]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
[PATCH] mm: free_pages_and_swap_cache opt
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39
40#include <asm/tlbflush.h>
41#include "internal.h"
42
43/*
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
46 */
c3d8c141 47nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 48EXPORT_SYMBOL(node_online_map);
c3d8c141 49nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 50EXPORT_SYMBOL(node_possible_map);
c3d8c141 51struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
52unsigned long totalram_pages __read_mostly;
53unsigned long totalhigh_pages __read_mostly;
1da177e4
LT
54long nr_swap_pages;
55
56/*
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
63 *
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
1da177e4 66 */
a2f1b424 67int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
68
69EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
70
71/*
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
74 */
c3d8c141 75struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
76EXPORT_SYMBOL(zone_table);
77
a2f1b424 78static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
79int min_free_kbytes = 1024;
80
81unsigned long __initdata nr_kernel_pages;
82unsigned long __initdata nr_all_pages;
83
c6a57e19 84static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 85{
bdc8cb98
DH
86 int ret = 0;
87 unsigned seq;
88 unsigned long pfn = page_to_pfn(page);
c6a57e19 89
bdc8cb98
DH
90 do {
91 seq = zone_span_seqbegin(zone);
92 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
93 ret = 1;
94 else if (pfn < zone->zone_start_pfn)
95 ret = 1;
96 } while (zone_span_seqretry(zone, seq));
97
98 return ret;
c6a57e19
DH
99}
100
101static int page_is_consistent(struct zone *zone, struct page *page)
102{
1da177e4
LT
103#ifdef CONFIG_HOLES_IN_ZONE
104 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 105 return 0;
1da177e4
LT
106#endif
107 if (zone != page_zone(page))
c6a57e19
DH
108 return 0;
109
110 return 1;
111}
112/*
113 * Temporary debugging check for pages not lying within a given zone.
114 */
115static int bad_range(struct zone *zone, struct page *page)
116{
117 if (page_outside_zone_boundaries(zone, page))
1da177e4 118 return 1;
c6a57e19
DH
119 if (!page_is_consistent(zone, page))
120 return 1;
121
1da177e4
LT
122 return 0;
123}
124
125static void bad_page(const char *function, struct page *page)
126{
127 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
128 function, current->comm, page);
129 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
07808b74 130 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
1da177e4
LT
131 page->mapping, page_mapcount(page), page_count(page));
132 printk(KERN_EMERG "Backtrace:\n");
133 dump_stack();
134 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
334795ec
HD
135 page->flags &= ~(1 << PG_lru |
136 1 << PG_private |
1da177e4 137 1 << PG_locked |
1da177e4
LT
138 1 << PG_active |
139 1 << PG_dirty |
334795ec
HD
140 1 << PG_reclaim |
141 1 << PG_slab |
1da177e4 142 1 << PG_swapcache |
689bcebf 143 1 << PG_writeback );
1da177e4
LT
144 set_page_count(page, 0);
145 reset_page_mapcount(page);
146 page->mapping = NULL;
9f158333 147 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
148}
149
1da177e4
LT
150/*
151 * Higher-order pages are called "compound pages". They are structured thusly:
152 *
153 * The first PAGE_SIZE page is called the "head page".
154 *
155 * The remaining PAGE_SIZE pages are called "tail pages".
156 *
157 * All pages have PG_compound set. All pages have their ->private pointing at
158 * the head page (even the head page has this).
159 *
160 * The first tail page's ->mapping, if non-zero, holds the address of the
161 * compound page's put_page() function.
162 *
163 * The order of the allocation is stored in the first tail page's ->index
164 * This is only for debug at present. This usage means that zero-order pages
165 * may not be compound.
166 */
167static void prep_compound_page(struct page *page, unsigned long order)
168{
169 int i;
170 int nr_pages = 1 << order;
171
172 page[1].mapping = NULL;
173 page[1].index = order;
174 for (i = 0; i < nr_pages; i++) {
175 struct page *p = page + i;
176
177 SetPageCompound(p);
4c21e2f2 178 set_page_private(p, (unsigned long)page);
1da177e4
LT
179 }
180}
181
182static void destroy_compound_page(struct page *page, unsigned long order)
183{
184 int i;
185 int nr_pages = 1 << order;
186
187 if (!PageCompound(page))
188 return;
189
190 if (page[1].index != order)
191 bad_page(__FUNCTION__, page);
192
193 for (i = 0; i < nr_pages; i++) {
194 struct page *p = page + i;
195
196 if (!PageCompound(p))
197 bad_page(__FUNCTION__, page);
4c21e2f2 198 if (page_private(p) != (unsigned long)page)
1da177e4
LT
199 bad_page(__FUNCTION__, page);
200 ClearPageCompound(p);
201 }
202}
1da177e4
LT
203
204/*
205 * function for dealing with page's order in buddy system.
206 * zone->lock is already acquired when we use these.
207 * So, we don't need atomic page->flags operations here.
208 */
209static inline unsigned long page_order(struct page *page) {
4c21e2f2 210 return page_private(page);
1da177e4
LT
211}
212
213static inline void set_page_order(struct page *page, int order) {
4c21e2f2 214 set_page_private(page, order);
1da177e4
LT
215 __SetPagePrivate(page);
216}
217
218static inline void rmv_page_order(struct page *page)
219{
220 __ClearPagePrivate(page);
4c21e2f2 221 set_page_private(page, 0);
1da177e4
LT
222}
223
224/*
225 * Locate the struct page for both the matching buddy in our
226 * pair (buddy1) and the combined O(n+1) page they form (page).
227 *
228 * 1) Any buddy B1 will have an order O twin B2 which satisfies
229 * the following equation:
230 * B2 = B1 ^ (1 << O)
231 * For example, if the starting buddy (buddy2) is #8 its order
232 * 1 buddy is #10:
233 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
234 *
235 * 2) Any buddy B will have an order O+1 parent P which
236 * satisfies the following equation:
237 * P = B & ~(1 << O)
238 *
239 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
240 */
241static inline struct page *
242__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
243{
244 unsigned long buddy_idx = page_idx ^ (1 << order);
245
246 return page + (buddy_idx - page_idx);
247}
248
249static inline unsigned long
250__find_combined_index(unsigned long page_idx, unsigned int order)
251{
252 return (page_idx & ~(1 << order));
253}
254
255/*
256 * This function checks whether a page is free && is the buddy
257 * we can do coalesce a page and its buddy if
258 * (a) the buddy is free &&
259 * (b) the buddy is on the buddy system &&
260 * (c) a page and its buddy have the same order.
4c21e2f2 261 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
262 *
263 */
264static inline int page_is_buddy(struct page *page, int order)
265{
266 if (PagePrivate(page) &&
267 (page_order(page) == order) &&
1da177e4
LT
268 page_count(page) == 0)
269 return 1;
270 return 0;
271}
272
273/*
274 * Freeing function for a buddy system allocator.
275 *
276 * The concept of a buddy system is to maintain direct-mapped table
277 * (containing bit values) for memory blocks of various "orders".
278 * The bottom level table contains the map for the smallest allocatable
279 * units of memory (here, pages), and each level above it describes
280 * pairs of units from the levels below, hence, "buddies".
281 * At a high level, all that happens here is marking the table entry
282 * at the bottom level available, and propagating the changes upward
283 * as necessary, plus some accounting needed to play nicely with other
284 * parts of the VM system.
285 * At each level, we keep a list of pages, which are heads of continuous
286 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 287 * order is recorded in page_private(page) field.
1da177e4
LT
288 * So when we are allocating or freeing one, we can derive the state of the
289 * other. That is, if we allocate a small block, and both were
290 * free, the remainder of the region must be split into blocks.
291 * If a block is freed, and its buddy is also free, then this
292 * triggers coalescing into a block of larger size.
293 *
294 * -- wli
295 */
296
297static inline void __free_pages_bulk (struct page *page,
298 struct zone *zone, unsigned int order)
299{
300 unsigned long page_idx;
301 int order_size = 1 << order;
302
303 if (unlikely(order))
304 destroy_compound_page(page, order);
305
306 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
307
308 BUG_ON(page_idx & (order_size - 1));
309 BUG_ON(bad_range(zone, page));
310
311 zone->free_pages += order_size;
312 while (order < MAX_ORDER-1) {
313 unsigned long combined_idx;
314 struct free_area *area;
315 struct page *buddy;
316
317 combined_idx = __find_combined_index(page_idx, order);
318 buddy = __page_find_buddy(page, page_idx, order);
319
320 if (bad_range(zone, buddy))
321 break;
322 if (!page_is_buddy(buddy, order))
323 break; /* Move the buddy up one level. */
324 list_del(&buddy->lru);
325 area = zone->free_area + order;
326 area->nr_free--;
327 rmv_page_order(buddy);
328 page = page + (combined_idx - page_idx);
329 page_idx = combined_idx;
330 order++;
331 }
332 set_page_order(page, order);
333 list_add(&page->lru, &zone->free_area[order].free_list);
334 zone->free_area[order].nr_free++;
335}
336
689bcebf 337static inline int free_pages_check(const char *function, struct page *page)
1da177e4
LT
338{
339 if ( page_mapcount(page) ||
340 page->mapping != NULL ||
341 page_count(page) != 0 ||
342 (page->flags & (
343 1 << PG_lru |
344 1 << PG_private |
345 1 << PG_locked |
346 1 << PG_active |
347 1 << PG_reclaim |
348 1 << PG_slab |
349 1 << PG_swapcache |
b5810039
NP
350 1 << PG_writeback |
351 1 << PG_reserved )))
1da177e4
LT
352 bad_page(function, page);
353 if (PageDirty(page))
242e5468 354 __ClearPageDirty(page);
689bcebf
HD
355 /*
356 * For now, we report if PG_reserved was found set, but do not
357 * clear it, and do not free the page. But we shall soon need
358 * to do more, for when the ZERO_PAGE count wraps negative.
359 */
360 return PageReserved(page);
1da177e4
LT
361}
362
363/*
364 * Frees a list of pages.
