]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory.c
mm: remove double indirection on tlb parameter to free_pgd_range() & Co
[net-next-2.6.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
1da177e4
LT
54
55#include <asm/pgalloc.h>
56#include <asm/uaccess.h>
57#include <asm/tlb.h>
58#include <asm/tlbflush.h>
59#include <asm/pgtable.h>
60
61#include <linux/swapops.h>
62#include <linux/elf.h>
63
42b77728
JB
64#include "internal.h"
65
d41dee36 66#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
67/* use the per-pgdat data instead for discontigmem - mbligh */
68unsigned long max_mapnr;
69struct page *mem_map;
70
71EXPORT_SYMBOL(max_mapnr);
72EXPORT_SYMBOL(mem_map);
73#endif
74
75unsigned long num_physpages;
76/*
77 * A number of key systems in x86 including ioremap() rely on the assumption
78 * that high_memory defines the upper bound on direct map memory, then end
79 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
80 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
81 * and ZONE_HIGHMEM.
82 */
83void * high_memory;
1da177e4
LT
84
85EXPORT_SYMBOL(num_physpages);
86EXPORT_SYMBOL(high_memory);
1da177e4 87
32a93233
IM
88/*
89 * Randomize the address space (stacks, mmaps, brk, etc.).
90 *
91 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
92 * as ancient (libc5 based) binaries can segfault. )
93 */
94int randomize_va_space __read_mostly =
95#ifdef CONFIG_COMPAT_BRK
96 1;
97#else
98 2;
99#endif
a62eaf15
AK
100
101static int __init disable_randmaps(char *s)
102{
103 randomize_va_space = 0;
9b41046c 104 return 1;
a62eaf15
AK
105}
106__setup("norandmaps", disable_randmaps);
107
108
1da177e4
LT
109/*
110 * If a p?d_bad entry is found while walking page tables, report
111 * the error, before resetting entry to p?d_none. Usually (but
112 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 */
114
115void pgd_clear_bad(pgd_t *pgd)
116{
117 pgd_ERROR(*pgd);
118 pgd_clear(pgd);
119}
120
121void pud_clear_bad(pud_t *pud)
122{
123 pud_ERROR(*pud);
124 pud_clear(pud);
125}
126
127void pmd_clear_bad(pmd_t *pmd)
128{
129 pmd_ERROR(*pmd);
130 pmd_clear(pmd);
131}
132
133/*
134 * Note: this doesn't free the actual pages themselves. That
135 * has been handled earlier when unmapping all the memory regions.
136 */
e0da382c 137static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 138{
2f569afd 139 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 140 pmd_clear(pmd);
2f569afd 141 pte_free_tlb(tlb, token);
e0da382c 142 tlb->mm->nr_ptes--;
1da177e4
LT
143}
144
e0da382c
HD
145static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
146 unsigned long addr, unsigned long end,
147 unsigned long floor, unsigned long ceiling)
1da177e4
LT
148{
149 pmd_t *pmd;
150 unsigned long next;
e0da382c 151 unsigned long start;
1da177e4 152
e0da382c 153 start = addr;
1da177e4 154 pmd = pmd_offset(pud, addr);
1da177e4
LT
155 do {
156 next = pmd_addr_end(addr, end);
157 if (pmd_none_or_clear_bad(pmd))
158 continue;
e0da382c 159 free_pte_range(tlb, pmd);
1da177e4
LT
160 } while (pmd++, addr = next, addr != end);
161
e0da382c
HD
162 start &= PUD_MASK;
163 if (start < floor)
164 return;
165 if (ceiling) {
166 ceiling &= PUD_MASK;
167 if (!ceiling)
168 return;
1da177e4 169 }
e0da382c
HD
170 if (end - 1 > ceiling - 1)
171 return;
172
173 pmd = pmd_offset(pud, start);
174 pud_clear(pud);
175 pmd_free_tlb(tlb, pmd);
1da177e4
LT
176}
177
e0da382c
HD
178static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
179 unsigned long addr, unsigned long end,
180 unsigned long floor, unsigned long ceiling)
1da177e4
LT
181{
182 pud_t *pud;
183 unsigned long next;
e0da382c 184 unsigned long start;
1da177e4 185
e0da382c 186 start = addr;
1da177e4 187 pud = pud_offset(pgd, addr);
1da177e4
LT
188 do {
189 next = pud_addr_end(addr, end);
190 if (pud_none_or_clear_bad(pud))
191 continue;
e0da382c 192 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
193 } while (pud++, addr = next, addr != end);
194
e0da382c
HD
195 start &= PGDIR_MASK;
196 if (start < floor)
197 return;
198 if (ceiling) {
199 ceiling &= PGDIR_MASK;
200 if (!ceiling)
201 return;
1da177e4 202 }
e0da382c
HD
203 if (end - 1 > ceiling - 1)
204 return;
205
206 pud = pud_offset(pgd, start);
207 pgd_clear(pgd);
208 pud_free_tlb(tlb, pud);
1da177e4
LT
209}
210
211/*
e0da382c
HD
212 * This function frees user-level page tables of a process.
213 *
1da177e4
LT
214 * Must be called with pagetable lock held.
215 */
42b77728 216void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
1da177e4
LT
219{
220 pgd_t *pgd;
221 unsigned long next;
e0da382c
HD
222 unsigned long start;
223
224 /*
225 * The next few lines have given us lots of grief...
226 *
227 * Why are we testing PMD* at this top level? Because often
228 * there will be no work to do at all, and we'd prefer not to
229 * go all the way down to the bottom just to discover that.
230 *
231 * Why all these "- 1"s? Because 0 represents both the bottom
232 * of the address space and the top of it (using -1 for the
233 * top wouldn't help much: the masks would do the wrong thing).
234 * The rule is that addr 0 and floor 0 refer to the bottom of
235 * the address space, but end 0 and ceiling 0 refer to the top
236 * Comparisons need to use "end - 1" and "ceiling - 1" (though
237 * that end 0 case should be mythical).
238 *
239 * Wherever addr is brought up or ceiling brought down, we must
240 * be careful to reject "the opposite 0" before it confuses the
241 * subsequent tests. But what about where end is brought down
242 * by PMD_SIZE below? no, end can't go down to 0 there.
243 *
244 * Whereas we round start (addr) and ceiling down, by different
245 * masks at different levels, in order to test whether a table
246 * now has no other vmas using it, so can be freed, we don't
247 * bother to round floor or end up - the tests don't need that.
248 */
1da177e4 249
e0da382c
HD
250 addr &= PMD_MASK;
251 if (addr < floor) {
252 addr += PMD_SIZE;
253 if (!addr)
254 return;
255 }
256 if (ceiling) {
257 ceiling &= PMD_MASK;
258 if (!ceiling)
259 return;
260 }
261 if (end - 1 > ceiling - 1)
262 end -= PMD_SIZE;
263 if (addr > end - 1)
264 return;
265
266 start = addr;
42b77728 267 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
268 do {
269 next = pgd_addr_end(addr, end);
270 if (pgd_none_or_clear_bad(pgd))
271 continue;
42b77728 272 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 273 } while (pgd++, addr = next, addr != end);
e0da382c
HD
274}
275
42b77728 276void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 277 unsigned long floor, unsigned long ceiling)
e0da382c
HD
278{
279 while (vma) {
280 struct vm_area_struct *next = vma->vm_next;
281 unsigned long addr = vma->vm_start;
282
8f4f8c16
HD
283 /*
284 * Hide vma from rmap and vmtruncate before freeing pgtables
285 */
286 anon_vma_unlink(vma);
287 unlink_file_vma(vma);
288
9da61aef 289 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 290 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 291 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
292 } else {
293 /*
294 * Optimization: gather nearby vmas into one call down
295 */
296 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 297 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
298 vma = next;
299 next = vma->vm_next;
8f4f8c16
HD
300 anon_vma_unlink(vma);
301 unlink_file_vma(vma);
3bf5ee95
HD
302 }
303 free_pgd_range(tlb, addr, vma->vm_end,
304 floor, next? next->vm_start: ceiling);
305 }
e0da382c
HD
306 vma = next;
307 }
1da177e4
LT
308}
309
1bb3630e 310int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 311{
2f569afd 312 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
313 if (!new)
314 return -ENOMEM;
315
362a61ad
NP
316 /*
317 * Ensure all pte setup (eg. pte page lock and page clearing) are
318 * visible before the pte is made visible to other CPUs by being
319 * put into page tables.
320 *
321 * The other side of the story is the pointer chasing in the page
322 * table walking code (when walking the page table without locking;
323 * ie. most of the time). Fortunately, these data accesses consist
324 * of a chain of data-dependent loads, meaning most CPUs (alpha
325 * being the notable exception) will already guarantee loads are
326 * seen in-order. See the alpha page table accessors for the
327 * smp_read_barrier_depends() barriers in page table walking code.
328 */
329 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
330
c74df32c 331 spin_lock(&mm->page_table_lock);
2f569afd 332 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 333 mm->nr_ptes++;
1da177e4 334 pmd_populate(mm, pmd, new);
2f569afd 335 new = NULL;
1da177e4 336 }
c74df32c 337 spin_unlock(&mm->page_table_lock);
2f569afd
MS
338 if (new)
339 pte_free(mm, new);
1bb3630e 340 return 0;
1da177e4
LT
341}
342
1bb3630e 343int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 344{
1bb3630e
HD
345 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
346 if (!new)
347 return -ENOMEM;
348
362a61ad
NP
349 smp_wmb(); /* See comment in __pte_alloc */
350
1bb3630e 351 spin_lock(&init_mm.page_table_lock);
2f569afd 352 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 353 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
354 new = NULL;
355 }
1bb3630e 356 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
357 if (new)
358 pte_free_kernel(&init_mm, new);
1bb3630e 359 return 0;
1da177e4
LT
360}
361
ae859762
HD
362static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
363{
364 if (file_rss)
365 add_mm_counter(mm, file_rss, file_rss);
366 if (anon_rss)
367 add_mm_counter(mm, anon_rss, anon_rss);
368}
369
b5810039 370/*
6aab341e
LT
371 * This function is called to print an error when a bad pte
372 * is found. For example, we might have a PFN-mapped pte in
373 * a region that doesn't allow it.
b5810039
NP
374 *
375 * The calling function must still handle the error.
376 */
377void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
378{
379 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
380 "vm_flags = %lx, vaddr = %lx\n",
381 (long long)pte_val(pte),
382 (vma->vm_mm == current->mm ? current->comm : "???"),
383 vma->vm_flags, vaddr);
384 dump_stack();
385}
386
67121172
LT
387static inline int is_cow_mapping(unsigned int flags)
388{
389 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
390}
391
ee498ed7 392/*
7e675137 393 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 394 *
7e675137
NP
395 * "Special" mappings do not wish to be associated with a "struct page" (either
396 * it doesn't exist, or it exists but they don't want to touch it). In this
397 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 398 *
7e675137
NP
399 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
400 * pte bit, in which case this function is trivial. Secondly, an architecture
401 * may not have a spare pte bit, which requires a more complicated scheme,
402 * described below.
403 *
404 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
405 * special mapping (even if there are underlying and valid "struct pages").
406 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 407 *
b379d790
JH
408 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
409 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
410 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
411 * mapping will always honor the rule
6aab341e
LT
412 *
413 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
414 *
7e675137
NP
415 * And for normal mappings this is false.
416 *
417 * This restricts such mappings to be a linear translation from virtual address
418 * to pfn. To get around this restriction, we allow arbitrary mappings so long
419 * as the vma is not a COW mapping; in that case, we know that all ptes are
420 * special (because none can have been COWed).
b379d790 421 *
b379d790 422 *
7e675137 423 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
424 *
425 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
426 * page" backing, however the difference is that _all_ pages with a struct
427 * page (that is, those where pfn_valid is true) are refcounted and considered
428 * normal pages by the VM. The disadvantage is that pages are refcounted
429 * (which can be slower and simply not an option for some PFNMAP users). The
430 * advantage is that we don't have to follow the strict linearity rule of
431 * PFNMAP mappings in order to support COWable mappings.
