]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory.c
[PATCH] mm: flush_tlb_range outside ptlock
[net-next-2.6.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
d41dee36 61#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
e0da382c 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 114{
e0da382c
HD
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
1da177e4
LT
120}
121
e0da382c
HD
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
1da177e4
LT
125{
126 pmd_t *pmd;
127 unsigned long next;
e0da382c 128 unsigned long start;
1da177e4 129
e0da382c 130 start = addr;
1da177e4 131 pmd = pmd_offset(pud, addr);
1da177e4
LT
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
e0da382c 136 free_pte_range(tlb, pmd);
1da177e4
LT
137 } while (pmd++, addr = next, addr != end);
138
e0da382c
HD
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
1da177e4 146 }
e0da382c
HD
147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
1da177e4
LT
153}
154
e0da382c
HD
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
1da177e4
LT
158{
159 pud_t *pud;
160 unsigned long next;
e0da382c 161 unsigned long start;
1da177e4 162
e0da382c 163 start = addr;
1da177e4 164 pud = pud_offset(pgd, addr);
1da177e4
LT
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
e0da382c 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
170 } while (pud++, addr = next, addr != end);
171
e0da382c
HD
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
1da177e4 179 }
e0da382c
HD
180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
1da177e4
LT
186}
187
188/*
e0da382c
HD
189 * This function frees user-level page tables of a process.
190 *
1da177e4
LT
191 * Must be called with pagetable lock held.
192 */
3bf5ee95 193void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
1da177e4
LT
196{
197 pgd_t *pgd;
198 unsigned long next;
e0da382c
HD
199 unsigned long start;
200
201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
1da177e4 226
e0da382c
HD
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
3bf5ee95 244 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
3bf5ee95 249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 250 } while (pgd++, addr = next, addr != end);
e0da382c 251
4d6ddfa9 252 if (!(*tlb)->fullmm)
3bf5ee95 253 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 257 unsigned long floor, unsigned long ceiling)
e0da382c
HD
258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
3bf5ee95
HD
263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 265 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
266 } else {
267 /*
268 * Optimization: gather nearby vmas into one call down
269 */
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
275 }
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
278 }
e0da382c
HD
279 vma = next;
280 }
1da177e4
LT
281}
282
1bb3630e 283int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 284{
c74df32c 285 struct page *new = pte_alloc_one(mm, address);
1bb3630e
HD
286 if (!new)
287 return -ENOMEM;
288
c74df32c 289 spin_lock(&mm->page_table_lock);
1bb3630e
HD
290 if (pmd_present(*pmd)) /* Another has populated it */
291 pte_free(new);
292 else {
1da177e4
LT
293 mm->nr_ptes++;
294 inc_page_state(nr_page_table_pages);
295 pmd_populate(mm, pmd, new);
296 }
c74df32c 297 spin_unlock(&mm->page_table_lock);
1bb3630e 298 return 0;
1da177e4
LT
299}
300
1bb3630e 301int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 302{
1bb3630e
HD
303 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
304 if (!new)
305 return -ENOMEM;
306
307 spin_lock(&init_mm.page_table_lock);
308 if (pmd_present(*pmd)) /* Another has populated it */
309 pte_free_kernel(new);
310 else
311 pmd_populate_kernel(&init_mm, pmd, new);
312 spin_unlock(&init_mm.page_table_lock);
313 return 0;
1da177e4
LT
314}
315
ae859762
HD
316static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
317{
318 if (file_rss)
319 add_mm_counter(mm, file_rss, file_rss);
320 if (anon_rss)
321 add_mm_counter(mm, anon_rss, anon_rss);
322}
323
b5810039
NP
324/*
325 * This function is called to print an error when a pte in a
326 * !VM_RESERVED region is found pointing to an invalid pfn (which
327 * is an error.
328 *
329 * The calling function must still handle the error.
330 */
331void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
332{
333 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
334 "vm_flags = %lx, vaddr = %lx\n",
335 (long long)pte_val(pte),
336 (vma->vm_mm == current->mm ? current->comm : "???"),
337 vma->vm_flags, vaddr);
338 dump_stack();
339}
340
1da177e4
LT
341/*
342 * copy one vm_area from one task to the other. Assumes the page tables
343 * already present in the new task to be cleared in the whole range
344 * covered by this vma.
1da177e4
LT
345 */
346
8c103762 347static inline void
1da177e4 348copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 349 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 350 unsigned long addr, int *rss)
1da177e4 351{
b5810039 352 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
353 pte_t pte = *src_pte;
354 struct page *page;
355 unsigned long pfn;
356
357 /* pte contains position in swap or file, so copy. */
358 if (unlikely(!pte_present(pte))) {
359 if (!pte_file(pte)) {
360 swap_duplicate(pte_to_swp_entry(pte));
361 /* make sure dst_mm is on swapoff's mmlist. */
362 if (unlikely(list_empty(&dst_mm->mmlist))) {
363 spin_lock(&mmlist_lock);
364 list_add(&dst_mm->mmlist, &src_mm->mmlist);
365 spin_unlock(&mmlist_lock);
366 }
367 }
ae859762 368 goto out_set_pte;
1da177e4
LT
369 }
370
b5810039
NP
371 /* If the region is VM_RESERVED, the mapping is not
372 * mapped via rmap - duplicate the pte as is.
373 */
374 if (vm_flags & VM_RESERVED)
375 goto out_set_pte;
376
1da177e4 377 pfn = pte_pfn(pte);
b5810039
NP
378 /* If the pte points outside of valid memory but
379 * the region is not VM_RESERVED, we have a problem.
1da177e4 380 */
b5810039
NP
381 if (unlikely(!pfn_valid(pfn))) {
382 print_bad_pte(vma, pte, addr);
383 goto out_set_pte; /* try to do something sane */
384 }
1da177e4 385
b5810039 386 page = pfn_to_page(pfn);
1da177e4
LT
387
388 /*
389 * If it's a COW mapping, write protect it both
390 * in the parent and the child
391 */
392 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
393 ptep_set_wrprotect(src_mm, addr, src_pte);
394 pte = *src_pte;
395 }
396
397 /*
398 * If it's a shared mapping, mark it clean in
399 * the child
400 */
401 if (vm_flags & VM_SHARED)
402 pte = pte_mkclean(pte);
403 pte = pte_mkold(pte);
404 get_page(page);
1da177e4 405 page_dup_rmap(page);
8c103762 406 rss[!!PageAnon(page)]++;
ae859762
HD
407
408out_set_pte:
409 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
410}
411
412static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
413 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
414 unsigned long addr, unsigned long end)
415{
416 pte_t *src_pte, *dst_pte;
c74df32c 417 spinlock_t *src_ptl, *dst_ptl;
e040f218 418 int progress = 0;
8c103762 419 int rss[2];
1da177e4
LT
420
421again:
ae859762 422 rss[1] = rss[0] = 0;
c74df32c 423 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
424 if (!dst_pte)
425 return -ENOMEM;
426 src_pte = pte_offset_map_nested(src_pmd, addr);
c74df32c
HD
427 src_ptl = &src_mm->page_table_lock;
428 spin_lock(src_ptl);
1da177e4 429
1da177e4
LT
430 do {
431 /*
432 * We are holding two locks at this point - either of them
433 * could generate latencies in another task on another CPU.
434 */
e040f218
HD
435 if (progress >= 32) {
436 progress = 0;
437 if (need_resched() ||
c74df32c
HD
438 need_lockbreak(src_ptl) ||
439 need_lockbreak(dst_ptl))
e040f218
HD
440 break;
441 }
1da177e4
LT
442 if (pte_none(*src_pte)) {
443 progress++;
444 continue;
445 }
8c103762 446 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
447 progress += 8;
448 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 449
c74df32c 450 spin_unlock(src_ptl);
1da177e4 451 pte_unmap_nested(src_pte - 1);
ae859762 452 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
453 pte_unmap_unlock(dst_pte - 1, dst_ptl);
454 cond_resched();
1da177e4
LT
455 if (addr != end)
456 goto again;
457 return 0;
458}
459
460static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
461 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
462 unsigned long addr, unsigned long end)
463{
464 pmd_t *src_pmd, *dst_pmd;
465 unsigned long next;
466
467 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
468 if (!dst_pmd)
469 return -ENOMEM;
470 src_pmd = pmd_offset(src_pud, addr);
471 do {
472 next = pmd_addr_end(addr, end);
473 if (pmd_none_or_clear_bad(src_pmd))
474 continue;
475 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
476 vma, addr, next))
477 return -ENOMEM;
478 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
479 return 0;
480}
481
482static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
483 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
484 unsigned long addr, unsigned long end)
485{
486 pud_t *src_pud, *dst_pud;
487 unsigned long next;
488
489 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
490 if (!dst_pud)
491 return -ENOMEM;
492 src_pud = pud_offset(src_pgd, addr);
493 do {
494 next = pud_addr_end(addr, end);
495 if (pud_none_or_clear_bad(src_pud))
496 continue;
497 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
498 vma, addr, next))
499 return -ENOMEM;
500 } while (dst_pud++, src_pud++, addr = next, addr != end);
501 return 0;
502}
503
504int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
505 struct vm_area_struct *vma)
506{
507 pgd_t *src_pgd, *dst_pgd;
508 unsigned long next;
509 unsigned long addr = vma->vm_start;
510 unsigned long end = vma->vm_end;
511
d992895b
NP
512 /*
513 * Don't copy ptes where a page fault will fill them correctly.