365 * Assumes all pages on list are in same zone, and of same order.
207f36ee 366 * count is the number of pages to free.
1da177e4
LT
367 *
368 * If the zone was previously in an "all pages pinned" state then look to
369 * see if this freeing clears that state.
370 *
371 * And clear the zone's pages_scanned counter, to hold off the "all pages are
372 * pinned" detection logic.
373 */
374static int
375free_pages_bulk(struct zone *zone, int count,
376 struct list_head *list, unsigned int order)
377{
378 unsigned long flags;
379 struct page *page = NULL;
380 int ret = 0;
381
382 spin_lock_irqsave(&zone->lock, flags);
383 zone->all_unreclaimable = 0;
384 zone->pages_scanned = 0;
385 while (!list_empty(list) && count--) {
386 page = list_entry(list->prev, struct page, lru);
387 /* have to delete it as __free_pages_bulk list manipulates */
388 list_del(&page->lru);
389 __free_pages_bulk(page, zone, order);
390 ret++;
391 }
392 spin_unlock_irqrestore(&zone->lock, flags);
393 return ret;
394}
395
396void __free_pages_ok(struct page *page, unsigned int order)
397{
398 LIST_HEAD(list);
399 int i;
689bcebf 400 int reserved = 0;
1da177e4
LT
401
402 arch_free_page(page, order);
403
1da177e4
LT
404#ifndef CONFIG_MMU
405 if (order > 0)
406 for (i = 1 ; i < (1 << order) ; ++i)
407 __put_page(page + i);
408#endif
409
410 for (i = 0 ; i < (1 << order) ; ++i)
689bcebf
HD
411 reserved += free_pages_check(__FUNCTION__, page + i);
412 if (reserved)
413 return;
414
1da177e4 415 list_add(&page->lru, &list);
689bcebf 416 mod_page_state(pgfree, 1 << order);
1da177e4
LT
417 kernel_map_pages(page, 1<<order, 0);
418 free_pages_bulk(page_zone(page), 1, &list, order);
419}
420
421
422/*
423 * The order of subdivision here is critical for the IO subsystem.
424 * Please do not alter this order without good reasons and regression
425 * testing. Specifically, as large blocks of memory are subdivided,
426 * the order in which smaller blocks are delivered depends on the order
427 * they're subdivided in this function. This is the primary factor
428 * influencing the order in which pages are delivered to the IO
429 * subsystem according to empirical testing, and this is also justified
430 * by considering the behavior of a buddy system containing a single
431 * large block of memory acted on by a series of small allocations.
432 * This behavior is a critical factor in sglist merging's success.
433 *
434 * -- wli
435 */
436static inline struct page *
437expand(struct zone *zone, struct page *page,
438 int low, int high, struct free_area *area)
439{
440 unsigned long size = 1 << high;
441
442 while (high > low) {
443 area--;
444 high--;
445 size >>= 1;
446 BUG_ON(bad_range(zone, &page[size]));
447 list_add(&page[size].lru, &area->free_list);
448 area->nr_free++;
449 set_page_order(&page[size], high);
450 }
451 return page;
452}
453
454void set_page_refs(struct page *page, int order)
455{
456#ifdef CONFIG_MMU
457 set_page_count(page, 1);
458#else
459 int i;
460
461 /*
462 * We need to reference all the pages for this order, otherwise if
463 * anyone accesses one of the pages with (get/put) it will be freed.
464 * - eg: access_process_vm()
465 */
466 for (i = 0; i < (1 << order); i++)
467 set_page_count(page + i, 1);
468#endif /* CONFIG_MMU */
469}
470
471/*
472 * This page is about to be returned from the page allocator
473 */
689bcebf 474static int prep_new_page(struct page *page, int order)
1da177e4 475{
334795ec
HD
476 if ( page_mapcount(page) ||
477 page->mapping != NULL ||
478 page_count(page) != 0 ||
479 (page->flags & (
480 1 << PG_lru |
1da177e4
LT
481 1 << PG_private |
482 1 << PG_locked |
1da177e4
LT
483 1 << PG_active |
484 1 << PG_dirty |
485 1 << PG_reclaim |
334795ec 486 1 << PG_slab |
1da177e4 487 1 << PG_swapcache |
b5810039
NP
488 1 << PG_writeback |
489 1 << PG_reserved )))
1da177e4
LT
490 bad_page(__FUNCTION__, page);
491
689bcebf
HD
492 /*
493 * For now, we report if PG_reserved was found set, but do not
494 * clear it, and do not allocate the page: as a safety net.
495 */
496 if (PageReserved(page))
497 return 1;
498
1da177e4
LT
499 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
500 1 << PG_referenced | 1 << PG_arch_1 |
501 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 502 set_page_private(page, 0);
1da177e4
LT
503 set_page_refs(page, order);
504 kernel_map_pages(page, 1 << order, 1);
689bcebf 505 return 0;
1da177e4
LT
506}
507
508/*
509 * Do the hard work of removing an element from the buddy allocator.
510 * Call me with the zone->lock already held.
511 */
512static struct page *__rmqueue(struct zone *zone, unsigned int order)
513{
514 struct free_area * area;
515 unsigned int current_order;
516 struct page *page;
517
518 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
519 area = zone->free_area + current_order;
520 if (list_empty(&area->free_list))
521 continue;
522
523 page = list_entry(area->free_list.next, struct page, lru);
524 list_del(&page->lru);
525 rmv_page_order(page);
526 area->nr_free--;
527 zone->free_pages -= 1UL << order;
528 return expand(zone, page, order, current_order, area);
529 }
530
531 return NULL;
532}
533
534/*
535 * Obtain a specified number of elements from the buddy allocator, all under
536 * a single hold of the lock, for efficiency. Add them to the supplied list.
537 * Returns the number of new pages which were placed at *list.
538 */
539static int rmqueue_bulk(struct zone *zone, unsigned int order,
540 unsigned long count, struct list_head *list)
541{
542 unsigned long flags;
543 int i;
544 int allocated = 0;
545 struct page *page;
546
547 spin_lock_irqsave(&zone->lock, flags);
548 for (i = 0; i < count; ++i) {
549 page = __rmqueue(zone, order);
550 if (page == NULL)
551 break;
552 allocated++;
553 list_add_tail(&page->lru, list);
554 }
555 spin_unlock_irqrestore(&zone->lock, flags);
556 return allocated;
557}
558
4ae7c039
CL
559#ifdef CONFIG_NUMA
560/* Called from the slab reaper to drain remote pagesets */
561void drain_remote_pages(void)
562{
563 struct zone *zone;
564 int i;
565 unsigned long flags;
566
567 local_irq_save(flags);
568 for_each_zone(zone) {
569 struct per_cpu_pageset *pset;
570
571 /* Do not drain local pagesets */
572 if (zone->zone_pgdat->node_id == numa_node_id())
573 continue;
574
575 pset = zone->pageset[smp_processor_id()];
576 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
577 struct per_cpu_pages *pcp;
578
579 pcp = &pset->pcp[i];
580 if (pcp->count)
581 pcp->count -= free_pages_bulk(zone, pcp->count,
582 &pcp->list, 0);
583 }
584 }
585 local_irq_restore(flags);
586}
587#endif
588
1da177e4
LT
589#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
590static void __drain_pages(unsigned int cpu)
591{
592 struct zone *zone;
593 int i;
594
595 for_each_zone(zone) {
596 struct per_cpu_pageset *pset;
597
e7c8d5c9 598 pset = zone_pcp(zone, cpu);
1da177e4
LT
599 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
600 struct per_cpu_pages *pcp;
601
602 pcp = &pset->pcp[i];
603 pcp->count -= free_pages_bulk(zone, pcp->count,
604 &pcp->list, 0);
605 }
606 }
607}
608#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
609
610#ifdef CONFIG_PM
611
612void mark_free_pages(struct zone *zone)
613{
614 unsigned long zone_pfn, flags;
615 int order;
616 struct list_head *curr;
617
618 if (!zone->spanned_pages)
619 return;
620
621 spin_lock_irqsave(&zone->lock, flags);
622 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
623 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
624
625 for (order = MAX_ORDER - 1; order >= 0; --order)
626 list_for_each(curr, &zone->free_area[order].free_list) {
627 unsigned long start_pfn, i;
628
629 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
630
631 for (i=0; i < (1<<order); i++)
632 SetPageNosaveFree(pfn_to_page(start_pfn+i));
633 }
634 spin_unlock_irqrestore(&zone->lock, flags);
635}
636
637/*
638 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
639 */
640void drain_local_pages(void)
641{
642 unsigned long flags;
643
644 local_irq_save(flags);
645 __drain_pages(smp_processor_id());
646 local_irq_restore(flags);
647}
648#endif /* CONFIG_PM */
649
650static void zone_statistics(struct zonelist *zonelist, struct zone *z)
651{
652#ifdef CONFIG_NUMA
653 unsigned long flags;
654 int cpu;
655 pg_data_t *pg = z->zone_pgdat;
656 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
657 struct per_cpu_pageset *p;
658
659 local_irq_save(flags);
660 cpu = smp_processor_id();
e7c8d5c9 661 p = zone_pcp(z,cpu);
1da177e4 662 if (pg == orig) {
e7c8d5c9 663 p->numa_hit++;
1da177e4
LT
664 } else {
665 p->numa_miss++;
e7c8d5c9 666 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
667 }
668 if (pg == NODE_DATA(numa_node_id()))
669 p->local_node++;
670 else
671 p->other_node++;
672 local_irq_restore(flags);
673#endif
674}
675
676/*
677 * Free a 0-order page
678 */
679static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
680static void fastcall free_hot_cold_page(struct page *page, int cold)
681{
682 struct zone *zone = page_zone(page);
683 struct per_cpu_pages *pcp;
684 unsigned long flags;
685
686 arch_free_page(page, 0);
687
1da177e4
LT
688 if (PageAnon(page))
689 page->mapping = NULL;
689bcebf
HD
690 if (free_pages_check(__FUNCTION__, page))
691 return;
692
693 inc_page_state(pgfree);
694 kernel_map_pages(page, 1, 0);
695
e7c8d5c9 696 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 697 local_irq_save(flags);
1da177e4
LT
698 list_add(&page->lru, &pcp->list);
699 pcp->count++;
2caaad41
CL
700 if (pcp->count >= pcp->high)
701 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1da177e4
LT
702 local_irq_restore(flags);
703 put_cpu();
704}
705
706void fastcall free_hot_page(struct page *page)
707{
708 free_hot_cold_page(page, 0);
709}
710
711void fastcall free_cold_page(struct page *page)
712{
713 free_hot_cold_page(page, 1);
714}
715
dd0fc66f 716static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
717{
718 int i;
719
720 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
721 for(i = 0; i < (1 << order); i++)
722 clear_highpage(page + i);
723}
724
725/*
726 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
727 * we cheat by calling it from here, in the order > 0 path. Saves a branch
728 * or two.