432 *
ee498ed7 433 */
7e675137
NP
434#ifdef __HAVE_ARCH_PTE_SPECIAL
435# define HAVE_PTE_SPECIAL 1
436#else
437# define HAVE_PTE_SPECIAL 0
438#endif
439struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
440 pte_t pte)
ee498ed7 441{
7e675137
NP
442 unsigned long pfn;
443
444 if (HAVE_PTE_SPECIAL) {
445 if (likely(!pte_special(pte))) {
446 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
447 return pte_page(pte);
448 }
449 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
450 return NULL;
451 }
452
453 /* !HAVE_PTE_SPECIAL case follows: */
454
455 pfn = pte_pfn(pte);
6aab341e 456
b379d790
JH
457 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
458 if (vma->vm_flags & VM_MIXEDMAP) {
459 if (!pfn_valid(pfn))
460 return NULL;
461 goto out;
462 } else {
7e675137
NP
463 unsigned long off;
464 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
465 if (pfn == vma->vm_pgoff + off)
466 return NULL;
467 if (!is_cow_mapping(vma->vm_flags))
468 return NULL;
469 }
6aab341e
LT
470 }
471
7e675137 472 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
473
474 /*
7e675137 475 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 476 *
7e675137 477 * eg. VDSO mappings can cause them to exist.
6aab341e 478 */
b379d790 479out:
6aab341e 480 return pfn_to_page(pfn);
ee498ed7
HD
481}
482
1da177e4
LT
483/*
484 * copy one vm_area from one task to the other. Assumes the page tables
485 * already present in the new task to be cleared in the whole range
486 * covered by this vma.
1da177e4
LT
487 */
488
8c103762 489static inline void
1da177e4 490copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 491 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 492 unsigned long addr, int *rss)
1da177e4 493{
b5810039 494 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
495 pte_t pte = *src_pte;
496 struct page *page;
1da177e4
LT
497
498 /* pte contains position in swap or file, so copy. */
499 if (unlikely(!pte_present(pte))) {
500 if (!pte_file(pte)) {
0697212a
CL
501 swp_entry_t entry = pte_to_swp_entry(pte);
502
503 swap_duplicate(entry);
1da177e4
LT
504 /* make sure dst_mm is on swapoff's mmlist. */
505 if (unlikely(list_empty(&dst_mm->mmlist))) {
506 spin_lock(&mmlist_lock);
f412ac08
HD
507 if (list_empty(&dst_mm->mmlist))
508 list_add(&dst_mm->mmlist,
509 &src_mm->mmlist);
1da177e4
LT
510 spin_unlock(&mmlist_lock);
511 }
0697212a
CL
512 if (is_write_migration_entry(entry) &&
513 is_cow_mapping(vm_flags)) {
514 /*
515 * COW mappings require pages in both parent
516 * and child to be set to read.
517 */
518 make_migration_entry_read(&entry);
519 pte = swp_entry_to_pte(entry);
520 set_pte_at(src_mm, addr, src_pte, pte);
521 }
1da177e4 522 }
ae859762 523 goto out_set_pte;
1da177e4
LT
524 }
525
1da177e4
LT
526 /*
527 * If it's a COW mapping, write protect it both
528 * in the parent and the child
529 */
67121172 530 if (is_cow_mapping(vm_flags)) {
1da177e4 531 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 532 pte = pte_wrprotect(pte);
1da177e4
LT
533 }
534
535 /*
536 * If it's a shared mapping, mark it clean in
537 * the child
538 */
539 if (vm_flags & VM_SHARED)
540 pte = pte_mkclean(pte);
541 pte = pte_mkold(pte);
6aab341e
LT
542
543 page = vm_normal_page(vma, addr, pte);
544 if (page) {
545 get_page(page);
c97a9e10 546 page_dup_rmap(page, vma, addr);
6aab341e
LT
547 rss[!!PageAnon(page)]++;
548 }
ae859762
HD
549
550out_set_pte:
551 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
552}
553
554static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
555 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
556 unsigned long addr, unsigned long end)
557{
558 pte_t *src_pte, *dst_pte;
c74df32c 559 spinlock_t *src_ptl, *dst_ptl;
e040f218 560 int progress = 0;
8c103762 561 int rss[2];
1da177e4
LT
562
563again:
ae859762 564 rss[1] = rss[0] = 0;
c74df32c 565 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
566 if (!dst_pte)
567 return -ENOMEM;
568 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 569 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 570 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 571 arch_enter_lazy_mmu_mode();
1da177e4 572
1da177e4
LT
573 do {
574 /*
575 * We are holding two locks at this point - either of them
576 * could generate latencies in another task on another CPU.
577 */
e040f218
HD
578 if (progress >= 32) {
579 progress = 0;
580 if (need_resched() ||
95c354fe 581 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
582 break;
583 }
1da177e4
LT
584 if (pte_none(*src_pte)) {
585 progress++;
586 continue;
587 }
8c103762 588 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
589 progress += 8;
590 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 591
6606c3e0 592 arch_leave_lazy_mmu_mode();
c74df32c 593 spin_unlock(src_ptl);
1da177e4 594 pte_unmap_nested(src_pte - 1);
ae859762 595 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
596 pte_unmap_unlock(dst_pte - 1, dst_ptl);
597 cond_resched();
1da177e4
LT
598 if (addr != end)
599 goto again;
600 return 0;
601}
602
603static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
604 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
605 unsigned long addr, unsigned long end)
606{
607 pmd_t *src_pmd, *dst_pmd;
608 unsigned long next;
609
610 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
611 if (!dst_pmd)
612 return -ENOMEM;
613 src_pmd = pmd_offset(src_pud, addr);
614 do {
615 next = pmd_addr_end(addr, end);
616 if (pmd_none_or_clear_bad(src_pmd))
617 continue;
618 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
619 vma, addr, next))
620 return -ENOMEM;
621 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
622 return 0;
623}
624
625static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
626 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
627 unsigned long addr, unsigned long end)
628{
629 pud_t *src_pud, *dst_pud;
630 unsigned long next;
631
632 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
633 if (!dst_pud)
634 return -ENOMEM;
635 src_pud = pud_offset(src_pgd, addr);
636 do {
637 next = pud_addr_end(addr, end);
638 if (pud_none_or_clear_bad(src_pud))
639 continue;
640 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
641 vma, addr, next))
642 return -ENOMEM;
643 } while (dst_pud++, src_pud++, addr = next, addr != end);
644 return 0;
645}
646
647int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
648 struct vm_area_struct *vma)
649{
650 pgd_t *src_pgd, *dst_pgd;
651 unsigned long next;
652 unsigned long addr = vma->vm_start;
653 unsigned long end = vma->vm_end;
654
d992895b
NP
655 /*
656 * Don't copy ptes where a page fault will fill them correctly.
657 * Fork becomes much lighter when there are big shared or private
658 * readonly mappings. The tradeoff is that copy_page_range is more
659 * efficient than faulting.
660 */
4d7672b4 661 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
662 if (!vma->anon_vma)
663 return 0;
664 }
665
1da177e4
LT
666 if (is_vm_hugetlb_page(vma))
667 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
668
669 dst_pgd = pgd_offset(dst_mm, addr);
670 src_pgd = pgd_offset(src_mm, addr);
671 do {
672 next = pgd_addr_end(addr, end);
673 if (pgd_none_or_clear_bad(src_pgd))
674 continue;
675 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
676 vma, addr, next))
677 return -ENOMEM;
678 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
679 return 0;
680}
681
51c6f666 682static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 683 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 684 unsigned long addr, unsigned long end,
51c6f666 685 long *zap_work, struct zap_details *details)
1da177e4 686{
b5810039 687 struct mm_struct *mm = tlb->mm;
1da177e4 688 pte_t *pte;
508034a3 689 spinlock_t *ptl;
ae859762
HD
690 int file_rss = 0;
691 int anon_rss = 0;
1da177e4 692
508034a3 693 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 694 arch_enter_lazy_mmu_mode();
1da177e4
LT
695 do {
696 pte_t ptent = *pte;
51c6f666
RH
697 if (pte_none(ptent)) {
698 (*zap_work)--;
1da177e4 699 continue;
51c6f666 700 }
6f5e6b9e
HD
701
702 (*zap_work) -= PAGE_SIZE;
703
1da177e4 704 if (pte_present(ptent)) {
ee498ed7 705 struct page *page;
51c6f666 706
6aab341e 707 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
708 if (unlikely(details) && page) {
709 /*
710 * unmap_shared_mapping_pages() wants to
711 * invalidate cache without truncating:
712 * unmap shared but keep private pages.
713 */
714 if (details->check_mapping &&
715 details->check_mapping != page->mapping)
716 continue;
717 /*
718 * Each page->index must be checked when
719 * invalidating or truncating nonlinear.
720 */
721 if (details->nonlinear_vma &&
722 (page->index < details->first_index ||
723 page->index > details->last_index))
724 continue;
725 }
b5810039 726 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 727 tlb->fullmm);
1da177e4
LT
728 tlb_remove_tlb_entry(tlb, pte, addr);
729 if (unlikely(!page))
730 continue;
731 if (unlikely(details) && details->nonlinear_vma
732 && linear_page_index(details->nonlinear_vma,
733 addr) != page->index)
b5810039 734 set_pte_at(mm, addr, pte,
1da177e4 735 pgoff_to_pte(page->index));
1da177e4 736 if (PageAnon(page))
86d912f4 737 anon_rss--;
6237bcd9
HD
738 else {
739 if (pte_dirty(ptent))
740 set_page_dirty(page);
741 if (pte_young(ptent))
daa88c8d 742 SetPageReferenced(page);
86d912f4 743 file_rss--;
6237bcd9 744 }
7de6b805 745 page_remove_rmap(page, vma);
1da177e4
LT
746 tlb_remove_page(tlb, page);
747 continue;
748 }
749 /*
750 * If details->check_mapping, we leave swap entries;
751 * if details->nonlinear_vma, we leave file entries.
752 */
753 if (unlikely(details))
754 continue;
755 if (!pte_file(ptent))
756 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 757 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 758 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 759
86d912f4 760 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 761 arch_leave_lazy_mmu_mode();
508034a3 762 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
763
764 return addr;
1da177e4
LT
765}
766
51c6f666 767static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 768 struct vm_area_struct *vma, pud_t *pud,
1da177e4 769 unsigned long addr, unsigned long end,
51c6f666 770 long *zap_work, struct zap_details *details)
1da177e4
LT
771{
772 pmd_t *pmd;
773 unsigned long next;
774
775 pmd = pmd_offset(pud, addr);
776 do {
777 next = pmd_addr_end(addr, end);
51c6f666
RH
778 if (pmd_none_or_clear_bad(pmd)) {
779 (*zap_work)--;
1da177e4 780 continue;
51c6f666
RH
781 }
782 next = zap_pte_range(tlb, vma, pmd, addr, next,
783 zap_work, details);
784 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
785
786 return addr;
1da177e4
LT
787}
788
51c6f666 789static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 790 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 791 unsigned long addr, unsigned long end,
51c6f666 792 long *zap_work, struct zap_details *details)
1da177e4
LT
793{
794 pud_t *pud;
795 unsigned long next;
796
797 pud = pud_offset(pgd, addr);
798 do {
799 next = pud_addr_end(addr, end);
51c6f666
RH
800 if (pud_none_or_clear_bad(pud)) {
801 (*zap_work)--;
1da177e4 802 continue;
51c6f666
RH
803 }
804 next = zap_pmd_range(tlb, vma, pud, addr, next,
805 zap_work, details);
806 } while (pud++, addr = next, (addr != end && *zap_work > 0));
807
808 return addr;
1da177e4
LT
809}
810
51c6f666
RH
811static unsigned long unmap_page_range(struct mmu_gather *tlb,
812 struct vm_area_struct *vma,
1da177e4 813 unsigned long addr, unsigned long end,
51c6f666 814 long *zap_work, struct zap_details *details)
1da177e4
LT
815{
816 pgd_t *pgd;
817 unsigned long next;
818
819 if (details && !details->check_mapping && !details->nonlinear_vma)
820 details = NULL;
821
822 BUG_ON(addr >= end);
823 tlb_start_vma(tlb, vma);
824 pgd = pgd_offset(vma->vm_mm, addr);
825 do {
826 next = pgd_addr_end(addr, end);
51c6f666
RH
827 if (pgd_none_or_clear_bad(pgd)) {
828 (*zap_work)--;
1da177e4 829 continue;
51c6f666
RH
830 }
831 next = zap_pud_range(tlb, vma, pgd, addr, next,
832 zap_work, details);
833 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 834 tlb_end_vma(tlb, vma);
51c6f666
RH
835
836 return addr;
1da177e4
LT
837}
838
839#ifdef CONFIG_PREEMPT
840# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
841#else
842/* No preempt: go for improved straight-line efficiency */
843# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
844#endif
845
846/**
847 * unmap_vmas - unmap a range of memory covered by a list of vma's
848 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
849 * @vma: the starting vma
850 * @start_addr: virtual address at which to start unmapping
851 * @end_addr: virtual address at which to end unmapping
852 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
853 * @details: details of nonlinear truncation or shared cache invalidation
854 *
ee39b37b 855 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 856 *
508034a3 857 * Unmap all pages in the vma list.
