]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory.c
tracing, Text Edit Lock - kprobes architecture independent support, nommu fix
[net-next-2.6.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
0e39ac44
MD
51#include <linux/kprobes.h>
52#include <linux/mutex.h>
1da177e4 53#include <linux/init.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
1da177e4
LT
60
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
42b77728
JB
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
111
1da177e4
LT
112/*
113 * If a p?d_bad entry is found while walking page tables, report
114 * the error, before resetting entry to p?d_none. Usually (but
115 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 */
117
118void pgd_clear_bad(pgd_t *pgd)
119{
120 pgd_ERROR(*pgd);
121 pgd_clear(pgd);
122}
123
124void pud_clear_bad(pud_t *pud)
125{
126 pud_ERROR(*pud);
127 pud_clear(pud);
128}
129
130void pmd_clear_bad(pmd_t *pmd)
131{
132 pmd_ERROR(*pmd);
133 pmd_clear(pmd);
134}
135
136/*
137 * Note: this doesn't free the actual pages themselves. That
138 * has been handled earlier when unmapping all the memory regions.
139 */
e0da382c 140static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 141{
2f569afd 142 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 143 pmd_clear(pmd);
2f569afd 144 pte_free_tlb(tlb, token);
e0da382c 145 tlb->mm->nr_ptes--;
1da177e4
LT
146}
147
e0da382c
HD
148static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
149 unsigned long addr, unsigned long end,
150 unsigned long floor, unsigned long ceiling)
1da177e4
LT
151{
152 pmd_t *pmd;
153 unsigned long next;
e0da382c 154 unsigned long start;
1da177e4 155
e0da382c 156 start = addr;
1da177e4 157 pmd = pmd_offset(pud, addr);
1da177e4
LT
158 do {
159 next = pmd_addr_end(addr, end);
160 if (pmd_none_or_clear_bad(pmd))
161 continue;
e0da382c 162 free_pte_range(tlb, pmd);
1da177e4
LT
163 } while (pmd++, addr = next, addr != end);
164
e0da382c
HD
165 start &= PUD_MASK;
166 if (start < floor)
167 return;
168 if (ceiling) {
169 ceiling &= PUD_MASK;
170 if (!ceiling)
171 return;
1da177e4 172 }
e0da382c
HD
173 if (end - 1 > ceiling - 1)
174 return;
175
176 pmd = pmd_offset(pud, start);
177 pud_clear(pud);
178 pmd_free_tlb(tlb, pmd);
1da177e4
LT
179}
180
e0da382c
HD
181static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
182 unsigned long addr, unsigned long end,
183 unsigned long floor, unsigned long ceiling)
1da177e4
LT
184{
185 pud_t *pud;
186 unsigned long next;
e0da382c 187 unsigned long start;
1da177e4 188
e0da382c 189 start = addr;
1da177e4 190 pud = pud_offset(pgd, addr);
1da177e4
LT
191 do {
192 next = pud_addr_end(addr, end);
193 if (pud_none_or_clear_bad(pud))
194 continue;
e0da382c 195 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
196 } while (pud++, addr = next, addr != end);
197
e0da382c
HD
198 start &= PGDIR_MASK;
199 if (start < floor)
200 return;
201 if (ceiling) {
202 ceiling &= PGDIR_MASK;
203 if (!ceiling)
204 return;
1da177e4 205 }
e0da382c
HD
206 if (end - 1 > ceiling - 1)
207 return;
208
209 pud = pud_offset(pgd, start);
210 pgd_clear(pgd);
211 pud_free_tlb(tlb, pud);
1da177e4
LT
212}
213
214/*
e0da382c
HD
215 * This function frees user-level page tables of a process.
216 *
1da177e4
LT
217 * Must be called with pagetable lock held.
218 */
42b77728 219void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
220 unsigned long addr, unsigned long end,
221 unsigned long floor, unsigned long ceiling)
1da177e4
LT
222{
223 pgd_t *pgd;
224 unsigned long next;
e0da382c
HD
225 unsigned long start;
226
227 /*
228 * The next few lines have given us lots of grief...
229 *
230 * Why are we testing PMD* at this top level? Because often
231 * there will be no work to do at all, and we'd prefer not to
232 * go all the way down to the bottom just to discover that.
233 *
234 * Why all these "- 1"s? Because 0 represents both the bottom
235 * of the address space and the top of it (using -1 for the
236 * top wouldn't help much: the masks would do the wrong thing).
237 * The rule is that addr 0 and floor 0 refer to the bottom of
238 * the address space, but end 0 and ceiling 0 refer to the top
239 * Comparisons need to use "end - 1" and "ceiling - 1" (though
240 * that end 0 case should be mythical).
241 *
242 * Wherever addr is brought up or ceiling brought down, we must
243 * be careful to reject "the opposite 0" before it confuses the
244 * subsequent tests. But what about where end is brought down
245 * by PMD_SIZE below? no, end can't go down to 0 there.
246 *
247 * Whereas we round start (addr) and ceiling down, by different
248 * masks at different levels, in order to test whether a table
249 * now has no other vmas using it, so can be freed, we don't
250 * bother to round floor or end up - the tests don't need that.
251 */
1da177e4 252
e0da382c
HD
253 addr &= PMD_MASK;
254 if (addr < floor) {
255 addr += PMD_SIZE;
256 if (!addr)
257 return;
258 }
259 if (ceiling) {
260 ceiling &= PMD_MASK;
261 if (!ceiling)
262 return;
263 }
264 if (end - 1 > ceiling - 1)
265 end -= PMD_SIZE;
266 if (addr > end - 1)
267 return;
268
269 start = addr;
42b77728 270 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
271 do {
272 next = pgd_addr_end(addr, end);
273 if (pgd_none_or_clear_bad(pgd))
274 continue;
42b77728 275 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 276 } while (pgd++, addr = next, addr != end);
e0da382c
HD
277}
278
42b77728 279void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 280 unsigned long floor, unsigned long ceiling)
e0da382c
HD
281{
282 while (vma) {
283 struct vm_area_struct *next = vma->vm_next;
284 unsigned long addr = vma->vm_start;
285
8f4f8c16
HD
286 /*
287 * Hide vma from rmap and vmtruncate before freeing pgtables
288 */
289 anon_vma_unlink(vma);
290 unlink_file_vma(vma);
291
9da61aef 292 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 293 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 294 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
295 } else {
296 /*
297 * Optimization: gather nearby vmas into one call down
298 */
299 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 300 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
301 vma = next;
302 next = vma->vm_next;
8f4f8c16
HD
303 anon_vma_unlink(vma);
304 unlink_file_vma(vma);
3bf5ee95
HD
305 }
306 free_pgd_range(tlb, addr, vma->vm_end,
307 floor, next? next->vm_start: ceiling);
308 }
e0da382c
HD
309 vma = next;
310 }
1da177e4
LT
311}
312
1bb3630e 313int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 314{
2f569afd 315 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
316 if (!new)
317 return -ENOMEM;
318
362a61ad
NP
319 /*
320 * Ensure all pte setup (eg. pte page lock and page clearing) are
321 * visible before the pte is made visible to other CPUs by being
322 * put into page tables.
323 *
324 * The other side of the story is the pointer chasing in the page
325 * table walking code (when walking the page table without locking;
326 * ie. most of the time). Fortunately, these data accesses consist
327 * of a chain of data-dependent loads, meaning most CPUs (alpha
328 * being the notable exception) will already guarantee loads are
329 * seen in-order. See the alpha page table accessors for the
330 * smp_read_barrier_depends() barriers in page table walking code.
331 */
332 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
333
c74df32c 334 spin_lock(&mm->page_table_lock);
2f569afd 335 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 336 mm->nr_ptes++;
1da177e4 337 pmd_populate(mm, pmd, new);
2f569afd 338 new = NULL;
1da177e4 339 }
c74df32c 340 spin_unlock(&mm->page_table_lock);
2f569afd
MS
341 if (new)
342 pte_free(mm, new);
1bb3630e 343 return 0;
1da177e4
LT
344}
345
1bb3630e 346int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 347{
1bb3630e
HD
348 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
349 if (!new)
350 return -ENOMEM;
351
362a61ad
NP
352 smp_wmb(); /* See comment in __pte_alloc */
353
1bb3630e 354 spin_lock(&init_mm.page_table_lock);
2f569afd 355 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 356 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
357 new = NULL;
358 }
1bb3630e 359 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
360 if (new)
361 pte_free_kernel(&init_mm, new);
1bb3630e 362 return 0;
1da177e4
LT
363}
364
ae859762
HD
365static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
366{
367 if (file_rss)
368 add_mm_counter(mm, file_rss, file_rss);
369 if (anon_rss)
370 add_mm_counter(mm, anon_rss, anon_rss);
371}
372
b5810039 373/*
6aab341e
LT
374 * This function is called to print an error when a bad pte
375 * is found. For example, we might have a PFN-mapped pte in
376 * a region that doesn't allow it.
b5810039
NP
377 *
378 * The calling function must still handle the error.
379 */
3dc14741
HD
380static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
381 pte_t pte, struct page *page)
b5810039 382{
3dc14741
HD
383 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
384 pud_t *pud = pud_offset(pgd, addr);
385 pmd_t *pmd = pmd_offset(pud, addr);
386 struct address_space *mapping;
387 pgoff_t index;
d936cf9b
HD
388 static unsigned long resume;
389 static unsigned long nr_shown;
390 static unsigned long nr_unshown;
391
392 /*
393 * Allow a burst of 60 reports, then keep quiet for that minute;
394 * or allow a steady drip of one report per second.
395 */
396 if (nr_shown == 60) {
397 if (time_before(jiffies, resume)) {
398 nr_unshown++;
399 return;
400 }
401 if (nr_unshown) {
1e9e6365
HD
402 printk(KERN_ALERT
403 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
404 nr_unshown);
405 nr_unshown = 0;
406 }
407 nr_shown = 0;
408 }
409 if (nr_shown++ == 0)
410 resume = jiffies + 60 * HZ;
3dc14741
HD
411
412 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
413 index = linear_page_index(vma, addr);
414
1e9e6365
HD
415 printk(KERN_ALERT
416 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
417 current->comm,
418 (long long)pte_val(pte), (long long)pmd_val(*pmd));
419 if (page) {
1e9e6365 420 printk(KERN_ALERT
3dc14741
HD
421 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
422 page, (void *)page->flags, page_count(page),
423 page_mapcount(page), page->mapping, page->index);
424 }
1e9e6365 425 printk(KERN_ALERT
3dc14741
HD
426 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
427 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
428 /*
429 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
430 */
431 if (vma->vm_ops)
1e9e6365 432 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
433 (unsigned long)vma->vm_ops->fault);
434 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 435 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 436 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 437 dump_stack();
3dc14741 438 add_taint(TAINT_BAD_PAGE);
b5810039
NP
439}
440
67121172
LT
441static inline int is_cow_mapping(unsigned int flags)
442{
443 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
444}
445
ee498ed7 446/*
7e675137 447 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 448 *
7e675137
NP
449 * "Special" mappings do not wish to be associated with a "struct page" (either
450 * it doesn't exist, or it exists but they don't want to touch it). In this
451 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 452 *
7e675137
NP
453 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
454 * pte bit, in which case this function is trivial. Secondly, an architecture
455 * may not have a spare pte bit, which requires a more complicated scheme,
456 * described below.
457 *
458 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
459 * special mapping (even if there are underlying and valid "struct pages").
460 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 461 *
b379d790
JH
462 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
463 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
464 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
465 * mapping will always honor the rule
6aab341e
LT
466 *
467 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
468 *
7e675137
NP
469 * And for normal mappings this is false.
470 *
471 * This restricts such mappings to be a linear translation from virtual address
472 * to pfn. To get around this restriction, we allow arbitrary mappings so long
473 * as the vma is not a COW mapping; in that case, we know that all ptes are
474 * special (because none can have been COWed).
b379d790 475 *
b379d790 476 *
7e675137 477 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
478 *
479 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
480 * page" backing, however the difference is that _all_ pages with a struct
481 * page (that is, those where pfn_valid is true) are refcounted and considered
482 * normal pages by the VM. The disadvantage is that pages are refcounted
483 * (which can be slower and simply not an option for some PFNMAP users). The
484 * advantage is that we don't have to follow the strict linearity rule of
485 * PFNMAP mappings in order to support COWable mappings.
486 *
ee498ed7 487 */
7e675137
NP
488#ifdef __HAVE_ARCH_PTE_SPECIAL
489# define HAVE_PTE_SPECIAL 1
490#else
491# define HAVE_PTE_SPECIAL 0
492#endif
493struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
494 pte_t pte)
ee498ed7 495{
22b31eec 496 unsigned long pfn = pte_pfn(pte);
7e675137
NP
497
498 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
499 if (likely(!pte_special(pte)))
500 goto check_pfn;
501 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
502 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
503 return NULL;
504 }
505
506 /* !HAVE_PTE_SPECIAL case follows: */
507
b379d790
JH
508 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
509 if (vma->vm_flags & VM_MIXEDMAP) {
510 if (!pfn_valid(pfn))
511 return NULL;
512 goto out;
513 } else {
7e675137
NP
514 unsigned long off;
515 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
516 if (pfn == vma->vm_pgoff + off)
517 return NULL;
518 if (!is_cow_mapping(vma->vm_flags))
519 return NULL;
520 }
6aab341e
LT
521 }
522
22b31eec
HD
523check_pfn:
524 if (unlikely(pfn > highest_memmap_pfn)) {
525 print_bad_pte(vma, addr, pte, NULL);
526 return NULL;
527 }
6aab341e
LT
528
529 /*
7e675137 530 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 531 * eg. VDSO mappings can cause them to exist.