514 * Fork becomes much lighter when there are big shared or private
515 * readonly mappings. The tradeoff is that copy_page_range is more
516 * efficient than faulting.
517 */
518 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
519 if (!vma->anon_vma)
520 return 0;
521 }
522
1da177e4
LT
523 if (is_vm_hugetlb_page(vma))
524 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
525
526 dst_pgd = pgd_offset(dst_mm, addr);
527 src_pgd = pgd_offset(src_mm, addr);
528 do {
529 next = pgd_addr_end(addr, end);
530 if (pgd_none_or_clear_bad(src_pgd))
531 continue;
532 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
533 vma, addr, next))
534 return -ENOMEM;
535 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
536 return 0;
537}
538
b5810039
NP
539static void zap_pte_range(struct mmu_gather *tlb,
540 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
541 unsigned long addr, unsigned long end,
542 struct zap_details *details)
543{
b5810039 544 struct mm_struct *mm = tlb->mm;
1da177e4 545 pte_t *pte;
ae859762
HD
546 int file_rss = 0;
547 int anon_rss = 0;
1da177e4
LT
548
549 pte = pte_offset_map(pmd, addr);
550 do {
551 pte_t ptent = *pte;
552 if (pte_none(ptent))
553 continue;
554 if (pte_present(ptent)) {
555 struct page *page = NULL;
b5810039
NP
556 if (!(vma->vm_flags & VM_RESERVED)) {
557 unsigned long pfn = pte_pfn(ptent);
558 if (unlikely(!pfn_valid(pfn)))
559 print_bad_pte(vma, ptent, addr);
560 else
561 page = pfn_to_page(pfn);
1da177e4
LT
562 }
563 if (unlikely(details) && page) {
564 /*
565 * unmap_shared_mapping_pages() wants to
566 * invalidate cache without truncating:
567 * unmap shared but keep private pages.
568 */
569 if (details->check_mapping &&
570 details->check_mapping != page->mapping)
571 continue;
572 /*
573 * Each page->index must be checked when
574 * invalidating or truncating nonlinear.
575 */
576 if (details->nonlinear_vma &&
577 (page->index < details->first_index ||
578 page->index > details->last_index))
579 continue;
580 }
b5810039 581 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 582 tlb->fullmm);
1da177e4
LT
583 tlb_remove_tlb_entry(tlb, pte, addr);
584 if (unlikely(!page))
585 continue;
586 if (unlikely(details) && details->nonlinear_vma
587 && linear_page_index(details->nonlinear_vma,
588 addr) != page->index)
b5810039 589 set_pte_at(mm, addr, pte,
1da177e4 590 pgoff_to_pte(page->index));
1da177e4 591 if (PageAnon(page))
86d912f4 592 anon_rss--;
6237bcd9
HD
593 else {
594 if (pte_dirty(ptent))
595 set_page_dirty(page);
596 if (pte_young(ptent))
597 mark_page_accessed(page);
86d912f4 598 file_rss--;
6237bcd9 599 }
1da177e4
LT
600 page_remove_rmap(page);
601 tlb_remove_page(tlb, page);
602 continue;
603 }
604 /*
605 * If details->check_mapping, we leave swap entries;
606 * if details->nonlinear_vma, we leave file entries.
607 */
608 if (unlikely(details))
609 continue;
610 if (!pte_file(ptent))
611 free_swap_and_cache(pte_to_swp_entry(ptent));
b5810039 612 pte_clear_full(mm, addr, pte, tlb->fullmm);
1da177e4 613 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 614
86d912f4 615 add_mm_rss(mm, file_rss, anon_rss);
1da177e4
LT
616 pte_unmap(pte - 1);
617}
618
b5810039
NP
619static inline void zap_pmd_range(struct mmu_gather *tlb,
620 struct vm_area_struct *vma, pud_t *pud,
1da177e4
LT
621 unsigned long addr, unsigned long end,
622 struct zap_details *details)
623{
624 pmd_t *pmd;
625 unsigned long next;
626
627 pmd = pmd_offset(pud, addr);
628 do {
629 next = pmd_addr_end(addr, end);
630 if (pmd_none_or_clear_bad(pmd))
631 continue;
b5810039 632 zap_pte_range(tlb, vma, pmd, addr, next, details);
1da177e4
LT
633 } while (pmd++, addr = next, addr != end);
634}
635
b5810039
NP
636static inline void zap_pud_range(struct mmu_gather *tlb,
637 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4
LT
638 unsigned long addr, unsigned long end,
639 struct zap_details *details)
640{
641 pud_t *pud;
642 unsigned long next;
643
644 pud = pud_offset(pgd, addr);
645 do {
646 next = pud_addr_end(addr, end);
647 if (pud_none_or_clear_bad(pud))
648 continue;
b5810039 649 zap_pmd_range(tlb, vma, pud, addr, next, details);
1da177e4
LT
650 } while (pud++, addr = next, addr != end);
651}
652
653static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
654 unsigned long addr, unsigned long end,
655 struct zap_details *details)
656{
657 pgd_t *pgd;
658 unsigned long next;
659
660 if (details && !details->check_mapping && !details->nonlinear_vma)
661 details = NULL;
662
663 BUG_ON(addr >= end);
664 tlb_start_vma(tlb, vma);
665 pgd = pgd_offset(vma->vm_mm, addr);
666 do {
667 next = pgd_addr_end(addr, end);
668 if (pgd_none_or_clear_bad(pgd))
669 continue;
b5810039 670 zap_pud_range(tlb, vma, pgd, addr, next, details);
1da177e4
LT
671 } while (pgd++, addr = next, addr != end);
672 tlb_end_vma(tlb, vma);
673}
674
675#ifdef CONFIG_PREEMPT
676# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
677#else
678/* No preempt: go for improved straight-line efficiency */
679# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
680#endif
681
682/**
683 * unmap_vmas - unmap a range of memory covered by a list of vma's
684 * @tlbp: address of the caller's struct mmu_gather
685 * @mm: the controlling mm_struct
686 * @vma: the starting vma
687 * @start_addr: virtual address at which to start unmapping
688 * @end_addr: virtual address at which to end unmapping
689 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
690 * @details: details of nonlinear truncation or shared cache invalidation
691 *
ee39b37b 692 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4
LT
693 *
694 * Unmap all pages in the vma list. Called under page_table_lock.
695 *
696 * We aim to not hold page_table_lock for too long (for scheduling latency
697 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
698 * return the ending mmu_gather to the caller.
699 *
700 * Only addresses between `start' and `end' will be unmapped.
701 *
702 * The VMA list must be sorted in ascending virtual address order.
703 *
704 * unmap_vmas() assumes that the caller will flush the whole unmapped address
705 * range after unmap_vmas() returns. So the only responsibility here is to
706 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
707 * drops the lock and schedules.