1da177e4 858 *
508034a3
HD
859 * We aim to not hold locks for too long (for scheduling latency reasons).
860 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
861 * return the ending mmu_gather to the caller.
862 *
863 * Only addresses between `start' and `end' will be unmapped.
864 *
865 * The VMA list must be sorted in ascending virtual address order.
866 *
867 * unmap_vmas() assumes that the caller will flush the whole unmapped address
868 * range after unmap_vmas() returns. So the only responsibility here is to
869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
870 * drops the lock and schedules.
871 */
508034a3 872unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
873 struct vm_area_struct *vma, unsigned long start_addr,
874 unsigned long end_addr, unsigned long *nr_accounted,
875 struct zap_details *details)
876{
51c6f666 877 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
878 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
879 int tlb_start_valid = 0;
ee39b37b 880 unsigned long start = start_addr;
1da177e4 881 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 882 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
883
884 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
885 unsigned long end;
886
887 start = max(vma->vm_start, start_addr);
888 if (start >= vma->vm_end)
889 continue;
890 end = min(vma->vm_end, end_addr);
891 if (end <= vma->vm_start)
892 continue;
893
894 if (vma->vm_flags & VM_ACCOUNT)
895 *nr_accounted += (end - start) >> PAGE_SHIFT;
896
1da177e4 897 while (start != end) {
1da177e4
LT
898 if (!tlb_start_valid) {
899 tlb_start = start;
900 tlb_start_valid = 1;
901 }
902
51c6f666 903 if (unlikely(is_vm_hugetlb_page(vma))) {
1da177e4 904 unmap_hugepage_range(vma, start, end);
51c6f666
RH
905 zap_work -= (end - start) /
906 (HPAGE_SIZE / PAGE_SIZE);
907 start = end;
908 } else
909 start = unmap_page_range(*tlbp, vma,
910 start, end, &zap_work, details);
911
912 if (zap_work > 0) {
913 BUG_ON(start != end);
914 break;
1da177e4
LT
915 }
916
1da177e4
LT
917 tlb_finish_mmu(*tlbp, tlb_start, start);
918
919 if (need_resched() ||
95c354fe 920 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 921 if (i_mmap_lock) {
508034a3 922 *tlbp = NULL;
1da177e4
LT
923 goto out;
924 }
1da177e4 925 cond_resched();
1da177e4
LT
926 }
927
508034a3 928 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 929 tlb_start_valid = 0;
51c6f666 930 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
931 }
932 }
933out:
ee39b37b 934 return start; /* which is now the end (or restart) address */
1da177e4
LT
935}
936
937/**
938 * zap_page_range - remove user pages in a given range
939 * @vma: vm_area_struct holding the applicable pages
940 * @address: starting address of pages to zap
941 * @size: number of bytes to zap
942 * @details: details of nonlinear truncation or shared cache invalidation
943 */
ee39b37b 944unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
945 unsigned long size, struct zap_details *details)
946{
947 struct mm_struct *mm = vma->vm_mm;
948 struct mmu_gather *tlb;
949 unsigned long end = address + size;
950 unsigned long nr_accounted = 0;
951
1da177e4 952 lru_add_drain();
1da177e4 953 tlb = tlb_gather_mmu(mm, 0);
365e9c87 954 update_hiwater_rss(mm);
508034a3
HD
955 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
956 if (tlb)
957 tlb_finish_mmu(tlb, address, end);
ee39b37b 958 return end;
1da177e4
LT
959}
960
961/*
962 * Do a quick page-table lookup for a single page.
1da177e4 963 */
6aab341e 964struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 965 unsigned int flags)
1da177e4
LT
966{
967 pgd_t *pgd;
968 pud_t *pud;
969 pmd_t *pmd;
970 pte_t *ptep, pte;
deceb6cd 971 spinlock_t *ptl;
1da177e4 972 struct page *page;
6aab341e 973 struct mm_struct *mm = vma->vm_mm;
1da177e4 974
deceb6cd
HD
975 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
976 if (!IS_ERR(page)) {
977 BUG_ON(flags & FOLL_GET);
978 goto out;
979 }
1da177e4 980
deceb6cd 981 page = NULL;
1da177e4
LT
982 pgd = pgd_offset(mm, address);
983 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 984 goto no_page_table;
1da177e4
LT
985
986 pud = pud_offset(pgd, address);
987 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
deceb6cd 988 goto no_page_table;
1da177e4
LT
989
990 pmd = pmd_offset(pud, address);
aeed5fce 991 if (pmd_none(*pmd))
deceb6cd
HD
992 goto no_page_table;
993
994 if (pmd_huge(*pmd)) {
995 BUG_ON(flags & FOLL_GET);
996 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 997 goto out;
deceb6cd 998 }
1da177e4 999
aeed5fce
HD
1000 if (unlikely(pmd_bad(*pmd)))
1001 goto no_page_table;
1002
deceb6cd 1003 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1004
1005 pte = *ptep;
deceb6cd 1006 if (!pte_present(pte))
89f5b7da 1007 goto no_page;
deceb6cd
HD
1008 if ((flags & FOLL_WRITE) && !pte_write(pte))
1009 goto unlock;
6aab341e
LT
1010 page = vm_normal_page(vma, address, pte);
1011 if (unlikely(!page))
89f5b7da 1012 goto bad_page;
1da177e4 1013
deceb6cd
HD
1014 if (flags & FOLL_GET)
1015 get_page(page);
1016 if (flags & FOLL_TOUCH) {
1017 if ((flags & FOLL_WRITE) &&
1018 !pte_dirty(pte) && !PageDirty(page))
1019 set_page_dirty(page);
1020 mark_page_accessed(page);
1021 }
1022unlock:
1023 pte_unmap_unlock(ptep, ptl);
1da177e4 1024out:
deceb6cd 1025 return page;
1da177e4 1026
89f5b7da
LT
1027bad_page:
1028 pte_unmap_unlock(ptep, ptl);
1029 return ERR_PTR(-EFAULT);
1030
1031no_page:
1032 pte_unmap_unlock(ptep, ptl);
1033 if (!pte_none(pte))
1034 return page;
1035 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1036no_page_table:
1037 /*
1038 * When core dumping an enormous anonymous area that nobody
1039 * has touched so far, we don't want to allocate page tables.
1040 */
1041 if (flags & FOLL_ANON) {
557ed1fa 1042 page = ZERO_PAGE(0);
deceb6cd
HD
1043 if (flags & FOLL_GET)
1044 get_page(page);
1045 BUG_ON(flags & FOLL_WRITE);
1046 }
1047 return page;
1da177e4
LT
1048}
1049
672ca28e
LT
1050/* Can we do the FOLL_ANON optimization? */
1051static inline int use_zero_page(struct vm_area_struct *vma)
1052{
1053 /*
1054 * We don't want to optimize FOLL_ANON for make_pages_present()
1055 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1056 * we want to get the page from the page tables to make sure
1057 * that we serialize and update with any other user of that
1058 * mapping.
1059 */
1060 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1061 return 0;
1062 /*
0d71d10a 1063 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1064 */
0d71d10a 1065 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1066}
1067
1da177e4
LT
1068int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1069 unsigned long start, int len, int write, int force,
1070 struct page **pages, struct vm_area_struct **vmas)
1071{
1072 int i;
deceb6cd 1073 unsigned int vm_flags;
1da177e4 1074
900cf086
JC
1075 if (len <= 0)
1076 return 0;
1da177e4
LT
1077 /*
1078 * Require read or write permissions.
1079 * If 'force' is set, we only require the "MAY" flags.
1080 */
deceb6cd
HD
1081 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1082 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1083 i = 0;
1084
1085 do {
deceb6cd
HD
1086 struct vm_area_struct *vma;
1087 unsigned int foll_flags;
1da177e4
LT
1088
1089 vma = find_extend_vma(mm, start);
1090 if (!vma && in_gate_area(tsk, start)) {
1091 unsigned long pg = start & PAGE_MASK;
1092 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1093 pgd_t *pgd;
1094 pud_t *pud;
1095 pmd_t *pmd;
1096 pte_t *pte;
1097 if (write) /* user gate pages are read-only */
1098 return i ? : -EFAULT;
1099 if (pg > TASK_SIZE)
1100 pgd = pgd_offset_k(pg);
1101 else
1102 pgd = pgd_offset_gate(mm, pg);
1103 BUG_ON(pgd_none(*pgd));
1104 pud = pud_offset(pgd, pg);
1105 BUG_ON(pud_none(*pud));
1106 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1107 if (pmd_none(*pmd))
1108 return i ? : -EFAULT;
1da177e4 1109 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1110 if (pte_none(*pte)) {
1111 pte_unmap(pte);
1112 return i ? : -EFAULT;
1113 }
1da177e4 1114 if (pages) {
fa2a455b 1115 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1116 pages[i] = page;
1117 if (page)
1118 get_page(page);
1da177e4
LT
1119 }
1120 pte_unmap(pte);
1121 if (vmas)
1122 vmas[i] = gate_vma;
1123 i++;
1124 start += PAGE_SIZE;
1125 len--;
1126 continue;
1127 }
1128
1ff80389 1129 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
deceb6cd 1130 || !(vm_flags & vma->vm_flags))
1da177e4
LT
1131 return i ? : -EFAULT;
1132
1133 if (is_vm_hugetlb_page(vma)) {
1134 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1135 &start, &len, i, write);
1da177e4
LT
1136 continue;
1137 }
deceb6cd
HD
1138
1139 foll_flags = FOLL_TOUCH;
1140 if (pages)
1141 foll_flags |= FOLL_GET;
672ca28e 1142 if (!write && use_zero_page(vma))
deceb6cd
HD
1143 foll_flags |= FOLL_ANON;
1144
1da177e4 1145 do {
08ef4729 1146 struct page *page;
1da177e4 1147
462e00cc
ES
1148 /*
1149 * If tsk is ooming, cut off its access to large memory
1150 * allocations. It has a pending SIGKILL, but it can't
1151 * be processed until returning to user space.