6aab341e 532 */
b379d790 533out:
6aab341e 534 return pfn_to_page(pfn);
ee498ed7
HD
535}
536
1da177e4
LT
537/*
538 * copy one vm_area from one task to the other. Assumes the page tables
539 * already present in the new task to be cleared in the whole range
540 * covered by this vma.
1da177e4
LT
541 */
542
8c103762 543static inline void
1da177e4 544copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 545 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 546 unsigned long addr, int *rss)
1da177e4 547{
b5810039 548 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
549 pte_t pte = *src_pte;
550 struct page *page;
1da177e4
LT
551
552 /* pte contains position in swap or file, so copy. */
553 if (unlikely(!pte_present(pte))) {
554 if (!pte_file(pte)) {
0697212a
CL
555 swp_entry_t entry = pte_to_swp_entry(pte);
556
557 swap_duplicate(entry);
1da177e4
LT
558 /* make sure dst_mm is on swapoff's mmlist. */
559 if (unlikely(list_empty(&dst_mm->mmlist))) {
560 spin_lock(&mmlist_lock);
f412ac08
HD
561 if (list_empty(&dst_mm->mmlist))
562 list_add(&dst_mm->mmlist,
563 &src_mm->mmlist);
1da177e4
LT
564 spin_unlock(&mmlist_lock);
565 }
0697212a
CL
566 if (is_write_migration_entry(entry) &&
567 is_cow_mapping(vm_flags)) {
568 /*
569 * COW mappings require pages in both parent
570 * and child to be set to read.
571 */
572 make_migration_entry_read(&entry);
573 pte = swp_entry_to_pte(entry);
574 set_pte_at(src_mm, addr, src_pte, pte);
575 }
1da177e4 576 }
ae859762 577 goto out_set_pte;
1da177e4
LT
578 }
579
1da177e4
LT
580 /*
581 * If it's a COW mapping, write protect it both
582 * in the parent and the child
583 */
67121172 584 if (is_cow_mapping(vm_flags)) {
1da177e4 585 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 586 pte = pte_wrprotect(pte);
1da177e4
LT
587 }
588
589 /*
590 * If it's a shared mapping, mark it clean in
591 * the child
592 */
593 if (vm_flags & VM_SHARED)
594 pte = pte_mkclean(pte);
595 pte = pte_mkold(pte);
6aab341e
LT
596
597 page = vm_normal_page(vma, addr, pte);
598 if (page) {
599 get_page(page);
c97a9e10 600 page_dup_rmap(page, vma, addr);
6aab341e
LT
601 rss[!!PageAnon(page)]++;
602 }
ae859762
HD
603
604out_set_pte:
605 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
606}
607
608static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
609 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
610 unsigned long addr, unsigned long end)
611{
612 pte_t *src_pte, *dst_pte;
c74df32c 613 spinlock_t *src_ptl, *dst_ptl;
e040f218 614 int progress = 0;
8c103762 615 int rss[2];
1da177e4
LT
616
617again:
ae859762 618 rss[1] = rss[0] = 0;
c74df32c 619 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
620 if (!dst_pte)
621 return -ENOMEM;
622 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 623 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 624 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 625 arch_enter_lazy_mmu_mode();
1da177e4 626
1da177e4
LT
627 do {
628 /*
629 * We are holding two locks at this point - either of them
630 * could generate latencies in another task on another CPU.
631 */
e040f218
HD
632 if (progress >= 32) {
633 progress = 0;
634 if (need_resched() ||
95c354fe 635 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
636 break;
637 }
1da177e4
LT
638 if (pte_none(*src_pte)) {
639 progress++;
640 continue;
641 }
8c103762 642 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
643 progress += 8;
644 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 645
6606c3e0 646 arch_leave_lazy_mmu_mode();
c74df32c 647 spin_unlock(src_ptl);
1da177e4 648 pte_unmap_nested(src_pte - 1);
ae859762 649 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
650 pte_unmap_unlock(dst_pte - 1, dst_ptl);
651 cond_resched();
1da177e4
LT
652 if (addr != end)
653 goto again;
654 return 0;
655}
656
657static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
659 unsigned long addr, unsigned long end)
660{
661 pmd_t *src_pmd, *dst_pmd;
662 unsigned long next;
663
664 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
665 if (!dst_pmd)
666 return -ENOMEM;
667 src_pmd = pmd_offset(src_pud, addr);
668 do {
669 next = pmd_addr_end(addr, end);
670 if (pmd_none_or_clear_bad(src_pmd))
671 continue;
672 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
673 vma, addr, next))
674 return -ENOMEM;
675 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
676 return 0;
677}
678
679static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
680 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
681 unsigned long addr, unsigned long end)
682{
683 pud_t *src_pud, *dst_pud;
684 unsigned long next;
685
686 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
687 if (!dst_pud)
688 return -ENOMEM;
689 src_pud = pud_offset(src_pgd, addr);
690 do {
691 next = pud_addr_end(addr, end);
692 if (pud_none_or_clear_bad(src_pud))
693 continue;
694 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
695 vma, addr, next))
696 return -ENOMEM;
697 } while (dst_pud++, src_pud++, addr = next, addr != end);
698 return 0;
699}
700
701int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702 struct vm_area_struct *vma)
703{
704 pgd_t *src_pgd, *dst_pgd;
705 unsigned long next;
706 unsigned long addr = vma->vm_start;
707 unsigned long end = vma->vm_end;
cddb8a5c 708 int ret;
1da177e4 709
d992895b
NP
710 /*
711 * Don't copy ptes where a page fault will fill them correctly.
712 * Fork becomes much lighter when there are big shared or private
713 * readonly mappings. The tradeoff is that copy_page_range is more
714 * efficient than faulting.
715 */
4d7672b4 716 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
717 if (!vma->anon_vma)
718 return 0;
719 }
720
1da177e4
LT
721 if (is_vm_hugetlb_page(vma))
722 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
723
34801ba9 724 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 725 /*
726 * We do not free on error cases below as remove_vma
727 * gets called on error from higher level routine
728 */
729 ret = track_pfn_vma_copy(vma);
730 if (ret)
731 return ret;
732 }
733
cddb8a5c
AA
734 /*
735 * We need to invalidate the secondary MMU mappings only when
736 * there could be a permission downgrade on the ptes of the
737 * parent mm. And a permission downgrade will only happen if
738 * is_cow_mapping() returns true.
739 */
740 if (is_cow_mapping(vma->vm_flags))
741 mmu_notifier_invalidate_range_start(src_mm, addr, end);
742
743 ret = 0;
1da177e4
LT
744 dst_pgd = pgd_offset(dst_mm, addr);
745 src_pgd = pgd_offset(src_mm, addr);
746 do {
747 next = pgd_addr_end(addr, end);
748 if (pgd_none_or_clear_bad(src_pgd))
749 continue;
cddb8a5c
AA
750 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
751 vma, addr, next))) {
752 ret = -ENOMEM;
753 break;
754 }
1da177e4 755 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
756
757 if (is_cow_mapping(vma->vm_flags))
758 mmu_notifier_invalidate_range_end(src_mm,
759 vma->vm_start, end);
760 return ret;
1da177e4
LT
761}
762
51c6f666 763static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 764 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 765 unsigned long addr, unsigned long end,
51c6f666 766 long *zap_work, struct zap_details *details)
1da177e4 767{
b5810039 768 struct mm_struct *mm = tlb->mm;
1da177e4 769 pte_t *pte;
508034a3 770 spinlock_t *ptl;
ae859762
HD
771 int file_rss = 0;
772 int anon_rss = 0;
1da177e4 773
508034a3 774 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 775 arch_enter_lazy_mmu_mode();
1da177e4
LT
776 do {
777 pte_t ptent = *pte;
51c6f666
RH
778 if (pte_none(ptent)) {
779 (*zap_work)--;
1da177e4 780 continue;
51c6f666 781 }
6f5e6b9e
HD
782
783 (*zap_work) -= PAGE_SIZE;
784
1da177e4 785 if (pte_present(ptent)) {
ee498ed7 786 struct page *page;
51c6f666 787
6aab341e 788 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
789 if (unlikely(details) && page) {
790 /*
791 * unmap_shared_mapping_pages() wants to
792 * invalidate cache without truncating:
793 * unmap shared but keep private pages.
794 */
795 if (details->check_mapping &&
796 details->check_mapping != page->mapping)
797 continue;
798 /*
799 * Each page->index must be checked when
800 * invalidating or truncating nonlinear.
801 */
802 if (details->nonlinear_vma &&
803 (page->index < details->first_index ||
804 page->index > details->last_index))
805 continue;
806 }
b5810039 807 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 808 tlb->fullmm);
1da177e4
LT
809 tlb_remove_tlb_entry(tlb, pte, addr);
810 if (unlikely(!page))
811 continue;
812 if (unlikely(details) && details->nonlinear_vma
813 && linear_page_index(details->nonlinear_vma,
814 addr) != page->index)
b5810039 815 set_pte_at(mm, addr, pte,
1da177e4 816 pgoff_to_pte(page->index));
1da177e4 817 if (PageAnon(page))
86d912f4 818 anon_rss--;
6237bcd9
HD
819 else {
820 if (pte_dirty(ptent))
821 set_page_dirty(page);
4917e5d0
JW
822 if (pte_young(ptent) &&
823 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 824 mark_page_accessed(page);
86d912f4 825 file_rss--;
6237bcd9 826 }
edc315fd 827 page_remove_rmap(page);
3dc14741
HD
828 if (unlikely(page_mapcount(page) < 0))
829 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
830 tlb_remove_page(tlb, page);
831 continue;
832 }
833 /*
834 * If details->check_mapping, we leave swap entries;
835 * if details->nonlinear_vma, we leave file entries.
836 */
837 if (unlikely(details))
838 continue;
2509ef26
HD
839 if (pte_file(ptent)) {
840 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
841 print_bad_pte(vma, addr, ptent, NULL);
842 } else if
843 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
844 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 845 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 846 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 847
86d912f4 848 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 849 arch_leave_lazy_mmu_mode();
508034a3 850 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
851
852 return addr;
1da177e4
LT
853}
854
51c6f666 855static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 856 struct vm_area_struct *vma, pud_t *pud,
1da177e4 857 unsigned long addr, unsigned long end,
51c6f666 858 long *zap_work, struct zap_details *details)
1da177e4
LT
859{
860 pmd_t *pmd;
861 unsigned long next;
862
863 pmd = pmd_offset(pud, addr);
864 do {
865 next = pmd_addr_end(addr, end);
51c6f666
RH
866 if (pmd_none_or_clear_bad(pmd)) {
867 (*zap_work)--;
1da177e4 868 continue;
51c6f666
RH
869 }
870 next = zap_pte_range(tlb, vma, pmd, addr, next,
871 zap_work, details);
872 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
873
874 return addr;
1da177e4
LT
875}
876
51c6f666 877static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 878 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 879 unsigned long addr, unsigned long end,
51c6f666 880 long *zap_work, struct zap_details *details)
1da177e4
LT
881{
882 pud_t *pud;
883 unsigned long next;
884
885 pud = pud_offset(pgd, addr);
886 do {
887 next = pud_addr_end(addr, end);
51c6f666
RH
888 if (pud_none_or_clear_bad(pud)) {
889 (*zap_work)--;
1da177e4 890 continue;
51c6f666
RH
891 }
892 next = zap_pmd_range(tlb, vma, pud, addr, next,
893 zap_work, details);
894 } while (pud++, addr = next, (addr != end && *zap_work > 0));
895
896 return addr;
1da177e4
LT
897}
898
51c6f666
RH
899static unsigned long unmap_page_range(struct mmu_gather *tlb,
900 struct vm_area_struct *vma,
1da177e4 901 unsigned long addr, unsigned long end,
51c6f666 902 long *zap_work, struct zap_details *details)
1da177e4
LT
903{
904 pgd_t *pgd;
905 unsigned long next;
906
907 if (details && !details->check_mapping && !details->nonlinear_vma)
908 details = NULL;
909
910 BUG_ON(addr >= end);
911 tlb_start_vma(tlb, vma);
912 pgd = pgd_offset(vma->vm_mm, addr);
913 do {
914 next = pgd_addr_end(addr, end);
51c6f666
RH
915 if (pgd_none_or_clear_bad(pgd)) {
916 (*zap_work)--;
1da177e4 917 continue;
51c6f666
RH
918 }
919 next = zap_pud_range(tlb, vma, pgd, addr, next,
920 zap_work, details);
921 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 922 tlb_end_vma(tlb, vma);
51c6f666
RH
923
924 return addr;
1da177e4
LT
925}
926
927#ifdef CONFIG_PREEMPT
928# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
929#else
930/* No preempt: go for improved straight-line efficiency */
931# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
932#endif
933
934/**
935 * unmap_vmas - unmap a range of memory covered by a list of vma's
936 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
937 * @vma: the starting vma
938 * @start_addr: virtual address at which to start unmapping
939 * @end_addr: virtual address at which to end unmapping
940 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
941 * @details: details of nonlinear truncation or shared cache invalidation
942 *
ee39b37b 943 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 944 *
508034a3 945 * Unmap all pages in the vma list.
