]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/oom_kill.c
[PATCH] oom: handle current exiting
[net-next-2.6.git] / mm / oom_kill.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 *
8 * The routines in this file are used to kill a process when
a49335cc
PJ
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
1da177e4
LT
11 *
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
16 */
17
18#include <linux/mm.h>
19#include <linux/sched.h>
20#include <linux/swap.h>
21#include <linux/timex.h>
22#include <linux/jiffies.h>
ef08e3b4 23#include <linux/cpuset.h>
8bc719d3
MS
24#include <linux/module.h>
25#include <linux/notifier.h>
1da177e4 26
fadd8fbd 27int sysctl_panic_on_oom;
1da177e4
LT
28/* #define DEBUG */
29
30/**
6937a25c 31 * badness - calculate a numeric value for how bad this task has been
1da177e4 32 * @p: task struct of which task we should calculate
a49335cc 33 * @uptime: current uptime in seconds
1da177e4
LT
34 *
35 * The formula used is relatively simple and documented inline in the
36 * function. The main rationale is that we want to select a good task
37 * to kill when we run out of memory.
38 *
39 * Good in this context means that:
40 * 1) we lose the minimum amount of work done
41 * 2) we recover a large amount of memory
42 * 3) we don't kill anything innocent of eating tons of memory
43 * 4) we want to kill the minimum amount of processes (one)
44 * 5) we try to kill the process the user expects us to kill, this
45 * algorithm has been meticulously tuned to meet the principle
46 * of least surprise ... (be careful when you change it)
47 */
48
49unsigned long badness(struct task_struct *p, unsigned long uptime)
50{
51 unsigned long points, cpu_time, run_time, s;
97c2c9b8
AM
52 struct mm_struct *mm;
53 struct task_struct *child;
1da177e4 54
97c2c9b8
AM
55 task_lock(p);
56 mm = p->mm;
57 if (!mm) {
58 task_unlock(p);
1da177e4 59 return 0;
97c2c9b8 60 }
1da177e4
LT
61
62 /*
63 * The memory size of the process is the basis for the badness.
64 */
97c2c9b8
AM
65 points = mm->total_vm;
66
67 /*
68 * After this unlock we can no longer dereference local variable `mm'
69 */
70 task_unlock(p);
1da177e4
LT
71
72 /*
73 * Processes which fork a lot of child processes are likely
9827b781 74 * a good choice. We add half the vmsize of the children if they
1da177e4 75 * have an own mm. This prevents forking servers to flood the
9827b781
KG
76 * machine with an endless amount of children. In case a single
77 * child is eating the vast majority of memory, adding only half
78 * to the parents will make the child our kill candidate of choice.
1da177e4 79 */
97c2c9b8
AM
80 list_for_each_entry(child, &p->children, sibling) {
81 task_lock(child);
82 if (child->mm != mm && child->mm)
83 points += child->mm->total_vm/2 + 1;
84 task_unlock(child);
1da177e4
LT
85 }
86
87 /*
88 * CPU time is in tens of seconds and run time is in thousands
89 * of seconds. There is no particular reason for this other than
90 * that it turned out to work very well in practice.
91 */
92 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
93 >> (SHIFT_HZ + 3);
94
95 if (uptime >= p->start_time.tv_sec)
96 run_time = (uptime - p->start_time.tv_sec) >> 10;
97 else
98 run_time = 0;
99
100 s = int_sqrt(cpu_time);
101 if (s)
102 points /= s;
103 s = int_sqrt(int_sqrt(run_time));
104 if (s)
105 points /= s;
106
107 /*
108 * Niced processes are most likely less important, so double
109 * their badness points.
110 */
111 if (task_nice(p) > 0)
112 points *= 2;
113
114 /*
115 * Superuser processes are usually more important, so we make it
116 * less likely that we kill those.
117 */
118 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
119 p->uid == 0 || p->euid == 0)
120 points /= 4;
121
122 /*
123 * We don't want to kill a process with direct hardware access.
124 * Not only could that mess up the hardware, but usually users
125 * tend to only have this flag set on applications they think
126 * of as important.
127 */
128 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
129 points /= 4;
130
7887a3da
NP
131 /*
132 * If p's nodes don't overlap ours, it may still help to kill p
133 * because p may have allocated or otherwise mapped memory on
134 * this node before. However it will be less likely.
135 */
136 if (!cpuset_excl_nodes_overlap(p))
137 points /= 8;
138
1da177e4
LT
139 /*
140 * Adjust the score by oomkilladj.
141 */
142 if (p->oomkilladj) {
143 if (p->oomkilladj > 0)
144 points <<= p->oomkilladj;
145 else
146 points >>= -(p->oomkilladj);
147 }
148
149#ifdef DEBUG
150 printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
151 p->pid, p->comm, points);
152#endif
153 return points;
154}
155
9b0f8b04
CL
156/*
157 * Types of limitations to the nodes from which allocations may occur
158 */
159#define CONSTRAINT_NONE 1
160#define CONSTRAINT_MEMORY_POLICY 2
161#define CONSTRAINT_CPUSET 3
162
163/*
164 * Determine the type of allocation constraint.