1152 */
1153 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1154 return i ? i : -ENOMEM;
462e00cc 1155
deceb6cd
HD
1156 if (write)
1157 foll_flags |= FOLL_WRITE;
a68d2ebc 1158
deceb6cd 1159 cond_resched();
6aab341e 1160 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1161 int ret;
83c54070 1162 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1163 foll_flags & FOLL_WRITE);
83c54070
NP
1164 if (ret & VM_FAULT_ERROR) {
1165 if (ret & VM_FAULT_OOM)
1166 return i ? i : -ENOMEM;
1167 else if (ret & VM_FAULT_SIGBUS)
1168 return i ? i : -EFAULT;
1169 BUG();
1170 }
1171 if (ret & VM_FAULT_MAJOR)
1172 tsk->maj_flt++;
1173 else
1174 tsk->min_flt++;
1175
a68d2ebc 1176 /*
83c54070
NP
1177 * The VM_FAULT_WRITE bit tells us that
1178 * do_wp_page has broken COW when necessary,
1179 * even if maybe_mkwrite decided not to set
1180 * pte_write. We can thus safely do subsequent
1181 * page lookups as if they were reads.
a68d2ebc
LT
1182 */
1183 if (ret & VM_FAULT_WRITE)
deceb6cd 1184 foll_flags &= ~FOLL_WRITE;
83c54070 1185
7f7bbbe5 1186 cond_resched();
1da177e4 1187 }
89f5b7da
LT
1188 if (IS_ERR(page))
1189 return i ? i : PTR_ERR(page);
1da177e4 1190 if (pages) {
08ef4729 1191 pages[i] = page;
03beb076 1192
a6f36be3 1193 flush_anon_page(vma, page, start);
08ef4729 1194 flush_dcache_page(page);
1da177e4
LT
1195 }
1196 if (vmas)
1197 vmas[i] = vma;
1198 i++;
1199 start += PAGE_SIZE;
1200 len--;
08ef4729 1201 } while (len && start < vma->vm_end);
08ef4729 1202 } while (len);
1da177e4
LT
1203 return i;
1204}
1da177e4
LT
1205EXPORT_SYMBOL(get_user_pages);
1206
920c7a5d
HH
1207pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1208 spinlock_t **ptl)
c9cfcddf
LT
1209{
1210 pgd_t * pgd = pgd_offset(mm, addr);
1211 pud_t * pud = pud_alloc(mm, pgd, addr);
1212 if (pud) {
49c91fb0 1213 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1214 if (pmd)
1215 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1216 }
1217 return NULL;
1218}
1219
238f58d8
LT
1220/*
1221 * This is the old fallback for page remapping.
1222 *
1223 * For historical reasons, it only allows reserved pages. Only
1224 * old drivers should use this, and they needed to mark their
1225 * pages reserved for the old functions anyway.
1226 */
423bad60
NP
1227static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1228 struct page *page, pgprot_t prot)
238f58d8 1229{
423bad60 1230 struct mm_struct *mm = vma->vm_mm;
238f58d8 1231 int retval;
c9cfcddf 1232 pte_t *pte;
8a9f3ccd
BS
1233 spinlock_t *ptl;
1234
e1a1cd59 1235 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
8a9f3ccd
BS
1236 if (retval)
1237 goto out;
238f58d8
LT
1238
1239 retval = -EINVAL;
a145dd41 1240 if (PageAnon(page))
8a9f3ccd 1241 goto out_uncharge;
238f58d8
LT
1242 retval = -ENOMEM;
1243 flush_dcache_page(page);
c9cfcddf 1244 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1245 if (!pte)
8a9f3ccd 1246 goto out_uncharge;
238f58d8
LT
1247 retval = -EBUSY;
1248 if (!pte_none(*pte))
1249 goto out_unlock;
1250
1251 /* Ok, finally just insert the thing.. */
1252 get_page(page);
1253 inc_mm_counter(mm, file_rss);
1254 page_add_file_rmap(page);
1255 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1256
1257 retval = 0;
8a9f3ccd
BS
1258 pte_unmap_unlock(pte, ptl);
1259 return retval;
238f58d8
LT
1260out_unlock:
1261 pte_unmap_unlock(pte, ptl);
8a9f3ccd
BS
1262out_uncharge:
1263 mem_cgroup_uncharge_page(page);
238f58d8
LT
1264out:
1265 return retval;
1266}
1267
bfa5bf6d
REB
1268/**
1269 * vm_insert_page - insert single page into user vma
1270 * @vma: user vma to map to
1271 * @addr: target user address of this page
1272 * @page: source kernel page
1273 *
a145dd41
LT
1274 * This allows drivers to insert individual pages they've allocated
1275 * into a user vma.
1276 *
1277 * The page has to be a nice clean _individual_ kernel allocation.
1278 * If you allocate a compound page, you need to have marked it as
1279 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1280 * (see split_page()).
a145dd41
LT
1281 *
1282 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1283 * took an arbitrary page protection parameter. This doesn't allow
1284 * that. Your vma protection will have to be set up correctly, which
1285 * means that if you want a shared writable mapping, you'd better
1286 * ask for a shared writable mapping!
1287 *
1288 * The page does not need to be reserved.
1289 */
423bad60
NP
1290int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1291 struct page *page)
a145dd41
LT
1292{
1293 if (addr < vma->vm_start || addr >= vma->vm_end)
1294 return -EFAULT;
1295 if (!page_count(page))
1296 return -EINVAL;
4d7672b4 1297 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1298 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1299}
e3c3374f 1300EXPORT_SYMBOL(vm_insert_page);
a145dd41 1301
423bad60
NP
1302static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1303 unsigned long pfn, pgprot_t prot)
1304{
1305 struct mm_struct *mm = vma->vm_mm;
1306 int retval;
1307 pte_t *pte, entry;
1308 spinlock_t *ptl;
1309
1310 retval = -ENOMEM;
1311 pte = get_locked_pte(mm, addr, &ptl);
1312 if (!pte)
1313 goto out;
1314 retval = -EBUSY;
1315 if (!pte_none(*pte))
1316 goto out_unlock;
1317
1318 /* Ok, finally just insert the thing.. */
1319 entry = pte_mkspecial(pfn_pte(pfn, prot));
1320 set_pte_at(mm, addr, pte, entry);
1321 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1322
1323 retval = 0;
1324out_unlock:
1325 pte_unmap_unlock(pte, ptl);
1326out:
1327 return retval;
1328}
1329
e0dc0d8f
NP
1330/**
1331 * vm_insert_pfn - insert single pfn into user vma
1332 * @vma: user vma to map to
1333 * @addr: target user address of this page
1334 * @pfn: source kernel pfn
1335 *
1336 * Similar to vm_inert_page, this allows drivers to insert individual pages
1337 * they've allocated into a user vma. Same comments apply.
1338 *
1339 * This function should only be called from a vm_ops->fault handler, and
1340 * in that case the handler should return NULL.
0d71d10a
NP
1341 *
1342 * vma cannot be a COW mapping.
1343 *
1344 * As this is called only for pages that do not currently exist, we
1345 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1346 */
1347int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1348 unsigned long pfn)
e0dc0d8f 1349{
7e675137
NP
1350 /*
1351 * Technically, architectures with pte_special can avoid all these
1352 * restrictions (same for remap_pfn_range). However we would like
1353 * consistency in testing and feature parity among all, so we should
1354 * try to keep these invariants in place for everybody.
1355 */
b379d790
JH
1356 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1357 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1358 (VM_PFNMAP|VM_MIXEDMAP));
1359 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1360 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1361
423bad60
NP
1362 if (addr < vma->vm_start || addr >= vma->vm_end)
1363 return -EFAULT;
1364 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1365}
1366EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1367
423bad60
NP
1368int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1369 unsigned long pfn)
1370{
1371 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1372
423bad60
NP
1373 if (addr < vma->vm_start || addr >= vma->vm_end)
1374 return -EFAULT;
e0dc0d8f 1375
423bad60
NP
1376 /*
1377 * If we don't have pte special, then we have to use the pfn_valid()
1378 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1379 * refcount the page if pfn_valid is true (hence insert_page rather
1380 * than insert_pfn).
1381 */
1382 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1383 struct page *page;
1384
1385 page = pfn_to_page(pfn);
1386 return insert_page(vma, addr, page, vma->vm_page_prot);
1387 }
1388 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1389}
423bad60 1390EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1391
1da177e4
LT
1392/*
1393 * maps a range of physical memory into the requested pages. the old
1394 * mappings are removed. any references to nonexistent pages results
1395 * in null mappings (currently treated as "copy-on-access")
1396 */
1397static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1398 unsigned long addr, unsigned long end,
1399 unsigned long pfn, pgprot_t prot)
1400{
1401 pte_t *pte;
c74df32c 1402 spinlock_t *ptl;
1da177e4 1403
c74df32c 1404 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1405 if (!pte)
1406 return -ENOMEM;
6606c3e0 1407 arch_enter_lazy_mmu_mode();
1da177e4
LT
1408 do {
1409 BUG_ON(!pte_none(*pte));
7e675137 1410 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1411 pfn++;
1412 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1413 arch_leave_lazy_mmu_mode();
c74df32c 1414 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1415 return 0;
1416}
1417
1418static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1419 unsigned long addr, unsigned long end,
1420 unsigned long pfn, pgprot_t prot)
1421{
1422 pmd_t *pmd;
1423 unsigned long next;
1424
1425 pfn -= addr >> PAGE_SHIFT;
1426 pmd = pmd_alloc(mm, pud, addr);
1427 if (!pmd)
1428 return -ENOMEM;
1429 do {
1430 next = pmd_addr_end(addr, end);
1431 if (remap_pte_range(mm, pmd, addr, next,
1432 pfn + (addr >> PAGE_SHIFT), prot))
1433 return -ENOMEM;
1434 } while (pmd++, addr = next, addr != end);
1435 return 0;
1436}
1437
1438static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1439 unsigned long addr, unsigned long end,
1440 unsigned long pfn, pgprot_t prot)
1441{
1442 pud_t *pud;
1443 unsigned long next;
1444
1445 pfn -= addr >> PAGE_SHIFT;
1446 pud = pud_alloc(mm, pgd, addr);
1447 if (!pud)
1448 return -ENOMEM;
1449 do {
1450 next = pud_addr_end(addr, end);
1451 if (remap_pmd_range(mm, pud, addr, next,
1452 pfn + (addr >> PAGE_SHIFT), prot))
1453 return -ENOMEM;
1454 } while (pud++, addr = next, addr != end);
1455 return 0;
1456}
1457
bfa5bf6d
REB
1458/**
1459 * remap_pfn_range - remap kernel memory to userspace
1460 * @vma: user vma to map to
1461 * @addr: target user address to start at
1462 * @pfn: physical address of kernel memory
1463 * @size: size of map area
1464 * @prot: page protection flags for this mapping
1465 *
1466 * Note: this is only safe if the mm semaphore is held when called.
1467 */
1da177e4
LT
1468int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1469 unsigned long pfn, unsigned long size, pgprot_t prot)
1470{
1471 pgd_t *pgd;
1472 unsigned long next;
2d15cab8 1473 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1474 struct mm_struct *mm = vma->vm_mm;
1475 int err;
1476
1477 /*
1478 * Physically remapped pages are special. Tell the
1479 * rest of the world about it:
1480 * VM_IO tells people not to look at these pages
1481 * (accesses can have side effects).
0b14c179
HD
1482 * VM_RESERVED is specified all over the place, because
1483 * in 2.4 it kept swapout's vma scan off this vma; but
1484 * in 2.6 the LRU scan won't even find its pages, so this
1485 * flag means no more than count its pages in reserved_vm,
1486 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1487 * VM_PFNMAP tells the core MM that the base pages are just
1488 * raw PFN mappings, and do not have a "struct page" associated
1489 * with them.
fb155c16
LT
1490 *
1491 * There's a horrible special case to handle copy-on-write
1492 * behaviour that some programs depend on. We mark the "original"
1493 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1494 */
67121172 1495 if (is_cow_mapping(vma->vm_flags)) {
fb155c16 1496 if (addr != vma->vm_start || end != vma->vm_end)
7fc7e2ee 1497 return -EINVAL;
fb155c16
LT
1498 vma->vm_pgoff = pfn;
1499 }
1500
6aab341e 1501 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1502
1503 BUG_ON(addr >= end);
1504 pfn -= addr >> PAGE_SHIFT;
1505 pgd = pgd_offset(mm, addr);
1506 flush_cache_range(vma, addr, end);
1da177e4
LT
1507 do {
1508 next = pgd_addr_end(addr, end);
1509 err = remap_pud_range(mm, pgd, addr, next,
1510 pfn + (addr >> PAGE_SHIFT), prot);
1511 if (err)
1512 break;
1513 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1514 return err;
1515}
1516EXPORT_SYMBOL(remap_pfn_range);
1517
aee16b3c
JF
1518static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1519 unsigned long addr, unsigned long end,
1520 pte_fn_t fn, void *data)
1521{
1522 pte_t *pte;
1523 int err;
2f569afd 1524 pgtable_t token;
94909914 1525 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1526
1527 pte = (mm == &init_mm) ?