708 */
ee39b37b 709unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
1da177e4
LT
710 struct vm_area_struct *vma, unsigned long start_addr,
711 unsigned long end_addr, unsigned long *nr_accounted,
712 struct zap_details *details)
713{
714 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
715 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
716 int tlb_start_valid = 0;
ee39b37b 717 unsigned long start = start_addr;
1da177e4 718 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 719 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
720
721 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
722 unsigned long end;
723
724 start = max(vma->vm_start, start_addr);
725 if (start >= vma->vm_end)
726 continue;
727 end = min(vma->vm_end, end_addr);
728 if (end <= vma->vm_start)
729 continue;
730
731 if (vma->vm_flags & VM_ACCOUNT)
732 *nr_accounted += (end - start) >> PAGE_SHIFT;
733
1da177e4
LT
734 while (start != end) {
735 unsigned long block;
736
737 if (!tlb_start_valid) {
738 tlb_start = start;
739 tlb_start_valid = 1;
740 }
741
742 if (is_vm_hugetlb_page(vma)) {
743 block = end - start;
744 unmap_hugepage_range(vma, start, end);
745 } else {
746 block = min(zap_bytes, end - start);
747 unmap_page_range(*tlbp, vma, start,
748 start + block, details);
749 }
750
751 start += block;
752 zap_bytes -= block;
753 if ((long)zap_bytes > 0)
754 continue;
755
756 tlb_finish_mmu(*tlbp, tlb_start, start);
757
758 if (need_resched() ||
759 need_lockbreak(&mm->page_table_lock) ||
760 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
761 if (i_mmap_lock) {
762 /* must reset count of rss freed */
763 *tlbp = tlb_gather_mmu(mm, fullmm);
1da177e4
LT
764 goto out;
765 }
766 spin_unlock(&mm->page_table_lock);
767 cond_resched();
768 spin_lock(&mm->page_table_lock);
769 }
770
771 *tlbp = tlb_gather_mmu(mm, fullmm);
772 tlb_start_valid = 0;
773 zap_bytes = ZAP_BLOCK_SIZE;
774 }
775 }
776out:
ee39b37b 777 return start; /* which is now the end (or restart) address */
1da177e4
LT
778}
779
780/**
781 * zap_page_range - remove user pages in a given range
782 * @vma: vm_area_struct holding the applicable pages
783 * @address: starting address of pages to zap
784 * @size: number of bytes to zap
785 * @details: details of nonlinear truncation or shared cache invalidation
786 */
ee39b37b 787unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
788 unsigned long size, struct zap_details *details)
789{
790 struct mm_struct *mm = vma->vm_mm;
791 struct mmu_gather *tlb;
792 unsigned long end = address + size;
793 unsigned long nr_accounted = 0;
794
795 if (is_vm_hugetlb_page(vma)) {
796 zap_hugepage_range(vma, address, size);
ee39b37b 797 return end;
1da177e4
LT
798 }
799
800 lru_add_drain();
801 spin_lock(&mm->page_table_lock);
802 tlb = tlb_gather_mmu(mm, 0);
365e9c87 803 update_hiwater_rss(mm);
ee39b37b 804 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
1da177e4
LT
805 tlb_finish_mmu(tlb, address, end);
806 spin_unlock(&mm->page_table_lock);
ee39b37b 807 return end;
1da177e4
LT
808}
809
810/*
811 * Do a quick page-table lookup for a single page.
812 * mm->page_table_lock must be held.
813 */
1aaf18ff
AM
814static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
815 int read, int write, int accessed)
1da177e4
LT
816{
817 pgd_t *pgd;
818 pud_t *pud;
819 pmd_t *pmd;
820 pte_t *ptep, pte;
821 unsigned long pfn;
822 struct page *page;
823
824 page = follow_huge_addr(mm, address, write);
825 if (! IS_ERR(page))
826 return page;
827
828 pgd = pgd_offset(mm, address);
829 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
830 goto out;
831
832 pud = pud_offset(pgd, address);
833 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
834 goto out;
835
836 pmd = pmd_offset(pud, address);
837 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
838 goto out;
839 if (pmd_huge(*pmd))
840 return follow_huge_pmd(mm, address, pmd, write);
841
842 ptep = pte_offset_map(pmd, address);
843 if (!ptep)
844 goto out;
845
846 pte = *ptep;
847 pte_unmap(ptep);
848 if (pte_present(pte)) {
f33ea7f4 849 if (write && !pte_write(pte))
1da177e4
LT
850 goto out;
851 if (read && !pte_read(pte))
852 goto out;
853 pfn = pte_pfn(pte);
854 if (pfn_valid(pfn)) {
855 page = pfn_to_page(pfn);
f33ea7f4
NP
856 if (accessed) {
857 if (write && !pte_dirty(pte) &&!PageDirty(page))
858 set_page_dirty(page);
1aaf18ff 859 mark_page_accessed(page);
f33ea7f4 860 }
1da177e4
LT
861 return page;
862 }
863 }
864
865out:
866 return NULL;
867}
868
1aaf18ff 869inline struct page *
1da177e4
LT
870follow_page(struct mm_struct *mm, unsigned long address, int write)
871{
1aaf18ff 872 return __follow_page(mm, address, 0, write, 1);
1da177e4
LT
873}
874
1aaf18ff
AM
875/*
876 * check_user_page_readable() can be called frm niterrupt context by oprofile,
877 * so we need to avoid taking any non-irq-safe locks
878 */
879int check_user_page_readable(struct mm_struct *mm, unsigned long address)
1da177e4 880{
1aaf18ff 881 return __follow_page(mm, address, 1, 0, 0) != NULL;
1da177e4 882}
1da177e4
LT
883EXPORT_SYMBOL(check_user_page_readable);
884
1da177e4
LT
885static inline int
886untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
887 unsigned long address)
888{
889 pgd_t *pgd;
890 pud_t *pud;
891 pmd_t *pmd;
892
893 /* Check if the vma is for an anonymous mapping. */
894 if (vma->vm_ops && vma->vm_ops->nopage)
895 return 0;
896
897 /* Check if page directory entry exists. */
898 pgd = pgd_offset(mm, address);
899 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
900 return 1;
901
902 pud = pud_offset(pgd, address);
903 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
904 return 1;
905
906 /* Check if page middle directory entry exists. */
907 pmd = pmd_offset(pud, address);
908 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
909 return 1;
910
911 /* There is a pte slot for 'address' in 'mm'. */
912 return 0;
913}
914
1da177e4
LT
915int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
916 unsigned long start, int len, int write, int force,
917 struct page **pages, struct vm_area_struct **vmas)
918{
919 int i;
920 unsigned int flags;
921
922 /*
923 * Require read or write permissions.
924 * If 'force' is set, we only require the "MAY" flags.
925 */
926 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
927 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
928 i = 0;
929
930 do {
931 struct vm_area_struct * vma;
932
933 vma = find_extend_vma(mm, start);
934 if (!vma && in_gate_area(tsk, start)) {
935 unsigned long pg = start & PAGE_MASK;
936 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
937 pgd_t *pgd;
938 pud_t *pud;
939 pmd_t *pmd;
940 pte_t *pte;
941 if (write) /* user gate pages are read-only */
942 return i ? : -EFAULT;
943 if (pg > TASK_SIZE)
944 pgd = pgd_offset_k(pg);
945 else
946 pgd = pgd_offset_gate(mm, pg);
947 BUG_ON(pgd_none(*pgd));
948 pud = pud_offset(pgd, pg);
949 BUG_ON(pud_none(*pud));
950 pmd = pmd_offset(pud, pg);
690dbe1c
HD
951 if (pmd_none(*pmd))
952 return i ? : -EFAULT;
1da177e4 953 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
954 if (pte_none(*pte)) {
955 pte_unmap(pte);
956 return i ? : -EFAULT;
957 }
1da177e4
LT
958 if (pages) {
959 pages[i] = pte_page(*pte);
960 get_page(pages[i]);
961 }
962 pte_unmap(pte);
963 if (vmas)
964 vmas[i] = gate_vma;
965 i++;
966 start += PAGE_SIZE;
967 len--;
968 continue;
969 }
970
b5810039 971 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
1da177e4
LT
972 || !(flags & vma->vm_flags))
973 return i ? : -EFAULT;
974
975 if (is_vm_hugetlb_page(vma)) {
976 i = follow_hugetlb_page(mm, vma, pages, vmas,
977 &start, &len, i);
978 continue;
979 }
980 spin_lock(&mm->page_table_lock);
981 do {
f33ea7f4 982 int write_access = write;
08ef4729 983 struct page *page;
1da177e4
LT
984
985 cond_resched_lock(&mm->page_table_lock);
f33ea7f4 986 while (!(page = follow_page(mm, start, write_access))) {
a68d2ebc
LT
987 int ret;
988
1da177e4
LT
989 /*
990 * Shortcut for anonymous pages. We don't want
991 * to force the creation of pages tables for
08ef4729 992 * insanely big anonymously mapped areas that
1da177e4
LT
993 * nobody touched so far. This is important
994 * for doing a core dump for these mappings.
995 */
4ceb5db9 996 if (!write && untouched_anonymous_page(mm,vma,start)) {
08ef4729 997 page = ZERO_PAGE(start);
1da177e4
LT
998 break;
999 }
1000 spin_unlock(&mm->page_table_lock);
a68d2ebc
LT
1001 ret = __handle_mm_fault(mm, vma, start, write_access);
1002
1003 /*
1004 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1005 * broken COW when necessary, even if maybe_mkwrite
1006 * decided not to set pte_write. We can thus safely do
1007 * subsequent page lookups as if they were reads.
