]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory.c
[PATCH] mm: kill check_user_page_readable
[net-next-2.6.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
d41dee36 61#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
e0da382c 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 114{
e0da382c
HD
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
1da177e4
LT
120}
121
e0da382c
HD
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
1da177e4
LT
125{
126 pmd_t *pmd;
127 unsigned long next;
e0da382c 128 unsigned long start;
1da177e4 129
e0da382c 130 start = addr;
1da177e4 131 pmd = pmd_offset(pud, addr);
1da177e4
LT
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
e0da382c 136 free_pte_range(tlb, pmd);
1da177e4
LT
137 } while (pmd++, addr = next, addr != end);
138
e0da382c
HD
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
1da177e4 146 }
e0da382c
HD
147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
1da177e4
LT
153}
154
e0da382c
HD
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
1da177e4
LT
158{
159 pud_t *pud;
160 unsigned long next;
e0da382c 161 unsigned long start;
1da177e4 162
e0da382c 163 start = addr;
1da177e4 164 pud = pud_offset(pgd, addr);
1da177e4
LT
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
e0da382c 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
170 } while (pud++, addr = next, addr != end);
171
e0da382c
HD
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
1da177e4 179 }
e0da382c
HD
180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
1da177e4
LT
186}
187
188/*
e0da382c
HD
189 * This function frees user-level page tables of a process.
190 *
1da177e4
LT
191 * Must be called with pagetable lock held.
192 */
3bf5ee95 193void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
1da177e4
LT
196{
197 pgd_t *pgd;
198 unsigned long next;
e0da382c
HD
199 unsigned long start;
200
201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
1da177e4 226
e0da382c
HD
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
3bf5ee95 244 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
3bf5ee95 249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 250 } while (pgd++, addr = next, addr != end);
e0da382c 251
4d6ddfa9 252 if (!(*tlb)->fullmm)
3bf5ee95 253 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 257 unsigned long floor, unsigned long ceiling)
e0da382c
HD
258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
8f4f8c16
HD
263 /*
264 * Hide vma from rmap and vmtruncate before freeing pgtables
265 */
266 anon_vma_unlink(vma);
267 unlink_file_vma(vma);
268
3bf5ee95
HD
269 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
270 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 271 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
272 } else {
273 /*
274 * Optimization: gather nearby vmas into one call down
275 */
276 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
277 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
278 HPAGE_SIZE)) {
279 vma = next;
280 next = vma->vm_next;
8f4f8c16
HD
281 anon_vma_unlink(vma);
282 unlink_file_vma(vma);
3bf5ee95
HD
283 }
284 free_pgd_range(tlb, addr, vma->vm_end,
285 floor, next? next->vm_start: ceiling);
286 }
e0da382c
HD
287 vma = next;
288 }
1da177e4
LT
289}
290
1bb3630e 291int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 292{
c74df32c 293 struct page *new = pte_alloc_one(mm, address);
1bb3630e
HD
294 if (!new)
295 return -ENOMEM;
296
c74df32c 297 spin_lock(&mm->page_table_lock);
1bb3630e
HD
298 if (pmd_present(*pmd)) /* Another has populated it */
299 pte_free(new);
300 else {
1da177e4
LT
301 mm->nr_ptes++;
302 inc_page_state(nr_page_table_pages);
303 pmd_populate(mm, pmd, new);
304 }
c74df32c 305 spin_unlock(&mm->page_table_lock);
1bb3630e 306 return 0;
1da177e4
LT
307}
308
1bb3630e 309int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 310{
1bb3630e
HD
311 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
312 if (!new)
313 return -ENOMEM;
314
315 spin_lock(&init_mm.page_table_lock);
316 if (pmd_present(*pmd)) /* Another has populated it */
317 pte_free_kernel(new);
318 else
319 pmd_populate_kernel(&init_mm, pmd, new);
320 spin_unlock(&init_mm.page_table_lock);
321 return 0;
1da177e4
LT
322}
323
ae859762
HD
324static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
325{
326 if (file_rss)
327 add_mm_counter(mm, file_rss, file_rss);
328 if (anon_rss)
329 add_mm_counter(mm, anon_rss, anon_rss);
330}
331
b5810039
NP
332/*
333 * This function is called to print an error when a pte in a
334 * !VM_RESERVED region is found pointing to an invalid pfn (which
335 * is an error.
336 *
337 * The calling function must still handle the error.
338 */
339void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
340{
341 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
342 "vm_flags = %lx, vaddr = %lx\n",
343 (long long)pte_val(pte),
344 (vma->vm_mm == current->mm ? current->comm : "???"),
345 vma->vm_flags, vaddr);
346 dump_stack();
347}
348
1da177e4
LT
349/*
350 * copy one vm_area from one task to the other. Assumes the page tables
351 * already present in the new task to be cleared in the whole range
352 * covered by this vma.
1da177e4
LT
353 */
354
8c103762 355static inline void
1da177e4 356copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 357 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 358 unsigned long addr, int *rss)
1da177e4 359{
b5810039 360 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
361 pte_t pte = *src_pte;
362 struct page *page;
363 unsigned long pfn;
364
365 /* pte contains position in swap or file, so copy. */
366 if (unlikely(!pte_present(pte))) {
367 if (!pte_file(pte)) {
368 swap_duplicate(pte_to_swp_entry(pte));
369 /* make sure dst_mm is on swapoff's mmlist. */
370 if (unlikely(list_empty(&dst_mm->mmlist))) {
371 spin_lock(&mmlist_lock);
372 list_add(&dst_mm->mmlist, &src_mm->mmlist);
373 spin_unlock(&mmlist_lock);
374 }
375 }
ae859762 376 goto out_set_pte;
1da177e4
LT
377 }
378
b5810039
NP
379 /* If the region is VM_RESERVED, the mapping is not
380 * mapped via rmap - duplicate the pte as is.
381 */
382 if (vm_flags & VM_RESERVED)
383 goto out_set_pte;
384
1da177e4 385 pfn = pte_pfn(pte);
b5810039
NP
386 /* If the pte points outside of valid memory but
387 * the region is not VM_RESERVED, we have a problem.
1da177e4 388 */
b5810039
NP
389 if (unlikely(!pfn_valid(pfn))) {
390 print_bad_pte(vma, pte, addr);
391 goto out_set_pte; /* try to do something sane */
392 }
1da177e4 393
b5810039 394 page = pfn_to_page(pfn);
1da177e4
LT
395
396 /*
397 * If it's a COW mapping, write protect it both
398 * in the parent and the child
399 */
400 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
401 ptep_set_wrprotect(src_mm, addr, src_pte);
402 pte = *src_pte;
403 }
404
405 /*
406 * If it's a shared mapping, mark it clean in
407 * the child
408 */
409 if (vm_flags & VM_SHARED)
410 pte = pte_mkclean(pte);
411 pte = pte_mkold(pte);
412 get_page(page);
1da177e4 413 page_dup_rmap(page);
8c103762 414 rss[!!PageAnon(page)]++;
ae859762
HD
415
416out_set_pte:
417 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
418}
419
420static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
421 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
422 unsigned long addr, unsigned long end)
423{
424 pte_t *src_pte, *dst_pte;
c74df32c 425 spinlock_t *src_ptl, *dst_ptl;
e040f218 426 int progress = 0;
8c103762 427 int rss[2];
1da177e4
LT
428
429again:
ae859762 430 rss[1] = rss[0] = 0;
c74df32c 431 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
432 if (!dst_pte)
433 return -ENOMEM;
434 src_pte = pte_offset_map_nested(src_pmd, addr);
c74df32c
HD
435 src_ptl = &src_mm->page_table_lock;
436 spin_lock(src_ptl);
1da177e4 437
1da177e4
LT
438 do {
439 /*
440 * We are holding two locks at this point - either of them
441 * could generate latencies in another task on another CPU.