1528 pte_alloc_kernel(pmd, addr) :
1529 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1530 if (!pte)
1531 return -ENOMEM;
1532
1533 BUG_ON(pmd_huge(*pmd));
1534
2f569afd 1535 token = pmd_pgtable(*pmd);
aee16b3c
JF
1536
1537 do {
2f569afd 1538 err = fn(pte, token, addr, data);
aee16b3c
JF
1539 if (err)
1540 break;
1541 } while (pte++, addr += PAGE_SIZE, addr != end);
1542
1543 if (mm != &init_mm)
1544 pte_unmap_unlock(pte-1, ptl);
1545 return err;
1546}
1547
1548static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1549 unsigned long addr, unsigned long end,
1550 pte_fn_t fn, void *data)
1551{
1552 pmd_t *pmd;
1553 unsigned long next;
1554 int err;
1555
1556 pmd = pmd_alloc(mm, pud, addr);
1557 if (!pmd)
1558 return -ENOMEM;
1559 do {
1560 next = pmd_addr_end(addr, end);
1561 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1562 if (err)
1563 break;
1564 } while (pmd++, addr = next, addr != end);
1565 return err;
1566}
1567
1568static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1569 unsigned long addr, unsigned long end,
1570 pte_fn_t fn, void *data)
1571{
1572 pud_t *pud;
1573 unsigned long next;
1574 int err;
1575
1576 pud = pud_alloc(mm, pgd, addr);
1577 if (!pud)
1578 return -ENOMEM;
1579 do {
1580 next = pud_addr_end(addr, end);
1581 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1582 if (err)
1583 break;
1584 } while (pud++, addr = next, addr != end);
1585 return err;
1586}
1587
1588/*
1589 * Scan a region of virtual memory, filling in page tables as necessary
1590 * and calling a provided function on each leaf page table.
1591 */
1592int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1593 unsigned long size, pte_fn_t fn, void *data)
1594{
1595 pgd_t *pgd;
1596 unsigned long next;
1597 unsigned long end = addr + size;
1598 int err;
1599
1600 BUG_ON(addr >= end);
1601 pgd = pgd_offset(mm, addr);
1602 do {
1603 next = pgd_addr_end(addr, end);
1604 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1605 if (err)
1606 break;
1607 } while (pgd++, addr = next, addr != end);
1608 return err;
1609}
1610EXPORT_SYMBOL_GPL(apply_to_page_range);
1611
8f4e2101
HD
1612/*
1613 * handle_pte_fault chooses page fault handler according to an entry
1614 * which was read non-atomically. Before making any commitment, on
1615 * those architectures or configurations (e.g. i386 with PAE) which
1616 * might give a mix of unmatched parts, do_swap_page and do_file_page
1617 * must check under lock before unmapping the pte and proceeding
1618 * (but do_wp_page is only called after already making such a check;
1619 * and do_anonymous_page and do_no_page can safely check later on).
1620 */
4c21e2f2 1621static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1622 pte_t *page_table, pte_t orig_pte)
1623{
1624 int same = 1;
1625#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1626 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1627 spinlock_t *ptl = pte_lockptr(mm, pmd);
1628 spin_lock(ptl);
8f4e2101 1629 same = pte_same(*page_table, orig_pte);
4c21e2f2 1630 spin_unlock(ptl);
8f4e2101
HD
1631 }
1632#endif
1633 pte_unmap(page_table);
1634 return same;
1635}
1636
1da177e4
LT
1637/*
1638 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1639 * servicing faults for write access. In the normal case, do always want
1640 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1641 * that do not have writing enabled, when used by access_process_vm.
1642 */
1643static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1644{
1645 if (likely(vma->vm_flags & VM_WRITE))
1646 pte = pte_mkwrite(pte);
1647 return pte;
1648}
1649
9de455b2 1650static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1651{
1652 /*
1653 * If the source page was a PFN mapping, we don't have
1654 * a "struct page" for it. We do a best-effort copy by
1655 * just copying from the original user address. If that
1656 * fails, we just zero-fill it. Live with it.
1657 */
1658 if (unlikely(!src)) {
1659 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1660 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1661
1662 /*
1663 * This really shouldn't fail, because the page is there
1664 * in the page tables. But it might just be unreadable,
1665 * in which case we just give up and fill the result with
1666 * zeroes.
1667 */
1668 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1669 memset(kaddr, 0, PAGE_SIZE);
1670 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1671 flush_dcache_page(dst);
0ed361de
NP
1672 } else
1673 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1674}
1675
1da177e4
LT
1676/*
1677 * This routine handles present pages, when users try to write
1678 * to a shared page. It is done by copying the page to a new address
1679 * and decrementing the shared-page counter for the old page.
1680 *
1da177e4
LT
1681 * Note that this routine assumes that the protection checks have been
1682 * done by the caller (the low-level page fault routine in most cases).
1683 * Thus we can safely just mark it writable once we've done any necessary
1684 * COW.
1685 *
1686 * We also mark the page dirty at this point even though the page will
1687 * change only once the write actually happens. This avoids a few races,
1688 * and potentially makes it more efficient.
1689 *
8f4e2101
HD
1690 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1691 * but allow concurrent faults), with pte both mapped and locked.
1692 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1693 */
65500d23
HD
1694static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1695 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1696 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1697{
e5bbe4df 1698 struct page *old_page, *new_page;
1da177e4 1699 pte_t entry;
83c54070 1700 int reuse = 0, ret = 0;
a200ee18 1701 int page_mkwrite = 0;
d08b3851 1702 struct page *dirty_page = NULL;
1da177e4 1703
6aab341e 1704 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1705 if (!old_page) {
1706 /*
1707 * VM_MIXEDMAP !pfn_valid() case
1708 *
1709 * We should not cow pages in a shared writeable mapping.
1710 * Just mark the pages writable as we can't do any dirty
1711 * accounting on raw pfn maps.
1712 */
1713 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1714 (VM_WRITE|VM_SHARED))
1715 goto reuse;
6aab341e 1716 goto gotten;
251b97f5 1717 }
1da177e4 1718
d08b3851 1719 /*
ee6a6457
PZ
1720 * Take out anonymous pages first, anonymous shared vmas are
1721 * not dirty accountable.
d08b3851 1722 */
ee6a6457
PZ
1723 if (PageAnon(old_page)) {
1724 if (!TestSetPageLocked(old_page)) {
1725 reuse = can_share_swap_page(old_page);
1726 unlock_page(old_page);
1727 }
1728 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1729 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1730 /*
1731 * Only catch write-faults on shared writable pages,
1732 * read-only shared pages can get COWed by
1733 * get_user_pages(.write=1, .force=1).
1734 */
9637a5ef
DH
1735 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1736 /*
1737 * Notify the address space that the page is about to
1738 * become writable so that it can prohibit this or wait
1739 * for the page to get into an appropriate state.
1740 *
1741 * We do this without the lock held, so that it can
1742 * sleep if it needs to.
1743 */
1744 page_cache_get(old_page);
1745 pte_unmap_unlock(page_table, ptl);
1746
1747 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1748 goto unwritable_page;
1749
9637a5ef
DH
1750 /*
1751 * Since we dropped the lock we need to revalidate
1752 * the PTE as someone else may have changed it. If
1753 * they did, we just return, as we can count on the
1754 * MMU to tell us if they didn't also make it writable.
1755 */
1756 page_table = pte_offset_map_lock(mm, pmd, address,
1757 &ptl);
c3704ceb 1758 page_cache_release(old_page);
9637a5ef
DH
1759 if (!pte_same(*page_table, orig_pte))
1760 goto unlock;
a200ee18
PZ
1761
1762 page_mkwrite = 1;
1da177e4 1763 }
d08b3851
PZ
1764 dirty_page = old_page;
1765 get_page(dirty_page);
9637a5ef 1766 reuse = 1;
9637a5ef
DH
1767 }
1768
1769 if (reuse) {
251b97f5 1770reuse:
9637a5ef
DH
1771 flush_cache_page(vma, address, pte_pfn(orig_pte));
1772 entry = pte_mkyoung(orig_pte);
1773 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1774 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1775 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1776 ret |= VM_FAULT_WRITE;
1777 goto unlock;
1da177e4 1778 }
1da177e4
LT
1779
1780 /*
1781 * Ok, we need to copy. Oh, well..
1782 */
b5810039 1783 page_cache_get(old_page);
920fc356 1784gotten:
8f4e2101 1785 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1786
1787 if (unlikely(anon_vma_prepare(vma)))
65500d23 1788 goto oom;
557ed1fa
NP
1789 VM_BUG_ON(old_page == ZERO_PAGE(0));
1790 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1791 if (!new_page)
1792 goto oom;
1793 cow_user_page(new_page, old_page, address, vma);
0ed361de 1794 __SetPageUptodate(new_page);
65500d23 1795
e1a1cd59 1796 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1797 goto oom_free_new;
1798
1da177e4
LT
1799 /*
1800 * Re-check the pte - we dropped the lock
1801 */
8f4e2101 1802 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1803 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1804 if (old_page) {
920fc356
HD
1805 if (!PageAnon(old_page)) {
1806 dec_mm_counter(mm, file_rss);
1807 inc_mm_counter(mm, anon_rss);
1808 }
1809 } else
4294621f 1810 inc_mm_counter(mm, anon_rss);
eca35133 1811 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1812 entry = mk_pte(new_page, vma->vm_page_prot);
1813 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1814 /*
1815 * Clear the pte entry and flush it first, before updating the
1816 * pte with the new entry. This will avoid a race condition
1817 * seen in the presence of one thread doing SMC and another
1818 * thread doing COW.
1819 */
1820 ptep_clear_flush(vma, address, page_table);
1821 set_pte_at(mm, address, page_table, entry);
65500d23 1822 update_mmu_cache(vma, address, entry);
1da177e4 1823 lru_cache_add_active(new_page);
9617d95e 1824 page_add_new_anon_rmap(new_page, vma, address);
1da177e4 1825
945754a1
NP
1826 if (old_page) {
1827 /*
1828 * Only after switching the pte to the new page may
1829 * we remove the mapcount here. Otherwise another
1830 * process may come and find the rmap count decremented
1831 * before the pte is switched to the new page, and
1832 * "reuse" the old page writing into it while our pte
1833 * here still points into it and can be read by other
1834 * threads.
1835 *
1836 * The critical issue is to order this
1837 * page_remove_rmap with the ptp_clear_flush above.
1838 * Those stores are ordered by (if nothing else,)
1839 * the barrier present in the atomic_add_negative
1840 * in page_remove_rmap.
1841 *
1842 * Then the TLB flush in ptep_clear_flush ensures that
1843 * no process can access the old page before the
1844 * decremented mapcount is visible. And the old page
1845 * cannot be reused until after the decremented
1846 * mapcount is visible. So transitively, TLBs to
1847 * old page will be flushed before it can be reused.
1848 */
1849 page_remove_rmap(old_page, vma);
1850 }
1851
1da177e4
LT
1852 /* Free the old page.. */
1853 new_page = old_page;
f33ea7f4 1854 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
1855 } else
1856 mem_cgroup_uncharge_page(new_page);
1857
920fc356
HD
1858 if (new_page)
1859 page_cache_release(new_page);
1860 if (old_page)
1861 page_cache_release(old_page);
65500d23 1862unlock:
8f4e2101 1863 pte_unmap_unlock(page_table, ptl);
d08b3851 1864 if (dirty_page) {
8f7b3d15
AS
1865 if (vma->vm_file)
1866 file_update_time(vma->vm_file);
1867
79352894
NP
1868 /*
1869 * Yes, Virginia, this is actually required to prevent a race
1870 * with clear_page_dirty_for_io() from clearing the page dirty
1871 * bit after it clear all dirty ptes, but before a racing
1872 * do_wp_page installs a dirty pte.