1008 */
1009 if (ret & VM_FAULT_WRITE)
f33ea7f4 1010 write_access = 0;
a68d2ebc
LT
1011
1012 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
1013 case VM_FAULT_MINOR:
1014 tsk->min_flt++;
1015 break;
1016 case VM_FAULT_MAJOR:
1017 tsk->maj_flt++;
1018 break;
1019 case VM_FAULT_SIGBUS:
1020 return i ? i : -EFAULT;
1021 case VM_FAULT_OOM:
1022 return i ? i : -ENOMEM;
1023 default:
1024 BUG();
1025 }
1da177e4
LT
1026 spin_lock(&mm->page_table_lock);
1027 }
1028 if (pages) {
08ef4729
HD
1029 pages[i] = page;
1030 flush_dcache_page(page);
b5810039 1031 page_cache_get(page);
1da177e4
LT
1032 }
1033 if (vmas)
1034 vmas[i] = vma;
1035 i++;
1036 start += PAGE_SIZE;
1037 len--;
08ef4729 1038 } while (len && start < vma->vm_end);
1da177e4 1039 spin_unlock(&mm->page_table_lock);
08ef4729 1040 } while (len);
1da177e4
LT
1041 return i;
1042}
1da177e4
LT
1043EXPORT_SYMBOL(get_user_pages);
1044
1045static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1046 unsigned long addr, unsigned long end, pgprot_t prot)
1047{
1048 pte_t *pte;
c74df32c 1049 spinlock_t *ptl;
1da177e4 1050
c74df32c 1051 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1052 if (!pte)
1053 return -ENOMEM;
1054 do {
b5810039
NP
1055 struct page *page = ZERO_PAGE(addr);
1056 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1057 page_cache_get(page);
1058 page_add_file_rmap(page);
1059 inc_mm_counter(mm, file_rss);
1da177e4
LT
1060 BUG_ON(!pte_none(*pte));
1061 set_pte_at(mm, addr, pte, zero_pte);
1062 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1063 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1064 return 0;
1065}
1066
1067static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1068 unsigned long addr, unsigned long end, pgprot_t prot)
1069{
1070 pmd_t *pmd;
1071 unsigned long next;
1072
1073 pmd = pmd_alloc(mm, pud, addr);
1074 if (!pmd)
1075 return -ENOMEM;
1076 do {
1077 next = pmd_addr_end(addr, end);
1078 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1079 return -ENOMEM;
1080 } while (pmd++, addr = next, addr != end);
1081 return 0;
1082}
1083
1084static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1085 unsigned long addr, unsigned long end, pgprot_t prot)
1086{
1087 pud_t *pud;
1088 unsigned long next;
1089
1090 pud = pud_alloc(mm, pgd, addr);
1091 if (!pud)
1092 return -ENOMEM;
1093 do {
1094 next = pud_addr_end(addr, end);
1095 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1096 return -ENOMEM;
1097 } while (pud++, addr = next, addr != end);
1098 return 0;
1099}
1100
1101int zeromap_page_range(struct vm_area_struct *vma,
1102 unsigned long addr, unsigned long size, pgprot_t prot)
1103{
1104 pgd_t *pgd;
1105 unsigned long next;
1106 unsigned long end = addr + size;
1107 struct mm_struct *mm = vma->vm_mm;
1108 int err;
1109
1110 BUG_ON(addr >= end);
1111 pgd = pgd_offset(mm, addr);
1112 flush_cache_range(vma, addr, end);
1da177e4
LT
1113 do {
1114 next = pgd_addr_end(addr, end);
1115 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1116 if (err)
1117 break;
1118 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1119 return err;
1120}
1121
1122/*
1123 * maps a range of physical memory into the requested pages. the old
1124 * mappings are removed. any references to nonexistent pages results
1125 * in null mappings (currently treated as "copy-on-access")
1126 */
1127static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1128 unsigned long addr, unsigned long end,
1129 unsigned long pfn, pgprot_t prot)
1130{
1131 pte_t *pte;
c74df32c 1132 spinlock_t *ptl;
1da177e4 1133
c74df32c 1134 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1135 if (!pte)
1136 return -ENOMEM;
1137 do {
1138 BUG_ON(!pte_none(*pte));
b5810039 1139 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1da177e4
LT
1140 pfn++;
1141 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1142 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1143 return 0;
1144}
1145
1146static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1147 unsigned long addr, unsigned long end,
1148 unsigned long pfn, pgprot_t prot)
1149{
1150 pmd_t *pmd;
1151 unsigned long next;
1152
1153 pfn -= addr >> PAGE_SHIFT;
1154 pmd = pmd_alloc(mm, pud, addr);
1155 if (!pmd)
1156 return -ENOMEM;
1157 do {
1158 next = pmd_addr_end(addr, end);
1159 if (remap_pte_range(mm, pmd, addr, next,
1160 pfn + (addr >> PAGE_SHIFT), prot))
1161 return -ENOMEM;
1162 } while (pmd++, addr = next, addr != end);
1163 return 0;
1164}
1165
1166static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1167 unsigned long addr, unsigned long end,
1168 unsigned long pfn, pgprot_t prot)
1169{
1170 pud_t *pud;
1171 unsigned long next;
1172
1173 pfn -= addr >> PAGE_SHIFT;
1174 pud = pud_alloc(mm, pgd, addr);
1175 if (!pud)
1176 return -ENOMEM;
1177 do {
1178 next = pud_addr_end(addr, end);
1179 if (remap_pmd_range(mm, pud, addr, next,
1180 pfn + (addr >> PAGE_SHIFT), prot))
1181 return -ENOMEM;
1182 } while (pud++, addr = next, addr != end);
1183 return 0;
1184}
1185
1186/* Note: this is only safe if the mm semaphore is held when called. */
1187int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1188 unsigned long pfn, unsigned long size, pgprot_t prot)
1189{
1190 pgd_t *pgd;
1191 unsigned long next;
2d15cab8 1192 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1193 struct mm_struct *mm = vma->vm_mm;
1194 int err;
1195
1196 /*
1197 * Physically remapped pages are special. Tell the
1198 * rest of the world about it:
1199 * VM_IO tells people not to look at these pages
1200 * (accesses can have side effects).
b5810039
NP
1201 * VM_RESERVED tells the core MM not to "manage" these pages
1202 * (e.g. refcount, mapcount, try to swap them out).
1da177e4
LT
1203 */
1204 vma->vm_flags |= VM_IO | VM_RESERVED;
1205
1206 BUG_ON(addr >= end);
1207 pfn -= addr >> PAGE_SHIFT;
1208 pgd = pgd_offset(mm, addr);
1209 flush_cache_range(vma, addr, end);
1da177e4
LT
1210 do {
1211 next = pgd_addr_end(addr, end);
1212 err = remap_pud_range(mm, pgd, addr, next,
1213 pfn + (addr >> PAGE_SHIFT), prot);
1214 if (err)
1215 break;
1216 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1217 return err;
1218}
1219EXPORT_SYMBOL(remap_pfn_range);
1220
8f4e2101
HD
1221/*
1222 * handle_pte_fault chooses page fault handler according to an entry
1223 * which was read non-atomically. Before making any commitment, on
1224 * those architectures or configurations (e.g. i386 with PAE) which
1225 * might give a mix of unmatched parts, do_swap_page and do_file_page
1226 * must check under lock before unmapping the pte and proceeding
1227 * (but do_wp_page is only called after already making such a check;
1228 * and do_anonymous_page and do_no_page can safely check later on).
1229 */
1230static inline int pte_unmap_same(struct mm_struct *mm,
1231 pte_t *page_table, pte_t orig_pte)
1232{
1233 int same = 1;
1234#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1235 if (sizeof(pte_t) > sizeof(unsigned long)) {
1236 spin_lock(&mm->page_table_lock);
1237 same = pte_same(*page_table, orig_pte);
1238 spin_unlock(&mm->page_table_lock);
1239 }
1240#endif
1241 pte_unmap(page_table);
1242 return same;
1243}
1244
1da177e4
LT
1245/*
1246 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1247 * servicing faults for write access. In the normal case, do always want
1248 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1249 * that do not have writing enabled, when used by access_process_vm.
1250 */
1251static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1252{
1253 if (likely(vma->vm_flags & VM_WRITE))
1254 pte = pte_mkwrite(pte);
1255 return pte;
1256}
1257
1da177e4
LT
1258/*
1259 * This routine handles present pages, when users try to write
1260 * to a shared page. It is done by copying the page to a new address
1261 * and decrementing the shared-page counter for the old page.
1262 *
1da177e4
LT
1263 * Note that this routine assumes that the protection checks have been
1264 * done by the caller (the low-level page fault routine in most cases).
1265 * Thus we can safely just mark it writable once we've done any necessary
1266 * COW.
1267 *
1268 * We also mark the page dirty at this point even though the page will
1269 * change only once the write actually happens. This avoids a few races,
1270 * and potentially makes it more efficient.