442 */
e040f218
HD
443 if (progress >= 32) {
444 progress = 0;
445 if (need_resched() ||
c74df32c
HD
446 need_lockbreak(src_ptl) ||
447 need_lockbreak(dst_ptl))
e040f218
HD
448 break;
449 }
1da177e4
LT
450 if (pte_none(*src_pte)) {
451 progress++;
452 continue;
453 }
8c103762 454 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
455 progress += 8;
456 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 457
c74df32c 458 spin_unlock(src_ptl);
1da177e4 459 pte_unmap_nested(src_pte - 1);
ae859762 460 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
461 pte_unmap_unlock(dst_pte - 1, dst_ptl);
462 cond_resched();
1da177e4
LT
463 if (addr != end)
464 goto again;
465 return 0;
466}
467
468static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
469 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
470 unsigned long addr, unsigned long end)
471{
472 pmd_t *src_pmd, *dst_pmd;
473 unsigned long next;
474
475 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
476 if (!dst_pmd)
477 return -ENOMEM;
478 src_pmd = pmd_offset(src_pud, addr);
479 do {
480 next = pmd_addr_end(addr, end);
481 if (pmd_none_or_clear_bad(src_pmd))
482 continue;
483 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
484 vma, addr, next))
485 return -ENOMEM;
486 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
487 return 0;
488}
489
490static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
492 unsigned long addr, unsigned long end)
493{
494 pud_t *src_pud, *dst_pud;
495 unsigned long next;
496
497 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
498 if (!dst_pud)
499 return -ENOMEM;
500 src_pud = pud_offset(src_pgd, addr);
501 do {
502 next = pud_addr_end(addr, end);
503 if (pud_none_or_clear_bad(src_pud))
504 continue;
505 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
506 vma, addr, next))
507 return -ENOMEM;
508 } while (dst_pud++, src_pud++, addr = next, addr != end);
509 return 0;
510}
511
512int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
513 struct vm_area_struct *vma)
514{
515 pgd_t *src_pgd, *dst_pgd;
516 unsigned long next;
517 unsigned long addr = vma->vm_start;
518 unsigned long end = vma->vm_end;
519
d992895b
NP
520 /*
521 * Don't copy ptes where a page fault will fill them correctly.
522 * Fork becomes much lighter when there are big shared or private
523 * readonly mappings. The tradeoff is that copy_page_range is more
524 * efficient than faulting.
525 */
526 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
527 if (!vma->anon_vma)
528 return 0;
529 }
530
1da177e4
LT
531 if (is_vm_hugetlb_page(vma))
532 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
533
534 dst_pgd = pgd_offset(dst_mm, addr);
535 src_pgd = pgd_offset(src_mm, addr);
536 do {
537 next = pgd_addr_end(addr, end);
538 if (pgd_none_or_clear_bad(src_pgd))
539 continue;
540 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
541 vma, addr, next))
542 return -ENOMEM;
543 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
544 return 0;
545}
546
b5810039
NP
547static void zap_pte_range(struct mmu_gather *tlb,
548 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
549 unsigned long addr, unsigned long end,
550 struct zap_details *details)
551{
b5810039 552 struct mm_struct *mm = tlb->mm;
1da177e4 553 pte_t *pte;
508034a3 554 spinlock_t *ptl;
ae859762
HD
555 int file_rss = 0;
556 int anon_rss = 0;
1da177e4 557
508034a3 558 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
559 do {
560 pte_t ptent = *pte;
561 if (pte_none(ptent))
562 continue;
563 if (pte_present(ptent)) {
564 struct page *page = NULL;
b5810039
NP
565 if (!(vma->vm_flags & VM_RESERVED)) {
566 unsigned long pfn = pte_pfn(ptent);
567 if (unlikely(!pfn_valid(pfn)))
568 print_bad_pte(vma, ptent, addr);
569 else
570 page = pfn_to_page(pfn);
1da177e4
LT
571 }
572 if (unlikely(details) && page) {
573 /*
574 * unmap_shared_mapping_pages() wants to
575 * invalidate cache without truncating:
576 * unmap shared but keep private pages.
577 */
578 if (details->check_mapping &&
579 details->check_mapping != page->mapping)
580 continue;
581 /*
582 * Each page->index must be checked when
583 * invalidating or truncating nonlinear.
584 */
585 if (details->nonlinear_vma &&
586 (page->index < details->first_index ||
587 page->index > details->last_index))
588 continue;
589 }
b5810039 590 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 591 tlb->fullmm);
1da177e4
LT
592 tlb_remove_tlb_entry(tlb, pte, addr);
593 if (unlikely(!page))
594 continue;
595 if (unlikely(details) && details->nonlinear_vma
596 && linear_page_index(details->nonlinear_vma,
597 addr) != page->index)
b5810039 598 set_pte_at(mm, addr, pte,
1da177e4 599 pgoff_to_pte(page->index));
1da177e4 600 if (PageAnon(page))
86d912f4 601 anon_rss--;
6237bcd9
HD
602 else {
603 if (pte_dirty(ptent))
604 set_page_dirty(page);
605 if (pte_young(ptent))
606 mark_page_accessed(page);
86d912f4 607 file_rss--;
6237bcd9 608 }
1da177e4
LT
609 page_remove_rmap(page);
610 tlb_remove_page(tlb, page);
611 continue;
612 }
613 /*
614 * If details->check_mapping, we leave swap entries;
615 * if details->nonlinear_vma, we leave file entries.
616 */
617 if (unlikely(details))
618 continue;
619 if (!pte_file(ptent))
620 free_swap_and_cache(pte_to_swp_entry(ptent));
b5810039 621 pte_clear_full(mm, addr, pte, tlb->fullmm);
1da177e4 622 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 623
86d912f4 624 add_mm_rss(mm, file_rss, anon_rss);
508034a3 625 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
626}
627
b5810039
NP
628static inline void zap_pmd_range(struct mmu_gather *tlb,
629 struct vm_area_struct *vma, pud_t *pud,
1da177e4
LT
630 unsigned long addr, unsigned long end,
631 struct zap_details *details)
632{
633 pmd_t *pmd;
634 unsigned long next;
635
636 pmd = pmd_offset(pud, addr);
637 do {
638 next = pmd_addr_end(addr, end);
639 if (pmd_none_or_clear_bad(pmd))
640 continue;
b5810039 641 zap_pte_range(tlb, vma, pmd, addr, next, details);
1da177e4
LT
642 } while (pmd++, addr = next, addr != end);
643}
644
b5810039
NP
645static inline void zap_pud_range(struct mmu_gather *tlb,
646 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4
LT
647 unsigned long addr, unsigned long end,
648 struct zap_details *details)
649{
650 pud_t *pud;
651 unsigned long next;
652
653 pud = pud_offset(pgd, addr);
654 do {
655 next = pud_addr_end(addr, end);
656 if (pud_none_or_clear_bad(pud))
657 continue;
b5810039 658 zap_pmd_range(tlb, vma, pud, addr, next, details);
1da177e4
LT
659 } while (pud++, addr = next, addr != end);
660}
661
662static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
663 unsigned long addr, unsigned long end,
664 struct zap_details *details)
665{
666 pgd_t *pgd;
667 unsigned long next;
668
669 if (details && !details->check_mapping && !details->nonlinear_vma)
670 details = NULL;
671
672 BUG_ON(addr >= end);
673 tlb_start_vma(tlb, vma);
674 pgd = pgd_offset(vma->vm_mm, addr);
675 do {
676 next = pgd_addr_end(addr, end);
677 if (pgd_none_or_clear_bad(pgd))
678 continue;
b5810039 679 zap_pud_range(tlb, vma, pgd, addr, next, details);
1da177e4
LT
680 } while (pgd++, addr = next, addr != end);
681 tlb_end_vma(tlb, vma);
682}
683
684#ifdef CONFIG_PREEMPT
685# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
686#else
687/* No preempt: go for improved straight-line efficiency */
688# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
689#endif
690
691/**
692 * unmap_vmas - unmap a range of memory covered by a list of vma's
693 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
694 * @vma: the starting vma
695 * @start_addr: virtual address at which to start unmapping
696 * @end_addr: virtual address at which to end unmapping
697 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
698 * @details: details of nonlinear truncation or shared cache invalidation
699 *
ee39b37b 700 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 701 *
508034a3 702 * Unmap all pages in the vma list.
1da177e4 703 *
508034a3
HD
704 * We aim to not hold locks for too long (for scheduling latency reasons).
705 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
706 * return the ending mmu_gather to the caller.
707 *
708 * Only addresses between `start' and `end' will be unmapped.
709 *
710 * The VMA list must be sorted in ascending virtual address order.
711 *
712 * unmap_vmas() assumes that the caller will flush the whole unmapped address
713 * range after unmap_vmas() returns. So the only responsibility here is to
714 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
715 * drops the lock and schedules.