1da177e4 946 *
508034a3
HD
947 * We aim to not hold locks for too long (for scheduling latency reasons).
948 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
949 * return the ending mmu_gather to the caller.
950 *
951 * Only addresses between `start' and `end' will be unmapped.
952 *
953 * The VMA list must be sorted in ascending virtual address order.
954 *
955 * unmap_vmas() assumes that the caller will flush the whole unmapped address
956 * range after unmap_vmas() returns. So the only responsibility here is to
957 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
958 * drops the lock and schedules.
959 */
508034a3 960unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
961 struct vm_area_struct *vma, unsigned long start_addr,
962 unsigned long end_addr, unsigned long *nr_accounted,
963 struct zap_details *details)
964{
51c6f666 965 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
966 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
967 int tlb_start_valid = 0;
ee39b37b 968 unsigned long start = start_addr;
1da177e4 969 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 970 int fullmm = (*tlbp)->fullmm;
cddb8a5c 971 struct mm_struct *mm = vma->vm_mm;
1da177e4 972
cddb8a5c 973 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 974 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
975 unsigned long end;
976
977 start = max(vma->vm_start, start_addr);
978 if (start >= vma->vm_end)
979 continue;
980 end = min(vma->vm_end, end_addr);
981 if (end <= vma->vm_start)
982 continue;
983
984 if (vma->vm_flags & VM_ACCOUNT)
985 *nr_accounted += (end - start) >> PAGE_SHIFT;
986
34801ba9 987 if (unlikely(is_pfn_mapping(vma)))
2ab64037 988 untrack_pfn_vma(vma, 0, 0);
989
1da177e4 990 while (start != end) {
1da177e4
LT
991 if (!tlb_start_valid) {
992 tlb_start = start;
993 tlb_start_valid = 1;
994 }
995
51c6f666 996 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
997 /*
998 * It is undesirable to test vma->vm_file as it
999 * should be non-null for valid hugetlb area.
1000 * However, vm_file will be NULL in the error
1001 * cleanup path of do_mmap_pgoff. When
1002 * hugetlbfs ->mmap method fails,
1003 * do_mmap_pgoff() nullifies vma->vm_file
1004 * before calling this function to clean up.
1005 * Since no pte has actually been setup, it is
1006 * safe to do nothing in this case.
1007 */
1008 if (vma->vm_file) {
1009 unmap_hugepage_range(vma, start, end, NULL);
1010 zap_work -= (end - start) /
a5516438 1011 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1012 }
1013
51c6f666
RH
1014 start = end;
1015 } else
1016 start = unmap_page_range(*tlbp, vma,
1017 start, end, &zap_work, details);
1018
1019 if (zap_work > 0) {
1020 BUG_ON(start != end);
1021 break;
1da177e4
LT
1022 }
1023
1da177e4
LT
1024 tlb_finish_mmu(*tlbp, tlb_start, start);
1025
1026 if (need_resched() ||
95c354fe 1027 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1028 if (i_mmap_lock) {
508034a3 1029 *tlbp = NULL;
1da177e4
LT
1030 goto out;
1031 }
1da177e4 1032 cond_resched();
1da177e4
LT
1033 }
1034
508034a3 1035 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1036 tlb_start_valid = 0;
51c6f666 1037 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1038 }
1039 }
1040out:
cddb8a5c 1041 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1042 return start; /* which is now the end (or restart) address */
1da177e4
LT
1043}
1044
1045/**
1046 * zap_page_range - remove user pages in a given range
1047 * @vma: vm_area_struct holding the applicable pages
1048 * @address: starting address of pages to zap
1049 * @size: number of bytes to zap
1050 * @details: details of nonlinear truncation or shared cache invalidation
1051 */
ee39b37b 1052unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1053 unsigned long size, struct zap_details *details)
1054{
1055 struct mm_struct *mm = vma->vm_mm;
1056 struct mmu_gather *tlb;
1057 unsigned long end = address + size;
1058 unsigned long nr_accounted = 0;
1059
1da177e4 1060 lru_add_drain();
1da177e4 1061 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1062 update_hiwater_rss(mm);
508034a3
HD
1063 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1064 if (tlb)
1065 tlb_finish_mmu(tlb, address, end);
ee39b37b 1066 return end;
1da177e4
LT
1067}
1068
c627f9cc
JS
1069/**
1070 * zap_vma_ptes - remove ptes mapping the vma
1071 * @vma: vm_area_struct holding ptes to be zapped
1072 * @address: starting address of pages to zap
1073 * @size: number of bytes to zap
1074 *
1075 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1076 *
1077 * The entire address range must be fully contained within the vma.
1078 *
1079 * Returns 0 if successful.
1080 */
1081int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1082 unsigned long size)
1083{
1084 if (address < vma->vm_start || address + size > vma->vm_end ||
1085 !(vma->vm_flags & VM_PFNMAP))
1086 return -1;
1087 zap_page_range(vma, address, size, NULL);
1088 return 0;
1089}
1090EXPORT_SYMBOL_GPL(zap_vma_ptes);
1091
1da177e4
LT
1092/*
1093 * Do a quick page-table lookup for a single page.
1da177e4 1094 */
6aab341e 1095struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1096 unsigned int flags)
1da177e4
LT
1097{
1098 pgd_t *pgd;
1099 pud_t *pud;
1100 pmd_t *pmd;
1101 pte_t *ptep, pte;
deceb6cd 1102 spinlock_t *ptl;
1da177e4 1103 struct page *page;
6aab341e 1104 struct mm_struct *mm = vma->vm_mm;
1da177e4 1105
deceb6cd
HD
1106 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1107 if (!IS_ERR(page)) {
1108 BUG_ON(flags & FOLL_GET);
1109 goto out;
1110 }
1da177e4 1111
deceb6cd 1112 page = NULL;
1da177e4
LT
1113 pgd = pgd_offset(mm, address);
1114 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1115 goto no_page_table;
1da177e4
LT
1116
1117 pud = pud_offset(pgd, address);
ceb86879 1118 if (pud_none(*pud))
deceb6cd 1119 goto no_page_table;
ceb86879
AK
1120 if (pud_huge(*pud)) {
1121 BUG_ON(flags & FOLL_GET);
1122 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1123 goto out;
1124 }
1125 if (unlikely(pud_bad(*pud)))
1126 goto no_page_table;
1127
1da177e4 1128 pmd = pmd_offset(pud, address);
aeed5fce 1129 if (pmd_none(*pmd))
deceb6cd 1130 goto no_page_table;
deceb6cd
HD
1131 if (pmd_huge(*pmd)) {
1132 BUG_ON(flags & FOLL_GET);
1133 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1134 goto out;
deceb6cd 1135 }
aeed5fce
HD
1136 if (unlikely(pmd_bad(*pmd)))
1137 goto no_page_table;
1138
deceb6cd 1139 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1140
1141 pte = *ptep;
deceb6cd 1142 if (!pte_present(pte))
89f5b7da 1143 goto no_page;
deceb6cd
HD
1144 if ((flags & FOLL_WRITE) && !pte_write(pte))
1145 goto unlock;
6aab341e
LT
1146 page = vm_normal_page(vma, address, pte);
1147 if (unlikely(!page))
89f5b7da 1148 goto bad_page;
1da177e4 1149
deceb6cd
HD
1150 if (flags & FOLL_GET)
1151 get_page(page);
1152 if (flags & FOLL_TOUCH) {
1153 if ((flags & FOLL_WRITE) &&
1154 !pte_dirty(pte) && !PageDirty(page))
1155 set_page_dirty(page);
1156 mark_page_accessed(page);
1157 }
1158unlock:
1159 pte_unmap_unlock(ptep, ptl);
1da177e4 1160out:
deceb6cd 1161 return page;
1da177e4 1162
89f5b7da
LT
1163bad_page:
1164 pte_unmap_unlock(ptep, ptl);
1165 return ERR_PTR(-EFAULT);
1166
1167no_page:
1168 pte_unmap_unlock(ptep, ptl);
1169 if (!pte_none(pte))
1170 return page;
1171 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1172no_page_table:
1173 /*
1174 * When core dumping an enormous anonymous area that nobody
1175 * has touched so far, we don't want to allocate page tables.
1176 */
1177 if (flags & FOLL_ANON) {
557ed1fa 1178 page = ZERO_PAGE(0);
deceb6cd
HD
1179 if (flags & FOLL_GET)
1180 get_page(page);
1181 BUG_ON(flags & FOLL_WRITE);
1182 }
1183 return page;
1da177e4
LT
1184}
1185
672ca28e
LT
1186/* Can we do the FOLL_ANON optimization? */
1187static inline int use_zero_page(struct vm_area_struct *vma)
1188{
1189 /*
1190 * We don't want to optimize FOLL_ANON for make_pages_present()
1191 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1192 * we want to get the page from the page tables to make sure
1193 * that we serialize and update with any other user of that
1194 * mapping.
1195 */
1196 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1197 return 0;
1198 /*
0d71d10a 1199 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1200 */
0d71d10a 1201 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1202}
1203
b291f000
NP
1204
1205
1206int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1207 unsigned long start, int len, int flags,
1da177e4
LT
1208 struct page **pages, struct vm_area_struct **vmas)
1209{
1210 int i;
b291f000
NP
1211 unsigned int vm_flags = 0;
1212 int write = !!(flags & GUP_FLAGS_WRITE);
1213 int force = !!(flags & GUP_FLAGS_FORCE);
1214 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
4779280d 1215 int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1da177e4 1216
900cf086
JC
1217 if (len <= 0)
1218 return 0;
1da177e4
LT
1219 /*
1220 * Require read or write permissions.
1221 * If 'force' is set, we only require the "MAY" flags.
1222 */
deceb6cd
HD
1223 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1224 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1225 i = 0;
1226
1227 do {
deceb6cd
HD
1228 struct vm_area_struct *vma;
1229 unsigned int foll_flags;
1da177e4
LT
1230
1231 vma = find_extend_vma(mm, start);
1232 if (!vma && in_gate_area(tsk, start)) {
1233 unsigned long pg = start & PAGE_MASK;
1234 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1235 pgd_t *pgd;
1236 pud_t *pud;
1237 pmd_t *pmd;
1238 pte_t *pte;
b291f000
NP
1239
1240 /* user gate pages are read-only */
1241 if (!ignore && write)
1da177e4
LT
1242 return i ? : -EFAULT;
1243 if (pg > TASK_SIZE)
1244 pgd = pgd_offset_k(pg);
1245 else
1246 pgd = pgd_offset_gate(mm, pg);
1247 BUG_ON(pgd_none(*pgd));
1248 pud = pud_offset(pgd, pg);
1249 BUG_ON(pud_none(*pud));
1250 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1251 if (pmd_none(*pmd))
1252 return i ? : -EFAULT;
1da177e4 1253 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1254 if (pte_none(*pte)) {
1255 pte_unmap(pte);
1256 return i ? : -EFAULT;
1257 }
1da177e4 1258 if (pages) {
fa2a455b 1259 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1260 pages[i] = page;
1261 if (page)
1262 get_page(page);
1da177e4
LT
1263 }
1264 pte_unmap(pte);
1265 if (vmas)
1266 vmas[i] = gate_vma;
1267 i++;
1268 start += PAGE_SIZE;
1269 len--;
1270 continue;
1271 }
1272
b291f000
NP
1273 if (!vma ||
1274 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1275 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1276 return i ? : -EFAULT;
1277
1278 if (is_vm_hugetlb_page(vma)) {
1279 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1280 &start, &len, i, write);
1da177e4
LT
1281 continue;
1282 }
deceb6cd
HD
1283
1284 foll_flags = FOLL_TOUCH;
1285 if (pages)
1286 foll_flags |= FOLL_GET;
672ca28e 1287 if (!write && use_zero_page(vma))
deceb6cd
HD
1288 foll_flags |= FOLL_ANON;
1289
1da177e4 1290 do {
08ef4729 1291 struct page *page;
1da177e4 1292
462e00cc 1293 /*
4779280d
YH
1294 * If we have a pending SIGKILL, don't keep faulting
1295 * pages and potentially allocating memory, unless
1296 * current is handling munlock--e.g., on exit. In
1297 * that case, we are not allocating memory. Rather,
1298 * we're only unlocking already resident/mapped pages.