729 */
730static struct page *
dd0fc66f 731buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
732{
733 unsigned long flags;
689bcebf 734 struct page *page;
1da177e4
LT
735 int cold = !!(gfp_flags & __GFP_COLD);
736
689bcebf 737again:
1da177e4
LT
738 if (order == 0) {
739 struct per_cpu_pages *pcp;
740
689bcebf 741 page = NULL;
e7c8d5c9 742 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4
LT
743 local_irq_save(flags);
744 if (pcp->count <= pcp->low)
745 pcp->count += rmqueue_bulk(zone, 0,
746 pcp->batch, &pcp->list);
747 if (pcp->count) {
748 page = list_entry(pcp->list.next, struct page, lru);
749 list_del(&page->lru);
750 pcp->count--;
751 }
752 local_irq_restore(flags);
753 put_cpu();
7fb1d9fc 754 } else {
1da177e4
LT
755 spin_lock_irqsave(&zone->lock, flags);
756 page = __rmqueue(zone, order);
757 spin_unlock_irqrestore(&zone->lock, flags);
758 }
759
760 if (page != NULL) {
761 BUG_ON(bad_range(zone, page));
762 mod_page_state_zone(zone, pgalloc, 1 << order);
689bcebf
HD
763 if (prep_new_page(page, order))
764 goto again;
1da177e4
LT
765
766 if (gfp_flags & __GFP_ZERO)
767 prep_zero_page(page, order, gfp_flags);
768
769 if (order && (gfp_flags & __GFP_COMP))
770 prep_compound_page(page, order);
771 }
772 return page;
773}
774
7fb1d9fc 775#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
776#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
777#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
778#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
779#define ALLOC_HARDER 0x10 /* try to alloc harder */
780#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
781#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 782
1da177e4
LT
783/*
784 * Return 1 if free pages are above 'mark'. This takes into account the order
785 * of the allocation.
786 */
787int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 788 int classzone_idx, int alloc_flags)
1da177e4
LT
789{
790 /* free_pages my go negative - that's OK */
791 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
792 int o;
793
7fb1d9fc 794 if (alloc_flags & ALLOC_HIGH)
1da177e4 795 min -= min / 2;
7fb1d9fc 796 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
797 min -= min / 4;
798
799 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
800 return 0;
801 for (o = 0; o < order; o++) {
802 /* At the next order, this order's pages become unavailable */
803 free_pages -= z->free_area[o].nr_free << o;
804
805 /* Require fewer higher order pages to be free */
806 min >>= 1;
807
808 if (free_pages <= min)
809 return 0;
810 }
811 return 1;
812}
813
7fb1d9fc
RS
814/*
815 * get_page_from_freeliest goes through the zonelist trying to allocate
816 * a page.
817 */
818static struct page *
819get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
820 struct zonelist *zonelist, int alloc_flags)
753ee728 821{
7fb1d9fc
RS
822 struct zone **z = zonelist->zones;
823 struct page *page = NULL;
824 int classzone_idx = zone_idx(*z);
825
826 /*
827 * Go through the zonelist once, looking for a zone with enough free.
828 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
829 */
830 do {
831 if ((alloc_flags & ALLOC_CPUSET) &&
832 !cpuset_zone_allowed(*z, gfp_mask))
833 continue;
834
835 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
836 unsigned long mark;
837 if (alloc_flags & ALLOC_WMARK_MIN)
838 mark = (*z)->pages_min;
839 else if (alloc_flags & ALLOC_WMARK_LOW)
840 mark = (*z)->pages_low;
841 else
842 mark = (*z)->pages_high;
843 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc
RS
844 classzone_idx, alloc_flags))
845 continue;
846 }
847
848 page = buffered_rmqueue(*z, order, gfp_mask);
849 if (page) {
850 zone_statistics(zonelist, *z);
851 break;
852 }
853 } while (*(++z) != NULL);
854 return page;
753ee728
MH
855}
856
1da177e4
LT
857/*
858 * This is the 'heart' of the zoned buddy allocator.
859 */
860struct page * fastcall
dd0fc66f 861__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
862 struct zonelist *zonelist)
863{
260b2367 864 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 865 struct zone **z;
1da177e4
LT
866 struct page *page;
867 struct reclaim_state reclaim_state;
868 struct task_struct *p = current;
1da177e4 869 int do_retry;
7fb1d9fc 870 int alloc_flags;
1da177e4
LT
871 int did_some_progress;
872
873 might_sleep_if(wait);
874
6b1de916 875restart:
7fb1d9fc 876 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 877
7fb1d9fc 878 if (unlikely(*z == NULL)) {
1da177e4
LT
879 /* Should this ever happen?? */
880 return NULL;
881 }
6b1de916 882
7fb1d9fc 883 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 884 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
885 if (page)
886 goto got_pg;
1da177e4 887
6b1de916 888 do {
7fb1d9fc 889 wakeup_kswapd(*z, order);
6b1de916 890 } while (*(++z));
1da177e4 891
9bf2229f 892 /*
7fb1d9fc
RS
893 * OK, we're below the kswapd watermark and have kicked background
894 * reclaim. Now things get more complex, so set up alloc_flags according
895 * to how we want to proceed.
896 *
897 * The caller may dip into page reserves a bit more if the caller
898 * cannot run direct reclaim, or if the caller has realtime scheduling
899 * policy.
9bf2229f 900 */
3148890b 901 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
902 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
903 alloc_flags |= ALLOC_HARDER;
904 if (gfp_mask & __GFP_HIGH)
905 alloc_flags |= ALLOC_HIGH;
47f3a867 906 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
907
908 /*
909 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 910 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
911 *
912 * This is the last chance, in general, before the goto nopage.
913 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 914 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 915 */
7fb1d9fc
RS
916 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
917 if (page)
918 goto got_pg;
1da177e4
LT
919
920 /* This allocation should allow future memory freeing. */
b84a35be
NP
921
922 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
923 && !in_interrupt()) {
924 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 925nofail_alloc:
b84a35be 926 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 927 page = get_page_from_freelist(gfp_mask, order,
47f3a867 928 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
929 if (page)
930 goto got_pg;
885036d3
KK
931 if (gfp_mask & __GFP_NOFAIL) {
932 blk_congestion_wait(WRITE, HZ/50);
933 goto nofail_alloc;
934 }
1da177e4
LT
935 }
936 goto nopage;
937 }
938
939 /* Atomic allocations - we can't balance anything */
940 if (!wait)
941 goto nopage;
942
943rebalance:
944 cond_resched();
945
946 /* We now go into synchronous reclaim */
947 p->flags |= PF_MEMALLOC;
948 reclaim_state.reclaimed_slab = 0;
949 p->reclaim_state = &reclaim_state;
950
7fb1d9fc 951 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
952
953 p->reclaim_state = NULL;
954 p->flags &= ~PF_MEMALLOC;
955
956 cond_resched();
957
958 if (likely(did_some_progress)) {
7fb1d9fc
RS
959 page = get_page_from_freelist(gfp_mask, order,
960 zonelist, alloc_flags);
961 if (page)
962 goto got_pg;
1da177e4
LT
963 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
964 /*
965 * Go through the zonelist yet one more time, keep
966 * very high watermark here, this is only to catch
967 * a parallel oom killing, we must fail if we're still
968 * under heavy pressure.
969 */
7fb1d9fc 970 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 971 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
972 if (page)
973 goto got_pg;
1da177e4 974
79b9ce31 975 out_of_memory(gfp_mask, order);
1da177e4
LT
976 goto restart;
977 }
978
979 /*
980 * Don't let big-order allocations loop unless the caller explicitly
981 * requests that. Wait for some write requests to complete then retry.
982 *
983 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
984 * <= 3, but that may not be true in other implementations.
985 */
986 do_retry = 0;
987 if (!(gfp_mask & __GFP_NORETRY)) {
988 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
989 do_retry = 1;
990 if (gfp_mask & __GFP_NOFAIL)
991 do_retry = 1;
992 }
993 if (do_retry) {
994 blk_congestion_wait(WRITE, HZ/50);
995 goto rebalance;
996 }
997
998nopage:
999 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1000 printk(KERN_WARNING "%s: page allocation failure."
1001 " order:%d, mode:0x%x\n",
1002 p->comm, order, gfp_mask);
1003 dump_stack();
578c2fd6 1004 show_mem();
1da177e4 1005 }
1da177e4 1006got_pg:
1da177e4
LT
1007 return page;
1008}
1009
1010EXPORT_SYMBOL(__alloc_pages);
1011
1012/*
1013 * Common helper functions.