716 */
508034a3 717unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
718 struct vm_area_struct *vma, unsigned long start_addr,
719 unsigned long end_addr, unsigned long *nr_accounted,
720 struct zap_details *details)
721{
722 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
723 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
724 int tlb_start_valid = 0;
ee39b37b 725 unsigned long start = start_addr;
1da177e4 726 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 727 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
728
729 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
730 unsigned long end;
731
732 start = max(vma->vm_start, start_addr);
733 if (start >= vma->vm_end)
734 continue;
735 end = min(vma->vm_end, end_addr);
736 if (end <= vma->vm_start)
737 continue;
738
739 if (vma->vm_flags & VM_ACCOUNT)
740 *nr_accounted += (end - start) >> PAGE_SHIFT;
741
1da177e4
LT
742 while (start != end) {
743 unsigned long block;
744
745 if (!tlb_start_valid) {
746 tlb_start = start;
747 tlb_start_valid = 1;
748 }
749
750 if (is_vm_hugetlb_page(vma)) {
751 block = end - start;
752 unmap_hugepage_range(vma, start, end);
753 } else {
754 block = min(zap_bytes, end - start);
755 unmap_page_range(*tlbp, vma, start,
756 start + block, details);
757 }
758
759 start += block;
760 zap_bytes -= block;
761 if ((long)zap_bytes > 0)
762 continue;
763
764 tlb_finish_mmu(*tlbp, tlb_start, start);
765
766 if (need_resched() ||
1da177e4
LT
767 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
768 if (i_mmap_lock) {
508034a3 769 *tlbp = NULL;
1da177e4
LT
770 goto out;
771 }
1da177e4 772 cond_resched();
1da177e4
LT
773 }
774
508034a3 775 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4
LT
776 tlb_start_valid = 0;
777 zap_bytes = ZAP_BLOCK_SIZE;
778 }
779 }
780out:
ee39b37b 781 return start; /* which is now the end (or restart) address */
1da177e4
LT
782}
783
784/**
785 * zap_page_range - remove user pages in a given range
786 * @vma: vm_area_struct holding the applicable pages
787 * @address: starting address of pages to zap
788 * @size: number of bytes to zap
789 * @details: details of nonlinear truncation or shared cache invalidation
790 */
ee39b37b 791unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
792 unsigned long size, struct zap_details *details)
793{
794 struct mm_struct *mm = vma->vm_mm;
795 struct mmu_gather *tlb;
796 unsigned long end = address + size;
797 unsigned long nr_accounted = 0;
798
1da177e4 799 lru_add_drain();
1da177e4 800 tlb = tlb_gather_mmu(mm, 0);
365e9c87 801 update_hiwater_rss(mm);
508034a3
HD
802 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
803 if (tlb)
804 tlb_finish_mmu(tlb, address, end);
ee39b37b 805 return end;
1da177e4
LT
806}
807
808/*
809 * Do a quick page-table lookup for a single page.
810 * mm->page_table_lock must be held.
811 */
c34d1b4d 812struct page *follow_page(struct mm_struct *mm, unsigned long address, int write)
1da177e4
LT
813{
814 pgd_t *pgd;
815 pud_t *pud;
816 pmd_t *pmd;
817 pte_t *ptep, pte;
818 unsigned long pfn;
819 struct page *page;
820
821 page = follow_huge_addr(mm, address, write);
822 if (! IS_ERR(page))
823 return page;
824
825 pgd = pgd_offset(mm, address);
826 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
827 goto out;
828
829 pud = pud_offset(pgd, address);
830 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
831 goto out;
832
833 pmd = pmd_offset(pud, address);
834 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
835 goto out;
836 if (pmd_huge(*pmd))
837 return follow_huge_pmd(mm, address, pmd, write);
838
839 ptep = pte_offset_map(pmd, address);
840 if (!ptep)
841 goto out;
842
843 pte = *ptep;
844 pte_unmap(ptep);
845 if (pte_present(pte)) {
f33ea7f4 846 if (write && !pte_write(pte))
1da177e4 847 goto out;
1da177e4
LT
848 pfn = pte_pfn(pte);
849 if (pfn_valid(pfn)) {
850 page = pfn_to_page(pfn);
c34d1b4d
HD
851 if (write && !pte_dirty(pte) &&!PageDirty(page))
852 set_page_dirty(page);
853 mark_page_accessed(page);
1da177e4
LT
854 return page;
855 }
856 }
857
858out:
859 return NULL;
860}
861
1da177e4
LT
862static inline int
863untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
864 unsigned long address)
865{
866 pgd_t *pgd;
867 pud_t *pud;
868 pmd_t *pmd;
869
870 /* Check if the vma is for an anonymous mapping. */
871 if (vma->vm_ops && vma->vm_ops->nopage)
872 return 0;
873
874 /* Check if page directory entry exists. */
875 pgd = pgd_offset(mm, address);
876 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
877 return 1;
878
879 pud = pud_offset(pgd, address);
880 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
881 return 1;
882
883 /* Check if page middle directory entry exists. */
884 pmd = pmd_offset(pud, address);
885 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
886 return 1;
887
888 /* There is a pte slot for 'address' in 'mm'. */
889 return 0;
890}
891
1da177e4
LT
892int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
893 unsigned long start, int len, int write, int force,
894 struct page **pages, struct vm_area_struct **vmas)
895{
896 int i;
897 unsigned int flags;
898
899 /*
900 * Require read or write permissions.
901 * If 'force' is set, we only require the "MAY" flags.
902 */
903 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
904 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
905 i = 0;
906
907 do {
908 struct vm_area_struct * vma;
909
910 vma = find_extend_vma(mm, start);
911 if (!vma && in_gate_area(tsk, start)) {
912 unsigned long pg = start & PAGE_MASK;
913 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
914 pgd_t *pgd;
915 pud_t *pud;
916 pmd_t *pmd;
917 pte_t *pte;
918 if (write) /* user gate pages are read-only */
919 return i ? : -EFAULT;
920 if (pg > TASK_SIZE)
921 pgd = pgd_offset_k(pg);
922 else
923 pgd = pgd_offset_gate(mm, pg);
924 BUG_ON(pgd_none(*pgd));
925 pud = pud_offset(pgd, pg);
926 BUG_ON(pud_none(*pud));
927 pmd = pmd_offset(pud, pg);
690dbe1c
HD
928 if (pmd_none(*pmd))
929 return i ? : -EFAULT;
1da177e4 930 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
931 if (pte_none(*pte)) {
932 pte_unmap(pte);
933 return i ? : -EFAULT;
934 }
1da177e4
LT
935 if (pages) {
936 pages[i] = pte_page(*pte);
937 get_page(pages[i]);
938 }
939 pte_unmap(pte);
940 if (vmas)
941 vmas[i] = gate_vma;
942 i++;
943 start += PAGE_SIZE;
944 len--;
945 continue;
946 }
947
b5810039 948 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
1da177e4
LT
949 || !(flags & vma->vm_flags))
950 return i ? : -EFAULT;
951
952 if (is_vm_hugetlb_page(vma)) {
953 i = follow_hugetlb_page(mm, vma, pages, vmas,
954 &start, &len, i);
955 continue;
956 }
957 spin_lock(&mm->page_table_lock);
958 do {
f33ea7f4 959 int write_access = write;
08ef4729 960 struct page *page;
1da177e4
LT
961
962 cond_resched_lock(&mm->page_table_lock);
f33ea7f4 963 while (!(page = follow_page(mm, start, write_access))) {
a68d2ebc
LT
964 int ret;
965
1da177e4
LT
966 /*
967 * Shortcut for anonymous pages. We don't want
968 * to force the creation of pages tables for
08ef4729 969 * insanely big anonymously mapped areas that
1da177e4
LT
970 * nobody touched so far. This is important
971 * for doing a core dump for these mappings.
972 */
4ceb5db9 973 if (!write && untouched_anonymous_page(mm,vma,start)) {
08ef4729 974 page = ZERO_PAGE(start);
1da177e4
LT
975 break;
976 }
977 spin_unlock(&mm->page_table_lock);
a68d2ebc
LT
978 ret = __handle_mm_fault(mm, vma, start, write_access);
979
980 /*
981 * The VM_FAULT_WRITE bit tells us that do_wp_page has
982 * broken COW when necessary, even if maybe_mkwrite
983 * decided not to set pte_write. We can thus safely do
984 * subsequent page lookups as if they were reads.