462e00cc 1299 */
4779280d
YH
1300 if (unlikely(!ignore_sigkill &&
1301 fatal_signal_pending(current)))
1302 return i ? i : -ERESTARTSYS;
462e00cc 1303
deceb6cd
HD
1304 if (write)
1305 foll_flags |= FOLL_WRITE;
a68d2ebc 1306
deceb6cd 1307 cond_resched();
6aab341e 1308 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1309 int ret;
83c54070 1310 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1311 foll_flags & FOLL_WRITE);
83c54070
NP
1312 if (ret & VM_FAULT_ERROR) {
1313 if (ret & VM_FAULT_OOM)
1314 return i ? i : -ENOMEM;
1315 else if (ret & VM_FAULT_SIGBUS)
1316 return i ? i : -EFAULT;
1317 BUG();
1318 }
1319 if (ret & VM_FAULT_MAJOR)
1320 tsk->maj_flt++;
1321 else
1322 tsk->min_flt++;
1323
a68d2ebc 1324 /*
83c54070
NP
1325 * The VM_FAULT_WRITE bit tells us that
1326 * do_wp_page has broken COW when necessary,
1327 * even if maybe_mkwrite decided not to set
1328 * pte_write. We can thus safely do subsequent
878b63ac
HD
1329 * page lookups as if they were reads. But only
1330 * do so when looping for pte_write is futile:
1331 * in some cases userspace may also be wanting
1332 * to write to the gotten user page, which a
1333 * read fault here might prevent (a readonly
1334 * page might get reCOWed by userspace write).
a68d2ebc 1335 */
878b63ac
HD
1336 if ((ret & VM_FAULT_WRITE) &&
1337 !(vma->vm_flags & VM_WRITE))
deceb6cd 1338 foll_flags &= ~FOLL_WRITE;
83c54070 1339
7f7bbbe5 1340 cond_resched();
1da177e4 1341 }
89f5b7da
LT
1342 if (IS_ERR(page))
1343 return i ? i : PTR_ERR(page);
1da177e4 1344 if (pages) {
08ef4729 1345 pages[i] = page;
03beb076 1346
a6f36be3 1347 flush_anon_page(vma, page, start);
08ef4729 1348 flush_dcache_page(page);
1da177e4
LT
1349 }
1350 if (vmas)
1351 vmas[i] = vma;
1352 i++;
1353 start += PAGE_SIZE;
1354 len--;
08ef4729 1355 } while (len && start < vma->vm_end);
08ef4729 1356 } while (len);
1da177e4
LT
1357 return i;
1358}
b291f000
NP
1359
1360int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1361 unsigned long start, int len, int write, int force,
1362 struct page **pages, struct vm_area_struct **vmas)
1363{
1364 int flags = 0;
1365
1366 if (write)
1367 flags |= GUP_FLAGS_WRITE;
1368 if (force)
1369 flags |= GUP_FLAGS_FORCE;
1370
1371 return __get_user_pages(tsk, mm,
1372 start, len, flags,
1373 pages, vmas);
1374}
1375
1da177e4
LT
1376EXPORT_SYMBOL(get_user_pages);
1377
920c7a5d
HH
1378pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1379 spinlock_t **ptl)
c9cfcddf
LT
1380{
1381 pgd_t * pgd = pgd_offset(mm, addr);
1382 pud_t * pud = pud_alloc(mm, pgd, addr);
1383 if (pud) {
49c91fb0 1384 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1385 if (pmd)
1386 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1387 }
1388 return NULL;
1389}
1390
238f58d8
LT
1391/*
1392 * This is the old fallback for page remapping.
1393 *
1394 * For historical reasons, it only allows reserved pages. Only
1395 * old drivers should use this, and they needed to mark their
1396 * pages reserved for the old functions anyway.
1397 */
423bad60
NP
1398static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1399 struct page *page, pgprot_t prot)
238f58d8 1400{
423bad60 1401 struct mm_struct *mm = vma->vm_mm;
238f58d8 1402 int retval;
c9cfcddf 1403 pte_t *pte;
8a9f3ccd
BS
1404 spinlock_t *ptl;
1405
238f58d8 1406 retval = -EINVAL;
a145dd41 1407 if (PageAnon(page))
5b4e655e 1408 goto out;
238f58d8
LT
1409 retval = -ENOMEM;
1410 flush_dcache_page(page);
c9cfcddf 1411 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1412 if (!pte)
5b4e655e 1413 goto out;
238f58d8
LT
1414 retval = -EBUSY;
1415 if (!pte_none(*pte))
1416 goto out_unlock;
1417
1418 /* Ok, finally just insert the thing.. */
1419 get_page(page);
1420 inc_mm_counter(mm, file_rss);
1421 page_add_file_rmap(page);
1422 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1423
1424 retval = 0;
8a9f3ccd
BS
1425 pte_unmap_unlock(pte, ptl);
1426 return retval;
238f58d8
LT
1427out_unlock:
1428 pte_unmap_unlock(pte, ptl);
1429out:
1430 return retval;
1431}
1432
bfa5bf6d
REB
1433/**
1434 * vm_insert_page - insert single page into user vma
1435 * @vma: user vma to map to
1436 * @addr: target user address of this page
1437 * @page: source kernel page
1438 *
a145dd41
LT
1439 * This allows drivers to insert individual pages they've allocated
1440 * into a user vma.
1441 *
1442 * The page has to be a nice clean _individual_ kernel allocation.
1443 * If you allocate a compound page, you need to have marked it as
1444 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1445 * (see split_page()).
a145dd41
LT
1446 *
1447 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1448 * took an arbitrary page protection parameter. This doesn't allow
1449 * that. Your vma protection will have to be set up correctly, which
1450 * means that if you want a shared writable mapping, you'd better
1451 * ask for a shared writable mapping!
1452 *
1453 * The page does not need to be reserved.
1454 */
423bad60
NP
1455int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1456 struct page *page)
a145dd41
LT
1457{
1458 if (addr < vma->vm_start || addr >= vma->vm_end)
1459 return -EFAULT;
1460 if (!page_count(page))
1461 return -EINVAL;
4d7672b4 1462 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1463 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1464}
e3c3374f 1465EXPORT_SYMBOL(vm_insert_page);
a145dd41 1466
423bad60
NP
1467static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1468 unsigned long pfn, pgprot_t prot)
1469{
1470 struct mm_struct *mm = vma->vm_mm;
1471 int retval;
1472 pte_t *pte, entry;
1473 spinlock_t *ptl;
1474
1475 retval = -ENOMEM;
1476 pte = get_locked_pte(mm, addr, &ptl);
1477 if (!pte)
1478 goto out;
1479 retval = -EBUSY;
1480 if (!pte_none(*pte))
1481 goto out_unlock;
1482
1483 /* Ok, finally just insert the thing.. */
1484 entry = pte_mkspecial(pfn_pte(pfn, prot));
1485 set_pte_at(mm, addr, pte, entry);
1486 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1487
1488 retval = 0;
1489out_unlock:
1490 pte_unmap_unlock(pte, ptl);
1491out:
1492 return retval;
1493}
1494
e0dc0d8f
NP
1495/**
1496 * vm_insert_pfn - insert single pfn into user vma
1497 * @vma: user vma to map to
1498 * @addr: target user address of this page
1499 * @pfn: source kernel pfn
1500 *
1501 * Similar to vm_inert_page, this allows drivers to insert individual pages
1502 * they've allocated into a user vma. Same comments apply.
1503 *
1504 * This function should only be called from a vm_ops->fault handler, and
1505 * in that case the handler should return NULL.
0d71d10a
NP
1506 *
1507 * vma cannot be a COW mapping.
1508 *
1509 * As this is called only for pages that do not currently exist, we
1510 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1511 */
1512int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1513 unsigned long pfn)
e0dc0d8f 1514{
2ab64037 1515 int ret;
e4b866ed 1516 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1517 /*
1518 * Technically, architectures with pte_special can avoid all these
1519 * restrictions (same for remap_pfn_range). However we would like
1520 * consistency in testing and feature parity among all, so we should
1521 * try to keep these invariants in place for everybody.
1522 */
b379d790
JH
1523 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1524 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1525 (VM_PFNMAP|VM_MIXEDMAP));
1526 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1527 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1528
423bad60
NP
1529 if (addr < vma->vm_start || addr >= vma->vm_end)
1530 return -EFAULT;
e4b866ed 1531 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1532 return -EINVAL;
1533
e4b866ed 1534 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1535
1536 if (ret)
1537 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1538
1539 return ret;
423bad60
NP
1540}
1541EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1542
423bad60
NP
1543int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1544 unsigned long pfn)
1545{
1546 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1547
423bad60
NP
1548 if (addr < vma->vm_start || addr >= vma->vm_end)
1549 return -EFAULT;
e0dc0d8f 1550
423bad60
NP
1551 /*
1552 * If we don't have pte special, then we have to use the pfn_valid()
1553 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1554 * refcount the page if pfn_valid is true (hence insert_page rather
1555 * than insert_pfn).
1556 */
1557 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1558 struct page *page;
1559
1560 page = pfn_to_page(pfn);
1561 return insert_page(vma, addr, page, vma->vm_page_prot);
1562 }
1563 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1564}
423bad60 1565EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1566
1da177e4
LT
1567/*
1568 * maps a range of physical memory into the requested pages. the old
1569 * mappings are removed. any references to nonexistent pages results
1570 * in null mappings (currently treated as "copy-on-access")
1571 */
1572static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1573 unsigned long addr, unsigned long end,
1574 unsigned long pfn, pgprot_t prot)
1575{
1576 pte_t *pte;
c74df32c 1577 spinlock_t *ptl;
1da177e4 1578
c74df32c 1579 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1580 if (!pte)
1581 return -ENOMEM;
6606c3e0 1582 arch_enter_lazy_mmu_mode();
1da177e4
LT
1583 do {
1584 BUG_ON(!pte_none(*pte));
7e675137 1585 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1586 pfn++;
1587 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1588 arch_leave_lazy_mmu_mode();
c74df32c 1589 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1590 return 0;
1591}
1592
1593static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1594 unsigned long addr, unsigned long end,
1595 unsigned long pfn, pgprot_t prot)
1596{
1597 pmd_t *pmd;
1598 unsigned long next;
1599
1600 pfn -= addr >> PAGE_SHIFT;
1601 pmd = pmd_alloc(mm, pud, addr);
1602 if (!pmd)
1603 return -ENOMEM;
1604 do {
1605 next = pmd_addr_end(addr, end);
1606 if (remap_pte_range(mm, pmd, addr, next,
1607 pfn + (addr >> PAGE_SHIFT), prot))
1608 return -ENOMEM;
1609 } while (pmd++, addr = next, addr != end);
1610 return 0;
1611}
1612
1613static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1614 unsigned long addr, unsigned long end,
1615 unsigned long pfn, pgprot_t prot)
1616{
1617 pud_t *pud;
1618 unsigned long next;
1619
1620 pfn -= addr >> PAGE_SHIFT;
1621 pud = pud_alloc(mm, pgd, addr);
1622 if (!pud)
1623 return -ENOMEM;
1624 do {
1625 next = pud_addr_end(addr, end);
1626 if (remap_pmd_range(mm, pud, addr, next,
1627 pfn + (addr >> PAGE_SHIFT), prot))
1628 return -ENOMEM;
1629 } while (pud++, addr = next, addr != end);
1630 return 0;
1631}
1632
bfa5bf6d
REB
1633/**
1634 * remap_pfn_range - remap kernel memory to userspace
1635 * @vma: user vma to map to
1636 * @addr: target user address to start at
1637 * @pfn: physical address of kernel memory
1638 * @size: size of map area
1639 * @prot: page protection flags for this mapping
1640 *
1641 * Note: this is only safe if the mm semaphore is held when called.
1642 */
1da177e4
LT
1643int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1644 unsigned long pfn, unsigned long size, pgprot_t prot)
1645{
1646 pgd_t *pgd;
1647 unsigned long next;
2d15cab8 1648 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1649 struct mm_struct *mm = vma->vm_mm;
1650 int err;
1651
1652 /*
1653 * Physically remapped pages are special. Tell the
1654 * rest of the world about it:
1655 * VM_IO tells people not to look at these pages
1656 * (accesses can have side effects).