1271 *
8f4e2101
HD
1272 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1273 * but allow concurrent faults), with pte both mapped and locked.
1274 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1275 */
65500d23
HD
1276static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1278 spinlock_t *ptl, pte_t orig_pte)
1da177e4
LT
1279{
1280 struct page *old_page, *new_page;
65500d23 1281 unsigned long pfn = pte_pfn(orig_pte);
1da177e4 1282 pte_t entry;
65500d23 1283 int ret = VM_FAULT_MINOR;
1da177e4 1284
b5810039
NP
1285 BUG_ON(vma->vm_flags & VM_RESERVED);
1286
1da177e4
LT
1287 if (unlikely(!pfn_valid(pfn))) {
1288 /*
65500d23 1289 * Page table corrupted: show pte and kill process.
1da177e4 1290 */
b5810039 1291 print_bad_pte(vma, orig_pte, address);
65500d23
HD
1292 ret = VM_FAULT_OOM;
1293 goto unlock;
1da177e4
LT
1294 }
1295 old_page = pfn_to_page(pfn);
1296
d296e9cd 1297 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1da177e4
LT
1298 int reuse = can_share_swap_page(old_page);
1299 unlock_page(old_page);
1300 if (reuse) {
1301 flush_cache_page(vma, address, pfn);
65500d23
HD
1302 entry = pte_mkyoung(orig_pte);
1303 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4
LT
1304 ptep_set_access_flags(vma, address, page_table, entry, 1);
1305 update_mmu_cache(vma, address, entry);
1306 lazy_mmu_prot_update(entry);
65500d23
HD
1307 ret |= VM_FAULT_WRITE;
1308 goto unlock;
1da177e4
LT
1309 }
1310 }
1da177e4
LT
1311
1312 /*
1313 * Ok, we need to copy. Oh, well..
1314 */
b5810039 1315 page_cache_get(old_page);
8f4e2101 1316 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1317
1318 if (unlikely(anon_vma_prepare(vma)))
65500d23 1319 goto oom;
1da177e4
LT
1320 if (old_page == ZERO_PAGE(address)) {
1321 new_page = alloc_zeroed_user_highpage(vma, address);
1322 if (!new_page)
65500d23 1323 goto oom;
1da177e4
LT
1324 } else {
1325 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1326 if (!new_page)
65500d23 1327 goto oom;
1da177e4
LT
1328 copy_user_highpage(new_page, old_page, address);
1329 }
65500d23 1330
1da177e4
LT
1331 /*
1332 * Re-check the pte - we dropped the lock
1333 */
8f4e2101 1334 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1335 if (likely(pte_same(*page_table, orig_pte))) {
b5810039
NP
1336 page_remove_rmap(old_page);
1337 if (!PageAnon(old_page)) {
4294621f 1338 inc_mm_counter(mm, anon_rss);
b5810039 1339 dec_mm_counter(mm, file_rss);
4294621f 1340 }
1da177e4 1341 flush_cache_page(vma, address, pfn);
65500d23
HD
1342 entry = mk_pte(new_page, vma->vm_page_prot);
1343 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1344 ptep_establish(vma, address, page_table, entry);
1345 update_mmu_cache(vma, address, entry);
1346 lazy_mmu_prot_update(entry);
1da177e4
LT
1347 lru_cache_add_active(new_page);
1348 page_add_anon_rmap(new_page, vma, address);
1349
1350 /* Free the old page.. */
1351 new_page = old_page;
f33ea7f4 1352 ret |= VM_FAULT_WRITE;
1da177e4 1353 }
1da177e4
LT
1354 page_cache_release(new_page);
1355 page_cache_release(old_page);
65500d23 1356unlock:
8f4e2101 1357 pte_unmap_unlock(page_table, ptl);
f33ea7f4 1358 return ret;
65500d23 1359oom:
1da177e4
LT
1360 page_cache_release(old_page);
1361 return VM_FAULT_OOM;
1362}
1363
1364/*
1365 * Helper functions for unmap_mapping_range().
1366 *
1367 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1368 *
1369 * We have to restart searching the prio_tree whenever we drop the lock,
1370 * since the iterator is only valid while the lock is held, and anyway
1371 * a later vma might be split and reinserted earlier while lock dropped.
1372 *
1373 * The list of nonlinear vmas could be handled more efficiently, using
1374 * a placeholder, but handle it in the same way until a need is shown.
1375 * It is important to search the prio_tree before nonlinear list: a vma
1376 * may become nonlinear and be shifted from prio_tree to nonlinear list
1377 * while the lock is dropped; but never shifted from list to prio_tree.
1378 *
1379 * In order to make forward progress despite restarting the search,
1380 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1381 * quickly skip it next time around. Since the prio_tree search only
1382 * shows us those vmas affected by unmapping the range in question, we
1383 * can't efficiently keep all vmas in step with mapping->truncate_count:
1384 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1385 * mapping->truncate_count and vma->vm_truncate_count are protected by
1386 * i_mmap_lock.
1387 *
1388 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1389 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1390 * and restart from that address when we reach that vma again. It might
1391 * have been split or merged, shrunk or extended, but never shifted: so
1392 * restart_addr remains valid so long as it remains in the vma's range.
1393 * unmap_mapping_range forces truncate_count to leap over page-aligned
1394 * values so we can save vma's restart_addr in its truncate_count field.
1395 */
1396#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1397
1398static void reset_vma_truncate_counts(struct address_space *mapping)
1399{
1400 struct vm_area_struct *vma;
1401 struct prio_tree_iter iter;
1402
1403 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1404 vma->vm_truncate_count = 0;
1405 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1406 vma->vm_truncate_count = 0;
1407}
1408
1409static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1410 unsigned long start_addr, unsigned long end_addr,
1411 struct zap_details *details)
1412{
1413 unsigned long restart_addr;
1414 int need_break;
1415
1416again:
1417 restart_addr = vma->vm_truncate_count;
1418 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1419 start_addr = restart_addr;
1420 if (start_addr >= end_addr) {
1421 /* Top of vma has been split off since last time */
1422 vma->vm_truncate_count = details->truncate_count;
1423 return 0;
1424 }
1425 }
1426
ee39b37b
HD
1427 restart_addr = zap_page_range(vma, start_addr,
1428 end_addr - start_addr, details);
1da177e4
LT
1429
1430 /*
1431 * We cannot rely on the break test in unmap_vmas:
1432 * on the one hand, we don't want to restart our loop
1433 * just because that broke out for the page_table_lock;
1434 * on the other hand, it does no test when vma is small.
1435 */
1436 need_break = need_resched() ||
1437 need_lockbreak(details->i_mmap_lock);
1438
ee39b37b 1439 if (restart_addr >= end_addr) {
1da177e4
LT
1440 /* We have now completed this vma: mark it so */
1441 vma->vm_truncate_count = details->truncate_count;
1442 if (!need_break)
1443 return 0;
1444 } else {
1445 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1446 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1447 if (!need_break)
1448 goto again;
1449 }
1450
1451 spin_unlock(details->i_mmap_lock);
1452 cond_resched();
1453 spin_lock(details->i_mmap_lock);
1454 return -EINTR;
1455}
1456
1457static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1458 struct zap_details *details)
1459{
1460 struct vm_area_struct *vma;
1461 struct prio_tree_iter iter;
1462 pgoff_t vba, vea, zba, zea;
1463
1464restart:
1465 vma_prio_tree_foreach(vma, &iter, root,
1466 details->first_index, details->last_index) {
1467 /* Skip quickly over those we have already dealt with */
1468 if (vma->vm_truncate_count == details->truncate_count)
1469 continue;
1470
1471 vba = vma->vm_pgoff;
1472 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1473 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1474 zba = details->first_index;
1475 if (zba < vba)
1476 zba = vba;
1477 zea = details->last_index;
1478 if (zea > vea)
1479 zea = vea;
1480
1481 if (unmap_mapping_range_vma(vma,
1482 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1483 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1484 details) < 0)
1485 goto restart;
1486 }
1487}
1488
1489static inline void unmap_mapping_range_list(struct list_head *head,
1490 struct zap_details *details)
1491{
1492 struct vm_area_struct *vma;
1493
1494 /*
1495 * In nonlinear VMAs there is no correspondence between virtual address
1496 * offset and file offset. So we must perform an exhaustive search
1497 * across *all* the pages in each nonlinear VMA, not just the pages
1498 * whose virtual address lies outside the file truncation point.
1499 */
1500restart:
1501 list_for_each_entry(vma, head, shared.vm_set.list) {
1502 /* Skip quickly over those we have already dealt with */
1503 if (vma->vm_truncate_count == details->truncate_count)
1504 continue;
1505 details->nonlinear_vma = vma;
1506 if (unmap_mapping_range_vma(vma, vma->vm_start,
1507 vma->vm_end, details) < 0)
1508 goto restart;
1509 }
1510}
1511
1512/**
1513 * unmap_mapping_range - unmap the portion of all mmaps
1514 * in the specified address_space corresponding to the specified
1515 * page range in the underlying file.