985 */
986 if (ret & VM_FAULT_WRITE)
f33ea7f4 987 write_access = 0;
a68d2ebc
LT
988
989 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
990 case VM_FAULT_MINOR:
991 tsk->min_flt++;
992 break;
993 case VM_FAULT_MAJOR:
994 tsk->maj_flt++;
995 break;
996 case VM_FAULT_SIGBUS:
997 return i ? i : -EFAULT;
998 case VM_FAULT_OOM:
999 return i ? i : -ENOMEM;
1000 default:
1001 BUG();
1002 }
1da177e4
LT
1003 spin_lock(&mm->page_table_lock);
1004 }
1005 if (pages) {
08ef4729
HD
1006 pages[i] = page;
1007 flush_dcache_page(page);
b5810039 1008 page_cache_get(page);
1da177e4
LT
1009 }
1010 if (vmas)
1011 vmas[i] = vma;
1012 i++;
1013 start += PAGE_SIZE;
1014 len--;
08ef4729 1015 } while (len && start < vma->vm_end);
1da177e4 1016 spin_unlock(&mm->page_table_lock);
08ef4729 1017 } while (len);
1da177e4
LT
1018 return i;
1019}
1da177e4
LT
1020EXPORT_SYMBOL(get_user_pages);
1021
1022static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1023 unsigned long addr, unsigned long end, pgprot_t prot)
1024{
1025 pte_t *pte;
c74df32c 1026 spinlock_t *ptl;
1da177e4 1027
c74df32c 1028 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1029 if (!pte)
1030 return -ENOMEM;
1031 do {
b5810039
NP
1032 struct page *page = ZERO_PAGE(addr);
1033 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1034 page_cache_get(page);
1035 page_add_file_rmap(page);
1036 inc_mm_counter(mm, file_rss);
1da177e4
LT
1037 BUG_ON(!pte_none(*pte));
1038 set_pte_at(mm, addr, pte, zero_pte);
1039 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1040 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1041 return 0;
1042}
1043
1044static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1045 unsigned long addr, unsigned long end, pgprot_t prot)
1046{
1047 pmd_t *pmd;
1048 unsigned long next;
1049
1050 pmd = pmd_alloc(mm, pud, addr);
1051 if (!pmd)
1052 return -ENOMEM;
1053 do {
1054 next = pmd_addr_end(addr, end);
1055 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1056 return -ENOMEM;
1057 } while (pmd++, addr = next, addr != end);
1058 return 0;
1059}
1060
1061static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1062 unsigned long addr, unsigned long end, pgprot_t prot)
1063{
1064 pud_t *pud;
1065 unsigned long next;
1066
1067 pud = pud_alloc(mm, pgd, addr);
1068 if (!pud)
1069 return -ENOMEM;
1070 do {
1071 next = pud_addr_end(addr, end);
1072 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1073 return -ENOMEM;
1074 } while (pud++, addr = next, addr != end);
1075 return 0;
1076}
1077
1078int zeromap_page_range(struct vm_area_struct *vma,
1079 unsigned long addr, unsigned long size, pgprot_t prot)
1080{
1081 pgd_t *pgd;
1082 unsigned long next;
1083 unsigned long end = addr + size;
1084 struct mm_struct *mm = vma->vm_mm;
1085 int err;
1086
1087 BUG_ON(addr >= end);
1088 pgd = pgd_offset(mm, addr);
1089 flush_cache_range(vma, addr, end);
1da177e4
LT
1090 do {
1091 next = pgd_addr_end(addr, end);
1092 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1093 if (err)
1094 break;
1095 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1096 return err;
1097}
1098
1099/*
1100 * maps a range of physical memory into the requested pages. the old
1101 * mappings are removed. any references to nonexistent pages results
1102 * in null mappings (currently treated as "copy-on-access")
1103 */
1104static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1105 unsigned long addr, unsigned long end,
1106 unsigned long pfn, pgprot_t prot)
1107{
1108 pte_t *pte;
c74df32c 1109 spinlock_t *ptl;
1da177e4 1110
c74df32c 1111 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1112 if (!pte)
1113 return -ENOMEM;
1114 do {
1115 BUG_ON(!pte_none(*pte));
b5810039 1116 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1da177e4
LT
1117 pfn++;
1118 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1119 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1120 return 0;
1121}
1122
1123static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1124 unsigned long addr, unsigned long end,
1125 unsigned long pfn, pgprot_t prot)
1126{
1127 pmd_t *pmd;
1128 unsigned long next;
1129
1130 pfn -= addr >> PAGE_SHIFT;
1131 pmd = pmd_alloc(mm, pud, addr);
1132 if (!pmd)
1133 return -ENOMEM;
1134 do {
1135 next = pmd_addr_end(addr, end);
1136 if (remap_pte_range(mm, pmd, addr, next,
1137 pfn + (addr >> PAGE_SHIFT), prot))
1138 return -ENOMEM;
1139 } while (pmd++, addr = next, addr != end);
1140 return 0;
1141}
1142
1143static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1144 unsigned long addr, unsigned long end,
1145 unsigned long pfn, pgprot_t prot)
1146{
1147 pud_t *pud;
1148 unsigned long next;
1149
1150 pfn -= addr >> PAGE_SHIFT;
1151 pud = pud_alloc(mm, pgd, addr);
1152 if (!pud)
1153 return -ENOMEM;
1154 do {
1155 next = pud_addr_end(addr, end);
1156 if (remap_pmd_range(mm, pud, addr, next,
1157 pfn + (addr >> PAGE_SHIFT), prot))
1158 return -ENOMEM;
1159 } while (pud++, addr = next, addr != end);
1160 return 0;
1161}
1162
1163/* Note: this is only safe if the mm semaphore is held when called. */
1164int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1165 unsigned long pfn, unsigned long size, pgprot_t prot)
1166{
1167 pgd_t *pgd;
1168 unsigned long next;
2d15cab8 1169 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1170 struct mm_struct *mm = vma->vm_mm;
1171 int err;
1172
1173 /*
1174 * Physically remapped pages are special. Tell the
1175 * rest of the world about it:
1176 * VM_IO tells people not to look at these pages
1177 * (accesses can have side effects).
b5810039
NP
1178 * VM_RESERVED tells the core MM not to "manage" these pages
1179 * (e.g. refcount, mapcount, try to swap them out).
1da177e4
LT
1180 */
1181 vma->vm_flags |= VM_IO | VM_RESERVED;
1182
1183 BUG_ON(addr >= end);
1184 pfn -= addr >> PAGE_SHIFT;
1185 pgd = pgd_offset(mm, addr);
1186 flush_cache_range(vma, addr, end);
1da177e4
LT
1187 do {
1188 next = pgd_addr_end(addr, end);
1189 err = remap_pud_range(mm, pgd, addr, next,
1190 pfn + (addr >> PAGE_SHIFT), prot);
1191 if (err)
1192 break;
1193 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1194 return err;
1195}
1196EXPORT_SYMBOL(remap_pfn_range);
1197
8f4e2101
HD
1198/*
1199 * handle_pte_fault chooses page fault handler according to an entry
1200 * which was read non-atomically. Before making any commitment, on
1201 * those architectures or configurations (e.g. i386 with PAE) which
1202 * might give a mix of unmatched parts, do_swap_page and do_file_page
1203 * must check under lock before unmapping the pte and proceeding
1204 * (but do_wp_page is only called after already making such a check;
1205 * and do_anonymous_page and do_no_page can safely check later on).
1206 */
1207static inline int pte_unmap_same(struct mm_struct *mm,
1208 pte_t *page_table, pte_t orig_pte)
1209{
1210 int same = 1;
1211#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1212 if (sizeof(pte_t) > sizeof(unsigned long)) {
1213 spin_lock(&mm->page_table_lock);
1214 same = pte_same(*page_table, orig_pte);
1215 spin_unlock(&mm->page_table_lock);
1216 }
1217#endif
1218 pte_unmap(page_table);
1219 return same;
1220}
1221
1da177e4
LT
1222/*
1223 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1224 * servicing faults for write access. In the normal case, do always want
1225 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1226 * that do not have writing enabled, when used by access_process_vm.
1227 */
1228static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1229{
1230 if (likely(vma->vm_flags & VM_WRITE))
1231 pte = pte_mkwrite(pte);
1232 return pte;
1233}
1234
1da177e4
LT
1235/*
1236 * This routine handles present pages, when users try to write
1237 * to a shared page. It is done by copying the page to a new address
1238 * and decrementing the shared-page counter for the old page.
1239 *
1da177e4
LT
1240 * Note that this routine assumes that the protection checks have been
1241 * done by the caller (the low-level page fault routine in most cases).
1242 * Thus we can safely just mark it writable once we've done any necessary
1243 * COW.
1244 *
1245 * We also mark the page dirty at this point even though the page will
1246 * change only once the write actually happens. This avoids a few races,
1247 * and potentially makes it more efficient.
1248 *
8f4e2101
HD
1249 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1250 * but allow concurrent faults), with pte both mapped and locked.