0b14c179
HD
1657 * VM_RESERVED is specified all over the place, because
1658 * in 2.4 it kept swapout's vma scan off this vma; but
1659 * in 2.6 the LRU scan won't even find its pages, so this
1660 * flag means no more than count its pages in reserved_vm,
1661 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1662 * VM_PFNMAP tells the core MM that the base pages are just
1663 * raw PFN mappings, and do not have a "struct page" associated
1664 * with them.
fb155c16
LT
1665 *
1666 * There's a horrible special case to handle copy-on-write
1667 * behaviour that some programs depend on. We mark the "original"
1668 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1669 */
3c8bb73a 1670 if (addr == vma->vm_start && end == vma->vm_end)
fb155c16 1671 vma->vm_pgoff = pfn;
3c8bb73a 1672 else if (is_cow_mapping(vma->vm_flags))
1673 return -EINVAL;
fb155c16 1674
6aab341e 1675 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1676
e4b866ed 1677 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1678 if (err) {
1679 /*
1680 * To indicate that track_pfn related cleanup is not
1681 * needed from higher level routine calling unmap_vmas
1682 */
1683 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2ab64037 1684 return -EINVAL;
a3670613 1685 }
2ab64037 1686
1da177e4
LT
1687 BUG_ON(addr >= end);
1688 pfn -= addr >> PAGE_SHIFT;
1689 pgd = pgd_offset(mm, addr);
1690 flush_cache_range(vma, addr, end);
1da177e4
LT
1691 do {
1692 next = pgd_addr_end(addr, end);
1693 err = remap_pud_range(mm, pgd, addr, next,
1694 pfn + (addr >> PAGE_SHIFT), prot);
1695 if (err)
1696 break;
1697 } while (pgd++, addr = next, addr != end);
2ab64037 1698
1699 if (err)
1700 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1701
1da177e4
LT
1702 return err;
1703}
1704EXPORT_SYMBOL(remap_pfn_range);
1705
aee16b3c
JF
1706static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1707 unsigned long addr, unsigned long end,
1708 pte_fn_t fn, void *data)
1709{
1710 pte_t *pte;
1711 int err;
2f569afd 1712 pgtable_t token;
94909914 1713 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1714
1715 pte = (mm == &init_mm) ?
1716 pte_alloc_kernel(pmd, addr) :
1717 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1718 if (!pte)
1719 return -ENOMEM;
1720
1721 BUG_ON(pmd_huge(*pmd));
1722
38e0edb1
JF
1723 arch_enter_lazy_mmu_mode();
1724
2f569afd 1725 token = pmd_pgtable(*pmd);
aee16b3c
JF
1726
1727 do {
2f569afd 1728 err = fn(pte, token, addr, data);
aee16b3c
JF
1729 if (err)
1730 break;
1731 } while (pte++, addr += PAGE_SIZE, addr != end);
1732
38e0edb1
JF
1733 arch_leave_lazy_mmu_mode();
1734
aee16b3c
JF
1735 if (mm != &init_mm)
1736 pte_unmap_unlock(pte-1, ptl);
1737 return err;
1738}
1739
1740static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1741 unsigned long addr, unsigned long end,
1742 pte_fn_t fn, void *data)
1743{
1744 pmd_t *pmd;
1745 unsigned long next;
1746 int err;
1747
ceb86879
AK
1748 BUG_ON(pud_huge(*pud));
1749
aee16b3c
JF
1750 pmd = pmd_alloc(mm, pud, addr);
1751 if (!pmd)
1752 return -ENOMEM;
1753 do {
1754 next = pmd_addr_end(addr, end);
1755 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1756 if (err)
1757 break;
1758 } while (pmd++, addr = next, addr != end);
1759 return err;
1760}
1761
1762static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1763 unsigned long addr, unsigned long end,
1764 pte_fn_t fn, void *data)
1765{
1766 pud_t *pud;
1767 unsigned long next;
1768 int err;
1769
1770 pud = pud_alloc(mm, pgd, addr);
1771 if (!pud)
1772 return -ENOMEM;
1773 do {
1774 next = pud_addr_end(addr, end);
1775 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1776 if (err)
1777 break;
1778 } while (pud++, addr = next, addr != end);
1779 return err;
1780}
1781
1782/*
1783 * Scan a region of virtual memory, filling in page tables as necessary
1784 * and calling a provided function on each leaf page table.
1785 */
1786int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1787 unsigned long size, pte_fn_t fn, void *data)
1788{
1789 pgd_t *pgd;
1790 unsigned long next;
cddb8a5c 1791 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1792 int err;
1793
1794 BUG_ON(addr >= end);
cddb8a5c 1795 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1796 pgd = pgd_offset(mm, addr);
1797 do {
1798 next = pgd_addr_end(addr, end);
1799 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1800 if (err)
1801 break;
1802 } while (pgd++, addr = next, addr != end);
cddb8a5c 1803 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1804 return err;
1805}
1806EXPORT_SYMBOL_GPL(apply_to_page_range);
1807
8f4e2101
HD
1808/*
1809 * handle_pte_fault chooses page fault handler according to an entry
1810 * which was read non-atomically. Before making any commitment, on
1811 * those architectures or configurations (e.g. i386 with PAE) which
1812 * might give a mix of unmatched parts, do_swap_page and do_file_page
1813 * must check under lock before unmapping the pte and proceeding
1814 * (but do_wp_page is only called after already making such a check;
1815 * and do_anonymous_page and do_no_page can safely check later on).
1816 */
4c21e2f2 1817static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1818 pte_t *page_table, pte_t orig_pte)
1819{
1820 int same = 1;
1821#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1822 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1823 spinlock_t *ptl = pte_lockptr(mm, pmd);
1824 spin_lock(ptl);
8f4e2101 1825 same = pte_same(*page_table, orig_pte);
4c21e2f2 1826 spin_unlock(ptl);
8f4e2101
HD
1827 }
1828#endif
1829 pte_unmap(page_table);
1830 return same;
1831}
1832
1da177e4
LT
1833/*
1834 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1835 * servicing faults for write access. In the normal case, do always want
1836 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1837 * that do not have writing enabled, when used by access_process_vm.
1838 */
1839static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1840{
1841 if (likely(vma->vm_flags & VM_WRITE))
1842 pte = pte_mkwrite(pte);
1843 return pte;
1844}
1845
9de455b2 1846static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1847{
1848 /*
1849 * If the source page was a PFN mapping, we don't have
1850 * a "struct page" for it. We do a best-effort copy by
1851 * just copying from the original user address. If that
1852 * fails, we just zero-fill it. Live with it.
1853 */
1854 if (unlikely(!src)) {
1855 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1856 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1857
1858 /*
1859 * This really shouldn't fail, because the page is there
1860 * in the page tables. But it might just be unreadable,
1861 * in which case we just give up and fill the result with
1862 * zeroes.
1863 */
1864 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1865 memset(kaddr, 0, PAGE_SIZE);
1866 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1867 flush_dcache_page(dst);
0ed361de
NP
1868 } else
1869 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1870}
1871
1da177e4
LT
1872/*
1873 * This routine handles present pages, when users try to write
1874 * to a shared page. It is done by copying the page to a new address
1875 * and decrementing the shared-page counter for the old page.
1876 *
1da177e4
LT
1877 * Note that this routine assumes that the protection checks have been
1878 * done by the caller (the low-level page fault routine in most cases).
1879 * Thus we can safely just mark it writable once we've done any necessary
1880 * COW.
1881 *
1882 * We also mark the page dirty at this point even though the page will
1883 * change only once the write actually happens. This avoids a few races,
1884 * and potentially makes it more efficient.
1885 *
8f4e2101
HD
1886 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1887 * but allow concurrent faults), with pte both mapped and locked.
1888 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1889 */
65500d23
HD
1890static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1891 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1892 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1893{
e5bbe4df 1894 struct page *old_page, *new_page;
1da177e4 1895 pte_t entry;
83c54070 1896 int reuse = 0, ret = 0;
a200ee18 1897 int page_mkwrite = 0;
d08b3851 1898 struct page *dirty_page = NULL;
1da177e4 1899
6aab341e 1900 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1901 if (!old_page) {
1902 /*
1903 * VM_MIXEDMAP !pfn_valid() case
1904 *
1905 * We should not cow pages in a shared writeable mapping.
1906 * Just mark the pages writable as we can't do any dirty
1907 * accounting on raw pfn maps.
1908 */
1909 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1910 (VM_WRITE|VM_SHARED))
1911 goto reuse;
6aab341e 1912 goto gotten;
251b97f5 1913 }
1da177e4 1914
d08b3851 1915 /*
ee6a6457
PZ
1916 * Take out anonymous pages first, anonymous shared vmas are
1917 * not dirty accountable.
d08b3851 1918 */
ee6a6457 1919 if (PageAnon(old_page)) {
ab967d86
HD
1920 if (!trylock_page(old_page)) {
1921 page_cache_get(old_page);
1922 pte_unmap_unlock(page_table, ptl);
1923 lock_page(old_page);
1924 page_table = pte_offset_map_lock(mm, pmd, address,
1925 &ptl);
1926 if (!pte_same(*page_table, orig_pte)) {
1927 unlock_page(old_page);
1928 page_cache_release(old_page);
1929 goto unlock;
1930 }
1931 page_cache_release(old_page);
ee6a6457 1932 }
7b1fe597 1933 reuse = reuse_swap_page(old_page);
ab967d86 1934 unlock_page(old_page);
ee6a6457 1935 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1936 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1937 /*
1938 * Only catch write-faults on shared writable pages,
1939 * read-only shared pages can get COWed by
1940 * get_user_pages(.write=1, .force=1).
1941 */
9637a5ef
DH
1942 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1943 /*
1944 * Notify the address space that the page is about to
1945 * become writable so that it can prohibit this or wait
1946 * for the page to get into an appropriate state.
1947 *
1948 * We do this without the lock held, so that it can
1949 * sleep if it needs to.
1950 */
1951 page_cache_get(old_page);
1952 pte_unmap_unlock(page_table, ptl);
1953
1954 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1955 goto unwritable_page;
1956
9637a5ef
DH
1957 /*
1958 * Since we dropped the lock we need to revalidate
1959 * the PTE as someone else may have changed it. If
1960 * they did, we just return, as we can count on the
1961 * MMU to tell us if they didn't also make it writable.
1962 */
1963 page_table = pte_offset_map_lock(mm, pmd, address,
1964 &ptl);
c3704ceb 1965 page_cache_release(old_page);
9637a5ef
DH
1966 if (!pte_same(*page_table, orig_pte))
1967 goto unlock;
a200ee18
PZ
1968
1969 page_mkwrite = 1;
1da177e4 1970 }
d08b3851
PZ
1971 dirty_page = old_page;
1972 get_page(dirty_page);
9637a5ef 1973 reuse = 1;
9637a5ef
DH
1974 }
1975
1976 if (reuse) {
251b97f5 1977reuse:
9637a5ef
DH
1978 flush_cache_page(vma, address, pte_pfn(orig_pte));
1979 entry = pte_mkyoung(orig_pte);
1980 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1981 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1982 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1983 ret |= VM_FAULT_WRITE;
1984 goto unlock;
1da177e4 1985 }
1da177e4
LT
1986
1987 /*
1988 * Ok, we need to copy. Oh, well..
1989 */
b5810039 1990 page_cache_get(old_page);
920fc356 1991gotten:
8f4e2101 1992 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1993
1994 if (unlikely(anon_vma_prepare(vma)))
65500d23 1995 goto oom;
557ed1fa
NP
1996 VM_BUG_ON(old_page == ZERO_PAGE(0));
1997 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1998 if (!new_page)
1999 goto oom;
b291f000
NP
2000 /*
2001 * Don't let another task, with possibly unlocked vma,
2002 * keep the mlocked page.
2003 */
ab92661d 2004 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2005 lock_page(old_page); /* for LRU manipulation */
2006 clear_page_mlock(old_page);
2007 unlock_page(old_page);
2008 }
557ed1fa 2009 cow_user_page(new_page, old_page, address, vma);
0ed361de 2010 __SetPageUptodate(new_page);
65500d23 2011
2c26fdd7 2012 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2013 goto oom_free_new;
2014
1da177e4
LT
2015 /*
2016 * Re-check the pte - we dropped the lock
2017 */
8f4e2101 2018 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2019 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2020 if (old_page) {
920fc356
HD
2021 if (!PageAnon(old_page)) {
2022 dec_mm_counter(mm, file_rss);
2023 inc_mm_counter(mm, anon_rss);
2024 }
2025 } else
4294621f 2026 inc_mm_counter(mm, anon_rss);
eca35133 2027 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2028 entry = mk_pte(new_page, vma->vm_page_prot);
2029 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2030 /*
2031 * Clear the pte entry and flush it first, before updating the
2032 * pte with the new entry. This will avoid a race condition
2033 * seen in the presence of one thread doing SMC and another
2034 * thread doing COW.
2035 */
cddb8a5c 2036 ptep_clear_flush_notify(vma, address, page_table);
9617d95e 2037 page_add_new_anon_rmap(new_page, vma, address);
64d6519d
LS
2038 set_pte_at(mm, address, page_table, entry);
2039 update_mmu_cache(vma, address, entry);
945754a1
NP
2040 if (old_page) {
2041 /*
2042 * Only after switching the pte to the new page may
2043 * we remove the mapcount here. Otherwise another
2044 * process may come and find the rmap count decremented
2045 * before the pte is switched to the new page, and
2046 * "reuse" the old page writing into it while our pte
2047 * here still points into it and can be read by other
2048 * threads.
2049 *
2050 * The critical issue is to order this
2051 * page_remove_rmap with the ptp_clear_flush above.
2052 * Those stores are ordered by (if nothing else,)
2053 * the barrier present in the atomic_add_negative
2054 * in page_remove_rmap.
