWAP_AGAIN;
517
1da177e4
LT
518 address = vma_address(page, vma);
519 if (address == -EFAULT)
520 goto out;
521
81b4082d
ND
522 pte = page_check_address(page, mm, address);
523 if (IS_ERR(pte))
524 goto out;
1da177e4
LT
525
526 /*
527 * If the page is mlock()d, we cannot swap it out.
528 * If it's recently referenced (perhaps page_referenced
529 * skipped over this mm) then we should reactivate it.
530 */
531 if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
532 ptep_clear_flush_young(vma, address, pte)) {
533 ret = SWAP_FAIL;
534 goto out_unmap;
535 }
536
1da177e4
LT
537 /* Nuke the page table entry. */
538 flush_cache_page(vma, address, page_to_pfn(page));
539 pteval = ptep_clear_flush(vma, address, pte);
540
541 /* Move the dirty bit to the physical page now the pte is gone. */
542 if (pte_dirty(pteval))
543 set_page_dirty(page);
544
545 if (PageAnon(page)) {
546 swp_entry_t entry = { .val = page->private };
547 /*
548 * Store the swap location in the pte.
549 * See handle_pte_fault() ...
550 */
551 BUG_ON(!PageSwapCache(page));
552 swap_duplicate(entry);
553 if (list_empty(&mm->mmlist)) {
554 spin_lock(&mmlist_lock);
555 list_add(&mm->mmlist, &init_mm.mmlist);
556 spin_unlock(&mmlist_lock);
557 }
558 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
559 BUG_ON(pte_file(*pte));
560 dec_mm_counter(mm, anon_rss);
561 }
562
202d182a 563 dec_mm_counter(mm, rss);
1da177e4
LT
564 page_remove_rmap(page);
565 page_cache_release(page);
566
567out_unmap:
568 pte_unmap(pte);
1da177e4
LT
569 spin_unlock(&mm->page_table_lock);
570out:
571 return ret;
572}
573
574/*
575 * objrmap doesn't work for nonlinear VMAs because the assumption that
576 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
577 * Consequently, given a particular page and its ->index, we cannot locate the
578 * ptes which are mapping that page without an exhaustive linear search.
579 *
580 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
581 * maps the file to which the target page belongs. The ->vm_private_data field
582 * holds the current cursor into that scan. Successive searches will circulate
583 * around the vma's virtual address space.
584 *
585 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
586 * more scanning pressure is placed against them as well. Eventually pages
587 * will become fully unmapped and are eligible for eviction.
588 *
589 * For very sparsely populated VMAs this is a little inefficient - chances are
590 * there there won't be many ptes located within the scan cluster. In this case
591 * maybe we could scan further - to the end of the pte page, perhaps.
592 */
593#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
594#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
595
596static void try_to_unmap_cluster(unsigned long cursor,
597 unsigned int *mapcount, struct vm_area_struct *vma)
598{
599 struct mm_struct *mm = vma->vm_mm;
600 pgd_t *pgd;
601 pud_t *pud;
602 pmd_t *pmd;
cafdd8ba 603 pte_t *pte, *original_pte;
1da177e4
LT
604 pte_t pteval;
605 struct page *page;
606 unsigned long address;
607 unsigned long end;
608 unsigned long pfn;
609
610 /*
611 * We need the page_table_lock to protect us from page faults,
612 * munmap, fork, etc...
613 */
614 spin_lock(&mm->page_table_lock);
615
616 address = (vma->vm_start + cursor) & CLUSTER_MASK;
617 end = address + CLUSTER_SIZE;
618 if (address < vma->vm_start)
619 address = vma->vm_start;
620 if (end > vma->vm_end)
621 end = vma->vm_end;
622
623 pgd = pgd_offset(mm, address);
624 if (!pgd_present(*pgd))
625 goto out_unlock;
626
627 pud = pud_offset(pgd, address);
628 if (!pud_present(*pud))
629 goto out_unlock;
630
631 pmd = pmd_offset(pud, address);
632 if (!pmd_present(*pmd))
633 goto out_unlock;
634
cafdd8ba 635 for (original_pte = pte = pte_offset_map(pmd, address);
1da177e4
LT
636 address < end; pte++, address += PAGE_SIZE) {
637
638 if (!pte_present(*pte))
639 continue;
640
641 pfn = pte_pfn(*pte);
642 if (!pfn_valid(pfn))
643 continue;
644
645 page = pfn_to_page(pfn);
646 BUG_ON(PageAnon(page));
647 if (PageReserved(page))
648 continue;
649
650 if (ptep_clear_flush_young(vma, address, pte))
651 continue;
652
653 /* Nuke the page table entry. */
654 flush_cache_page(vma, address, pfn);
655 pteval = ptep_clear_flush(vma, address, pte);
656
657 /* If nonlinear, store the file page offset in the pte. */
658 if (page->index != linear_page_index(vma, address))
659 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
660
661 /* Move the dirty bit to the physical page now the pte is gone. */
662 if (pte_dirty(pteval))
663 set_page_dirty(page);
664
665 page_remove_rmap(page);
666 page_cache_release(page);
667 dec_mm_counter(mm, rss);
668 (*mapcount)--;
669 }
670
cafdd8ba 671 pte_unmap(original_pte);
1da177e4
LT
672out_unlock:
673 spin_unlock(&mm->page_table_lock);
674}
675
676static int try_to_unmap_anon(struct page *page)
677{
678 struct anon_vma *anon_vma;
679 struct vm_area_struct *vma;
680 int ret = SWAP_AGAIN;
681
682 anon_vma = page_lock_anon_vma(page);
683 if (!anon_vma)
684 return ret;
685
686 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
687 ret = try_to_unmap_one(page, vma);
688 if (ret == SWAP_FAIL || !page_mapped(page))
689 break;
690 }
691 spin_unlock(&anon_vma->lock);
692 return ret;
693}
694
695/**
696 * try_to_unmap_file - unmap file page using the object-based rmap method
697 * @page: the page to unmap
698 *
699 * Find all the mappings of a page using the mapping pointer and the vma chains
700 * contained in the address_space struct it points to.