1014 */
dd0fc66f 1015fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1016{
1017 struct page * page;
1018 page = alloc_pages(gfp_mask, order);
1019 if (!page)
1020 return 0;
1021 return (unsigned long) page_address(page);
1022}
1023
1024EXPORT_SYMBOL(__get_free_pages);
1025
dd0fc66f 1026fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1027{
1028 struct page * page;
1029
1030 /*
1031 * get_zeroed_page() returns a 32-bit address, which cannot represent
1032 * a highmem page
1033 */
260b2367 1034 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1035
1036 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1037 if (page)
1038 return (unsigned long) page_address(page);
1039 return 0;
1040}
1041
1042EXPORT_SYMBOL(get_zeroed_page);
1043
1044void __pagevec_free(struct pagevec *pvec)
1045{
1046 int i = pagevec_count(pvec);
1047
1048 while (--i >= 0)
1049 free_hot_cold_page(pvec->pages[i], pvec->cold);
1050}
1051
1052fastcall void __free_pages(struct page *page, unsigned int order)
1053{
b5810039 1054 if (put_page_testzero(page)) {
1da177e4
LT
1055 if (order == 0)
1056 free_hot_page(page);
1057 else
1058 __free_pages_ok(page, order);
1059 }
1060}
1061
1062EXPORT_SYMBOL(__free_pages);
1063
1064fastcall void free_pages(unsigned long addr, unsigned int order)
1065{
1066 if (addr != 0) {
1067 BUG_ON(!virt_addr_valid((void *)addr));
1068 __free_pages(virt_to_page((void *)addr), order);
1069 }
1070}
1071
1072EXPORT_SYMBOL(free_pages);
1073
1074/*
1075 * Total amount of free (allocatable) RAM:
1076 */
1077unsigned int nr_free_pages(void)
1078{
1079 unsigned int sum = 0;
1080 struct zone *zone;
1081
1082 for_each_zone(zone)
1083 sum += zone->free_pages;
1084
1085 return sum;
1086}
1087
1088EXPORT_SYMBOL(nr_free_pages);
1089
1090#ifdef CONFIG_NUMA
1091unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1092{
1093 unsigned int i, sum = 0;
1094
1095 for (i = 0; i < MAX_NR_ZONES; i++)
1096 sum += pgdat->node_zones[i].free_pages;
1097
1098 return sum;
1099}
1100#endif
1101
1102static unsigned int nr_free_zone_pages(int offset)
1103{
e310fd43
MB
1104 /* Just pick one node, since fallback list is circular */
1105 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1106 unsigned int sum = 0;
1107
e310fd43
MB
1108 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1109 struct zone **zonep = zonelist->zones;
1110 struct zone *zone;
1da177e4 1111
e310fd43
MB
1112 for (zone = *zonep++; zone; zone = *zonep++) {
1113 unsigned long size = zone->present_pages;
1114 unsigned long high = zone->pages_high;
1115 if (size > high)
1116 sum += size - high;
1da177e4
LT
1117 }
1118
1119 return sum;
1120}
1121
1122/*
1123 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1124 */
1125unsigned int nr_free_buffer_pages(void)
1126{
af4ca457 1127 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1128}
1129
1130/*
1131 * Amount of free RAM allocatable within all zones
1132 */
1133unsigned int nr_free_pagecache_pages(void)
1134{
af4ca457 1135 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1136}
1137
1138#ifdef CONFIG_HIGHMEM
1139unsigned int nr_free_highpages (void)
1140{
1141 pg_data_t *pgdat;
1142 unsigned int pages = 0;
1143
1144 for_each_pgdat(pgdat)
1145 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1146
1147 return pages;
1148}
1149#endif
1150
1151#ifdef CONFIG_NUMA
1152static void show_node(struct zone *zone)
1153{
1154 printk("Node %d ", zone->zone_pgdat->node_id);
1155}
1156#else
1157#define show_node(zone) do { } while (0)
1158#endif
1159
1160/*
1161 * Accumulate the page_state information across all CPUs.
1162 * The result is unavoidably approximate - it can change
1163 * during and after execution of this function.
1164 */
1165static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1166
1167atomic_t nr_pagecache = ATOMIC_INIT(0);
1168EXPORT_SYMBOL(nr_pagecache);
1169#ifdef CONFIG_SMP
1170DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1171#endif
1172
c07e02db 1173void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1174{
1175 int cpu = 0;
1176
1177 memset(ret, 0, sizeof(*ret));
c07e02db 1178 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1179
c07e02db 1180 cpu = first_cpu(*cpumask);
1da177e4
LT
1181 while (cpu < NR_CPUS) {
1182 unsigned long *in, *out, off;
1183
1184 in = (unsigned long *)&per_cpu(page_states, cpu);
1185
c07e02db 1186 cpu = next_cpu(cpu, *cpumask);
1da177e4
LT
1187
1188 if (cpu < NR_CPUS)
1189 prefetch(&per_cpu(page_states, cpu));
1190
1191 out = (unsigned long *)ret;
1192 for (off = 0; off < nr; off++)
1193 *out++ += *in++;
1194 }
1195}
1196
c07e02db
MH
1197void get_page_state_node(struct page_state *ret, int node)
1198{
1199 int nr;
1200 cpumask_t mask = node_to_cpumask(node);
1201
1202 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1203 nr /= sizeof(unsigned long);
1204
1205 __get_page_state(ret, nr+1, &mask);
1206}
1207
1da177e4
LT
1208void get_page_state(struct page_state *ret)
1209{
1210 int nr;
c07e02db 1211 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1212
1213 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1214 nr /= sizeof(unsigned long);
1215
c07e02db 1216 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1217}
1218
1219void get_full_page_state(struct page_state *ret)
1220{
c07e02db
MH
1221 cpumask_t mask = CPU_MASK_ALL;
1222
1223 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1224}
1225
c2f29ea1 1226unsigned long __read_page_state(unsigned long offset)
1da177e4
LT
1227{
1228 unsigned long ret = 0;
1229 int cpu;
1230
1231 for_each_online_cpu(cpu) {
1232 unsigned long in;
1233
1234 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1235 ret += *((unsigned long *)in);
1236 }
1237 return ret;
1238}
1239
83e5d8f7 1240void __mod_page_state(unsigned long offset, unsigned long delta)
1da177e4
LT
1241{
1242 unsigned long flags;
1243 void* ptr;
1244
1245 local_irq_save(flags);
1246 ptr = &__get_cpu_var(page_states);
1247 *(unsigned long*)(ptr + offset) += delta;
1248 local_irq_restore(flags);
1249}
1250
1251EXPORT_SYMBOL(__mod_page_state);
1252
1253void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1254 unsigned long *free, struct pglist_data *pgdat)
1255{
1256 struct zone *zones = pgdat->node_zones;
1257 int i;
1258
1259 *active = 0;
1260 *inactive = 0;
1261 *free = 0;
1262 for (i = 0; i < MAX_NR_ZONES; i++) {
1263 *active += zones[i].nr_active;
1264 *inactive += zones[i].nr_inactive;
1265 *free += zones[i].free_pages;
1266 }
1267}
1268
1269void get_zone_counts(unsigned long *active,
1270 unsigned long *inactive, unsigned long *free)
1271{
1272 struct pglist_data *pgdat;
1273
1274 *active = 0;
1275 *inactive = 0;
1276 *free = 0;
1277 for_each_pgdat(pgdat) {
1278 unsigned long l, m, n;
1279 __get_zone_counts(&l, &m, &n, pgdat);
1280 *active += l;
1281 *inactive += m;
1282 *free += n;
1283 }
1284}
1285
1286void si_meminfo(struct sysinfo *val)
1287{
1288 val->totalram = totalram_pages;
1289 val->sharedram = 0;
1290 val->freeram = nr_free_pages();
1291 val->bufferram = nr_blockdev_pages();
1292#ifdef CONFIG_HIGHMEM
1293 val->totalhigh = totalhigh_pages;
1294 val->freehigh = nr_free_highpages();
1295#else
1296 val->totalhigh = 0;
1297 val->freehigh = 0;
1298#endif
1299 val->mem_unit = PAGE_SIZE;
1300}
1301
1302EXPORT_SYMBOL(si_meminfo);
1303
1304#ifdef CONFIG_NUMA
1305void si_meminfo_node(struct sysinfo *val, int nid)
1306{
1307 pg_data_t *pgdat = NODE_DATA(nid);
1308
1309 val->totalram = pgdat->node_present_pages;
1310 val->freeram = nr_free_pages_pgdat(pgdat);
1311 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1312 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1313 val->mem_unit = PAGE_SIZE;
1314}
1315#endif
1316
1317#define K(x) ((x) << (PAGE_SHIFT-10))
1318
1319/*
1320 * Show free area list (used inside shift_scroll-lock stuff)
1321 * We also calculate the percentage fragmentation. We do this by counting the
1322 * memory on each free list with the exception of the first item on the list.