165 */
166static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
167{
168#ifdef CONFIG_NUMA
169 struct zone **z;
170 nodemask_t nodes = node_online_map;
171
172 for (z = zonelist->zones; *z; z++)
173 if (cpuset_zone_allowed(*z, gfp_mask))
174 node_clear((*z)->zone_pgdat->node_id,
175 nodes);
176 else
177 return CONSTRAINT_CPUSET;
178
179 if (!nodes_empty(nodes))
180 return CONSTRAINT_MEMORY_POLICY;
181#endif
182
183 return CONSTRAINT_NONE;
184}
185
1da177e4
LT
186/*
187 * Simple selection loop. We chose the process with the highest
188 * number of 'points'. We expect the caller will lock the tasklist.
189 *
190 * (not docbooked, we don't want this one cluttering up the manual)
191 */
9827b781 192static struct task_struct *select_bad_process(unsigned long *ppoints)
1da177e4 193{
1da177e4
LT
194 struct task_struct *g, *p;
195 struct task_struct *chosen = NULL;
196 struct timespec uptime;
9827b781 197 *ppoints = 0;
1da177e4
LT
198
199 do_posix_clock_monotonic_gettime(&uptime);
a49335cc
PJ
200 do_each_thread(g, p) {
201 unsigned long points;
202 int releasing;
203
1da177e4 204 /* skip the init task with pid == 1 */
a49335cc
PJ
205 if (p->pid == 1)
206 continue;
207 if (p->oomkilladj == OOM_DISABLE)
208 continue;
ef08e3b4 209
a49335cc 210 /*
6937a25c 211 * This is in the process of releasing memory so wait for it
a49335cc 212 * to finish before killing some other task by mistake.
50ec3bbf
NP
213 *
214 * However, if p is the current task, we allow the 'kill' to
215 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
216 * which will allow it to gain access to memory reserves in
217 * the process of exiting and releasing its resources.
218 * Otherwise we could get an OOM deadlock.
a49335cc
PJ
219 */
220 releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
221 p->flags & PF_EXITING;
50ec3bbf
NP
222 if (releasing) {
223 /* PF_DEAD tasks have already released their mm */
224 if (p->flags & PF_DEAD)
225 continue;
226 if (p->flags & PF_EXITING && p == current) {
227 chosen = p;
228 *ppoints = ULONG_MAX;
229 break;
230 }
a49335cc 231 return ERR_PTR(-1UL);
50ec3bbf 232 }
a49335cc
PJ
233 if (p->flags & PF_SWAPOFF)
234 return p;
235
236 points = badness(p, uptime.tv_sec);
9827b781 237 if (points > *ppoints || !chosen) {
a49335cc 238 chosen = p;
9827b781 239 *ppoints = points;
1da177e4 240 }
a49335cc 241 } while_each_thread(g, p);
1da177e4
LT
242 return chosen;
243}
244
245/**
246 * We must be careful though to never send SIGKILL a process with
247 * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
248 * we select a process with CAP_SYS_RAW_IO set).
249 */
36c8b586 250static void __oom_kill_task(struct task_struct *p, const char *message)
1da177e4
LT
251{
252 if (p->pid == 1) {
253 WARN_ON(1);
254 printk(KERN_WARNING "tried to kill init!\n");
255 return;
256 }
257
258 task_lock(p);
259 if (!p->mm || p->mm == &init_mm) {
260 WARN_ON(1);
261 printk(KERN_WARNING "tried to kill an mm-less task!\n");
262 task_unlock(p);
263 return;
264 }
265 task_unlock(p);
50ec3bbf
NP
266
267 if (message) {
268 printk(KERN_ERR "%s: Killed process %d (%s).\n",
9b0f8b04 269 message, p->pid, p->comm);
50ec3bbf 270 }
1da177e4
LT
271
272 /*
273 * We give our sacrificial lamb high priority and access to
274 * all the memory it needs. That way it should be able to
275 * exit() and clear out its resources quickly...
276 */
277 p->time_slice = HZ;
278 set_tsk_thread_flag(p, TIF_MEMDIE);
279
280 force_sig(SIGKILL, p);
281}
282
36c8b586 283static int oom_kill_task(struct task_struct *p, const char *message)
1da177e4 284{
01315922 285 struct mm_struct *mm;
36c8b586 286 struct task_struct *g, *q;
1da177e4 287
01315922
DP
288 mm = p->mm;
289
290 /* WARNING: mm may not be dereferenced since we did not obtain its
291 * value from get_task_mm(p). This is OK since all we need to do is
292 * compare mm to q->mm below.
293 *
294 * Furthermore, even if mm contains a non-NULL value, p->mm may
295 * change to NULL at any time since we do not hold task_lock(p).
296 * However, this is of no concern to us.