1873 *
1874 * do_no_page is protected similarly.
1875 */
1876 wait_on_page_locked(dirty_page);
a200ee18 1877 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
1878 put_page(dirty_page);
1879 }
f33ea7f4 1880 return ret;
8a9f3ccd 1881oom_free_new:
6dbf6d3b 1882 page_cache_release(new_page);
65500d23 1883oom:
920fc356
HD
1884 if (old_page)
1885 page_cache_release(old_page);
1da177e4 1886 return VM_FAULT_OOM;
9637a5ef
DH
1887
1888unwritable_page:
1889 page_cache_release(old_page);
1890 return VM_FAULT_SIGBUS;
1da177e4
LT
1891}
1892
1893/*
1894 * Helper functions for unmap_mapping_range().
1895 *
1896 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1897 *
1898 * We have to restart searching the prio_tree whenever we drop the lock,
1899 * since the iterator is only valid while the lock is held, and anyway
1900 * a later vma might be split and reinserted earlier while lock dropped.
1901 *
1902 * The list of nonlinear vmas could be handled more efficiently, using
1903 * a placeholder, but handle it in the same way until a need is shown.
1904 * It is important to search the prio_tree before nonlinear list: a vma
1905 * may become nonlinear and be shifted from prio_tree to nonlinear list
1906 * while the lock is dropped; but never shifted from list to prio_tree.
1907 *
1908 * In order to make forward progress despite restarting the search,
1909 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1910 * quickly skip it next time around. Since the prio_tree search only
1911 * shows us those vmas affected by unmapping the range in question, we
1912 * can't efficiently keep all vmas in step with mapping->truncate_count:
1913 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1914 * mapping->truncate_count and vma->vm_truncate_count are protected by
1915 * i_mmap_lock.
1916 *
1917 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1918 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1919 * and restart from that address when we reach that vma again. It might
1920 * have been split or merged, shrunk or extended, but never shifted: so
1921 * restart_addr remains valid so long as it remains in the vma's range.
1922 * unmap_mapping_range forces truncate_count to leap over page-aligned
1923 * values so we can save vma's restart_addr in its truncate_count field.
1924 */
1925#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1926
1927static void reset_vma_truncate_counts(struct address_space *mapping)
1928{
1929 struct vm_area_struct *vma;
1930 struct prio_tree_iter iter;
1931
1932 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1933 vma->vm_truncate_count = 0;
1934 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1935 vma->vm_truncate_count = 0;
1936}
1937
1938static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1939 unsigned long start_addr, unsigned long end_addr,
1940 struct zap_details *details)
1941{
1942 unsigned long restart_addr;
1943 int need_break;
1944
d00806b1
NP
1945 /*
1946 * files that support invalidating or truncating portions of the
d0217ac0 1947 * file from under mmaped areas must have their ->fault function
83c54070
NP
1948 * return a locked page (and set VM_FAULT_LOCKED in the return).
1949 * This provides synchronisation against concurrent unmapping here.
d00806b1 1950 */
d00806b1 1951
1da177e4
LT
1952again:
1953 restart_addr = vma->vm_truncate_count;
1954 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1955 start_addr = restart_addr;
1956 if (start_addr >= end_addr) {
1957 /* Top of vma has been split off since last time */
1958 vma->vm_truncate_count = details->truncate_count;
1959 return 0;
1960 }
1961 }
1962
ee39b37b
HD
1963 restart_addr = zap_page_range(vma, start_addr,
1964 end_addr - start_addr, details);
95c354fe 1965 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 1966
ee39b37b 1967 if (restart_addr >= end_addr) {
1da177e4
LT
1968 /* We have now completed this vma: mark it so */
1969 vma->vm_truncate_count = details->truncate_count;
1970 if (!need_break)
1971 return 0;
1972 } else {
1973 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1974 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1975 if (!need_break)
1976 goto again;
1977 }
1978
1979 spin_unlock(details->i_mmap_lock);
1980 cond_resched();
1981 spin_lock(details->i_mmap_lock);
1982 return -EINTR;
1983}
1984
1985static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1986 struct zap_details *details)
1987{
1988 struct vm_area_struct *vma;
1989 struct prio_tree_iter iter;
1990 pgoff_t vba, vea, zba, zea;
1991
1992restart:
1993 vma_prio_tree_foreach(vma, &iter, root,
1994 details->first_index, details->last_index) {
1995 /* Skip quickly over those we have already dealt with */
1996 if (vma->vm_truncate_count == details->truncate_count)
1997 continue;
1998
1999 vba = vma->vm_pgoff;
2000 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2001 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2002 zba = details->first_index;
2003 if (zba < vba)
2004 zba = vba;
2005 zea = details->last_index;
2006 if (zea > vea)
2007 zea = vea;
2008
2009 if (unmap_mapping_range_vma(vma,
2010 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2011 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2012 details) < 0)
2013 goto restart;
2014 }
2015}
2016
2017static inline void unmap_mapping_range_list(struct list_head *head,
2018 struct zap_details *details)
2019{
2020 struct vm_area_struct *vma;
2021
2022 /*
2023 * In nonlinear VMAs there is no correspondence between virtual address
2024 * offset and file offset. So we must perform an exhaustive search
2025 * across *all* the pages in each nonlinear VMA, not just the pages
2026 * whose virtual address lies outside the file truncation point.
2027 */
2028restart:
2029 list_for_each_entry(vma, head, shared.vm_set.list) {
2030 /* Skip quickly over those we have already dealt with */
2031 if (vma->vm_truncate_count == details->truncate_count)
2032 continue;
2033 details->nonlinear_vma = vma;
2034 if (unmap_mapping_range_vma(vma, vma->vm_start,
2035 vma->vm_end, details) < 0)
2036 goto restart;
2037 }
2038}
2039
2040/**
72fd4a35 2041 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2042 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2043 * @holebegin: byte in first page to unmap, relative to the start of
2044 * the underlying file. This will be rounded down to a PAGE_SIZE
2045 * boundary. Note that this is different from vmtruncate(), which
2046 * must keep the partial page. In contrast, we must get rid of
2047 * partial pages.
2048 * @holelen: size of prospective hole in bytes. This will be rounded
2049 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2050 * end of the file.
2051 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2052 * but 0 when invalidating pagecache, don't throw away private data.
2053 */
2054void unmap_mapping_range(struct address_space *mapping,
2055 loff_t const holebegin, loff_t const holelen, int even_cows)
2056{
2057 struct zap_details details;
2058 pgoff_t hba = holebegin >> PAGE_SHIFT;
2059 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2060
2061 /* Check for overflow. */
2062 if (sizeof(holelen) > sizeof(hlen)) {
2063 long long holeend =
2064 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2065 if (holeend & ~(long long)ULONG_MAX)
2066 hlen = ULONG_MAX - hba + 1;
2067 }
2068
2069 details.check_mapping = even_cows? NULL: mapping;
2070 details.nonlinear_vma = NULL;
2071 details.first_index = hba;
2072 details.last_index = hba + hlen - 1;
2073 if (details.last_index < details.first_index)
2074 details.last_index = ULONG_MAX;
2075 details.i_mmap_lock = &mapping->i_mmap_lock;
2076
2077 spin_lock(&mapping->i_mmap_lock);
2078
d00806b1 2079 /* Protect against endless unmapping loops */
1da177e4 2080 mapping->truncate_count++;
1da177e4
LT
2081 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2082 if (mapping->truncate_count == 0)
2083 reset_vma_truncate_counts(mapping);
2084 mapping->truncate_count++;
2085 }
2086 details.truncate_count = mapping->truncate_count;
2087
2088 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2089 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2090 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2091 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2092 spin_unlock(&mapping->i_mmap_lock);
2093}
2094EXPORT_SYMBOL(unmap_mapping_range);
2095
bfa5bf6d
REB
2096/**
2097 * vmtruncate - unmap mappings "freed" by truncate() syscall
2098 * @inode: inode of the file used
2099 * @offset: file offset to start truncating
1da177e4
LT
2100 *
2101 * NOTE! We have to be ready to update the memory sharing
2102 * between the file and the memory map for a potential last
2103 * incomplete page. Ugly, but necessary.
2104 */
2105int vmtruncate(struct inode * inode, loff_t offset)
2106{
61d5048f
CH
2107 if (inode->i_size < offset) {
2108 unsigned long limit;
2109
2110 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2111 if (limit != RLIM_INFINITY && offset > limit)
2112 goto out_sig;
2113 if (offset > inode->i_sb->s_maxbytes)
2114 goto out_big;
2115 i_size_write(inode, offset);
2116 } else {
2117 struct address_space *mapping = inode->i_mapping;
1da177e4 2118
61d5048f
CH
2119 /*
2120 * truncation of in-use swapfiles is disallowed - it would
2121 * cause subsequent swapout to scribble on the now-freed
2122 * blocks.
2123 */
2124 if (IS_SWAPFILE(inode))
2125 return -ETXTBSY;
2126 i_size_write(inode, offset);
2127
2128 /*
2129 * unmap_mapping_range is called twice, first simply for
2130 * efficiency so that truncate_inode_pages does fewer
2131 * single-page unmaps. However after this first call, and
2132 * before truncate_inode_pages finishes, it is possible for
2133 * private pages to be COWed, which remain after
2134 * truncate_inode_pages finishes, hence the second
2135 * unmap_mapping_range call must be made for correctness.
2136 */
2137 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2138 truncate_inode_pages(mapping, offset);
2139 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2140 }
d00806b1 2141
1da177e4
LT
2142 if (inode->i_op && inode->i_op->truncate)
2143 inode->i_op->truncate(inode);
2144 return 0;
61d5048f 2145
1da177e4
LT
2146out_sig:
2147 send_sig(SIGXFSZ, current, 0);
2148out_big:
2149 return -EFBIG;
1da177e4 2150}
1da177e4
LT
2151EXPORT_SYMBOL(vmtruncate);
2152
f6b3ec23
BP
2153int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2154{
2155 struct address_space *mapping = inode->i_mapping;
2156
2157 /*
2158 * If the underlying filesystem is not going to provide
2159 * a way to truncate a range of blocks (punch a hole) -
2160 * we should return failure right now.
2161 */
2162 if (!inode->i_op || !inode->i_op->truncate_range)
2163 return -ENOSYS;
2164
1b1dcc1b 2165 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2166 down_write(&inode->i_alloc_sem);
2167 unmap_mapping_range(mapping, offset, (end - offset), 1);
2168 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2169 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2170 inode->i_op->truncate_range(inode, offset, end);
2171 up_write(&inode->i_alloc_sem);
1b1dcc1b 2172 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2173
2174 return 0;
2175}
f6b3ec23 2176
1da177e4 2177/*
8f4e2101
HD
2178 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2179 * but allow concurrent faults), and pte mapped but not yet locked.
2180 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2181 */
65500d23
HD
2182static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2183 unsigned long address, pte_t *page_table, pmd_t *pmd,
2184 int write_access, pte_t orig_pte)
1da177e4 2185{
8f4e2101 2186 spinlock_t *ptl;
1da177e4 2187 struct page *page;
65500d23 2188 swp_entry_t entry;
1da177e4 2189 pte_t pte;
83c54070 2190 int ret = 0;
1da177e4 2191
4c21e2f2 2192 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2193 goto out;
65500d23
HD
2194
2195 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2196 if (is_migration_entry(entry)) {
2197 migration_entry_wait(mm, pmd, address);
2198 goto out;
2199 }
0ff92245 2200 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2201 page = lookup_swap_cache(entry);
2202 if (!page) {
098fe651 2203 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2204 page = swapin_readahead(entry,
2205 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2206 if (!page) {
2207 /*
8f4e2101
HD
2208 * Back out if somebody else faulted in this pte
2209 * while we released the pte lock.