1323 */
1324void show_free_areas(void)
1325{
1326 struct page_state ps;
1327 int cpu, temperature;
1328 unsigned long active;
1329 unsigned long inactive;
1330 unsigned long free;
1331 struct zone *zone;
1332
1333 for_each_zone(zone) {
1334 show_node(zone);
1335 printk("%s per-cpu:", zone->name);
1336
1337 if (!zone->present_pages) {
1338 printk(" empty\n");
1339 continue;
1340 } else
1341 printk("\n");
1342
6b482c67 1343 for_each_online_cpu(cpu) {
1da177e4
LT
1344 struct per_cpu_pageset *pageset;
1345
e7c8d5c9 1346 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1347
1348 for (temperature = 0; temperature < 2; temperature++)
4ae7c039 1349 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1da177e4
LT
1350 cpu,
1351 temperature ? "cold" : "hot",
1352 pageset->pcp[temperature].low,
1353 pageset->pcp[temperature].high,
4ae7c039
CL
1354 pageset->pcp[temperature].batch,
1355 pageset->pcp[temperature].count);
1da177e4
LT
1356 }
1357 }
1358
1359 get_page_state(&ps);
1360 get_zone_counts(&active, &inactive, &free);
1361
c0d62219 1362 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1363 K(nr_free_pages()),
1364 K(nr_free_highpages()));
1365
1366 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1367 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1368 active,
1369 inactive,
1370 ps.nr_dirty,
1371 ps.nr_writeback,
1372 ps.nr_unstable,
1373 nr_free_pages(),
1374 ps.nr_slab,
1375 ps.nr_mapped,
1376 ps.nr_page_table_pages);
1377
1378 for_each_zone(zone) {
1379 int i;
1380
1381 show_node(zone);
1382 printk("%s"
1383 " free:%lukB"
1384 " min:%lukB"
1385 " low:%lukB"
1386 " high:%lukB"
1387 " active:%lukB"
1388 " inactive:%lukB"
1389 " present:%lukB"
1390 " pages_scanned:%lu"
1391 " all_unreclaimable? %s"
1392 "\n",
1393 zone->name,
1394 K(zone->free_pages),
1395 K(zone->pages_min),
1396 K(zone->pages_low),
1397 K(zone->pages_high),
1398 K(zone->nr_active),
1399 K(zone->nr_inactive),
1400 K(zone->present_pages),
1401 zone->pages_scanned,
1402 (zone->all_unreclaimable ? "yes" : "no")
1403 );
1404 printk("lowmem_reserve[]:");
1405 for (i = 0; i < MAX_NR_ZONES; i++)
1406 printk(" %lu", zone->lowmem_reserve[i]);
1407 printk("\n");
1408 }
1409
1410 for_each_zone(zone) {
1411 unsigned long nr, flags, order, total = 0;
1412
1413 show_node(zone);
1414 printk("%s: ", zone->name);
1415 if (!zone->present_pages) {
1416 printk("empty\n");
1417 continue;
1418 }
1419
1420 spin_lock_irqsave(&zone->lock, flags);
1421 for (order = 0; order < MAX_ORDER; order++) {
1422 nr = zone->free_area[order].nr_free;
1423 total += nr << order;
1424 printk("%lu*%lukB ", nr, K(1UL) << order);
1425 }
1426 spin_unlock_irqrestore(&zone->lock, flags);
1427 printk("= %lukB\n", K(total));
1428 }
1429
1430 show_swap_cache_info();
1431}
1432
1433/*
1434 * Builds allocation fallback zone lists.
1435 */
1436static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1437{
1438 switch (k) {
1439 struct zone *zone;
1440 default:
1441 BUG();
1442 case ZONE_HIGHMEM:
1443 zone = pgdat->node_zones + ZONE_HIGHMEM;
1444 if (zone->present_pages) {
1445#ifndef CONFIG_HIGHMEM
1446 BUG();
1447#endif
1448 zonelist->zones[j++] = zone;
1449 }
1450 case ZONE_NORMAL:
1451 zone = pgdat->node_zones + ZONE_NORMAL;
1452 if (zone->present_pages)
1453 zonelist->zones[j++] = zone;
a2f1b424
AK
1454 case ZONE_DMA32:
1455 zone = pgdat->node_zones + ZONE_DMA32;
1456 if (zone->present_pages)
1457 zonelist->zones[j++] = zone;
1da177e4
LT
1458 case ZONE_DMA:
1459 zone = pgdat->node_zones + ZONE_DMA;
1460 if (zone->present_pages)
1461 zonelist->zones[j++] = zone;
1462 }
1463
1464 return j;
1465}
1466
260b2367
AV
1467static inline int highest_zone(int zone_bits)
1468{
1469 int res = ZONE_NORMAL;
1470 if (zone_bits & (__force int)__GFP_HIGHMEM)
1471 res = ZONE_HIGHMEM;
a2f1b424
AK
1472 if (zone_bits & (__force int)__GFP_DMA32)
1473 res = ZONE_DMA32;
260b2367
AV
1474 if (zone_bits & (__force int)__GFP_DMA)
1475 res = ZONE_DMA;
1476 return res;
1477}
1478
1da177e4
LT
1479#ifdef CONFIG_NUMA
1480#define MAX_NODE_LOAD (num_online_nodes())
1481static int __initdata node_load[MAX_NUMNODES];
1482/**
4dc3b16b 1483 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1484 * @node: node whose fallback list we're appending
1485 * @used_node_mask: nodemask_t of already used nodes
1486 *
1487 * We use a number of factors to determine which is the next node that should
1488 * appear on a given node's fallback list. The node should not have appeared
1489 * already in @node's fallback list, and it should be the next closest node
1490 * according to the distance array (which contains arbitrary distance values
1491 * from each node to each node in the system), and should also prefer nodes
1492 * with no CPUs, since presumably they'll have very little allocation pressure
1493 * on them otherwise.
1494 * It returns -1 if no node is found.
1495 */
1496static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1497{
1498 int i, n, val;
1499 int min_val = INT_MAX;
1500 int best_node = -1;
1501
1502 for_each_online_node(i) {
1503 cpumask_t tmp;
1504
1505 /* Start from local node */
1506 n = (node+i) % num_online_nodes();
1507
1508 /* Don't want a node to appear more than once */
1509 if (node_isset(n, *used_node_mask))
1510 continue;
1511
1512 /* Use the local node if we haven't already */
1513 if (!node_isset(node, *used_node_mask)) {
1514 best_node = node;
1515 break;
1516 }
1517
1518 /* Use the distance array to find the distance */
1519 val = node_distance(node, n);
1520
1521 /* Give preference to headless and unused nodes */
1522 tmp = node_to_cpumask(n);
1523 if (!cpus_empty(tmp))
1524 val += PENALTY_FOR_NODE_WITH_CPUS;
1525
1526 /* Slight preference for less loaded node */
1527 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1528 val += node_load[n];
1529
1530 if (val < min_val) {
1531 min_val = val;
1532 best_node = n;
1533 }
1534 }
1535
1536 if (best_node >= 0)
1537 node_set(best_node, *used_node_mask);
1538
1539 return best_node;
1540}
1541
1542static void __init build_zonelists(pg_data_t *pgdat)
1543{
1544 int i, j, k, node, local_node;
1545 int prev_node, load;
1546 struct zonelist *zonelist;
1547 nodemask_t used_mask;
1548
1549 /* initialize zonelists */
1550 for (i = 0; i < GFP_ZONETYPES; i++) {
1551 zonelist = pgdat->node_zonelists + i;
1552 zonelist->zones[0] = NULL;
1553 }
1554
1555 /* NUMA-aware ordering of nodes */
1556 local_node = pgdat->node_id;
1557 load = num_online_nodes();
1558 prev_node = local_node;
1559 nodes_clear(used_mask);
1560 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1561 /*
1562 * We don't want to pressure a particular node.
1563 * So adding penalty to the first node in same
1564 * distance group to make it round-robin.
1565 */
1566 if (node_distance(local_node, node) !=
1567 node_distance(local_node, prev_node))
1568 node_load[node] += load;
1569 prev_node = node;
1570 load--;
1571 for (i = 0; i < GFP_ZONETYPES; i++) {
1572 zonelist = pgdat->node_zonelists + i;
1573 for (j = 0; zonelist->zones[j] != NULL; j++);
1574
260b2367 1575 k = highest_zone(i);
1da177e4
LT
1576
1577 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1578 zonelist->zones[j] = NULL;
1579 }
1580 }
1581}
1582
1583#else /* CONFIG_NUMA */
1584
1585static void __init build_zonelists(pg_data_t *pgdat)
1586{
1587 int i, j, k, node, local_node;
1588
1589 local_node = pgdat->node_id;
1590 for (i = 0; i < GFP_ZONETYPES; i++) {
1591 struct zonelist *zonelist;
1592
1593 zonelist = pgdat->node_zonelists + i;
1594
1595 j = 0;
260b2367 1596 k = highest_zone(i);
1da177e4
LT
1597 j = build_zonelists_node(pgdat, zonelist, j, k);
1598 /*
1599 * Now we build the zonelist so that it contains the zones
1600 * of all the other nodes.
1601 * We don't want to pressure a particular node, so when
1602 * building the zones for node N, we make sure that the
1603 * zones coming right after the local ones are those from
1604 * node N+1 (modulo N)
1605 */
1606 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1607 if (!node_online(node))
1608 continue;
1609 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1610 }
1611 for (node = 0; node < local_node; node++) {
1612 if (!node_online(node))
1613 continue;
1614 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1615 }
1616
1617 zonelist->zones[j] = NULL;
1618 }
1619}
1620
1621#endif /* CONFIG_NUMA */
1622
1623void __init build_all_zonelists(void)
1624{
1625 int i;
1626
1627 for_each_online_node(i)
1628 build_zonelists(NODE_DATA(i));
1629 printk("Built %i zonelists\n", num_online_nodes());
1630 cpuset_init_current_mems_allowed();
1631}
1632
1633/*
1634 * Helper functions to size the waitqueue hash table.
1635 * Essentially these want to choose hash table sizes sufficiently
1636 * large so that collisions trying to wait on pages are rare.
1637 * But in fact, the number of active page waitqueues on typical
1638 * systems is ridiculously low, less than 200. So this is even
1639 * conservative, even though it seems large.
1640 *
1641 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1642 * waitqueues, i.e. the size of the waitq table given the number of pages.
1643 */
1644#define PAGES_PER_WAITQUEUE 256
1645
1646static inline unsigned long wait_table_size(unsigned long pages)
1647{
1648 unsigned long size = 1;
1649
1650 pages /= PAGES_PER_WAITQUEUE;
1651
1652 while (size < pages)
1653 size <<= 1;
1654
1655 /*
1656 * Once we have dozens or even hundreds of threads sleeping
1657 * on IO we've got bigger problems than wait queue collision.
1658 * Limit the size of the wait table to a reasonable size.
1659 */
1660 size = min(size, 4096UL);
1661
1662 return max(size, 4UL);
1663}
1664
1665/*
1666 * This is an integer logarithm so that shifts can be used later
1667 * to extract the more random high bits from the multiplicative
1668 * hash function before the remainder is taken.