297 */
298
299 if (mm == NULL || mm == &init_mm)
300 return 1;
1da177e4 301
9b0f8b04 302 __oom_kill_task(p, message);
1da177e4
LT
303 /*
304 * kill all processes that share the ->mm (i.e. all threads),
305 * but are in a different thread group
306 */
307 do_each_thread(g, q)
308 if (q->mm == mm && q->tgid != p->tgid)
9b0f8b04 309 __oom_kill_task(q, message);
1da177e4
LT
310 while_each_thread(g, q);
311
01315922 312 return 0;
1da177e4
LT
313}
314
01315922
DP
315static int oom_kill_process(struct task_struct *p, unsigned long points,
316 const char *message)
1da177e4 317{
1da177e4
LT
318 struct task_struct *c;
319 struct list_head *tsk;
320
50ec3bbf
NP
321 /*
322 * If the task is already exiting, don't alarm the sysadmin or kill
323 * its children or threads, just set TIF_MEMDIE so it can die quickly
324 */
325 if (p->flags & PF_EXITING) {
326 __oom_kill_task(p, NULL);
327 return 0;
328 }
329
330 printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li"
331 " and children.\n", p->pid, p->comm, points);
1da177e4
LT
332 /* Try to kill a child first */
333 list_for_each(tsk, &p->children) {
334 c = list_entry(tsk, struct task_struct, sibling);
335 if (c->mm == p->mm)
336 continue;
01315922
DP
337 if (!oom_kill_task(c, message))
338 return 0;
1da177e4 339 }
9b0f8b04 340 return oom_kill_task(p, message);
1da177e4
LT
341}
342
8bc719d3
MS
343static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
344
345int register_oom_notifier(struct notifier_block *nb)
346{
347 return blocking_notifier_chain_register(&oom_notify_list, nb);
348}
349EXPORT_SYMBOL_GPL(register_oom_notifier);
350
351int unregister_oom_notifier(struct notifier_block *nb)
352{
353 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
354}
355EXPORT_SYMBOL_GPL(unregister_oom_notifier);
356
1da177e4 357/**
6937a25c 358 * out_of_memory - kill the "best" process when we run out of memory
1da177e4
LT
359 *
360 * If we run out of memory, we have the choice between either
361 * killing a random task (bad), letting the system crash (worse)
362 * OR try to be smart about which process to kill. Note that we
363 * don't have to be perfect here, we just have to be good.
364 */
9b0f8b04 365void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
1da177e4 366{
36c8b586 367 struct task_struct *p;
d6713e04 368 unsigned long points = 0;
8bc719d3
MS
369 unsigned long freed = 0;
370
371 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
372 if (freed > 0)
373 /* Got some memory back in the last second. */
374 return;
1da177e4 375
42639269
AB
376 if (printk_ratelimit()) {
377 printk("oom-killer: gfp_mask=0x%x, order=%d\n",
378 gfp_mask, order);
b958f7d9 379 dump_stack();
42639269
AB
380 show_mem();
381 }
578c2fd6 382
505970b9 383 cpuset_lock();
1da177e4 384 read_lock(&tasklist_lock);
9b0f8b04
CL
385
386 /*
387 * Check if there were limitations on the allocation (only relevant for
388 * NUMA) that may require different handling.
389 */
390 switch (constrained_alloc(zonelist, gfp_mask)) {
391 case CONSTRAINT_MEMORY_POLICY:
01315922 392 oom_kill_process(current, points,
9b0f8b04
CL
393 "No available memory (MPOL_BIND)");
394 break;
395
396 case CONSTRAINT_CPUSET:
01315922 397 oom_kill_process(current, points,
9b0f8b04
CL
398 "No available memory in cpuset");
399 break;
400
401 case CONSTRAINT_NONE:
fadd8fbd
KH
402 if (sysctl_panic_on_oom)
403 panic("out of memory. panic_on_oom is selected\n");
1da177e4 404retry:
9b0f8b04
CL
405 /*
406 * Rambo mode: Shoot down a process and hope it solves whatever
407 * issues we may have.
408 */
409 p = select_bad_process(&points);
1da177e4 410
9b0f8b04
CL
411 if (PTR_ERR(p) == -1UL)
412 goto out;
1da177e4 413
9b0f8b04
CL
414 /* Found nothing?!?! Either we hang forever, or we panic. */
415 if (!p) {
416 read_unlock(&tasklist_lock);
417 cpuset_unlock();
418 panic("Out of memory and no killable processes...\n");
419 }
1da177e4 420
01315922 421 if (oom_kill_process(p, points, "Out of memory"))
9b0f8b04
CL
422 goto retry;
423
424 break;
425 }
1da177e4 426
9b0f8b04 427out:
140ffcec 428 read_unlock(&tasklist_lock);
505970b9 429 cpuset_unlock();
1da177e4
LT
430
431 /*
432 * Give "p" a good chance of killing itself before we
2f659f46 433 * retry to allocate memory unless "p" is current
1da177e4 434 */
2f659f46 435 if (!test_thread_flag(TIF_MEMDIE))
140ffcec 436 schedule_timeout_uninterruptible(1);
1da177e4 437}