1251 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1252 */
65500d23
HD
1253static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1254 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1255 spinlock_t *ptl, pte_t orig_pte)
1da177e4
LT
1256{
1257 struct page *old_page, *new_page;
65500d23 1258 unsigned long pfn = pte_pfn(orig_pte);
1da177e4 1259 pte_t entry;
65500d23 1260 int ret = VM_FAULT_MINOR;
1da177e4 1261
b5810039
NP
1262 BUG_ON(vma->vm_flags & VM_RESERVED);
1263
1da177e4
LT
1264 if (unlikely(!pfn_valid(pfn))) {
1265 /*
65500d23 1266 * Page table corrupted: show pte and kill process.
1da177e4 1267 */
b5810039 1268 print_bad_pte(vma, orig_pte, address);
65500d23
HD
1269 ret = VM_FAULT_OOM;
1270 goto unlock;
1da177e4
LT
1271 }
1272 old_page = pfn_to_page(pfn);
1273
d296e9cd 1274 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1da177e4
LT
1275 int reuse = can_share_swap_page(old_page);
1276 unlock_page(old_page);
1277 if (reuse) {
1278 flush_cache_page(vma, address, pfn);
65500d23
HD
1279 entry = pte_mkyoung(orig_pte);
1280 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4
LT
1281 ptep_set_access_flags(vma, address, page_table, entry, 1);
1282 update_mmu_cache(vma, address, entry);
1283 lazy_mmu_prot_update(entry);
65500d23
HD
1284 ret |= VM_FAULT_WRITE;
1285 goto unlock;
1da177e4
LT
1286 }
1287 }
1da177e4
LT
1288
1289 /*
1290 * Ok, we need to copy. Oh, well..
1291 */
b5810039 1292 page_cache_get(old_page);
8f4e2101 1293 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1294
1295 if (unlikely(anon_vma_prepare(vma)))
65500d23 1296 goto oom;
1da177e4
LT
1297 if (old_page == ZERO_PAGE(address)) {
1298 new_page = alloc_zeroed_user_highpage(vma, address);
1299 if (!new_page)
65500d23 1300 goto oom;
1da177e4
LT
1301 } else {
1302 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1303 if (!new_page)
65500d23 1304 goto oom;
1da177e4
LT
1305 copy_user_highpage(new_page, old_page, address);
1306 }
65500d23 1307
1da177e4
LT
1308 /*
1309 * Re-check the pte - we dropped the lock
1310 */
8f4e2101 1311 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1312 if (likely(pte_same(*page_table, orig_pte))) {
b5810039
NP
1313 page_remove_rmap(old_page);
1314 if (!PageAnon(old_page)) {
4294621f 1315 inc_mm_counter(mm, anon_rss);
b5810039 1316 dec_mm_counter(mm, file_rss);
4294621f 1317 }
1da177e4 1318 flush_cache_page(vma, address, pfn);
65500d23
HD
1319 entry = mk_pte(new_page, vma->vm_page_prot);
1320 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1321 ptep_establish(vma, address, page_table, entry);
1322 update_mmu_cache(vma, address, entry);
1323 lazy_mmu_prot_update(entry);
1da177e4
LT
1324 lru_cache_add_active(new_page);
1325 page_add_anon_rmap(new_page, vma, address);
1326
1327 /* Free the old page.. */
1328 new_page = old_page;
f33ea7f4 1329 ret |= VM_FAULT_WRITE;
1da177e4 1330 }
1da177e4
LT
1331 page_cache_release(new_page);
1332 page_cache_release(old_page);
65500d23 1333unlock:
8f4e2101 1334 pte_unmap_unlock(page_table, ptl);
f33ea7f4 1335 return ret;
65500d23 1336oom:
1da177e4
LT
1337 page_cache_release(old_page);
1338 return VM_FAULT_OOM;
1339}
1340
1341/*
1342 * Helper functions for unmap_mapping_range().
1343 *
1344 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1345 *
1346 * We have to restart searching the prio_tree whenever we drop the lock,
1347 * since the iterator is only valid while the lock is held, and anyway
1348 * a later vma might be split and reinserted earlier while lock dropped.
1349 *
1350 * The list of nonlinear vmas could be handled more efficiently, using
1351 * a placeholder, but handle it in the same way until a need is shown.
1352 * It is important to search the prio_tree before nonlinear list: a vma
1353 * may become nonlinear and be shifted from prio_tree to nonlinear list
1354 * while the lock is dropped; but never shifted from list to prio_tree.
1355 *
1356 * In order to make forward progress despite restarting the search,
1357 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1358 * quickly skip it next time around. Since the prio_tree search only
1359 * shows us those vmas affected by unmapping the range in question, we
1360 * can't efficiently keep all vmas in step with mapping->truncate_count:
1361 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1362 * mapping->truncate_count and vma->vm_truncate_count are protected by
1363 * i_mmap_lock.
1364 *
1365 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1366 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1367 * and restart from that address when we reach that vma again. It might
1368 * have been split or merged, shrunk or extended, but never shifted: so
1369 * restart_addr remains valid so long as it remains in the vma's range.
1370 * unmap_mapping_range forces truncate_count to leap over page-aligned
1371 * values so we can save vma's restart_addr in its truncate_count field.
1372 */
1373#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1374
1375static void reset_vma_truncate_counts(struct address_space *mapping)
1376{
1377 struct vm_area_struct *vma;
1378 struct prio_tree_iter iter;
1379
1380 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1381 vma->vm_truncate_count = 0;
1382 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1383 vma->vm_truncate_count = 0;
1384}
1385
1386static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1387 unsigned long start_addr, unsigned long end_addr,
1388 struct zap_details *details)
1389{
1390 unsigned long restart_addr;
1391 int need_break;
1392
1393again:
1394 restart_addr = vma->vm_truncate_count;
1395 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1396 start_addr = restart_addr;
1397 if (start_addr >= end_addr) {
1398 /* Top of vma has been split off since last time */
1399 vma->vm_truncate_count = details->truncate_count;
1400 return 0;
1401 }
1402 }
1403
ee39b37b
HD
1404 restart_addr = zap_page_range(vma, start_addr,
1405 end_addr - start_addr, details);
1da177e4
LT
1406 need_break = need_resched() ||
1407 need_lockbreak(details->i_mmap_lock);
1408
ee39b37b 1409 if (restart_addr >= end_addr) {
1da177e4
LT
1410 /* We have now completed this vma: mark it so */
1411 vma->vm_truncate_count = details->truncate_count;
1412 if (!need_break)
1413 return 0;
1414 } else {
1415 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1416 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1417 if (!need_break)
1418 goto again;
1419 }
1420
1421 spin_unlock(details->i_mmap_lock);
1422 cond_resched();
1423 spin_lock(details->i_mmap_lock);
1424 return -EINTR;
1425}
1426
1427static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1428 struct zap_details *details)
1429{
1430 struct vm_area_struct *vma;
1431 struct prio_tree_iter iter;
1432 pgoff_t vba, vea, zba, zea;
1433
1434restart:
1435 vma_prio_tree_foreach(vma, &iter, root,
1436 details->first_index, details->last_index) {
1437 /* Skip quickly over those we have already dealt with */
1438 if (vma->vm_truncate_count == details->truncate_count)
1439 continue;
1440
1441 vba = vma->vm_pgoff;
1442 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1443 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1444 zba = details->first_index;
1445 if (zba < vba)
1446 zba = vba;
1447 zea = details->last_index;
1448 if (zea > vea)
1449 zea = vea;
1450
1451 if (unmap_mapping_range_vma(vma,
1452 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1453 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1454 details) < 0)
1455 goto restart;
1456 }
1457}
1458
1459static inline void unmap_mapping_range_list(struct list_head *head,
1460 struct zap_details *details)
1461{
1462 struct vm_area_struct *vma;
1463
1464 /*
1465 * In nonlinear VMAs there is no correspondence between virtual address
1466 * offset and file offset. So we must perform an exhaustive search
1467 * across *all* the pages in each nonlinear VMA, not just the pages
1468 * whose virtual address lies outside the file truncation point.
1469 */
1470restart:
1471 list_for_each_entry(vma, head, shared.vm_set.list) {
1472 /* Skip quickly over those we have already dealt with */
1473 if (vma->vm_truncate_count == details->truncate_count)
1474 continue;
1475 details->nonlinear_vma = vma;
1476 if (unmap_mapping_range_vma(vma, vma->vm_start,
1477 vma->vm_end, details) < 0)
1478 goto restart;
1479 }
1480}
1481
1482/**
1483 * unmap_mapping_range - unmap the portion of all mmaps
1484 * in the specified address_space corresponding to the specified
1485 * page range in the underlying file.