1669 */
1670static inline unsigned long wait_table_bits(unsigned long size)
1671{
1672 return ffz(~size);
1673}
1674
1675#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1676
1677static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1678 unsigned long *zones_size, unsigned long *zholes_size)
1679{
1680 unsigned long realtotalpages, totalpages = 0;
1681 int i;
1682
1683 for (i = 0; i < MAX_NR_ZONES; i++)
1684 totalpages += zones_size[i];
1685 pgdat->node_spanned_pages = totalpages;
1686
1687 realtotalpages = totalpages;
1688 if (zholes_size)
1689 for (i = 0; i < MAX_NR_ZONES; i++)
1690 realtotalpages -= zholes_size[i];
1691 pgdat->node_present_pages = realtotalpages;
1692 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1693}
1694
1695
1696/*
1697 * Initially all pages are reserved - free ones are freed
1698 * up by free_all_bootmem() once the early boot process is
1699 * done. Non-atomic initialization, single-pass.
1700 */
3947be19 1701void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1702 unsigned long start_pfn)
1703{
1da177e4 1704 struct page *page;
29751f69
AW
1705 unsigned long end_pfn = start_pfn + size;
1706 unsigned long pfn;
1da177e4 1707
d41dee36
AW
1708 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1709 if (!early_pfn_valid(pfn))
1710 continue;
1711 page = pfn_to_page(pfn);
1712 set_page_links(page, zone, nid, pfn);
b5810039 1713 set_page_count(page, 1);
1da177e4
LT
1714 reset_page_mapcount(page);
1715 SetPageReserved(page);
1716 INIT_LIST_HEAD(&page->lru);
1717#ifdef WANT_PAGE_VIRTUAL
1718 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1719 if (!is_highmem_idx(zone))
3212c6be 1720 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1721#endif
1da177e4
LT
1722 }
1723}
1724
1725void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1726 unsigned long size)
1727{
1728 int order;
1729 for (order = 0; order < MAX_ORDER ; order++) {
1730 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1731 zone->free_area[order].nr_free = 0;
1732 }
1733}
1734
d41dee36
AW
1735#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1736void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1737 unsigned long size)
1738{
1739 unsigned long snum = pfn_to_section_nr(pfn);
1740 unsigned long end = pfn_to_section_nr(pfn + size);
1741
1742 if (FLAGS_HAS_NODE)
1743 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1744 else
1745 for (; snum <= end; snum++)
1746 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1747}
1748
1da177e4
LT
1749#ifndef __HAVE_ARCH_MEMMAP_INIT
1750#define memmap_init(size, nid, zone, start_pfn) \
1751 memmap_init_zone((size), (nid), (zone), (start_pfn))
1752#endif
1753
e7c8d5c9
CL
1754static int __devinit zone_batchsize(struct zone *zone)
1755{
1756 int batch;
1757
1758 /*
1759 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1760 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1761 *
1762 * OK, so we don't know how big the cache is. So guess.
1763 */
1764 batch = zone->present_pages / 1024;
ba56e91c
SR
1765 if (batch * PAGE_SIZE > 512 * 1024)
1766 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1767 batch /= 4; /* We effectively *= 4 below */
1768 if (batch < 1)
1769 batch = 1;
1770
1771 /*
0ceaacc9
NP
1772 * Clamp the batch to a 2^n - 1 value. Having a power
1773 * of 2 value was found to be more likely to have
1774 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1775 *
0ceaacc9
NP
1776 * For example if 2 tasks are alternately allocating
1777 * batches of pages, one task can end up with a lot
1778 * of pages of one half of the possible page colors
1779 * and the other with pages of the other colors.
e7c8d5c9 1780 */
0ceaacc9 1781 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1782
e7c8d5c9
CL
1783 return batch;
1784}
1785
2caaad41
CL
1786inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1787{
1788 struct per_cpu_pages *pcp;
1789
1c6fe946
MD
1790 memset(p, 0, sizeof(*p));
1791
2caaad41
CL
1792 pcp = &p->pcp[0]; /* hot */
1793 pcp->count = 0;
e46a5e28 1794 pcp->low = 0;
2caaad41
CL
1795 pcp->high = 6 * batch;
1796 pcp->batch = max(1UL, 1 * batch);
1797 INIT_LIST_HEAD(&pcp->list);
1798
1799 pcp = &p->pcp[1]; /* cold*/
1800 pcp->count = 0;
1801 pcp->low = 0;
1802 pcp->high = 2 * batch;
e46a5e28 1803 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1804 INIT_LIST_HEAD(&pcp->list);
1805}
1806
e7c8d5c9
CL
1807#ifdef CONFIG_NUMA
1808/*
2caaad41
CL
1809 * Boot pageset table. One per cpu which is going to be used for all
1810 * zones and all nodes. The parameters will be set in such a way
1811 * that an item put on a list will immediately be handed over to
1812 * the buddy list. This is safe since pageset manipulation is done
1813 * with interrupts disabled.
1814 *
1815 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1816 *
1817 * The boot_pagesets must be kept even after bootup is complete for
1818 * unused processors and/or zones. They do play a role for bootstrapping
1819 * hotplugged processors.
1820 *
1821 * zoneinfo_show() and maybe other functions do
1822 * not check if the processor is online before following the pageset pointer.
1823 * Other parts of the kernel may not check if the zone is available.
2caaad41
CL
1824 */
1825static struct per_cpu_pageset
b7c84c6a 1826 boot_pageset[NR_CPUS];
2caaad41
CL
1827
1828/*
1829 * Dynamically allocate memory for the
e7c8d5c9
CL
1830 * per cpu pageset array in struct zone.
1831 */
1832static int __devinit process_zones(int cpu)
1833{
1834 struct zone *zone, *dzone;
e7c8d5c9
CL
1835
1836 for_each_zone(zone) {
e7c8d5c9 1837
2caaad41 1838 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1839 GFP_KERNEL, cpu_to_node(cpu));
2caaad41 1840 if (!zone->pageset[cpu])
e7c8d5c9 1841 goto bad;
e7c8d5c9 1842
2caaad41 1843 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
e7c8d5c9
CL
1844 }
1845
1846 return 0;
1847bad:
1848 for_each_zone(dzone) {
1849 if (dzone == zone)
1850 break;
1851 kfree(dzone->pageset[cpu]);
1852 dzone->pageset[cpu] = NULL;
1853 }
1854 return -ENOMEM;
1855}
1856
1857static inline void free_zone_pagesets(int cpu)
1858{
1859#ifdef CONFIG_NUMA
1860 struct zone *zone;
1861
1862 for_each_zone(zone) {
1863 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1864
1865 zone_pcp(zone, cpu) = NULL;
1866 kfree(pset);
1867 }
1868#endif
1869}
1870
1871static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1872 unsigned long action,
1873 void *hcpu)
1874{
1875 int cpu = (long)hcpu;
1876 int ret = NOTIFY_OK;
1877
1878 switch (action) {
1879 case CPU_UP_PREPARE:
1880 if (process_zones(cpu))
1881 ret = NOTIFY_BAD;
1882 break;
b0d41693 1883 case CPU_UP_CANCELED:
e7c8d5c9
CL
1884 case CPU_DEAD:
1885 free_zone_pagesets(cpu);
1886 break;
e7c8d5c9
CL
1887 default:
1888 break;
1889 }
1890 return ret;
1891}
1892
1893static struct notifier_block pageset_notifier =
1894 { &pageset_cpuup_callback, NULL, 0 };
1895
78d9955b 1896void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1897{
1898 int err;
1899
1900 /* Initialize per_cpu_pageset for cpu 0.
1901 * A cpuup callback will do this for every cpu
1902 * as it comes online
1903 */
1904 err = process_zones(smp_processor_id());
1905 BUG_ON(err);
1906 register_cpu_notifier(&pageset_notifier);
1907}
1908
1909#endif
1910
ed8ece2e
DH
1911static __devinit
1912void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1913{
1914 int i;
1915 struct pglist_data *pgdat = zone->zone_pgdat;
1916
1917 /*
1918 * The per-page waitqueue mechanism uses hashed waitqueues
1919 * per zone.