2055 *
2056 * Then the TLB flush in ptep_clear_flush ensures that
2057 * no process can access the old page before the
2058 * decremented mapcount is visible. And the old page
2059 * cannot be reused until after the decremented
2060 * mapcount is visible. So transitively, TLBs to
2061 * old page will be flushed before it can be reused.
2062 */
edc315fd 2063 page_remove_rmap(old_page);
945754a1
NP
2064 }
2065
1da177e4
LT
2066 /* Free the old page.. */
2067 new_page = old_page;
f33ea7f4 2068 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2069 } else
2070 mem_cgroup_uncharge_page(new_page);
2071
920fc356
HD
2072 if (new_page)
2073 page_cache_release(new_page);
2074 if (old_page)
2075 page_cache_release(old_page);
65500d23 2076unlock:
8f4e2101 2077 pte_unmap_unlock(page_table, ptl);
d08b3851 2078 if (dirty_page) {
8f7b3d15
AS
2079 if (vma->vm_file)
2080 file_update_time(vma->vm_file);
2081
79352894
NP
2082 /*
2083 * Yes, Virginia, this is actually required to prevent a race
2084 * with clear_page_dirty_for_io() from clearing the page dirty
2085 * bit after it clear all dirty ptes, but before a racing
2086 * do_wp_page installs a dirty pte.
2087 *
2088 * do_no_page is protected similarly.
2089 */
2090 wait_on_page_locked(dirty_page);
a200ee18 2091 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2092 put_page(dirty_page);
2093 }
f33ea7f4 2094 return ret;
8a9f3ccd 2095oom_free_new:
6dbf6d3b 2096 page_cache_release(new_page);
65500d23 2097oom:
920fc356
HD
2098 if (old_page)
2099 page_cache_release(old_page);
1da177e4 2100 return VM_FAULT_OOM;
9637a5ef
DH
2101
2102unwritable_page:
2103 page_cache_release(old_page);
2104 return VM_FAULT_SIGBUS;
1da177e4
LT
2105}
2106
2107/*
2108 * Helper functions for unmap_mapping_range().
2109 *
2110 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2111 *
2112 * We have to restart searching the prio_tree whenever we drop the lock,
2113 * since the iterator is only valid while the lock is held, and anyway
2114 * a later vma might be split and reinserted earlier while lock dropped.
2115 *
2116 * The list of nonlinear vmas could be handled more efficiently, using
2117 * a placeholder, but handle it in the same way until a need is shown.
2118 * It is important to search the prio_tree before nonlinear list: a vma
2119 * may become nonlinear and be shifted from prio_tree to nonlinear list
2120 * while the lock is dropped; but never shifted from list to prio_tree.
2121 *
2122 * In order to make forward progress despite restarting the search,
2123 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2124 * quickly skip it next time around. Since the prio_tree search only
2125 * shows us those vmas affected by unmapping the range in question, we
2126 * can't efficiently keep all vmas in step with mapping->truncate_count:
2127 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2128 * mapping->truncate_count and vma->vm_truncate_count are protected by
2129 * i_mmap_lock.
2130 *
2131 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2132 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2133 * and restart from that address when we reach that vma again. It might
2134 * have been split or merged, shrunk or extended, but never shifted: so
2135 * restart_addr remains valid so long as it remains in the vma's range.
2136 * unmap_mapping_range forces truncate_count to leap over page-aligned
2137 * values so we can save vma's restart_addr in its truncate_count field.
2138 */
2139#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2140
2141static void reset_vma_truncate_counts(struct address_space *mapping)
2142{
2143 struct vm_area_struct *vma;
2144 struct prio_tree_iter iter;
2145
2146 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2147 vma->vm_truncate_count = 0;
2148 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2149 vma->vm_truncate_count = 0;
2150}
2151
2152static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2153 unsigned long start_addr, unsigned long end_addr,
2154 struct zap_details *details)
2155{
2156 unsigned long restart_addr;
2157 int need_break;
2158
d00806b1
NP
2159 /*
2160 * files that support invalidating or truncating portions of the
d0217ac0 2161 * file from under mmaped areas must have their ->fault function
83c54070
NP
2162 * return a locked page (and set VM_FAULT_LOCKED in the return).
2163 * This provides synchronisation against concurrent unmapping here.
d00806b1 2164 */
d00806b1 2165
1da177e4
LT
2166again:
2167 restart_addr = vma->vm_truncate_count;
2168 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2169 start_addr = restart_addr;
2170 if (start_addr >= end_addr) {
2171 /* Top of vma has been split off since last time */
2172 vma->vm_truncate_count = details->truncate_count;
2173 return 0;
2174 }
2175 }
2176
ee39b37b
HD
2177 restart_addr = zap_page_range(vma, start_addr,
2178 end_addr - start_addr, details);
95c354fe 2179 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2180
ee39b37b 2181 if (restart_addr >= end_addr) {
1da177e4
LT
2182 /* We have now completed this vma: mark it so */
2183 vma->vm_truncate_count = details->truncate_count;
2184 if (!need_break)
2185 return 0;
2186 } else {
2187 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2188 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2189 if (!need_break)
2190 goto again;
2191 }
2192
2193 spin_unlock(details->i_mmap_lock);
2194 cond_resched();
2195 spin_lock(details->i_mmap_lock);
2196 return -EINTR;
2197}
2198
2199static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2200 struct zap_details *details)
2201{
2202 struct vm_area_struct *vma;
2203 struct prio_tree_iter iter;
2204 pgoff_t vba, vea, zba, zea;
2205
2206restart:
2207 vma_prio_tree_foreach(vma, &iter, root,
2208 details->first_index, details->last_index) {
2209 /* Skip quickly over those we have already dealt with */
2210 if (vma->vm_truncate_count == details->truncate_count)
2211 continue;
2212
2213 vba = vma->vm_pgoff;
2214 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2215 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2216 zba = details->first_index;
2217 if (zba < vba)
2218 zba = vba;
2219 zea = details->last_index;
2220 if (zea > vea)
2221 zea = vea;
2222
2223 if (unmap_mapping_range_vma(vma,
2224 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2225 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2226 details) < 0)
2227 goto restart;
2228 }
2229}
2230
2231static inline void unmap_mapping_range_list(struct list_head *head,
2232 struct zap_details *details)
2233{
2234 struct vm_area_struct *vma;
2235
2236 /*
2237 * In nonlinear VMAs there is no correspondence between virtual address
2238 * offset and file offset. So we must perform an exhaustive search
2239 * across *all* the pages in each nonlinear VMA, not just the pages
2240 * whose virtual address lies outside the file truncation point.
2241 */
2242restart:
2243 list_for_each_entry(vma, head, shared.vm_set.list) {
2244 /* Skip quickly over those we have already dealt with */
2245 if (vma->vm_truncate_count == details->truncate_count)
2246 continue;
2247 details->nonlinear_vma = vma;
2248 if (unmap_mapping_range_vma(vma, vma->vm_start,
2249 vma->vm_end, details) < 0)
2250 goto restart;
2251 }
2252}
2253
2254/**
72fd4a35 2255 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2256 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2257 * @holebegin: byte in first page to unmap, relative to the start of
2258 * the underlying file. This will be rounded down to a PAGE_SIZE
2259 * boundary. Note that this is different from vmtruncate(), which
2260 * must keep the partial page. In contrast, we must get rid of
2261 * partial pages.
2262 * @holelen: size of prospective hole in bytes. This will be rounded
2263 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2264 * end of the file.
2265 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2266 * but 0 when invalidating pagecache, don't throw away private data.
2267 */
2268void unmap_mapping_range(struct address_space *mapping,
2269 loff_t const holebegin, loff_t const holelen, int even_cows)
2270{
2271 struct zap_details details;
2272 pgoff_t hba = holebegin >> PAGE_SHIFT;
2273 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2274
2275 /* Check for overflow. */
2276 if (sizeof(holelen) > sizeof(hlen)) {
2277 long long holeend =
2278 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2279 if (holeend & ~(long long)ULONG_MAX)
2280 hlen = ULONG_MAX - hba + 1;
2281 }
2282
2283 details.check_mapping = even_cows? NULL: mapping;
2284 details.nonlinear_vma = NULL;
2285 details.first_index = hba;
2286 details.last_index = hba + hlen - 1;
2287 if (details.last_index < details.first_index)
2288 details.last_index = ULONG_MAX;
2289 details.i_mmap_lock = &mapping->i_mmap_lock;
2290
2291 spin_lock(&mapping->i_mmap_lock);
2292
d00806b1 2293 /* Protect against endless unmapping loops */
1da177e4 2294 mapping->truncate_count++;
1da177e4
LT
2295 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2296 if (mapping->truncate_count == 0)
2297 reset_vma_truncate_counts(mapping);
2298 mapping->truncate_count++;
2299 }
2300 details.truncate_count = mapping->truncate_count;
2301
2302 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2303 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2304 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2305 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2306 spin_unlock(&mapping->i_mmap_lock);
2307}
2308EXPORT_SYMBOL(unmap_mapping_range);
2309
bfa5bf6d
REB
2310/**
2311 * vmtruncate - unmap mappings "freed" by truncate() syscall
2312 * @inode: inode of the file used
2313 * @offset: file offset to start truncating
1da177e4
LT
2314 *
2315 * NOTE! We have to be ready to update the memory sharing
2316 * between the file and the memory map for a potential last
2317 * incomplete page. Ugly, but necessary.
2318 */
2319int vmtruncate(struct inode * inode, loff_t offset)
2320{
61d5048f
CH
2321 if (inode->i_size < offset) {
2322 unsigned long limit;
2323
2324 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2325 if (limit != RLIM_INFINITY && offset > limit)
2326 goto out_sig;
2327 if (offset > inode->i_sb->s_maxbytes)
2328 goto out_big;
2329 i_size_write(inode, offset);
2330 } else {
2331 struct address_space *mapping = inode->i_mapping;
1da177e4 2332
61d5048f
CH
2333 /*
2334 * truncation of in-use swapfiles is disallowed - it would
2335 * cause subsequent swapout to scribble on the now-freed
2336 * blocks.
2337 */
2338 if (IS_SWAPFILE(inode))
2339 return -ETXTBSY;
2340 i_size_write(inode, offset);
2341
2342 /*
2343 * unmap_mapping_range is called twice, first simply for
2344 * efficiency so that truncate_inode_pages does fewer
2345 * single-page unmaps. However after this first call, and
2346 * before truncate_inode_pages finishes, it is possible for
2347 * private pages to be COWed, which remain after
2348 * truncate_inode_pages finishes, hence the second
2349 * unmap_mapping_range call must be made for correctness.
2350 */
2351 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2352 truncate_inode_pages(mapping, offset);
2353 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2354 }
d00806b1 2355
acfa4380 2356 if (inode->i_op->truncate)
1da177e4
LT
2357 inode->i_op->truncate(inode);
2358 return 0;
61d5048f 2359
1da177e4
LT
2360out_sig:
2361 send_sig(SIGXFSZ, current, 0);
2362out_big:
2363 return -EFBIG;
1da177e4 2364}
1da177e4
LT
2365EXPORT_SYMBOL(vmtruncate);
2366
f6b3ec23
BP
2367int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2368{
2369 struct address_space *mapping = inode->i_mapping;
2370
2371 /*
2372 * If the underlying filesystem is not going to provide
2373 * a way to truncate a range of blocks (punch a hole) -
2374 * we should return failure right now.
2375 */
acfa4380 2376 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2377 return -ENOSYS;
2378
1b1dcc1b 2379 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2380 down_write(&inode->i_alloc_sem);
2381 unmap_mapping_range(mapping, offset, (end - offset), 1);
2382 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2383 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2384 inode->i_op->truncate_range(inode, offset, end);
2385 up_write(&inode->i_alloc_sem);
1b1dcc1b 2386 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2387
2388 return 0;
2389}
f6b3ec23 2390
1da177e4 2391/*
8f4e2101
HD
2392 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2393 * but allow concurrent faults), and pte mapped but not yet locked.
2394 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2395 */
65500d23
HD
2396static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2397 unsigned long address, pte_t *page_table, pmd_t *pmd,
2398 int write_access, pte_t orig_pte)
1da177e4 2399{
8f4e2101 2400 spinlock_t *ptl;
1da177e4 2401 struct page *page;
65500d23 2402 swp_entry_t entry;
1da177e4 2403 pte_t pte;
7a81b88c 2404 struct mem_cgroup *ptr = NULL;
83c54070 2405 int ret = 0;
1da177e4 2406
4c21e2f2 2407 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2408 goto out;
65500d23
HD
2409
2410 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2411 if (is_migration_entry(entry)) {
2412 migration_entry_wait(mm, pmd, address);
2413 goto out;
2414 }
0ff92245 2415 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2416 page = lookup_swap_cache(entry);
2417 if (!page) {
098fe651 2418 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2419 page = swapin_readahead(entry,
2420 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2421 if (!page) {
2422 /*
8f4e2101
HD
2423 * Back out if somebody else faulted in this pte
2424 * while we released the pte lock.