1da177e4 2210 */
8f4e2101 2211 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2212 if (likely(pte_same(*page_table, orig_pte)))
2213 ret = VM_FAULT_OOM;
0ff92245 2214 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2215 goto unlock;
1da177e4
LT
2216 }
2217
2218 /* Had to read the page from swap area: Major fault */
2219 ret = VM_FAULT_MAJOR;
f8891e5e 2220 count_vm_event(PGMAJFAULT);
1da177e4
LT
2221 }
2222
e1a1cd59 2223 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd
BS
2224 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2225 ret = VM_FAULT_OOM;
2226 goto out;
2227 }
2228
1da177e4
LT
2229 mark_page_accessed(page);
2230 lock_page(page);
20a1022d 2231 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2232
2233 /*
8f4e2101 2234 * Back out if somebody else already faulted in this pte.
1da177e4 2235 */
8f4e2101 2236 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2237 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2238 goto out_nomap;
b8107480
KK
2239
2240 if (unlikely(!PageUptodate(page))) {
2241 ret = VM_FAULT_SIGBUS;
2242 goto out_nomap;
1da177e4
LT
2243 }
2244
2245 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2246
4294621f 2247 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2248 pte = mk_pte(page, vma->vm_page_prot);
2249 if (write_access && can_share_swap_page(page)) {
2250 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2251 write_access = 0;
2252 }
1da177e4
LT
2253
2254 flush_icache_page(vma, page);
2255 set_pte_at(mm, address, page_table, pte);
2256 page_add_anon_rmap(page, vma, address);
2257
c475a8ab
HD
2258 swap_free(entry);
2259 if (vm_swap_full())
2260 remove_exclusive_swap_page(page);
2261 unlock_page(page);
2262
1da177e4 2263 if (write_access) {
61469f1d
HD
2264 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2265 if (ret & VM_FAULT_ERROR)
2266 ret &= VM_FAULT_ERROR;
1da177e4
LT
2267 goto out;
2268 }
2269
2270 /* No need to invalidate - it was non-present before */
2271 update_mmu_cache(vma, address, pte);
65500d23 2272unlock:
8f4e2101 2273 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2274out:
2275 return ret;
b8107480 2276out_nomap:
8a9f3ccd 2277 mem_cgroup_uncharge_page(page);
8f4e2101 2278 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2279 unlock_page(page);
2280 page_cache_release(page);
65500d23 2281 return ret;
1da177e4
LT
2282}
2283
2284/*
8f4e2101
HD
2285 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2286 * but allow concurrent faults), and pte mapped but not yet locked.
2287 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2288 */
65500d23
HD
2289static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2290 unsigned long address, pte_t *page_table, pmd_t *pmd,
2291 int write_access)
1da177e4 2292{
8f4e2101
HD
2293 struct page *page;
2294 spinlock_t *ptl;
1da177e4 2295 pte_t entry;
1da177e4 2296
557ed1fa
NP
2297 /* Allocate our own private page. */
2298 pte_unmap(page_table);
8f4e2101 2299
557ed1fa
NP
2300 if (unlikely(anon_vma_prepare(vma)))
2301 goto oom;
2302 page = alloc_zeroed_user_highpage_movable(vma, address);
2303 if (!page)
2304 goto oom;
0ed361de 2305 __SetPageUptodate(page);
8f4e2101 2306
e1a1cd59 2307 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2308 goto oom_free_page;
2309
557ed1fa
NP
2310 entry = mk_pte(page, vma->vm_page_prot);
2311 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2312
557ed1fa
NP
2313 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2314 if (!pte_none(*page_table))
2315 goto release;
2316 inc_mm_counter(mm, anon_rss);
2317 lru_cache_add_active(page);
2318 page_add_new_anon_rmap(page, vma, address);
65500d23 2319 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2320
2321 /* No need to invalidate - it was non-present before */
65500d23 2322 update_mmu_cache(vma, address, entry);
65500d23 2323unlock:
8f4e2101 2324 pte_unmap_unlock(page_table, ptl);
83c54070 2325 return 0;
8f4e2101 2326release:
8a9f3ccd 2327 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2328 page_cache_release(page);
2329 goto unlock;
8a9f3ccd 2330oom_free_page:
6dbf6d3b 2331 page_cache_release(page);
65500d23 2332oom:
1da177e4
LT
2333 return VM_FAULT_OOM;
2334}
2335
2336/*
54cb8821 2337 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2338 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2339 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2340 * the next page fault.
1da177e4
LT
2341 *
2342 * As this is called only for pages that do not currently exist, we
2343 * do not need to flush old virtual caches or the TLB.
2344 *
8f4e2101 2345 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2346 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2347 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2348 */
54cb8821 2349static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2350 unsigned long address, pmd_t *pmd,
54cb8821 2351 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2352{
16abfa08 2353 pte_t *page_table;
8f4e2101 2354 spinlock_t *ptl;
d0217ac0 2355 struct page *page;
1da177e4 2356 pte_t entry;
1da177e4 2357 int anon = 0;
d08b3851 2358 struct page *dirty_page = NULL;
d0217ac0
NP
2359 struct vm_fault vmf;
2360 int ret;
a200ee18 2361 int page_mkwrite = 0;
54cb8821 2362
d0217ac0
NP
2363 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2364 vmf.pgoff = pgoff;
2365 vmf.flags = flags;
2366 vmf.page = NULL;
1da177e4 2367
3c18ddd1
NP
2368 ret = vma->vm_ops->fault(vma, &vmf);
2369 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2370 return ret;
1da177e4 2371
d00806b1 2372 /*
d0217ac0 2373 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2374 * locked.
2375 */
83c54070 2376 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2377 lock_page(vmf.page);
54cb8821 2378 else
d0217ac0 2379 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2380
1da177e4
LT
2381 /*
2382 * Should we do an early C-O-W break?
2383 */
d0217ac0 2384 page = vmf.page;
54cb8821 2385 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2386 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2387 anon = 1;
d00806b1 2388 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2389 ret = VM_FAULT_OOM;
54cb8821 2390 goto out;
d00806b1 2391 }
83c54070
NP
2392 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2393 vma, address);
d00806b1 2394 if (!page) {
d0217ac0 2395 ret = VM_FAULT_OOM;
54cb8821 2396 goto out;
d00806b1 2397 }
d0217ac0 2398 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2399 __SetPageUptodate(page);
9637a5ef 2400 } else {
54cb8821
NP
2401 /*
2402 * If the page will be shareable, see if the backing
9637a5ef 2403 * address space wants to know that the page is about
54cb8821
NP
2404 * to become writable
2405 */
69676147
MF
2406 if (vma->vm_ops->page_mkwrite) {
2407 unlock_page(page);
2408 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2409 ret = VM_FAULT_SIGBUS;
2410 anon = 1; /* no anon but release vmf.page */
69676147
MF
2411 goto out_unlocked;
2412 }
2413 lock_page(page);
d0217ac0
NP
2414 /*
2415 * XXX: this is not quite right (racy vs
2416 * invalidate) to unlock and relock the page
2417 * like this, however a better fix requires
2418 * reworking page_mkwrite locking API, which
2419 * is better done later.
2420 */
2421 if (!page->mapping) {
83c54070 2422 ret = 0;
d0217ac0
NP
2423 anon = 1; /* no anon but release vmf.page */
2424 goto out;
2425 }
a200ee18 2426 page_mkwrite = 1;
9637a5ef
DH
2427 }
2428 }
54cb8821 2429
1da177e4
LT
2430 }
2431
e1a1cd59 2432 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd
BS
2433 ret = VM_FAULT_OOM;
2434 goto out;
2435 }
2436
8f4e2101 2437 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2438
2439 /*
2440 * This silly early PAGE_DIRTY setting removes a race
2441 * due to the bad i386 page protection. But it's valid
2442 * for other architectures too.
2443 *
2444 * Note that if write_access is true, we either now have
2445 * an exclusive copy of the page, or this is a shared mapping,
2446 * so we can make it writable and dirty to avoid having to
2447 * handle that later.
2448 */
2449 /* Only go through if we didn't race with anybody else... */
54cb8821 2450 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2451 flush_icache_page(vma, page);
2452 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2453 if (flags & FAULT_FLAG_WRITE)
1da177e4
LT
2454 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2455 set_pte_at(mm, address, page_table, entry);
2456 if (anon) {
d00806b1
NP
2457 inc_mm_counter(mm, anon_rss);
2458 lru_cache_add_active(page);
2459 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2460 } else {
4294621f 2461 inc_mm_counter(mm, file_rss);
d00806b1 2462 page_add_file_rmap(page);
54cb8821 2463 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2464 dirty_page = page;
d08b3851
PZ
2465 get_page(dirty_page);
2466 }
4294621f 2467 }
d00806b1
NP
2468
2469 /* no need to invalidate: a not-present page won't be cached */
2470 update_mmu_cache(vma, address, entry);
1da177e4 2471 } else {
8a9f3ccd 2472 mem_cgroup_uncharge_page(page);
d00806b1
NP
2473 if (anon)
2474 page_cache_release(page);
2475 else
54cb8821 2476 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2477 }
2478
8f4e2101 2479 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2480
2481out:
d0217ac0 2482 unlock_page(vmf.page);
69676147 2483out_unlocked:
d00806b1 2484 if (anon)
d0217ac0 2485 page_cache_release(vmf.page);
d00806b1 2486 else if (dirty_page) {
8f7b3d15
AS
2487 if (vma->vm_file)
2488 file_update_time(vma->vm_file);
2489
a200ee18 2490 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2491 put_page(dirty_page);
2492 }
d00806b1 2493
83c54070 2494 return ret;
54cb8821 2495}
d00806b1 2496
54cb8821
NP
2497static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2498 unsigned long address, pte_t *page_table, pmd_t *pmd,
2499 int write_access, pte_t orig_pte)
2500{
2501 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2502 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2503 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2504
16abfa08
HD
2505 pte_unmap(page_table);
2506 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2507}
2508
1da177e4
LT
2509/*
2510 * Fault of a previously existing named mapping. Repopulate the pte
2511 * from the encoded file_pte if possible. This enables swappable
2512 * nonlinear vmas.
8f4e2101
HD
2513 *
2514 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2515 * but allow concurrent faults), and pte mapped but not yet locked.
2516 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2517 */
d0217ac0 2518static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2519 unsigned long address, pte_t *page_table, pmd_t *pmd,
2520 int write_access, pte_t orig_pte)
1da177e4 2521{
d0217ac0
NP
2522 unsigned int flags = FAULT_FLAG_NONLINEAR |
2523 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2524 pgoff_t pgoff;
1da177e4 2525
4c21e2f2 2526 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2527 return 0;
1da177e4 2528
d0217ac0
NP
2529 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2530 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2531 /*
2532 * Page table corrupted: show pte and kill process.
2533 */
b5810039 2534 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2535 return VM_FAULT_OOM;
2536 }
65500d23
HD
2537
2538 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2539 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2540}
2541
2542/*
2543 * These routines also need to handle stuff like marking pages dirty
2544 * and/or accessed for architectures that don't do it in hardware (most
2545 * RISC architectures). The early dirtying is also good on the i386.
2546 *
2547 * There is also a hook called "update_mmu_cache()" that architectures
2548 * with external mmu caches can use to update those (ie the Sparc or
2549 * PowerPC hashed page tables that act as extended TLBs).
2550 *
c74df32c
HD
2551 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2552 * but allow concurrent faults), and pte mapped but not yet locked.