1920 */
1921 zone->wait_table_size = wait_table_size(zone_size_pages);
1922 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1923 zone->wait_table = (wait_queue_head_t *)
1924 alloc_bootmem_node(pgdat, zone->wait_table_size
1925 * sizeof(wait_queue_head_t));
1926
1927 for(i = 0; i < zone->wait_table_size; ++i)
1928 init_waitqueue_head(zone->wait_table + i);
1929}
1930
1931static __devinit void zone_pcp_init(struct zone *zone)
1932{
1933 int cpu;
1934 unsigned long batch = zone_batchsize(zone);
1935
1936 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1937#ifdef CONFIG_NUMA
1938 /* Early boot. Slab allocator not functional yet */
1939 zone->pageset[cpu] = &boot_pageset[cpu];
1940 setup_pageset(&boot_pageset[cpu],0);
1941#else
1942 setup_pageset(zone_pcp(zone,cpu), batch);
1943#endif
1944 }
1945 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1946 zone->name, zone->present_pages, batch);
1947}
1948
1949static __devinit void init_currently_empty_zone(struct zone *zone,
1950 unsigned long zone_start_pfn, unsigned long size)
1951{
1952 struct pglist_data *pgdat = zone->zone_pgdat;
1953
1954 zone_wait_table_init(zone, size);
1955 pgdat->nr_zones = zone_idx(zone) + 1;
1956
1957 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1958 zone->zone_start_pfn = zone_start_pfn;
1959
1960 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1961
1962 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1963}
1964
1da177e4
LT
1965/*
1966 * Set up the zone data structures:
1967 * - mark all pages reserved
1968 * - mark all memory queues empty
1969 * - clear the memory bitmaps
1970 */
1971static void __init free_area_init_core(struct pglist_data *pgdat,
1972 unsigned long *zones_size, unsigned long *zholes_size)
1973{
ed8ece2e
DH
1974 unsigned long j;
1975 int nid = pgdat->node_id;
1da177e4
LT
1976 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1977
208d54e5 1978 pgdat_resize_init(pgdat);
1da177e4
LT
1979 pgdat->nr_zones = 0;
1980 init_waitqueue_head(&pgdat->kswapd_wait);
1981 pgdat->kswapd_max_order = 0;
1982
1983 for (j = 0; j < MAX_NR_ZONES; j++) {
1984 struct zone *zone = pgdat->node_zones + j;
1985 unsigned long size, realsize;
1da177e4 1986
1da177e4
LT
1987 realsize = size = zones_size[j];
1988 if (zholes_size)
1989 realsize -= zholes_size[j];
1990
a2f1b424 1991 if (j < ZONE_HIGHMEM)
1da177e4
LT
1992 nr_kernel_pages += realsize;
1993 nr_all_pages += realsize;
1994
1995 zone->spanned_pages = size;
1996 zone->present_pages = realsize;
1997 zone->name = zone_names[j];
1998 spin_lock_init(&zone->lock);
1999 spin_lock_init(&zone->lru_lock);
bdc8cb98 2000 zone_seqlock_init(zone);
1da177e4
LT
2001 zone->zone_pgdat = pgdat;
2002 zone->free_pages = 0;
2003
2004 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2005
ed8ece2e 2006 zone_pcp_init(zone);
1da177e4
LT
2007 INIT_LIST_HEAD(&zone->active_list);
2008 INIT_LIST_HEAD(&zone->inactive_list);
2009 zone->nr_scan_active = 0;
2010 zone->nr_scan_inactive = 0;
2011 zone->nr_active = 0;
2012 zone->nr_inactive = 0;
53e9a615 2013 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2014 if (!size)
2015 continue;
2016
d41dee36 2017 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2018 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2019 zone_start_pfn += size;
1da177e4
LT
2020 }
2021}
2022
2023static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2024{
1da177e4
LT
2025 /* Skip empty nodes */
2026 if (!pgdat->node_spanned_pages)
2027 return;
2028
d41dee36 2029#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2030 /* ia64 gets its own node_mem_map, before this, without bootmem */
2031 if (!pgdat->node_mem_map) {
d41dee36
AW
2032 unsigned long size;
2033 struct page *map;
2034
1da177e4 2035 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2036 map = alloc_remap(pgdat->node_id, size);
2037 if (!map)
2038 map = alloc_bootmem_node(pgdat, size);
2039 pgdat->node_mem_map = map;
1da177e4 2040 }
d41dee36 2041#ifdef CONFIG_FLATMEM
1da177e4
LT
2042 /*
2043 * With no DISCONTIG, the global mem_map is just set as node 0's
2044 */
2045 if (pgdat == NODE_DATA(0))
2046 mem_map = NODE_DATA(0)->node_mem_map;
2047#endif
d41dee36 2048#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2049}
2050
2051void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2052 unsigned long *zones_size, unsigned long node_start_pfn,
2053 unsigned long *zholes_size)
2054{
2055 pgdat->node_id = nid;
2056 pgdat->node_start_pfn = node_start_pfn;
2057 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2058
2059 alloc_node_mem_map(pgdat);
2060
2061 free_area_init_core(pgdat, zones_size, zholes_size);
2062}
2063
93b7504e 2064#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2065static bootmem_data_t contig_bootmem_data;
2066struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2067
2068EXPORT_SYMBOL(contig_page_data);
93b7504e 2069#endif
1da177e4
LT
2070
2071void __init free_area_init(unsigned long *zones_size)
2072{
93b7504e 2073 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2074 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2075}
1da177e4
LT
2076
2077#ifdef CONFIG_PROC_FS
2078
2079#include <linux/seq_file.h>
2080
2081static void *frag_start(struct seq_file *m, loff_t *pos)
2082{
2083 pg_data_t *pgdat;
2084 loff_t node = *pos;
2085
2086 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2087 --node;
2088
2089 return pgdat;
2090}
2091
2092static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2093{
2094 pg_data_t *pgdat = (pg_data_t *)arg;
2095
2096 (*pos)++;
2097 return pgdat->pgdat_next;
2098}
2099
2100static void frag_stop(struct seq_file *m, void *arg)
2101{
2102}
2103
2104/*
2105 * This walks the free areas for each zone.
2106 */
2107static int frag_show(struct seq_file *m, void *arg)
2108{
2109 pg_data_t *pgdat = (pg_data_t *)arg;
2110 struct zone *zone;
2111 struct zone *node_zones = pgdat->node_zones;
2112 unsigned long flags;
2113 int order;
2114
2115 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2116 if (!zone->present_pages)
2117 continue;
2118
2119 spin_lock_irqsave(&zone->lock, flags);
2120 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2121 for (order = 0; order < MAX_ORDER; ++order)
2122 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2123 spin_unlock_irqrestore(&zone->lock, flags);
2124 seq_putc(m, '\n');
2125 }
2126 return 0;
2127}
2128
2129struct seq_operations fragmentation_op = {
2130 .start = frag_start,
2131 .next = frag_next,
2132 .stop = frag_stop,
2133 .show = frag_show,
2134};
2135
295ab934
ND
2136/*
2137 * Output information about zones in @pgdat.
2138 */
2139static int zoneinfo_show(struct seq_file *m, void *arg)
2140{
2141 pg_data_t *pgdat = arg;
2142 struct zone *zone;
2143 struct zone *node_zones = pgdat->node_zones;
2144 unsigned long flags;
2145
2146 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2147 int i;
2148
2149 if (!zone->present_pages)
2150 continue;
2151
2152 spin_lock_irqsave(&zone->lock, flags);
2153 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2154 seq_printf(m,
2155 "\n pages free %lu"
2156 "\n min %lu"
2157 "\n low %lu"
2158 "\n high %lu"
2159 "\n active %lu"
2160 "\n inactive %lu"
2161 "\n scanned %lu (a: %lu i: %lu)"
2162 "\n spanned %lu"
2163 "\n present %lu",
2164 zone->free_pages,
2165 zone->pages_min,
2166 zone->pages_low,
2167 zone->pages_high,
2168 zone->nr_active,
2169 zone->nr_inactive,
2170 zone->pages_scanned,
2171 zone->nr_scan_active, zone->nr_scan_inactive,
2172 zone->spanned_pages,
2173 zone->present_pages);
2174 seq_printf(m,
2175 "\n protection: (%lu",
2176 zone->lowmem_reserve[0]);
2177 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2178 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2179 seq_printf(m,
2180 ")"
2181 "\n pagesets");
2182 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2183 struct per_cpu_pageset *pageset;
2184 int j;
2185
e7c8d5c9 2186 pageset = zone_pcp(zone, i);
295ab934
ND
2187 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2188 if (pageset->pcp[j].count)
2189 break;
2190 }
2191 if (j == ARRAY_SIZE(pageset->pcp))
2192 continue;
2193 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2194 seq_printf(m,
2195 "\n cpu: %i pcp: %i"
2196 "\n count: %i"
2197 "\n low: %i"
2198 "\n high: %i"
2199 "\n batch: %i",
2200 i, j,
2201 pageset->pcp[j].count,
2202 pageset->pcp[j].low,
2203 pageset->pcp[j].high,
2204 pageset->pcp[j].batch);
2205 }
2206#ifdef CONFIG_NUMA
2207 seq_printf(m,
2208 "\n numa_hit: %lu"
2209 "\n numa_miss: %lu"
2210 "\n numa_foreign: %lu"
2211 "\n interleave_hit: %lu"
2212 "\n local_node: %lu"
2213 "\n other_node: %lu",
2214 pageset->numa_hit,
2215 pageset->numa_miss,
2216 pageset->numa_foreign,
2217 pageset->interleave_hit,
2218 pageset->local_node,
2219 pageset->other_node);
2220#endif
2221 }
2222 seq_printf(m,
2223 "\n all_unreclaimable: %u"
2224 "\n prev_priority: %i"
2225 "\n temp_priority: %i"
2226 "\n start_pfn: %lu",
2227 zone->all_unreclaimable,
2228 zone->prev_priority,
2229 zone->temp_priority,
2230 zone->zone_start_pfn);
2231 spin_unlock_irqrestore(&zone->lock, flags);
2232 seq_putc(m, '\n');
2233 }
2234 return 0;
2235}
2236
2237struct seq_operations zoneinfo_op = {
2238 .start = frag_start, /* iterate over all zones. The same as in
2239 * fragmentation. */
2240 .next = frag_next,
2241 .stop = frag_stop,
2242 .show = zoneinfo_show,
2243};
2244
1da177e4
LT
2245static char *vmstat_text[] = {
2246 "nr_dirty",
2247 "nr_writeback",
2248 "nr_unstable",
2249 "nr_page_table_pages",
2250 "nr_mapped",
2251 "nr_slab",
2252
2253 "pgpgin",
2254 "pgpgout",
2255 "pswpin",
2256 "pswpout",
2257 "pgalloc_high",
2258
2259 "pgalloc_normal",
2260 "pgalloc_dma",
2261 "pgfree",
2262 "pgactivate",
2263 "pgdeactivate",
2264
2265 "pgfault",
2266 "pgmajfault",
2267 "pgrefill_high",
2268 "pgrefill_normal",
2269 "pgrefill_dma",
2270
2271 "pgsteal_high",
2272 "pgsteal_normal",
2273 "pgsteal_dma",
2274 "pgscan_kswapd_high",
2275 "pgscan_kswapd_normal",
2276
2277 "pgscan_kswapd_dma",
2278 "pgscan_direct_high",
2279 "pgscan_direct_normal",
2280 "pgscan_direct_dma",
2281 "pginodesteal",
2282
2283 "slabs_scanned",
2284 "kswapd_steal",
2285 "kswapd_inodesteal",
2286 "pageoutrun",
2287 "allocstall",
2288
2289 "pgrotated",
edfbe2b0 2290 "nr_bounce",
1da177e4
LT
2291};
2292
2293static void *vmstat_start(struct seq_file *m, loff_t *pos)
2294{
2295 struct page_state *ps;
2296
2297 if (*pos >= ARRAY_SIZE(vmstat_text))
2298 return NULL;
2299
2300 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2301 m->private = ps;
2302 if (!ps)
2303 return ERR_PTR(-ENOMEM);
2304 get_full_page_state(ps);
2305 ps->pgpgin /= 2; /* sectors -> kbytes */
2306 ps->pgpgout /= 2;
2307 return (unsigned long *)ps + *pos;
2308}
2309
2310static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2311{
2312 (*pos)++;
2313 if (*pos >= ARRAY_SIZE(vmstat_text))
2314 return NULL;
2315 return (unsigned long *)m->private + *pos;
2316}
2317
2318static int vmstat_show(struct seq_file *m, void *arg)
2319{
2320 unsigned long *l = arg;
2321 unsigned long off = l - (unsigned long *)m->private;
2322
2323 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2324 return 0;
2325}
2326
2327static void vmstat_stop(struct seq_file *m, void *arg)
2328{
2329 kfree(m->private);
2330 m->private = NULL;
2331}
2332
2333struct seq_operations vmstat_op = {
2334 .start = vmstat_start,
2335 .next = vmstat_next,
2336 .stop = vmstat_stop,
2337 .show = vmstat_show,
2338};
2339
2340#endif /* CONFIG_PROC_FS */
2341
2342#ifdef CONFIG_HOTPLUG_CPU
2343static int page_alloc_cpu_notify(struct notifier_block *self,
2344 unsigned long action, void *hcpu)
2345{
2346 int cpu = (unsigned long)hcpu;
2347 long *count;
2348 unsigned long *src, *dest;
2349
2350 if (action == CPU_DEAD) {
2351 int i;
2352
2353 /* Drain local pagecache count. */
2354 count = &per_cpu(nr_pagecache_local, cpu);
2355 atomic_add(*count, &nr_pagecache);
2356 *count = 0;
2357 local_irq_disable();
2358 __drain_pages(cpu);
2359
2360 /* Add dead cpu's page_states to our own. */
2361 dest = (unsigned long *)&__get_cpu_var(page_states);
2362 src = (unsigned long *)&per_cpu(page_states, cpu);
2363
2364 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2365 i++) {
2366 dest[i] += src[i];
2367 src[i] = 0;
2368 }
2369
2370 local_irq_enable();
2371 }
2372 return NOTIFY_OK;
2373}
2374#endif /* CONFIG_HOTPLUG_CPU */
2375
2376void __init page_alloc_init(void)
2377{
2378 hotcpu_notifier(page_alloc_cpu_notify, 0);
2379}
2380
2381/*
2382 * setup_per_zone_lowmem_reserve - called whenever
2383 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2384 * has a correct pages reserved value, so an adequate number of
2385 * pages are left in the zone after a successful __alloc_pages().