1da177e4 2425 */
8f4e2101 2426 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2427 if (likely(pte_same(*page_table, orig_pte)))
2428 ret = VM_FAULT_OOM;
0ff92245 2429 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2430 goto unlock;
1da177e4
LT
2431 }
2432
2433 /* Had to read the page from swap area: Major fault */
2434 ret = VM_FAULT_MAJOR;
f8891e5e 2435 count_vm_event(PGMAJFAULT);
1da177e4
LT
2436 }
2437
073e587e
KH
2438 mark_page_accessed(page);
2439
2440 lock_page(page);
2441 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2442
2c26fdd7 2443 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2444 ret = VM_FAULT_OOM;
073e587e 2445 unlock_page(page);
8a9f3ccd
BS
2446 goto out;
2447 }
2448
1da177e4 2449 /*
8f4e2101 2450 * Back out if somebody else already faulted in this pte.
1da177e4 2451 */
8f4e2101 2452 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2453 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2454 goto out_nomap;
b8107480
KK
2455
2456 if (unlikely(!PageUptodate(page))) {
2457 ret = VM_FAULT_SIGBUS;
2458 goto out_nomap;
1da177e4
LT
2459 }
2460
8c7c6e34
KH
2461 /*
2462 * The page isn't present yet, go ahead with the fault.
2463 *
2464 * Be careful about the sequence of operations here.
2465 * To get its accounting right, reuse_swap_page() must be called
2466 * while the page is counted on swap but not yet in mapcount i.e.
2467 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2468 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2469 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2470 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2471 * in page->private. In this case, a record in swap_cgroup is silently
2472 * discarded at swap_free().
8c7c6e34 2473 */
1da177e4 2474
4294621f 2475 inc_mm_counter(mm, anon_rss);
1da177e4 2476 pte = mk_pte(page, vma->vm_page_prot);
7b1fe597 2477 if (write_access && reuse_swap_page(page)) {
1da177e4
LT
2478 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2479 write_access = 0;
2480 }
1da177e4
LT
2481 flush_icache_page(vma, page);
2482 set_pte_at(mm, address, page_table, pte);
2483 page_add_anon_rmap(page, vma, address);
03f3c433
KH
2484 /* It's better to call commit-charge after rmap is established */
2485 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2486
c475a8ab 2487 swap_free(entry);
b291f000 2488 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2489 try_to_free_swap(page);
c475a8ab
HD
2490 unlock_page(page);
2491
1da177e4 2492 if (write_access) {
61469f1d
HD
2493 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2494 if (ret & VM_FAULT_ERROR)
2495 ret &= VM_FAULT_ERROR;
1da177e4
LT
2496 goto out;
2497 }
2498
2499 /* No need to invalidate - it was non-present before */
2500 update_mmu_cache(vma, address, pte);
65500d23 2501unlock:
8f4e2101 2502 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2503out:
2504 return ret;
b8107480 2505out_nomap:
7a81b88c 2506 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2507 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2508 unlock_page(page);
2509 page_cache_release(page);
65500d23 2510 return ret;
1da177e4
LT
2511}
2512
2513/*
8f4e2101
HD
2514 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2515 * but allow concurrent faults), and pte mapped but not yet locked.
2516 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2517 */
65500d23
HD
2518static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2519 unsigned long address, pte_t *page_table, pmd_t *pmd,
2520 int write_access)
1da177e4 2521{
8f4e2101
HD
2522 struct page *page;
2523 spinlock_t *ptl;
1da177e4 2524 pte_t entry;
1da177e4 2525
557ed1fa
NP
2526 /* Allocate our own private page. */
2527 pte_unmap(page_table);
8f4e2101 2528
557ed1fa
NP
2529 if (unlikely(anon_vma_prepare(vma)))
2530 goto oom;
2531 page = alloc_zeroed_user_highpage_movable(vma, address);
2532 if (!page)
2533 goto oom;
0ed361de 2534 __SetPageUptodate(page);
8f4e2101 2535
2c26fdd7 2536 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2537 goto oom_free_page;
2538
557ed1fa
NP
2539 entry = mk_pte(page, vma->vm_page_prot);
2540 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2541
557ed1fa
NP
2542 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2543 if (!pte_none(*page_table))
2544 goto release;
2545 inc_mm_counter(mm, anon_rss);
557ed1fa 2546 page_add_new_anon_rmap(page, vma, address);
65500d23 2547 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2548
2549 /* No need to invalidate - it was non-present before */
65500d23 2550 update_mmu_cache(vma, address, entry);
65500d23 2551unlock:
8f4e2101 2552 pte_unmap_unlock(page_table, ptl);
83c54070 2553 return 0;
8f4e2101 2554release:
8a9f3ccd 2555 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2556 page_cache_release(page);
2557 goto unlock;
8a9f3ccd 2558oom_free_page:
6dbf6d3b 2559 page_cache_release(page);
65500d23 2560oom:
1da177e4
LT
2561 return VM_FAULT_OOM;
2562}
2563
2564/*
54cb8821 2565 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2566 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2567 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2568 * the next page fault.
1da177e4
LT
2569 *
2570 * As this is called only for pages that do not currently exist, we
2571 * do not need to flush old virtual caches or the TLB.
2572 *
8f4e2101 2573 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2574 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2575 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2576 */
54cb8821 2577static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2578 unsigned long address, pmd_t *pmd,
54cb8821 2579 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2580{
16abfa08 2581 pte_t *page_table;
8f4e2101 2582 spinlock_t *ptl;
d0217ac0 2583 struct page *page;
1da177e4 2584 pte_t entry;
1da177e4 2585 int anon = 0;
5b4e655e 2586 int charged = 0;
d08b3851 2587 struct page *dirty_page = NULL;
d0217ac0
NP
2588 struct vm_fault vmf;
2589 int ret;
a200ee18 2590 int page_mkwrite = 0;
54cb8821 2591
d0217ac0
NP
2592 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2593 vmf.pgoff = pgoff;
2594 vmf.flags = flags;
2595 vmf.page = NULL;
1da177e4 2596
3c18ddd1
NP
2597 ret = vma->vm_ops->fault(vma, &vmf);
2598 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2599 return ret;
1da177e4 2600
d00806b1 2601 /*
d0217ac0 2602 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2603 * locked.
2604 */
83c54070 2605 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2606 lock_page(vmf.page);
54cb8821 2607 else
d0217ac0 2608 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2609
1da177e4
LT
2610 /*
2611 * Should we do an early C-O-W break?
2612 */
d0217ac0 2613 page = vmf.page;
54cb8821 2614 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2615 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2616 anon = 1;
d00806b1 2617 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2618 ret = VM_FAULT_OOM;
54cb8821 2619 goto out;
d00806b1 2620 }
83c54070
NP
2621 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2622 vma, address);
d00806b1 2623 if (!page) {
d0217ac0 2624 ret = VM_FAULT_OOM;
54cb8821 2625 goto out;
d00806b1 2626 }
2c26fdd7 2627 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2628 ret = VM_FAULT_OOM;
2629 page_cache_release(page);
2630 goto out;
2631 }
2632 charged = 1;
b291f000
NP
2633 /*
2634 * Don't let another task, with possibly unlocked vma,
2635 * keep the mlocked page.
2636 */
2637 if (vma->vm_flags & VM_LOCKED)
2638 clear_page_mlock(vmf.page);
d0217ac0 2639 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2640 __SetPageUptodate(page);
9637a5ef 2641 } else {
54cb8821
NP
2642 /*
2643 * If the page will be shareable, see if the backing
9637a5ef 2644 * address space wants to know that the page is about
54cb8821
NP
2645 * to become writable
2646 */
69676147
MF
2647 if (vma->vm_ops->page_mkwrite) {
2648 unlock_page(page);
2649 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2650 ret = VM_FAULT_SIGBUS;
2651 anon = 1; /* no anon but release vmf.page */
69676147
MF
2652 goto out_unlocked;
2653 }
2654 lock_page(page);
d0217ac0
NP
2655 /*
2656 * XXX: this is not quite right (racy vs
2657 * invalidate) to unlock and relock the page
2658 * like this, however a better fix requires
2659 * reworking page_mkwrite locking API, which
2660 * is better done later.
2661 */
2662 if (!page->mapping) {
83c54070 2663 ret = 0;
d0217ac0
NP
2664 anon = 1; /* no anon but release vmf.page */
2665 goto out;
2666 }
a200ee18 2667 page_mkwrite = 1;
9637a5ef
DH
2668 }
2669 }
54cb8821 2670
1da177e4
LT
2671 }
2672
8f4e2101 2673 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2674
2675 /*
2676 * This silly early PAGE_DIRTY setting removes a race
2677 * due to the bad i386 page protection. But it's valid
2678 * for other architectures too.
2679 *
2680 * Note that if write_access is true, we either now have
2681 * an exclusive copy of the page, or this is a shared mapping,
2682 * so we can make it writable and dirty to avoid having to
2683 * handle that later.
2684 */
2685 /* Only go through if we didn't race with anybody else... */
54cb8821 2686 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2687 flush_icache_page(vma, page);
2688 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2689 if (flags & FAULT_FLAG_WRITE)
1da177e4 2690 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2691 if (anon) {
64d6519d 2692 inc_mm_counter(mm, anon_rss);
64d6519d 2693 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2694 } else {
4294621f 2695 inc_mm_counter(mm, file_rss);
d00806b1 2696 page_add_file_rmap(page);
54cb8821 2697 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2698 dirty_page = page;
d08b3851
PZ
2699 get_page(dirty_page);
2700 }
4294621f 2701 }
64d6519d 2702 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2703
2704 /* no need to invalidate: a not-present page won't be cached */
2705 update_mmu_cache(vma, address, entry);
1da177e4 2706 } else {
5b4e655e
KH
2707 if (charged)
2708 mem_cgroup_uncharge_page(page);
d00806b1
NP
2709 if (anon)
2710 page_cache_release(page);
2711 else
54cb8821 2712 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2713 }
2714
8f4e2101 2715 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2716
2717out:
d0217ac0 2718 unlock_page(vmf.page);
69676147 2719out_unlocked:
d00806b1 2720 if (anon)
d0217ac0 2721 page_cache_release(vmf.page);
d00806b1 2722 else if (dirty_page) {
8f7b3d15
AS
2723 if (vma->vm_file)
2724 file_update_time(vma->vm_file);
2725
a200ee18 2726 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2727 put_page(dirty_page);
2728 }
d00806b1 2729
83c54070 2730 return ret;
54cb8821 2731}
d00806b1 2732
54cb8821
NP
2733static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2734 unsigned long address, pte_t *page_table, pmd_t *pmd,
2735 int write_access, pte_t orig_pte)
2736{
2737 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2738 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2739 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2740
16abfa08
HD
2741 pte_unmap(page_table);
2742 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2743}
2744
1da177e4
LT
2745/*
2746 * Fault of a previously existing named mapping. Repopulate the pte
2747 * from the encoded file_pte if possible. This enables swappable
2748 * nonlinear vmas.
8f4e2101
HD
2749 *
2750 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2751 * but allow concurrent faults), and pte mapped but not yet locked.
2752 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2753 */
d0217ac0 2754static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2755 unsigned long address, pte_t *page_table, pmd_t *pmd,
2756 int write_access, pte_t orig_pte)
1da177e4 2757{
d0217ac0
NP
2758 unsigned int flags = FAULT_FLAG_NONLINEAR |
2759 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2760 pgoff_t pgoff;
1da177e4 2761
4c21e2f2 2762 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2763 return 0;
1da177e4 2764
2509ef26 2765 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
2766 /*
2767 * Page table corrupted: show pte and kill process.
2768 */
3dc14741 2769 print_bad_pte(vma, address, orig_pte, NULL);
65500d23
HD
2770 return VM_FAULT_OOM;
2771 }
65500d23
HD
2772
2773 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2774 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2775}
2776
2777/*
2778 * These routines also need to handle stuff like marking pages dirty
2779 * and/or accessed for architectures that don't do it in hardware (most
2780 * RISC architectures). The early dirtying is also good on the i386.
2781 *
2782 * There is also a hook called "update_mmu_cache()" that architectures
2783 * with external mmu caches can use to update those (ie the Sparc or
2784 * PowerPC hashed page tables that act as extended TLBs).
2785 *
c74df32c
HD
2786 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2787 * but allow concurrent faults), and pte mapped but not yet locked.
2788 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2789 */
2790static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2791 struct vm_area_struct *vma, unsigned long address,
2792 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2793{
2794 pte_t entry;
8f4e2101 2795 spinlock_t *ptl;
1da177e4 2796
8dab5241 2797 entry = *pte;
1da177e4 2798 if (!pte_present(entry)) {
65500d23 2799 if (pte_none(entry)) {
f4b81804 2800 if (vma->vm_ops) {
3c18ddd1 2801 if (likely(vma->vm_ops->fault))
54cb8821
NP
2802 return do_linear_fault(mm, vma, address,
2803 pte, pmd, write_access, entry);
f4b81804
JS
2804 }
2805 return do_anonymous_page(mm, vma, address,
2806 pte, pmd, write_access);
65500d23 2807 }
1da177e4 2808 if (pte_file(entry))
d0217ac0 2809 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2810 pte, pmd, write_access, entry);
2811 return do_swap_page(mm, vma, address,
2812 pte, pmd, write_access, entry);
1da177e4
LT
2813 }
2814
4c21e2f2 2815 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2816 spin_lock(ptl);
2817 if (unlikely(!pte_same(*pte, entry)))
2818 goto unlock;
1da177e4
LT
2819 if (write_access) {
2820 if (!pte_write(entry))
8f4e2101
HD
2821 return do_wp_page(mm, vma, address,
2822 pte, pmd, ptl, entry);
1da177e4
LT
2823 entry = pte_mkdirty(entry);
2824 }
2825 entry = pte_mkyoung(entry);
8dab5241 2826 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2827 update_mmu_cache(vma, address, entry);
1a44e149
AA
2828 } else {
2829 /*
2830 * This is needed only for protection faults but the arch code
2831 * is not yet telling us if this is a protection fault or not.