2553 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2554 */
2555static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2556 struct vm_area_struct *vma, unsigned long address,
2557 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2558{
2559 pte_t entry;
8f4e2101 2560 spinlock_t *ptl;
1da177e4 2561
8dab5241 2562 entry = *pte;
1da177e4 2563 if (!pte_present(entry)) {
65500d23 2564 if (pte_none(entry)) {
f4b81804 2565 if (vma->vm_ops) {
3c18ddd1 2566 if (likely(vma->vm_ops->fault))
54cb8821
NP
2567 return do_linear_fault(mm, vma, address,
2568 pte, pmd, write_access, entry);
f4b81804
JS
2569 }
2570 return do_anonymous_page(mm, vma, address,
2571 pte, pmd, write_access);
65500d23 2572 }
1da177e4 2573 if (pte_file(entry))
d0217ac0 2574 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2575 pte, pmd, write_access, entry);
2576 return do_swap_page(mm, vma, address,
2577 pte, pmd, write_access, entry);
1da177e4
LT
2578 }
2579
4c21e2f2 2580 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2581 spin_lock(ptl);
2582 if (unlikely(!pte_same(*pte, entry)))
2583 goto unlock;
1da177e4
LT
2584 if (write_access) {
2585 if (!pte_write(entry))
8f4e2101
HD
2586 return do_wp_page(mm, vma, address,
2587 pte, pmd, ptl, entry);
1da177e4
LT
2588 entry = pte_mkdirty(entry);
2589 }
2590 entry = pte_mkyoung(entry);
8dab5241 2591 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2592 update_mmu_cache(vma, address, entry);
1a44e149
AA
2593 } else {
2594 /*
2595 * This is needed only for protection faults but the arch code
2596 * is not yet telling us if this is a protection fault or not.
2597 * This still avoids useless tlb flushes for .text page faults
2598 * with threads.
2599 */
2600 if (write_access)
2601 flush_tlb_page(vma, address);
2602 }
8f4e2101
HD
2603unlock:
2604 pte_unmap_unlock(pte, ptl);
83c54070 2605 return 0;
1da177e4
LT
2606}
2607
2608/*
2609 * By the time we get here, we already hold the mm semaphore
2610 */
83c54070 2611int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2612 unsigned long address, int write_access)
2613{
2614 pgd_t *pgd;
2615 pud_t *pud;
2616 pmd_t *pmd;
2617 pte_t *pte;
2618
2619 __set_current_state(TASK_RUNNING);
2620
f8891e5e 2621 count_vm_event(PGFAULT);
1da177e4 2622
ac9b9c66
HD
2623 if (unlikely(is_vm_hugetlb_page(vma)))
2624 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2625
1da177e4 2626 pgd = pgd_offset(mm, address);
1da177e4
LT
2627 pud = pud_alloc(mm, pgd, address);
2628 if (!pud)
c74df32c 2629 return VM_FAULT_OOM;
1da177e4
LT
2630 pmd = pmd_alloc(mm, pud, address);
2631 if (!pmd)
c74df32c 2632 return VM_FAULT_OOM;
1da177e4
LT
2633 pte = pte_alloc_map(mm, pmd, address);
2634 if (!pte)
c74df32c 2635 return VM_FAULT_OOM;
1da177e4 2636
c74df32c 2637 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2638}
2639
2640#ifndef __PAGETABLE_PUD_FOLDED
2641/*
2642 * Allocate page upper directory.
872fec16 2643 * We've already handled the fast-path in-line.
1da177e4 2644 */
1bb3630e 2645int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2646{
c74df32c
HD
2647 pud_t *new = pud_alloc_one(mm, address);
2648 if (!new)
1bb3630e 2649 return -ENOMEM;
1da177e4 2650
362a61ad
NP
2651 smp_wmb(); /* See comment in __pte_alloc */
2652
872fec16 2653 spin_lock(&mm->page_table_lock);
1bb3630e 2654 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2655 pud_free(mm, new);
1bb3630e
HD
2656 else
2657 pgd_populate(mm, pgd, new);
c74df32c 2658 spin_unlock(&mm->page_table_lock);
1bb3630e 2659 return 0;
1da177e4
LT
2660}
2661#endif /* __PAGETABLE_PUD_FOLDED */
2662
2663#ifndef __PAGETABLE_PMD_FOLDED
2664/*
2665 * Allocate page middle directory.
872fec16 2666 * We've already handled the fast-path in-line.
1da177e4 2667 */
1bb3630e 2668int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2669{
c74df32c
HD
2670 pmd_t *new = pmd_alloc_one(mm, address);
2671 if (!new)
1bb3630e 2672 return -ENOMEM;
1da177e4 2673
362a61ad
NP
2674 smp_wmb(); /* See comment in __pte_alloc */
2675
872fec16 2676 spin_lock(&mm->page_table_lock);
1da177e4 2677#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2678 if (pud_present(*pud)) /* Another has populated it */
5e541973 2679 pmd_free(mm, new);
1bb3630e
HD
2680 else
2681 pud_populate(mm, pud, new);
1da177e4 2682#else
1bb3630e 2683 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2684 pmd_free(mm, new);
1bb3630e
HD
2685 else
2686 pgd_populate(mm, pud, new);
1da177e4 2687#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2688 spin_unlock(&mm->page_table_lock);
1bb3630e 2689 return 0;
e0f39591 2690}
1da177e4
LT
2691#endif /* __PAGETABLE_PMD_FOLDED */
2692
2693int make_pages_present(unsigned long addr, unsigned long end)
2694{
2695 int ret, len, write;
2696 struct vm_area_struct * vma;
2697
2698 vma = find_vma(current->mm, addr);
2699 if (!vma)
2700 return -1;
2701 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2702 BUG_ON(addr >= end);
2703 BUG_ON(end > vma->vm_end);
68e116a3 2704 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2705 ret = get_user_pages(current, current->mm, addr,
2706 len, write, 0, NULL, NULL);
2707 if (ret < 0)
2708 return ret;
2709 return ret == len ? 0 : -1;
2710}
2711
1da177e4
LT
2712#if !defined(__HAVE_ARCH_GATE_AREA)
2713
2714#if defined(AT_SYSINFO_EHDR)
5ce7852c 2715static struct vm_area_struct gate_vma;
1da177e4
LT
2716
2717static int __init gate_vma_init(void)
2718{
2719 gate_vma.vm_mm = NULL;
2720 gate_vma.vm_start = FIXADDR_USER_START;
2721 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2722 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2723 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2724 /*
2725 * Make sure the vDSO gets into every core dump.
2726 * Dumping its contents makes post-mortem fully interpretable later
2727 * without matching up the same kernel and hardware config to see
2728 * what PC values meant.
2729 */
2730 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2731 return 0;
2732}
2733__initcall(gate_vma_init);
2734#endif
2735
2736struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2737{
2738#ifdef AT_SYSINFO_EHDR
2739 return &gate_vma;
2740#else
2741 return NULL;
2742#endif
2743}
2744
2745int in_gate_area_no_task(unsigned long addr)
2746{
2747#ifdef AT_SYSINFO_EHDR
2748 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2749 return 1;
2750#endif
2751 return 0;
2752}
2753
2754#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2755
28b2ee20
RR
2756#ifdef CONFIG_HAVE_IOREMAP_PROT
2757static resource_size_t follow_phys(struct vm_area_struct *vma,
2758 unsigned long address, unsigned int flags,
2759 unsigned long *prot)
2760{
2761 pgd_t *pgd;
2762 pud_t *pud;
2763 pmd_t *pmd;
2764 pte_t *ptep, pte;
2765 spinlock_t *ptl;
2766 resource_size_t phys_addr = 0;
2767 struct mm_struct *mm = vma->vm_mm;
2768
2769 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2770
2771 pgd = pgd_offset(mm, address);
2772 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2773 goto no_page_table;
2774
2775 pud = pud_offset(pgd, address);
2776 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2777 goto no_page_table;
2778
2779 pmd = pmd_offset(pud, address);
2780 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2781 goto no_page_table;
2782
2783 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2784 if (pmd_huge(*pmd))
2785 goto no_page_table;
2786
2787 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2788 if (!ptep)
2789 goto out;
2790
2791 pte = *ptep;
2792 if (!pte_present(pte))
2793 goto unlock;
2794 if ((flags & FOLL_WRITE) && !pte_write(pte))
2795 goto unlock;
2796 phys_addr = pte_pfn(pte);
2797 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2798
2799 *prot = pgprot_val(pte_pgprot(pte));
2800
2801unlock:
2802 pte_unmap_unlock(ptep, ptl);
2803out:
2804 return phys_addr;
2805no_page_table:
2806 return 0;
2807}
2808
2809int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2810 void *buf, int len, int write)
2811{
2812 resource_size_t phys_addr;
2813 unsigned long prot = 0;
2814 void *maddr;
2815 int offset = addr & (PAGE_SIZE-1);
2816
2817 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2818 return -EINVAL;
2819
2820 phys_addr = follow_phys(vma, addr, write, &prot);
2821
2822 if (!phys_addr)
2823 return -EINVAL;
2824
2825 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2826 if (write)
2827 memcpy_toio(maddr + offset, buf, len);
2828 else
2829 memcpy_fromio(buf, maddr + offset, len);
2830 iounmap(maddr);
2831
2832 return len;
2833}
2834#endif
2835
0ec76a11
DH
2836/*
2837 * Access another process' address space.
2838 * Source/target buffer must be kernel space,
2839 * Do not walk the page table directly, use get_user_pages
2840 */
2841int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2842{
2843 struct mm_struct *mm;
2844 struct vm_area_struct *vma;
0ec76a11
DH
2845 void *old_buf = buf;
2846
2847 mm = get_task_mm(tsk);
2848 if (!mm)
2849 return 0;
2850
2851 down_read(&mm->mmap_sem);
183ff22b 2852 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
2853 while (len) {
2854 int bytes, ret, offset;
2855 void *maddr;
28b2ee20 2856 struct page *page = NULL;
0ec76a11
DH
2857
2858 ret = get_user_pages(tsk, mm, addr, 1,
2859 write, 1, &page, &vma);
28b2ee20
RR
2860 if (ret <= 0) {
2861 /*
2862 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2863 * we can access using slightly different code.
2864 */
2865#ifdef CONFIG_HAVE_IOREMAP_PROT
2866 vma = find_vma(mm, addr);
2867 if (!vma)
2868 break;
2869 if (vma->vm_ops && vma->vm_ops->access)
2870 ret = vma->vm_ops->access(vma, addr, buf,
2871 len, write);
2872 if (ret <= 0)
2873#endif
2874 break;
2875 bytes = ret;
0ec76a11 2876 } else {
28b2ee20
RR
2877 bytes = len;
2878 offset = addr & (PAGE_SIZE-1);
2879 if (bytes > PAGE_SIZE-offset)
2880 bytes = PAGE_SIZE-offset;
2881
2882 maddr = kmap(page);
2883 if (write) {
2884 copy_to_user_page(vma, page, addr,
2885 maddr + offset, buf, bytes);
2886 set_page_dirty_lock(page);
2887 } else {
2888 copy_from_user_page(vma, page, addr,
2889 buf, maddr + offset, bytes);
2890 }
2891 kunmap(page);
2892 page_cache_release(page);
0ec76a11 2893 }
0ec76a11
DH
2894 len -= bytes;
2895 buf += bytes;
2896 addr += bytes;
2897 }
2898 up_read(&mm->mmap_sem);
2899 mmput(mm);
2900
2901 return buf - old_buf;
2902}
03252919
AK
2903
2904/*
2905 * Print the name of a VMA.
2906 */
2907void print_vma_addr(char *prefix, unsigned long ip)
2908{
2909 struct mm_struct *mm = current->mm;
2910 struct vm_area_struct *vma;
2911
e8bff74a
IM
2912 /*
2913 * Do not print if we are in atomic
2914 * contexts (in exception stacks, etc.):
2915 */
2916 if (preempt_count())
2917 return;
2918
03252919
AK
2919 down_read(&mm->mmap_sem);
2920 vma = find_vma(mm, ip);
2921 if (vma && vma->vm_file) {
2922 struct file *f = vma->vm_file;
2923 char *buf = (char *)__get_free_page(GFP_KERNEL);
2924 if (buf) {
2925 char *p, *s;
2926
cf28b486 2927 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
2928 if (IS_ERR(p))
2929 p = "?";
2930 s = strrchr(p, '/');
2931 if (s)
2932 p = s+1;
2933 printk("%s%s[%lx+%lx]", prefix, p,
2934 vma->vm_start,
2935 vma->vm_end - vma->vm_start);
2936 free_page((unsigned long)buf);
2937 }
2938 }
2939 up_read(&current->mm->mmap_sem);
2940}