3d41088f 1486 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1487 * @holebegin: byte in first page to unmap, relative to the start of
1488 * the underlying file. This will be rounded down to a PAGE_SIZE
1489 * boundary. Note that this is different from vmtruncate(), which
1490 * must keep the partial page. In contrast, we must get rid of
1491 * partial pages.
1492 * @holelen: size of prospective hole in bytes. This will be rounded
1493 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1494 * end of the file.
1495 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1496 * but 0 when invalidating pagecache, don't throw away private data.
1497 */
1498void unmap_mapping_range(struct address_space *mapping,
1499 loff_t const holebegin, loff_t const holelen, int even_cows)
1500{
1501 struct zap_details details;
1502 pgoff_t hba = holebegin >> PAGE_SHIFT;
1503 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1504
1505 /* Check for overflow. */
1506 if (sizeof(holelen) > sizeof(hlen)) {
1507 long long holeend =
1508 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1509 if (holeend & ~(long long)ULONG_MAX)
1510 hlen = ULONG_MAX - hba + 1;
1511 }
1512
1513 details.check_mapping = even_cows? NULL: mapping;
1514 details.nonlinear_vma = NULL;
1515 details.first_index = hba;
1516 details.last_index = hba + hlen - 1;
1517 if (details.last_index < details.first_index)
1518 details.last_index = ULONG_MAX;
1519 details.i_mmap_lock = &mapping->i_mmap_lock;
1520
1521 spin_lock(&mapping->i_mmap_lock);
1522
1523 /* serialize i_size write against truncate_count write */
1524 smp_wmb();
1525 /* Protect against page faults, and endless unmapping loops */
1526 mapping->truncate_count++;
1527 /*
1528 * For archs where spin_lock has inclusive semantics like ia64
1529 * this smp_mb() will prevent to read pagetable contents
1530 * before the truncate_count increment is visible to
1531 * other cpus.
1532 */
1533 smp_mb();
1534 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1535 if (mapping->truncate_count == 0)
1536 reset_vma_truncate_counts(mapping);
1537 mapping->truncate_count++;
1538 }
1539 details.truncate_count = mapping->truncate_count;
1540
1541 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1542 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1543 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1544 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1545 spin_unlock(&mapping->i_mmap_lock);
1546}
1547EXPORT_SYMBOL(unmap_mapping_range);
1548
1549/*
1550 * Handle all mappings that got truncated by a "truncate()"
1551 * system call.
1552 *
1553 * NOTE! We have to be ready to update the memory sharing
1554 * between the file and the memory map for a potential last
1555 * incomplete page. Ugly, but necessary.
1556 */
1557int vmtruncate(struct inode * inode, loff_t offset)
1558{
1559 struct address_space *mapping = inode->i_mapping;
1560 unsigned long limit;
1561
1562 if (inode->i_size < offset)
1563 goto do_expand;
1564 /*
1565 * truncation of in-use swapfiles is disallowed - it would cause
1566 * subsequent swapout to scribble on the now-freed blocks.
1567 */
1568 if (IS_SWAPFILE(inode))
1569 goto out_busy;
1570 i_size_write(inode, offset);
1571 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1572 truncate_inode_pages(mapping, offset);
1573 goto out_truncate;
1574
1575do_expand:
1576 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1577 if (limit != RLIM_INFINITY && offset > limit)
1578 goto out_sig;
1579 if (offset > inode->i_sb->s_maxbytes)
1580 goto out_big;
1581 i_size_write(inode, offset);
1582
1583out_truncate:
1584 if (inode->i_op && inode->i_op->truncate)
1585 inode->i_op->truncate(inode);
1586 return 0;
1587out_sig:
1588 send_sig(SIGXFSZ, current, 0);
1589out_big:
1590 return -EFBIG;
1591out_busy:
1592 return -ETXTBSY;
1593}
1594
1595EXPORT_SYMBOL(vmtruncate);
1596
1597/*
1598 * Primitive swap readahead code. We simply read an aligned block of
1599 * (1 << page_cluster) entries in the swap area. This method is chosen
1600 * because it doesn't cost us any seek time. We also make sure to queue
1601 * the 'original' request together with the readahead ones...
1602 *
1603 * This has been extended to use the NUMA policies from the mm triggering
1604 * the readahead.
1605 *
1606 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1607 */
1608void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1609{
1610#ifdef CONFIG_NUMA
1611 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1612#endif
1613 int i, num;
1614 struct page *new_page;
1615 unsigned long offset;
1616
1617 /*
1618 * Get the number of handles we should do readahead io to.
1619 */
1620 num = valid_swaphandles(entry, &offset);
1621 for (i = 0; i < num; offset++, i++) {
1622 /* Ok, do the async read-ahead now */
1623 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1624 offset), vma, addr);
1625 if (!new_page)
1626 break;
1627 page_cache_release(new_page);
1628#ifdef CONFIG_NUMA
1629 /*
1630 * Find the next applicable VMA for the NUMA policy.
1631 */
1632 addr += PAGE_SIZE;
1633 if (addr == 0)
1634 vma = NULL;
1635 if (vma) {
1636 if (addr >= vma->vm_end) {
1637 vma = next_vma;
1638 next_vma = vma ? vma->vm_next : NULL;
1639 }
1640 if (vma && addr < vma->vm_start)
1641 vma = NULL;
1642 } else {
1643 if (next_vma && addr >= next_vma->vm_start) {
1644 vma = next_vma;
1645 next_vma = vma->vm_next;
1646 }
1647 }
1648#endif
1649 }
1650 lru_add_drain(); /* Push any new pages onto the LRU now */
1651}
1652
1653/*
8f4e2101
HD
1654 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1655 * but allow concurrent faults), and pte mapped but not yet locked.
1656 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1657 */
65500d23
HD
1658static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1659 unsigned long address, pte_t *page_table, pmd_t *pmd,
1660 int write_access, pte_t orig_pte)
1da177e4 1661{
8f4e2101 1662 spinlock_t *ptl;
1da177e4 1663 struct page *page;
65500d23 1664 swp_entry_t entry;
1da177e4
LT
1665 pte_t pte;
1666 int ret = VM_FAULT_MINOR;
1667
8f4e2101
HD
1668 if (!pte_unmap_same(mm, page_table, orig_pte))
1669 goto out;
65500d23
HD
1670
1671 entry = pte_to_swp_entry(orig_pte);
1da177e4
LT
1672 page = lookup_swap_cache(entry);
1673 if (!page) {
1674 swapin_readahead(entry, address, vma);
1675 page = read_swap_cache_async(entry, vma, address);
1676 if (!page) {
1677 /*
8f4e2101
HD
1678 * Back out if somebody else faulted in this pte
1679 * while we released the pte lock.
1da177e4 1680 */
8f4e2101 1681 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1682 if (likely(pte_same(*page_table, orig_pte)))
1683 ret = VM_FAULT_OOM;
65500d23 1684 goto unlock;
1da177e4
LT
1685 }
1686
1687 /* Had to read the page from swap area: Major fault */
1688 ret = VM_FAULT_MAJOR;
1689 inc_page_state(pgmajfault);
1690 grab_swap_token();
1691 }
1692
1693 mark_page_accessed(page);
1694 lock_page(page);
1695
1696 /*
8f4e2101 1697 * Back out if somebody else already faulted in this pte.
1da177e4 1698 */
8f4e2101 1699 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 1700 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 1701 goto out_nomap;
b8107480
KK
1702
1703 if (unlikely(!PageUptodate(page))) {
1704 ret = VM_FAULT_SIGBUS;
1705 goto out_nomap;
1da177e4
LT
1706 }
1707
1708 /* The page isn't present yet, go ahead with the fault. */
1da177e4 1709
4294621f 1710 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1711 pte = mk_pte(page, vma->vm_page_prot);
1712 if (write_access && can_share_swap_page(page)) {
1713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1714 write_access = 0;
1715 }
1da177e4
LT
1716
1717 flush_icache_page(vma, page);
1718 set_pte_at(mm, address, page_table, pte);
1719 page_add_anon_rmap(page, vma, address);
1720
c475a8ab
HD
1721 swap_free(entry);
1722 if (vm_swap_full())
1723 remove_exclusive_swap_page(page);
1724 unlock_page(page);
1725
1da177e4
LT
1726 if (write_access) {
1727 if (do_wp_page(mm, vma, address,
8f4e2101 1728 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1da177e4
LT
1729 ret = VM_FAULT_OOM;
1730 goto out;
1731 }
1732
1733 /* No need to invalidate - it was non-present before */
1734 update_mmu_cache(vma, address, pte);
1735 lazy_mmu_prot_update(pte);
65500d23 1736unlock:
8f4e2101 1737 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1738out:
1739 return ret;
b8107480 1740out_nomap:
8f4e2101 1741 pte_unmap_unlock(page_table, ptl);
b8107480
KK
1742 unlock_page(page);
1743 page_cache_release(page);
65500d23 1744 return ret;
1da177e4
LT
1745}
1746
1747/*
8f4e2101
HD
1748 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1749 * but allow concurrent faults), and pte mapped but not yet locked.