3d41088f 1516 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1517 * @holebegin: byte in first page to unmap, relative to the start of
1518 * the underlying file. This will be rounded down to a PAGE_SIZE
1519 * boundary. Note that this is different from vmtruncate(), which
1520 * must keep the partial page. In contrast, we must get rid of
1521 * partial pages.
1522 * @holelen: size of prospective hole in bytes. This will be rounded
1523 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1524 * end of the file.
1525 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1526 * but 0 when invalidating pagecache, don't throw away private data.
1527 */
1528void unmap_mapping_range(struct address_space *mapping,
1529 loff_t const holebegin, loff_t const holelen, int even_cows)
1530{
1531 struct zap_details details;
1532 pgoff_t hba = holebegin >> PAGE_SHIFT;
1533 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1534
1535 /* Check for overflow. */
1536 if (sizeof(holelen) > sizeof(hlen)) {
1537 long long holeend =
1538 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1539 if (holeend & ~(long long)ULONG_MAX)
1540 hlen = ULONG_MAX - hba + 1;
1541 }
1542
1543 details.check_mapping = even_cows? NULL: mapping;
1544 details.nonlinear_vma = NULL;
1545 details.first_index = hba;
1546 details.last_index = hba + hlen - 1;
1547 if (details.last_index < details.first_index)
1548 details.last_index = ULONG_MAX;
1549 details.i_mmap_lock = &mapping->i_mmap_lock;
1550
1551 spin_lock(&mapping->i_mmap_lock);
1552
1553 /* serialize i_size write against truncate_count write */
1554 smp_wmb();
1555 /* Protect against page faults, and endless unmapping loops */
1556 mapping->truncate_count++;
1557 /*
1558 * For archs where spin_lock has inclusive semantics like ia64
1559 * this smp_mb() will prevent to read pagetable contents
1560 * before the truncate_count increment is visible to
1561 * other cpus.
1562 */
1563 smp_mb();
1564 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1565 if (mapping->truncate_count == 0)
1566 reset_vma_truncate_counts(mapping);
1567 mapping->truncate_count++;
1568 }
1569 details.truncate_count = mapping->truncate_count;
1570
1571 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1572 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1573 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1574 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1575 spin_unlock(&mapping->i_mmap_lock);
1576}
1577EXPORT_SYMBOL(unmap_mapping_range);
1578
1579/*
1580 * Handle all mappings that got truncated by a "truncate()"
1581 * system call.
1582 *
1583 * NOTE! We have to be ready to update the memory sharing
1584 * between the file and the memory map for a potential last
1585 * incomplete page. Ugly, but necessary.
1586 */
1587int vmtruncate(struct inode * inode, loff_t offset)
1588{
1589 struct address_space *mapping = inode->i_mapping;
1590 unsigned long limit;
1591
1592 if (inode->i_size < offset)
1593 goto do_expand;
1594 /*
1595 * truncation of in-use swapfiles is disallowed - it would cause
1596 * subsequent swapout to scribble on the now-freed blocks.
1597 */
1598 if (IS_SWAPFILE(inode))
1599 goto out_busy;
1600 i_size_write(inode, offset);
1601 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1602 truncate_inode_pages(mapping, offset);
1603 goto out_truncate;
1604
1605do_expand:
1606 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1607 if (limit != RLIM_INFINITY && offset > limit)
1608 goto out_sig;
1609 if (offset > inode->i_sb->s_maxbytes)
1610 goto out_big;
1611 i_size_write(inode, offset);
1612
1613out_truncate:
1614 if (inode->i_op && inode->i_op->truncate)
1615 inode->i_op->truncate(inode);
1616 return 0;
1617out_sig:
1618 send_sig(SIGXFSZ, current, 0);
1619out_big:
1620 return -EFBIG;
1621out_busy:
1622 return -ETXTBSY;
1623}
1624
1625EXPORT_SYMBOL(vmtruncate);
1626
1627/*
1628 * Primitive swap readahead code. We simply read an aligned block of
1629 * (1 << page_cluster) entries in the swap area. This method is chosen
1630 * because it doesn't cost us any seek time. We also make sure to queue
1631 * the 'original' request together with the readahead ones...
1632 *
1633 * This has been extended to use the NUMA policies from the mm triggering
1634 * the readahead.
1635 *
1636 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1637 */
1638void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1639{
1640#ifdef CONFIG_NUMA
1641 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1642#endif
1643 int i, num;
1644 struct page *new_page;
1645 unsigned long offset;
1646
1647 /*
1648 * Get the number of handles we should do readahead io to.
1649 */
1650 num = valid_swaphandles(entry, &offset);
1651 for (i = 0; i < num; offset++, i++) {
1652 /* Ok, do the async read-ahead now */
1653 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1654 offset), vma, addr);
1655 if (!new_page)
1656 break;
1657 page_cache_release(new_page);
1658#ifdef CONFIG_NUMA
1659 /*
1660 * Find the next applicable VMA for the NUMA policy.
1661 */
1662 addr += PAGE_SIZE;
1663 if (addr == 0)
1664 vma = NULL;
1665 if (vma) {
1666 if (addr >= vma->vm_end) {
1667 vma = next_vma;
1668 next_vma = vma ? vma->vm_next : NULL;
1669 }
1670 if (vma && addr < vma->vm_start)
1671 vma = NULL;
1672 } else {
1673 if (next_vma && addr >= next_vma->vm_start) {
1674 vma = next_vma;
1675 next_vma = vma->vm_next;
1676 }
1677 }
1678#endif
1679 }
1680 lru_add_drain(); /* Push any new pages onto the LRU now */
1681}
1682
1683/*
8f4e2101
HD
1684 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1685 * but allow concurrent faults), and pte mapped but not yet locked.
1686 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1687 */
65500d23
HD
1688static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1689 unsigned long address, pte_t *page_table, pmd_t *pmd,
1690 int write_access, pte_t orig_pte)
1da177e4 1691{
8f4e2101 1692 spinlock_t *ptl;
1da177e4 1693 struct page *page;
65500d23 1694 swp_entry_t entry;
1da177e4
LT
1695 pte_t pte;
1696 int ret = VM_FAULT_MINOR;
1697
8f4e2101
HD
1698 if (!pte_unmap_same(mm, page_table, orig_pte))
1699 goto out;
65500d23
HD
1700
1701 entry = pte_to_swp_entry(orig_pte);
1da177e4
LT
1702 page = lookup_swap_cache(entry);
1703 if (!page) {
1704 swapin_readahead(entry, address, vma);
1705 page = read_swap_cache_async(entry, vma, address);
1706 if (!page) {
1707 /*
8f4e2101
HD
1708 * Back out if somebody else faulted in this pte
1709 * while we released the pte lock.
1da177e4 1710 */
8f4e2101 1711 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1712 if (likely(pte_same(*page_table, orig_pte)))
1713 ret = VM_FAULT_OOM;
65500d23 1714 goto unlock;
1da177e4
LT
1715 }
1716
1717 /* Had to read the page from swap area: Major fault */
1718 ret = VM_FAULT_MAJOR;
1719 inc_page_state(pgmajfault);
1720 grab_swap_token();
1721 }
1722
1723 mark_page_accessed(page);
1724 lock_page(page);
1725
1726 /*
8f4e2101 1727 * Back out if somebody else already faulted in this pte.
1da177e4 1728 */
8f4e2101 1729 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 1730 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 1731 goto out_nomap;
b8107480
KK
1732
1733 if (unlikely(!PageUptodate(page))) {
1734 ret = VM_FAULT_SIGBUS;
1735 goto out_nomap;
1da177e4
LT
1736 }
1737
1738 /* The page isn't present yet, go ahead with the fault. */
1da177e4 1739
4294621f 1740 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1741 pte = mk_pte(page, vma->vm_page_prot);
1742 if (write_access && can_share_swap_page(page)) {
1743 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1744 write_access = 0;
1745 }
1da177e4
LT
1746
1747 flush_icache_page(vma, page);
1748 set_pte_at(mm, address, page_table, pte);
1749 page_add_anon_rmap(page, vma, address);
1750
c475a8ab
HD
1751 swap_free(entry);
1752 if (vm_swap_full())
1753 remove_exclusive_swap_page(page);
1754 unlock_page(page);
1755
1da177e4
LT
1756 if (write_access) {
1757 if (do_wp_page(mm, vma, address,
8f4e2101 1758 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1da177e4
LT
1759 ret = VM_FAULT_OOM;
1760 goto out;
1761 }
1762
1763 /* No need to invalidate - it was non-present before */
1764 update_mmu_cache(vma, address, pte);
1765 lazy_mmu_prot_update(pte);
65500d23 1766unlock:
8f4e2101 1767 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1768out:
1769 return ret;
b8107480 1770out_nomap:
8f4e2101 1771 pte_unmap_unlock(page_table, ptl);
b8107480
KK
1772 unlock_page(page);
1773 page_cache_release(page);
65500d23 1774 return ret;
1da177e4
LT
1775}
1776
1777/*
8f4e2101
HD
1778 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1779 * but allow concurrent faults), and pte mapped but not yet locked.