701 *
702 * This function is only called from try_to_unmap for object-based pages.
703 */
704static int try_to_unmap_file(struct page *page)
705{
706 struct address_space *mapping = page->mapping;
707 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
708 struct vm_area_struct *vma;
709 struct prio_tree_iter iter;
710 int ret = SWAP_AGAIN;
711 unsigned long cursor;
712 unsigned long max_nl_cursor = 0;
713 unsigned long max_nl_size = 0;
714 unsigned int mapcount;
715
716 spin_lock(&mapping->i_mmap_lock);
717 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
718 ret = try_to_unmap_one(page, vma);
719 if (ret == SWAP_FAIL || !page_mapped(page))
720 goto out;
721 }
722
723 if (list_empty(&mapping->i_mmap_nonlinear))
724 goto out;
725
726 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
727 shared.vm_set.list) {
728 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
729 continue;
730 cursor = (unsigned long) vma->vm_private_data;
731 if (cursor > max_nl_cursor)
732 max_nl_cursor = cursor;
733 cursor = vma->vm_end - vma->vm_start;
734 if (cursor > max_nl_size)
735 max_nl_size = cursor;
736 }
737
738 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
739 ret = SWAP_FAIL;
740 goto out;
741 }
742
743 /*
744 * We don't try to search for this page in the nonlinear vmas,
745 * and page_referenced wouldn't have found it anyway. Instead
746 * just walk the nonlinear vmas trying to age and unmap some.
747 * The mapcount of the page we came in with is irrelevant,
748 * but even so use it as a guide to how hard we should try?
749 */
750 mapcount = page_mapcount(page);
751 if (!mapcount)
752 goto out;
753 cond_resched_lock(&mapping->i_mmap_lock);
754
755 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
756 if (max_nl_cursor == 0)
757 max_nl_cursor = CLUSTER_SIZE;
758
759 do {
760 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
761 shared.vm_set.list) {
762 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
763 continue;
764 cursor = (unsigned long) vma->vm_private_data;
839b9685 765 while ( cursor < max_nl_cursor &&
1da177e4
LT
766 cursor < vma->vm_end - vma->vm_start) {
767 try_to_unmap_cluster(cursor, &mapcount, vma);
768 cursor += CLUSTER_SIZE;
769 vma->vm_private_data = (void *) cursor;
770 if ((int)mapcount <= 0)
771 goto out;
772 }
773 vma->vm_private_data = (void *) max_nl_cursor;
774 }
775 cond_resched_lock(&mapping->i_mmap_lock);
776 max_nl_cursor += CLUSTER_SIZE;
777 } while (max_nl_cursor <= max_nl_size);
778
779 /*
780 * Don't loop forever (perhaps all the remaining pages are
781 * in locked vmas). Reset cursor on all unreserved nonlinear
782 * vmas, now forgetting on which ones it had fallen behind.
783 */
784 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
785 shared.vm_set.list) {
786 if (!(vma->vm_flags & VM_RESERVED))
787 vma->vm_private_data = NULL;
788 }
789out:
790 spin_unlock(&mapping->i_mmap_lock);
791 return ret;
792}
793
794/**
795 * try_to_unmap - try to remove all page table mappings to a page
796 * @page: the page to get unmapped
797 *
798 * Tries to remove all the page table entries which are mapping this
799 * page, used in the pageout path. Caller must hold the page lock.
800 * Return values are:
801 *
802 * SWAP_SUCCESS - we succeeded in removing all mappings
803 * SWAP_AGAIN - we missed a mapping, try again later
804 * SWAP_FAIL - the page is unswappable
805 */
806int try_to_unmap(struct page *page)
807{
808 int ret;
809
810 BUG_ON(PageReserved(page));
811 BUG_ON(!PageLocked(page));
812
813 if (PageAnon(page))
814 ret = try_to_unmap_anon(page);
815 else
816 ret = try_to_unmap_file(page);
817
818 if (!page_mapped(page))
819 ret = SWAP_SUCCESS;
820 return ret;
821}
81b4082d 822