2386 */
2387static void setup_per_zone_lowmem_reserve(void)
2388{
2389 struct pglist_data *pgdat;
2390 int j, idx;
2391
2392 for_each_pgdat(pgdat) {
2393 for (j = 0; j < MAX_NR_ZONES; j++) {
2394 struct zone *zone = pgdat->node_zones + j;
2395 unsigned long present_pages = zone->present_pages;
2396
2397 zone->lowmem_reserve[j] = 0;
2398
2399 for (idx = j-1; idx >= 0; idx--) {
2400 struct zone *lower_zone;
2401
2402 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2403 sysctl_lowmem_reserve_ratio[idx] = 1;
2404
2405 lower_zone = pgdat->node_zones + idx;
2406 lower_zone->lowmem_reserve[j] = present_pages /
2407 sysctl_lowmem_reserve_ratio[idx];
2408 present_pages += lower_zone->present_pages;
2409 }
2410 }
2411 }
2412}
2413
2414/*
2415 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2416 * that the pages_{min,low,high} values for each zone are set correctly
2417 * with respect to min_free_kbytes.
2418 */
3947be19 2419void setup_per_zone_pages_min(void)
1da177e4
LT
2420{
2421 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2422 unsigned long lowmem_pages = 0;
2423 struct zone *zone;
2424 unsigned long flags;
2425
2426 /* Calculate total number of !ZONE_HIGHMEM pages */
2427 for_each_zone(zone) {
2428 if (!is_highmem(zone))
2429 lowmem_pages += zone->present_pages;
2430 }
2431
2432 for_each_zone(zone) {
669ed175 2433 unsigned long tmp;
1da177e4 2434 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2435 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2436 if (is_highmem(zone)) {
2437 /*
669ed175
NP
2438 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2439 * need highmem pages, so cap pages_min to a small
2440 * value here.
2441 *
2442 * The (pages_high-pages_low) and (pages_low-pages_min)
2443 * deltas controls asynch page reclaim, and so should
2444 * not be capped for highmem.
1da177e4
LT
2445 */
2446 int min_pages;
2447
2448 min_pages = zone->present_pages / 1024;
2449 if (min_pages < SWAP_CLUSTER_MAX)
2450 min_pages = SWAP_CLUSTER_MAX;
2451 if (min_pages > 128)
2452 min_pages = 128;
2453 zone->pages_min = min_pages;
2454 } else {
669ed175
NP
2455 /*
2456 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2457 * proportionate to the zone's size.
2458 */
669ed175 2459 zone->pages_min = tmp;
1da177e4
LT
2460 }
2461
669ed175
NP
2462 zone->pages_low = zone->pages_min + tmp / 4;
2463 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2464 spin_unlock_irqrestore(&zone->lru_lock, flags);
2465 }
2466}
2467
2468/*
2469 * Initialise min_free_kbytes.
2470 *
2471 * For small machines we want it small (128k min). For large machines
2472 * we want it large (64MB max). But it is not linear, because network
2473 * bandwidth does not increase linearly with machine size. We use
2474 *
2475 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2476 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2477 *
2478 * which yields
2479 *
2480 * 16MB: 512k
2481 * 32MB: 724k
2482 * 64MB: 1024k
2483 * 128MB: 1448k
2484 * 256MB: 2048k
2485 * 512MB: 2896k
2486 * 1024MB: 4096k
2487 * 2048MB: 5792k
2488 * 4096MB: 8192k
2489 * 8192MB: 11584k
2490 * 16384MB: 16384k
2491 */
2492static int __init init_per_zone_pages_min(void)
2493{
2494 unsigned long lowmem_kbytes;
2495
2496 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2497
2498 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2499 if (min_free_kbytes < 128)
2500 min_free_kbytes = 128;
2501 if (min_free_kbytes > 65536)
2502 min_free_kbytes = 65536;
2503 setup_per_zone_pages_min();
2504 setup_per_zone_lowmem_reserve();
2505 return 0;
2506}
2507module_init(init_per_zone_pages_min)
2508
2509/*
2510 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2511 * that we can call two helper functions whenever min_free_kbytes
2512 * changes.
2513 */
2514int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2515 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2516{
2517 proc_dointvec(table, write, file, buffer, length, ppos);
2518 setup_per_zone_pages_min();
2519 return 0;
2520}
2521
2522/*
2523 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2524 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2525 * whenever sysctl_lowmem_reserve_ratio changes.
2526 *
2527 * The reserve ratio obviously has absolutely no relation with the
2528 * pages_min watermarks. The lowmem reserve ratio can only make sense
2529 * if in function of the boot time zone sizes.
2530 */
2531int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2532 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2533{
2534 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2535 setup_per_zone_lowmem_reserve();
2536 return 0;
2537}
2538
2539__initdata int hashdist = HASHDIST_DEFAULT;
2540
2541#ifdef CONFIG_NUMA
2542static int __init set_hashdist(char *str)
2543{
2544 if (!str)
2545 return 0;
2546 hashdist = simple_strtoul(str, &str, 0);
2547 return 1;
2548}
2549__setup("hashdist=", set_hashdist);
2550#endif
2551
2552/*
2553 * allocate a large system hash table from bootmem
2554 * - it is assumed that the hash table must contain an exact power-of-2
2555 * quantity of entries
2556 * - limit is the number of hash buckets, not the total allocation size
2557 */
2558void *__init alloc_large_system_hash(const char *tablename,
2559 unsigned long bucketsize,
2560 unsigned long numentries,
2561 int scale,
2562 int flags,
2563 unsigned int *_hash_shift,
2564 unsigned int *_hash_mask,
2565 unsigned long limit)
2566{
2567 unsigned long long max = limit;
2568 unsigned long log2qty, size;
2569 void *table = NULL;
2570
2571 /* allow the kernel cmdline to have a say */
2572 if (!numentries) {
2573 /* round applicable memory size up to nearest megabyte */
2574 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2575 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2576 numentries >>= 20 - PAGE_SHIFT;
2577 numentries <<= 20 - PAGE_SHIFT;
2578
2579 /* limit to 1 bucket per 2^scale bytes of low memory */
2580 if (scale > PAGE_SHIFT)
2581 numentries >>= (scale - PAGE_SHIFT);
2582 else
2583 numentries <<= (PAGE_SHIFT - scale);
2584 }
2585 /* rounded up to nearest power of 2 in size */
2586 numentries = 1UL << (long_log2(numentries) + 1);
2587
2588 /* limit allocation size to 1/16 total memory by default */
2589 if (max == 0) {
2590 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2591 do_div(max, bucketsize);
2592 }
2593
2594 if (numentries > max)
2595 numentries = max;
2596
2597 log2qty = long_log2(numentries);
2598
2599 do {
2600 size = bucketsize << log2qty;
2601 if (flags & HASH_EARLY)
2602 table = alloc_bootmem(size);
2603 else if (hashdist)
2604 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2605 else {
2606 unsigned long order;
2607 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2608 ;
2609 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2610 }
2611 } while (!table && size > PAGE_SIZE && --log2qty);
2612
2613 if (!table)
2614 panic("Failed to allocate %s hash table\n", tablename);
2615
2616 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2617 tablename,
2618 (1U << log2qty),
2619 long_log2(size) - PAGE_SHIFT,
2620 size);
2621
2622 if (_hash_shift)
2623 *_hash_shift = log2qty;
2624 if (_hash_mask)
2625 *_hash_mask = (1 << log2qty) - 1;
2626
2627 return table;
2628}