1780 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1781 */
65500d23
HD
1782static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1783 unsigned long address, pte_t *page_table, pmd_t *pmd,
1784 int write_access)
1da177e4 1785{
8f4e2101
HD
1786 struct page *page;
1787 spinlock_t *ptl;
1da177e4 1788 pte_t entry;
1da177e4 1789
1da177e4
LT
1790 if (write_access) {
1791 /* Allocate our own private page. */
1792 pte_unmap(page_table);
1da177e4
LT
1793
1794 if (unlikely(anon_vma_prepare(vma)))
65500d23
HD
1795 goto oom;
1796 page = alloc_zeroed_user_highpage(vma, address);
1da177e4 1797 if (!page)
65500d23 1798 goto oom;
1da177e4 1799
65500d23
HD
1800 entry = mk_pte(page, vma->vm_page_prot);
1801 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
8f4e2101
HD
1802
1803 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1804 if (!pte_none(*page_table))
1805 goto release;
1806 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1807 lru_cache_add_active(page);
1808 SetPageReferenced(page);
65500d23 1809 page_add_anon_rmap(page, vma, address);
b5810039 1810 } else {
8f4e2101
HD
1811 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1812 page = ZERO_PAGE(address);
1813 page_cache_get(page);
1814 entry = mk_pte(page, vma->vm_page_prot);
1815
1816 ptl = &mm->page_table_lock;
1817 spin_lock(ptl);
1818 if (!pte_none(*page_table))
1819 goto release;
b5810039
NP
1820 inc_mm_counter(mm, file_rss);
1821 page_add_file_rmap(page);
1da177e4
LT
1822 }
1823
65500d23 1824 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
1825
1826 /* No need to invalidate - it was non-present before */
65500d23 1827 update_mmu_cache(vma, address, entry);
1da177e4 1828 lazy_mmu_prot_update(entry);
65500d23 1829unlock:
8f4e2101 1830 pte_unmap_unlock(page_table, ptl);
1da177e4 1831 return VM_FAULT_MINOR;
8f4e2101
HD
1832release:
1833 page_cache_release(page);
1834 goto unlock;
65500d23 1835oom:
1da177e4
LT
1836 return VM_FAULT_OOM;
1837}
1838
1839/*
1840 * do_no_page() tries to create a new page mapping. It aggressively
1841 * tries to share with existing pages, but makes a separate copy if
1842 * the "write_access" parameter is true in order to avoid the next
1843 * page fault.
1844 *
1845 * As this is called only for pages that do not currently exist, we
1846 * do not need to flush old virtual caches or the TLB.
1847 *
8f4e2101
HD
1848 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1849 * but allow concurrent faults), and pte mapped but not yet locked.
1850 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1851 */
65500d23
HD
1852static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1853 unsigned long address, pte_t *page_table, pmd_t *pmd,
1854 int write_access)
1da177e4 1855{
8f4e2101 1856 spinlock_t *ptl;
65500d23 1857 struct page *new_page;
1da177e4
LT
1858 struct address_space *mapping = NULL;
1859 pte_t entry;
1860 unsigned int sequence = 0;
1861 int ret = VM_FAULT_MINOR;
1862 int anon = 0;
1863
1da177e4 1864 pte_unmap(page_table);
1da177e4
LT
1865
1866 if (vma->vm_file) {
1867 mapping = vma->vm_file->f_mapping;
1868 sequence = mapping->truncate_count;
1869 smp_rmb(); /* serializes i_size against truncate_count */
1870 }
1871retry:
1da177e4
LT
1872 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1873 /*
1874 * No smp_rmb is needed here as long as there's a full
1875 * spin_lock/unlock sequence inside the ->nopage callback
1876 * (for the pagecache lookup) that acts as an implicit
1877 * smp_mb() and prevents the i_size read to happen
1878 * after the next truncate_count read.
1879 */
1880
1881 /* no page was available -- either SIGBUS or OOM */
1882 if (new_page == NOPAGE_SIGBUS)
1883 return VM_FAULT_SIGBUS;
1884 if (new_page == NOPAGE_OOM)
1885 return VM_FAULT_OOM;
1886
1887 /*
1888 * Should we do an early C-O-W break?
1889 */
1890 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1891 struct page *page;
1892
1893 if (unlikely(anon_vma_prepare(vma)))
1894 goto oom;
1895 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1896 if (!page)
1897 goto oom;
1898 copy_user_highpage(page, new_page, address);
1899 page_cache_release(new_page);
1900 new_page = page;
1901 anon = 1;
1902 }
1903
8f4e2101 1904 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1905 /*
1906 * For a file-backed vma, someone could have truncated or otherwise
1907 * invalidated this page. If unmap_mapping_range got called,
1908 * retry getting the page.
1909 */
1910 if (mapping && unlikely(sequence != mapping->truncate_count)) {
8f4e2101 1911 pte_unmap_unlock(page_table, ptl);
1da177e4 1912 page_cache_release(new_page);
65500d23
HD
1913 cond_resched();
1914 sequence = mapping->truncate_count;
1915 smp_rmb();
1da177e4
LT
1916 goto retry;
1917 }
1da177e4
LT
1918
1919 /*
1920 * This silly early PAGE_DIRTY setting removes a race
1921 * due to the bad i386 page protection. But it's valid
1922 * for other architectures too.
1923 *
1924 * Note that if write_access is true, we either now have
1925 * an exclusive copy of the page, or this is a shared mapping,
1926 * so we can make it writable and dirty to avoid having to
1927 * handle that later.
1928 */
1929 /* Only go through if we didn't race with anybody else... */
1930 if (pte_none(*page_table)) {
1da177e4
LT
1931 flush_icache_page(vma, new_page);
1932 entry = mk_pte(new_page, vma->vm_page_prot);
1933 if (write_access)
1934 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935 set_pte_at(mm, address, page_table, entry);
1936 if (anon) {
4294621f 1937 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1938 lru_cache_add_active(new_page);
1939 page_add_anon_rmap(new_page, vma, address);
b5810039 1940 } else if (!(vma->vm_flags & VM_RESERVED)) {
4294621f 1941 inc_mm_counter(mm, file_rss);
1da177e4 1942 page_add_file_rmap(new_page);
4294621f 1943 }
1da177e4
LT
1944 } else {
1945 /* One of our sibling threads was faster, back out. */
1da177e4 1946 page_cache_release(new_page);
65500d23 1947 goto unlock;
1da177e4
LT
1948 }
1949
1950 /* no need to invalidate: a not-present page shouldn't be cached */
1951 update_mmu_cache(vma, address, entry);
1952 lazy_mmu_prot_update(entry);
65500d23 1953unlock:
8f4e2101 1954 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1955 return ret;
1956oom:
1957 page_cache_release(new_page);
65500d23 1958 return VM_FAULT_OOM;
1da177e4
LT
1959}
1960
1961/*
1962 * Fault of a previously existing named mapping. Repopulate the pte
1963 * from the encoded file_pte if possible. This enables swappable
1964 * nonlinear vmas.
8f4e2101
HD
1965 *
1966 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1967 * but allow concurrent faults), and pte mapped but not yet locked.
1968 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1969 */
65500d23
HD
1970static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1971 unsigned long address, pte_t *page_table, pmd_t *pmd,
1972 int write_access, pte_t orig_pte)
1da177e4 1973{
65500d23 1974 pgoff_t pgoff;
1da177e4
LT
1975 int err;
1976
8f4e2101
HD
1977 if (!pte_unmap_same(mm, page_table, orig_pte))
1978 return VM_FAULT_MINOR;
1da177e4 1979
65500d23
HD
1980 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1981 /*
1982 * Page table corrupted: show pte and kill process.
1983 */
b5810039 1984 print_bad_pte(vma, orig_pte, address);
65500d23
HD
1985 return VM_FAULT_OOM;
1986 }
1987 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1988
1989 pgoff = pte_to_pgoff(orig_pte);
1990 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1991 vma->vm_page_prot, pgoff, 0);
1da177e4
LT
1992 if (err == -ENOMEM)
1993 return VM_FAULT_OOM;
1994 if (err)
1995 return VM_FAULT_SIGBUS;
1996 return VM_FAULT_MAJOR;
1997}
1998
1999/*
2000 * These routines also need to handle stuff like marking pages dirty
2001 * and/or accessed for architectures that don't do it in hardware (most
2002 * RISC architectures). The early dirtying is also good on the i386.