1750 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1751 */
65500d23
HD
1752static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1753 unsigned long address, pte_t *page_table, pmd_t *pmd,
1754 int write_access)
1da177e4 1755{
8f4e2101
HD
1756 struct page *page;
1757 spinlock_t *ptl;
1da177e4 1758 pte_t entry;
1da177e4 1759
1da177e4
LT
1760 if (write_access) {
1761 /* Allocate our own private page. */
1762 pte_unmap(page_table);
1da177e4
LT
1763
1764 if (unlikely(anon_vma_prepare(vma)))
65500d23
HD
1765 goto oom;
1766 page = alloc_zeroed_user_highpage(vma, address);
1da177e4 1767 if (!page)
65500d23 1768 goto oom;
1da177e4 1769
65500d23
HD
1770 entry = mk_pte(page, vma->vm_page_prot);
1771 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
8f4e2101
HD
1772
1773 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1774 if (!pte_none(*page_table))
1775 goto release;
1776 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1777 lru_cache_add_active(page);
1778 SetPageReferenced(page);
65500d23 1779 page_add_anon_rmap(page, vma, address);
b5810039 1780 } else {
8f4e2101
HD
1781 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1782 page = ZERO_PAGE(address);
1783 page_cache_get(page);
1784 entry = mk_pte(page, vma->vm_page_prot);
1785
1786 ptl = &mm->page_table_lock;
1787 spin_lock(ptl);
1788 if (!pte_none(*page_table))
1789 goto release;
b5810039
NP
1790 inc_mm_counter(mm, file_rss);
1791 page_add_file_rmap(page);
1da177e4
LT
1792 }
1793
65500d23 1794 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
1795
1796 /* No need to invalidate - it was non-present before */
65500d23 1797 update_mmu_cache(vma, address, entry);
1da177e4 1798 lazy_mmu_prot_update(entry);
65500d23 1799unlock:
8f4e2101 1800 pte_unmap_unlock(page_table, ptl);
1da177e4 1801 return VM_FAULT_MINOR;
8f4e2101
HD
1802release:
1803 page_cache_release(page);
1804 goto unlock;
65500d23 1805oom:
1da177e4
LT
1806 return VM_FAULT_OOM;
1807}
1808
1809/*
1810 * do_no_page() tries to create a new page mapping. It aggressively
1811 * tries to share with existing pages, but makes a separate copy if
1812 * the "write_access" parameter is true in order to avoid the next
1813 * page fault.
1814 *
1815 * As this is called only for pages that do not currently exist, we
1816 * do not need to flush old virtual caches or the TLB.
1817 *
8f4e2101
HD
1818 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1819 * but allow concurrent faults), and pte mapped but not yet locked.
1820 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1821 */
65500d23
HD
1822static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1823 unsigned long address, pte_t *page_table, pmd_t *pmd,
1824 int write_access)
1da177e4 1825{
8f4e2101 1826 spinlock_t *ptl;
65500d23 1827 struct page *new_page;
1da177e4
LT
1828 struct address_space *mapping = NULL;
1829 pte_t entry;
1830 unsigned int sequence = 0;
1831 int ret = VM_FAULT_MINOR;
1832 int anon = 0;
1833
1da177e4 1834 pte_unmap(page_table);
1da177e4
LT
1835
1836 if (vma->vm_file) {
1837 mapping = vma->vm_file->f_mapping;
1838 sequence = mapping->truncate_count;
1839 smp_rmb(); /* serializes i_size against truncate_count */
1840 }
1841retry:
1da177e4
LT
1842 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1843 /*
1844 * No smp_rmb is needed here as long as there's a full
1845 * spin_lock/unlock sequence inside the ->nopage callback
1846 * (for the pagecache lookup) that acts as an implicit
1847 * smp_mb() and prevents the i_size read to happen
1848 * after the next truncate_count read.
1849 */
1850
1851 /* no page was available -- either SIGBUS or OOM */
1852 if (new_page == NOPAGE_SIGBUS)
1853 return VM_FAULT_SIGBUS;
1854 if (new_page == NOPAGE_OOM)
1855 return VM_FAULT_OOM;
1856
1857 /*
1858 * Should we do an early C-O-W break?
1859 */
1860 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1861 struct page *page;
1862
1863 if (unlikely(anon_vma_prepare(vma)))
1864 goto oom;
1865 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1866 if (!page)
1867 goto oom;
1868 copy_user_highpage(page, new_page, address);
1869 page_cache_release(new_page);
1870 new_page = page;
1871 anon = 1;
1872 }
1873
8f4e2101 1874 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1875 /*
1876 * For a file-backed vma, someone could have truncated or otherwise
1877 * invalidated this page. If unmap_mapping_range got called,
1878 * retry getting the page.
1879 */
1880 if (mapping && unlikely(sequence != mapping->truncate_count)) {
8f4e2101 1881 pte_unmap_unlock(page_table, ptl);
1da177e4 1882 page_cache_release(new_page);
65500d23
HD
1883 cond_resched();
1884 sequence = mapping->truncate_count;
1885 smp_rmb();
1da177e4
LT
1886 goto retry;
1887 }
1da177e4
LT
1888
1889 /*
1890 * This silly early PAGE_DIRTY setting removes a race
1891 * due to the bad i386 page protection. But it's valid
1892 * for other architectures too.
1893 *
1894 * Note that if write_access is true, we either now have
1895 * an exclusive copy of the page, or this is a shared mapping,
1896 * so we can make it writable and dirty to avoid having to
1897 * handle that later.
1898 */
1899 /* Only go through if we didn't race with anybody else... */
1900 if (pte_none(*page_table)) {
1da177e4
LT
1901 flush_icache_page(vma, new_page);
1902 entry = mk_pte(new_page, vma->vm_page_prot);
1903 if (write_access)
1904 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1905 set_pte_at(mm, address, page_table, entry);
1906 if (anon) {
4294621f 1907 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1908 lru_cache_add_active(new_page);
1909 page_add_anon_rmap(new_page, vma, address);
b5810039 1910 } else if (!(vma->vm_flags & VM_RESERVED)) {
4294621f 1911 inc_mm_counter(mm, file_rss);
1da177e4 1912 page_add_file_rmap(new_page);
4294621f 1913 }
1da177e4
LT
1914 } else {
1915 /* One of our sibling threads was faster, back out. */
1da177e4 1916 page_cache_release(new_page);
65500d23 1917 goto unlock;
1da177e4
LT
1918 }
1919
1920 /* no need to invalidate: a not-present page shouldn't be cached */
1921 update_mmu_cache(vma, address, entry);
1922 lazy_mmu_prot_update(entry);
65500d23 1923unlock:
8f4e2101 1924 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1925 return ret;
1926oom:
1927 page_cache_release(new_page);
65500d23 1928 return VM_FAULT_OOM;
1da177e4
LT
1929}
1930
1931/*
1932 * Fault of a previously existing named mapping. Repopulate the pte
1933 * from the encoded file_pte if possible. This enables swappable
1934 * nonlinear vmas.
8f4e2101
HD
1935 *
1936 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1937 * but allow concurrent faults), and pte mapped but not yet locked.
1938 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1939 */
65500d23
HD
1940static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1941 unsigned long address, pte_t *page_table, pmd_t *pmd,
1942 int write_access, pte_t orig_pte)
1da177e4 1943{
65500d23 1944 pgoff_t pgoff;
1da177e4
LT
1945 int err;
1946
8f4e2101
HD
1947 if (!pte_unmap_same(mm, page_table, orig_pte))
1948 return VM_FAULT_MINOR;
1da177e4 1949
65500d23
HD
1950 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1951 /*
1952 * Page table corrupted: show pte and kill process.
1953 */
b5810039 1954 print_bad_pte(vma, orig_pte, address);
65500d23
HD
1955 return VM_FAULT_OOM;
1956 }
1957 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1958
1959 pgoff = pte_to_pgoff(orig_pte);
1960 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1961 vma->vm_page_prot, pgoff, 0);
1da177e4
LT
1962 if (err == -ENOMEM)
1963 return VM_FAULT_OOM;
1964 if (err)
1965 return VM_FAULT_SIGBUS;
1966 return VM_FAULT_MAJOR;
1967}
1968
1969/*
1970 * These routines also need to handle stuff like marking pages dirty
1971 * and/or accessed for architectures that don't do it in hardware (most
1972 * RISC architectures). The early dirtying is also good on the i386.