2832 * This still avoids useless tlb flushes for .text page faults
2833 * with threads.
2834 */
2835 if (write_access)
2836 flush_tlb_page(vma, address);
2837 }
8f4e2101
HD
2838unlock:
2839 pte_unmap_unlock(pte, ptl);
83c54070 2840 return 0;
1da177e4
LT
2841}
2842
2843/*
2844 * By the time we get here, we already hold the mm semaphore
2845 */
83c54070 2846int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2847 unsigned long address, int write_access)
2848{
2849 pgd_t *pgd;
2850 pud_t *pud;
2851 pmd_t *pmd;
2852 pte_t *pte;
2853
2854 __set_current_state(TASK_RUNNING);
2855
f8891e5e 2856 count_vm_event(PGFAULT);
1da177e4 2857
ac9b9c66
HD
2858 if (unlikely(is_vm_hugetlb_page(vma)))
2859 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2860
1da177e4 2861 pgd = pgd_offset(mm, address);
1da177e4
LT
2862 pud = pud_alloc(mm, pgd, address);
2863 if (!pud)
c74df32c 2864 return VM_FAULT_OOM;
1da177e4
LT
2865 pmd = pmd_alloc(mm, pud, address);
2866 if (!pmd)
c74df32c 2867 return VM_FAULT_OOM;
1da177e4
LT
2868 pte = pte_alloc_map(mm, pmd, address);
2869 if (!pte)
c74df32c 2870 return VM_FAULT_OOM;
1da177e4 2871
c74df32c 2872 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2873}
2874
2875#ifndef __PAGETABLE_PUD_FOLDED
2876/*
2877 * Allocate page upper directory.
872fec16 2878 * We've already handled the fast-path in-line.
1da177e4 2879 */
1bb3630e 2880int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2881{
c74df32c
HD
2882 pud_t *new = pud_alloc_one(mm, address);
2883 if (!new)
1bb3630e 2884 return -ENOMEM;
1da177e4 2885
362a61ad
NP
2886 smp_wmb(); /* See comment in __pte_alloc */
2887
872fec16 2888 spin_lock(&mm->page_table_lock);
1bb3630e 2889 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2890 pud_free(mm, new);
1bb3630e
HD
2891 else
2892 pgd_populate(mm, pgd, new);
c74df32c 2893 spin_unlock(&mm->page_table_lock);
1bb3630e 2894 return 0;
1da177e4
LT
2895}
2896#endif /* __PAGETABLE_PUD_FOLDED */
2897
2898#ifndef __PAGETABLE_PMD_FOLDED
2899/*
2900 * Allocate page middle directory.
872fec16 2901 * We've already handled the fast-path in-line.
1da177e4 2902 */
1bb3630e 2903int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2904{
c74df32c
HD
2905 pmd_t *new = pmd_alloc_one(mm, address);
2906 if (!new)
1bb3630e 2907 return -ENOMEM;
1da177e4 2908
362a61ad
NP
2909 smp_wmb(); /* See comment in __pte_alloc */
2910
872fec16 2911 spin_lock(&mm->page_table_lock);
1da177e4 2912#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2913 if (pud_present(*pud)) /* Another has populated it */
5e541973 2914 pmd_free(mm, new);
1bb3630e
HD
2915 else
2916 pud_populate(mm, pud, new);
1da177e4 2917#else
1bb3630e 2918 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2919 pmd_free(mm, new);
1bb3630e
HD
2920 else
2921 pgd_populate(mm, pud, new);
1da177e4 2922#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2923 spin_unlock(&mm->page_table_lock);
1bb3630e 2924 return 0;
e0f39591 2925}
1da177e4
LT
2926#endif /* __PAGETABLE_PMD_FOLDED */
2927
2928int make_pages_present(unsigned long addr, unsigned long end)
2929{
2930 int ret, len, write;
2931 struct vm_area_struct * vma;
2932
2933 vma = find_vma(current->mm, addr);
2934 if (!vma)
a477097d 2935 return -ENOMEM;
1da177e4 2936 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2937 BUG_ON(addr >= end);
2938 BUG_ON(end > vma->vm_end);
68e116a3 2939 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2940 ret = get_user_pages(current, current->mm, addr,
2941 len, write, 0, NULL, NULL);
c11d69d8 2942 if (ret < 0)
1da177e4 2943 return ret;
9978ad58 2944 return ret == len ? 0 : -EFAULT;
1da177e4
LT
2945}
2946
1da177e4
LT
2947#if !defined(__HAVE_ARCH_GATE_AREA)
2948
2949#if defined(AT_SYSINFO_EHDR)
5ce7852c 2950static struct vm_area_struct gate_vma;
1da177e4
LT
2951
2952static int __init gate_vma_init(void)
2953{
2954 gate_vma.vm_mm = NULL;
2955 gate_vma.vm_start = FIXADDR_USER_START;
2956 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2957 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2958 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2959 /*
2960 * Make sure the vDSO gets into every core dump.
2961 * Dumping its contents makes post-mortem fully interpretable later
2962 * without matching up the same kernel and hardware config to see
2963 * what PC values meant.
2964 */
2965 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2966 return 0;
2967}
2968__initcall(gate_vma_init);
2969#endif
2970
2971struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2972{
2973#ifdef AT_SYSINFO_EHDR
2974 return &gate_vma;
2975#else
2976 return NULL;
2977#endif
2978}
2979
2980int in_gate_area_no_task(unsigned long addr)
2981{
2982#ifdef AT_SYSINFO_EHDR
2983 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2984 return 1;
2985#endif
2986 return 0;
2987}
2988
2989#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2990
28b2ee20 2991#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 2992int follow_phys(struct vm_area_struct *vma,
2993 unsigned long address, unsigned int flags,
2994 unsigned long *prot, resource_size_t *phys)
28b2ee20
RR
2995{
2996 pgd_t *pgd;
2997 pud_t *pud;
2998 pmd_t *pmd;
2999 pte_t *ptep, pte;
3000 spinlock_t *ptl;
3001 resource_size_t phys_addr = 0;
3002 struct mm_struct *mm = vma->vm_mm;
d87fe660 3003 int ret = -EINVAL;
28b2ee20 3004
d87fe660 3005 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3006 goto out;
28b2ee20
RR
3007
3008 pgd = pgd_offset(mm, address);
3009 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
d87fe660 3010 goto out;
28b2ee20
RR
3011
3012 pud = pud_offset(pgd, address);
3013 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
d87fe660 3014 goto out;
28b2ee20
RR
3015
3016 pmd = pmd_offset(pud, address);
3017 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
d87fe660 3018 goto out;
28b2ee20
RR
3019
3020 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3021 if (pmd_huge(*pmd))
d87fe660 3022 goto out;
28b2ee20
RR
3023
3024 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3025 if (!ptep)
3026 goto out;
3027
3028 pte = *ptep;
3029 if (!pte_present(pte))
3030 goto unlock;
3031 if ((flags & FOLL_WRITE) && !pte_write(pte))
3032 goto unlock;
3033 phys_addr = pte_pfn(pte);
3034 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3035
3036 *prot = pgprot_val(pte_pgprot(pte));
d87fe660 3037 *phys = phys_addr;
3038 ret = 0;
28b2ee20
RR
3039
3040unlock:
3041 pte_unmap_unlock(ptep, ptl);
3042out:
d87fe660 3043 return ret;
28b2ee20
RR
3044}
3045
3046int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3047 void *buf, int len, int write)
3048{
3049 resource_size_t phys_addr;
3050 unsigned long prot = 0;
2bc7273b 3051 void __iomem *maddr;
28b2ee20
RR
3052 int offset = addr & (PAGE_SIZE-1);
3053
d87fe660 3054 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3055 return -EINVAL;
3056
3057 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3058 if (write)
3059 memcpy_toio(maddr + offset, buf, len);
3060 else
3061 memcpy_fromio(buf, maddr + offset, len);
3062 iounmap(maddr);
3063
3064 return len;
3065}
3066#endif
3067
0ec76a11
DH
3068/*
3069 * Access another process' address space.
3070 * Source/target buffer must be kernel space,
3071 * Do not walk the page table directly, use get_user_pages
3072 */
3073int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3074{
3075 struct mm_struct *mm;
3076 struct vm_area_struct *vma;
0ec76a11
DH
3077 void *old_buf = buf;
3078
3079 mm = get_task_mm(tsk);
3080 if (!mm)
3081 return 0;
3082
3083 down_read(&mm->mmap_sem);
183ff22b 3084 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3085 while (len) {
3086 int bytes, ret, offset;
3087 void *maddr;
28b2ee20 3088 struct page *page = NULL;
0ec76a11
DH
3089
3090 ret = get_user_pages(tsk, mm, addr, 1,
3091 write, 1, &page, &vma);
28b2ee20
RR
3092 if (ret <= 0) {
3093 /*
3094 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3095 * we can access using slightly different code.
3096 */
3097#ifdef CONFIG_HAVE_IOREMAP_PROT
3098 vma = find_vma(mm, addr);
3099 if (!vma)
3100 break;
3101 if (vma->vm_ops && vma->vm_ops->access)
3102 ret = vma->vm_ops->access(vma, addr, buf,
3103 len, write);
3104 if (ret <= 0)
3105#endif
3106 break;
3107 bytes = ret;
0ec76a11 3108 } else {
28b2ee20
RR
3109 bytes = len;
3110 offset = addr & (PAGE_SIZE-1);
3111 if (bytes > PAGE_SIZE-offset)
3112 bytes = PAGE_SIZE-offset;
3113
3114 maddr = kmap(page);
3115 if (write) {
3116 copy_to_user_page(vma, page, addr,
3117 maddr + offset, buf, bytes);
3118 set_page_dirty_lock(page);
3119 } else {
3120 copy_from_user_page(vma, page, addr,
3121 buf, maddr + offset, bytes);
3122 }
3123 kunmap(page);
3124 page_cache_release(page);
0ec76a11 3125 }
0ec76a11
DH
3126 len -= bytes;
3127 buf += bytes;
3128 addr += bytes;
3129 }
3130 up_read(&mm->mmap_sem);
3131 mmput(mm);
3132
3133 return buf - old_buf;
3134}
03252919
AK
3135
3136/*
3137 * Print the name of a VMA.
3138 */
3139void print_vma_addr(char *prefix, unsigned long ip)
3140{
3141 struct mm_struct *mm = current->mm;
3142 struct vm_area_struct *vma;
3143
e8bff74a
IM
3144 /*
3145 * Do not print if we are in atomic
3146 * contexts (in exception stacks, etc.):
3147 */
3148 if (preempt_count())
3149 return;
3150
03252919
AK
3151 down_read(&mm->mmap_sem);
3152 vma = find_vma(mm, ip);
3153 if (vma && vma->vm_file) {
3154 struct file *f = vma->vm_file;
3155 char *buf = (char *)__get_free_page(GFP_KERNEL);
3156 if (buf) {
3157 char *p, *s;
3158
cf28b486 3159 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3160 if (IS_ERR(p))
3161 p = "?";
3162 s = strrchr(p, '/');
3163 if (s)
3164 p = s+1;
3165 printk("%s%s[%lx+%lx]", prefix, p,
3166 vma->vm_start,
3167 vma->vm_end - vma->vm_start);
3168 free_page((unsigned long)buf);
3169 }
3170 }
3171 up_read(&current->mm->mmap_sem);
3172}
3ee1afa3
NP
3173
3174#ifdef CONFIG_PROVE_LOCKING
3175void might_fault(void)
3176{
95156f00
PZ
3177 /*
3178 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3179 * holding the mmap_sem, this is safe because kernel memory doesn't
3180 * get paged out, therefore we'll never actually fault, and the
3181 * below annotations will generate false positives.
3182 */
3183 if (segment_eq(get_fs(), KERNEL_DS))
3184 return;
3185
3ee1afa3
NP
3186 might_sleep();
3187 /*
3188 * it would be nicer only to annotate paths which are not under
3189 * pagefault_disable, however that requires a larger audit and
3190 * providing helpers like get_user_atomic.
3191 */
3192 if (!in_atomic() && current->mm)
3193 might_lock_read(&current->mm->mmap_sem);
3194}
3195EXPORT_SYMBOL(might_fault);
3196#endif