2003 *
2004 * There is also a hook called "update_mmu_cache()" that architectures
2005 * with external mmu caches can use to update those (ie the Sparc or
2006 * PowerPC hashed page tables that act as extended TLBs).
2007 *
c74df32c
HD
2008 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2009 * but allow concurrent faults), and pte mapped but not yet locked.
2010 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2011 */
2012static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2013 struct vm_area_struct *vma, unsigned long address,
2014 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2015{
2016 pte_t entry;
8f4e2101 2017 spinlock_t *ptl;
1da177e4
LT
2018
2019 entry = *pte;
2020 if (!pte_present(entry)) {
65500d23
HD
2021 if (pte_none(entry)) {
2022 if (!vma->vm_ops || !vma->vm_ops->nopage)
2023 return do_anonymous_page(mm, vma, address,
2024 pte, pmd, write_access);
2025 return do_no_page(mm, vma, address,
2026 pte, pmd, write_access);
2027 }
1da177e4 2028 if (pte_file(entry))
65500d23
HD
2029 return do_file_page(mm, vma, address,
2030 pte, pmd, write_access, entry);
2031 return do_swap_page(mm, vma, address,
2032 pte, pmd, write_access, entry);
1da177e4
LT
2033 }
2034
8f4e2101
HD
2035 ptl = &mm->page_table_lock;
2036 spin_lock(ptl);
2037 if (unlikely(!pte_same(*pte, entry)))
2038 goto unlock;
1da177e4
LT
2039 if (write_access) {
2040 if (!pte_write(entry))
8f4e2101
HD
2041 return do_wp_page(mm, vma, address,
2042 pte, pmd, ptl, entry);
1da177e4
LT
2043 entry = pte_mkdirty(entry);
2044 }
2045 entry = pte_mkyoung(entry);
2046 ptep_set_access_flags(vma, address, pte, entry, write_access);
2047 update_mmu_cache(vma, address, entry);
2048 lazy_mmu_prot_update(entry);
8f4e2101
HD
2049unlock:
2050 pte_unmap_unlock(pte, ptl);
1da177e4
LT
2051 return VM_FAULT_MINOR;
2052}
2053
2054/*
2055 * By the time we get here, we already hold the mm semaphore
2056 */
65500d23 2057int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2058 unsigned long address, int write_access)
2059{
2060 pgd_t *pgd;
2061 pud_t *pud;
2062 pmd_t *pmd;
2063 pte_t *pte;
2064
2065 __set_current_state(TASK_RUNNING);
2066
2067 inc_page_state(pgfault);
2068
ac9b9c66
HD
2069 if (unlikely(is_vm_hugetlb_page(vma)))
2070 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2071
1da177e4 2072 pgd = pgd_offset(mm, address);
1da177e4
LT
2073 pud = pud_alloc(mm, pgd, address);
2074 if (!pud)
c74df32c 2075 return VM_FAULT_OOM;
1da177e4
LT
2076 pmd = pmd_alloc(mm, pud, address);
2077 if (!pmd)
c74df32c 2078 return VM_FAULT_OOM;
1da177e4
LT
2079 pte = pte_alloc_map(mm, pmd, address);
2080 if (!pte)
c74df32c 2081 return VM_FAULT_OOM;
1da177e4 2082
c74df32c 2083 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2084}
2085
2086#ifndef __PAGETABLE_PUD_FOLDED
2087/*
2088 * Allocate page upper directory.
872fec16 2089 * We've already handled the fast-path in-line.
1da177e4 2090 */
1bb3630e 2091int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2092{
c74df32c
HD
2093 pud_t *new = pud_alloc_one(mm, address);
2094 if (!new)
1bb3630e 2095 return -ENOMEM;
1da177e4 2096
872fec16 2097 spin_lock(&mm->page_table_lock);
1bb3630e 2098 if (pgd_present(*pgd)) /* Another has populated it */
1da177e4 2099 pud_free(new);
1bb3630e
HD
2100 else
2101 pgd_populate(mm, pgd, new);
c74df32c 2102 spin_unlock(&mm->page_table_lock);
1bb3630e 2103 return 0;
1da177e4
LT
2104}
2105#endif /* __PAGETABLE_PUD_FOLDED */
2106
2107#ifndef __PAGETABLE_PMD_FOLDED
2108/*
2109 * Allocate page middle directory.
872fec16 2110 * We've already handled the fast-path in-line.
1da177e4 2111 */
1bb3630e 2112int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2113{
c74df32c
HD
2114 pmd_t *new = pmd_alloc_one(mm, address);
2115 if (!new)
1bb3630e 2116 return -ENOMEM;
1da177e4 2117
872fec16 2118 spin_lock(&mm->page_table_lock);
1da177e4 2119#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2120 if (pud_present(*pud)) /* Another has populated it */
1da177e4 2121 pmd_free(new);
1bb3630e
HD
2122 else
2123 pud_populate(mm, pud, new);
1da177e4 2124#else
1bb3630e 2125 if (pgd_present(*pud)) /* Another has populated it */
1da177e4 2126 pmd_free(new);
1bb3630e
HD
2127 else
2128 pgd_populate(mm, pud, new);
1da177e4 2129#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2130 spin_unlock(&mm->page_table_lock);
1bb3630e 2131 return 0;
1da177e4
LT
2132}
2133#endif /* __PAGETABLE_PMD_FOLDED */
2134
2135int make_pages_present(unsigned long addr, unsigned long end)
2136{
2137 int ret, len, write;
2138 struct vm_area_struct * vma;
2139
2140 vma = find_vma(current->mm, addr);
2141 if (!vma)
2142 return -1;
2143 write = (vma->vm_flags & VM_WRITE) != 0;
2144 if (addr >= end)
2145 BUG();
2146 if (end > vma->vm_end)
2147 BUG();
2148 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2149 ret = get_user_pages(current, current->mm, addr,
2150 len, write, 0, NULL, NULL);
2151 if (ret < 0)
2152 return ret;
2153 return ret == len ? 0 : -1;
2154}
2155
2156/*
2157 * Map a vmalloc()-space virtual address to the physical page.
2158 */
2159struct page * vmalloc_to_page(void * vmalloc_addr)
2160{
2161 unsigned long addr = (unsigned long) vmalloc_addr;
2162 struct page *page = NULL;
2163 pgd_t *pgd = pgd_offset_k(addr);
2164 pud_t *pud;
2165 pmd_t *pmd;
2166 pte_t *ptep, pte;
2167
2168 if (!pgd_none(*pgd)) {
2169 pud = pud_offset(pgd, addr);
2170 if (!pud_none(*pud)) {
2171 pmd = pmd_offset(pud, addr);
2172 if (!pmd_none(*pmd)) {
2173 ptep = pte_offset_map(pmd, addr);
2174 pte = *ptep;
2175 if (pte_present(pte))
2176 page = pte_page(pte);
2177 pte_unmap(ptep);
2178 }
2179 }
2180 }
2181 return page;
2182}
2183
2184EXPORT_SYMBOL(vmalloc_to_page);
2185
2186/*
2187 * Map a vmalloc()-space virtual address to the physical page frame number.
2188 */
2189unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2190{
2191 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2192}
2193
2194EXPORT_SYMBOL(vmalloc_to_pfn);
2195
1da177e4
LT
2196#if !defined(__HAVE_ARCH_GATE_AREA)
2197
2198#if defined(AT_SYSINFO_EHDR)
5ce7852c 2199static struct vm_area_struct gate_vma;
1da177e4
LT
2200
2201static int __init gate_vma_init(void)
2202{
2203 gate_vma.vm_mm = NULL;
2204 gate_vma.vm_start = FIXADDR_USER_START;
2205 gate_vma.vm_end = FIXADDR_USER_END;
2206 gate_vma.vm_page_prot = PAGE_READONLY;
b5810039 2207 gate_vma.vm_flags = VM_RESERVED;
1da177e4
LT
2208 return 0;
2209}
2210__initcall(gate_vma_init);
2211#endif
2212
2213struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2214{
2215#ifdef AT_SYSINFO_EHDR
2216 return &gate_vma;
2217#else
2218 return NULL;
2219#endif
2220}
2221
2222int in_gate_area_no_task(unsigned long addr)
2223{
2224#ifdef AT_SYSINFO_EHDR
2225 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2226 return 1;
2227#endif
2228 return 0;
2229}
2230
2231#endif /* __HAVE_ARCH_GATE_AREA */