1973 *
1974 * There is also a hook called "update_mmu_cache()" that architectures
1975 * with external mmu caches can use to update those (ie the Sparc or
1976 * PowerPC hashed page tables that act as extended TLBs).
1977 *
c74df32c
HD
1978 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1979 * but allow concurrent faults), and pte mapped but not yet locked.
1980 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
1981 */
1982static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
1983 struct vm_area_struct *vma, unsigned long address,
1984 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
1985{
1986 pte_t entry;
8f4e2101 1987 spinlock_t *ptl;
1da177e4
LT
1988
1989 entry = *pte;
1990 if (!pte_present(entry)) {
65500d23
HD
1991 if (pte_none(entry)) {
1992 if (!vma->vm_ops || !vma->vm_ops->nopage)
1993 return do_anonymous_page(mm, vma, address,
1994 pte, pmd, write_access);
1995 return do_no_page(mm, vma, address,
1996 pte, pmd, write_access);
1997 }
1da177e4 1998 if (pte_file(entry))
65500d23
HD
1999 return do_file_page(mm, vma, address,
2000 pte, pmd, write_access, entry);
2001 return do_swap_page(mm, vma, address,
2002 pte, pmd, write_access, entry);
1da177e4
LT
2003 }
2004
8f4e2101
HD
2005 ptl = &mm->page_table_lock;
2006 spin_lock(ptl);
2007 if (unlikely(!pte_same(*pte, entry)))
2008 goto unlock;
1da177e4
LT
2009 if (write_access) {
2010 if (!pte_write(entry))
8f4e2101
HD
2011 return do_wp_page(mm, vma, address,
2012 pte, pmd, ptl, entry);
1da177e4
LT
2013 entry = pte_mkdirty(entry);
2014 }
2015 entry = pte_mkyoung(entry);
2016 ptep_set_access_flags(vma, address, pte, entry, write_access);
2017 update_mmu_cache(vma, address, entry);
2018 lazy_mmu_prot_update(entry);
8f4e2101
HD
2019unlock:
2020 pte_unmap_unlock(pte, ptl);
1da177e4
LT
2021 return VM_FAULT_MINOR;
2022}
2023
2024/*
2025 * By the time we get here, we already hold the mm semaphore
2026 */
65500d23 2027int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2028 unsigned long address, int write_access)
2029{
2030 pgd_t *pgd;
2031 pud_t *pud;
2032 pmd_t *pmd;
2033 pte_t *pte;
2034
2035 __set_current_state(TASK_RUNNING);
2036
2037 inc_page_state(pgfault);
2038
ac9b9c66
HD
2039 if (unlikely(is_vm_hugetlb_page(vma)))
2040 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2041
1da177e4 2042 pgd = pgd_offset(mm, address);
1da177e4
LT
2043 pud = pud_alloc(mm, pgd, address);
2044 if (!pud)
c74df32c 2045 return VM_FAULT_OOM;
1da177e4
LT
2046 pmd = pmd_alloc(mm, pud, address);
2047 if (!pmd)
c74df32c 2048 return VM_FAULT_OOM;
1da177e4
LT
2049 pte = pte_alloc_map(mm, pmd, address);
2050 if (!pte)
c74df32c 2051 return VM_FAULT_OOM;
1da177e4 2052
c74df32c 2053 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2054}
2055
2056#ifndef __PAGETABLE_PUD_FOLDED
2057/*
2058 * Allocate page upper directory.
872fec16 2059 * We've already handled the fast-path in-line.
1da177e4 2060 */
1bb3630e 2061int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2062{
c74df32c
HD
2063 pud_t *new = pud_alloc_one(mm, address);
2064 if (!new)
1bb3630e 2065 return -ENOMEM;
1da177e4 2066
872fec16 2067 spin_lock(&mm->page_table_lock);
1bb3630e 2068 if (pgd_present(*pgd)) /* Another has populated it */
1da177e4 2069 pud_free(new);
1bb3630e
HD
2070 else
2071 pgd_populate(mm, pgd, new);
c74df32c 2072 spin_unlock(&mm->page_table_lock);
1bb3630e 2073 return 0;
1da177e4
LT
2074}
2075#endif /* __PAGETABLE_PUD_FOLDED */
2076
2077#ifndef __PAGETABLE_PMD_FOLDED
2078/*
2079 * Allocate page middle directory.
872fec16 2080 * We've already handled the fast-path in-line.
1da177e4 2081 */
1bb3630e 2082int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2083{
c74df32c
HD
2084 pmd_t *new = pmd_alloc_one(mm, address);
2085 if (!new)
1bb3630e 2086 return -ENOMEM;
1da177e4 2087
872fec16 2088 spin_lock(&mm->page_table_lock);
1da177e4 2089#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2090 if (pud_present(*pud)) /* Another has populated it */
1da177e4 2091 pmd_free(new);
1bb3630e
HD
2092 else
2093 pud_populate(mm, pud, new);
1da177e4 2094#else
1bb3630e 2095 if (pgd_present(*pud)) /* Another has populated it */
1da177e4 2096 pmd_free(new);
1bb3630e
HD
2097 else
2098 pgd_populate(mm, pud, new);
1da177e4 2099#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2100 spin_unlock(&mm->page_table_lock);
1bb3630e 2101 return 0;
1da177e4
LT
2102}
2103#endif /* __PAGETABLE_PMD_FOLDED */
2104
2105int make_pages_present(unsigned long addr, unsigned long end)
2106{
2107 int ret, len, write;
2108 struct vm_area_struct * vma;
2109
2110 vma = find_vma(current->mm, addr);
2111 if (!vma)
2112 return -1;
2113 write = (vma->vm_flags & VM_WRITE) != 0;
2114 if (addr >= end)
2115 BUG();
2116 if (end > vma->vm_end)
2117 BUG();
2118 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2119 ret = get_user_pages(current, current->mm, addr,
2120 len, write, 0, NULL, NULL);
2121 if (ret < 0)
2122 return ret;
2123 return ret == len ? 0 : -1;
2124}
2125
2126/*
2127 * Map a vmalloc()-space virtual address to the physical page.
2128 */
2129struct page * vmalloc_to_page(void * vmalloc_addr)
2130{
2131 unsigned long addr = (unsigned long) vmalloc_addr;
2132 struct page *page = NULL;
2133 pgd_t *pgd = pgd_offset_k(addr);
2134 pud_t *pud;
2135 pmd_t *pmd;
2136 pte_t *ptep, pte;
2137
2138 if (!pgd_none(*pgd)) {
2139 pud = pud_offset(pgd, addr);
2140 if (!pud_none(*pud)) {
2141 pmd = pmd_offset(pud, addr);
2142 if (!pmd_none(*pmd)) {
2143 ptep = pte_offset_map(pmd, addr);
2144 pte = *ptep;
2145 if (pte_present(pte))
2146 page = pte_page(pte);
2147 pte_unmap(ptep);
2148 }
2149 }
2150 }
2151 return page;
2152}
2153
2154EXPORT_SYMBOL(vmalloc_to_page);
2155
2156/*
2157 * Map a vmalloc()-space virtual address to the physical page frame number.
2158 */
2159unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2160{
2161 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2162}
2163
2164EXPORT_SYMBOL(vmalloc_to_pfn);
2165
1da177e4
LT
2166#if !defined(__HAVE_ARCH_GATE_AREA)
2167
2168#if defined(AT_SYSINFO_EHDR)
5ce7852c 2169static struct vm_area_struct gate_vma;
1da177e4
LT
2170
2171static int __init gate_vma_init(void)
2172{
2173 gate_vma.vm_mm = NULL;
2174 gate_vma.vm_start = FIXADDR_USER_START;
2175 gate_vma.vm_end = FIXADDR_USER_END;
2176 gate_vma.vm_page_prot = PAGE_READONLY;
b5810039 2177 gate_vma.vm_flags = VM_RESERVED;
1da177e4
LT
2178 return 0;
2179}
2180__initcall(gate_vma_init);
2181#endif
2182
2183struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2184{
2185#ifdef AT_SYSINFO_EHDR
2186 return &gate_vma;
2187#else
2188 return NULL;
2189#endif
2190}
2191
2192int in_gate_area_no_task(unsigned long addr)
2193{
2194#ifdef AT_SYSINFO_EHDR
2195 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2196 return 1;
2197#endif
2198 return 0;
2199}
2200
2201#endif /* __HAVE_ARCH_GATE_AREA */