]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memory-failure.c
tg3: Push phylib definitions to phylib
[net-next-2.6.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
20 *
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
25 */
26
27/*
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
32 */
33#define DEBUG 1 /* remove me in 2.6.34 */
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/page-flags.h>
478c5ffc 37#include <linux/kernel-page-flags.h>
6a46079c 38#include <linux/sched.h>
01e00f88 39#include <linux/ksm.h>
6a46079c
AK
40#include <linux/rmap.h>
41#include <linux/pagemap.h>
42#include <linux/swap.h>
43#include <linux/backing-dev.h>
facb6011
AK
44#include <linux/migrate.h>
45#include <linux/page-isolation.h>
46#include <linux/suspend.h>
6a46079c
AK
47#include "internal.h"
48
49int sysctl_memory_failure_early_kill __read_mostly = 0;
50
51int sysctl_memory_failure_recovery __read_mostly = 1;
52
53atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
54
27df5068
AK
55#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
56
1bfe5feb 57u32 hwpoison_filter_enable = 0;
7c116f2b
WF
58u32 hwpoison_filter_dev_major = ~0U;
59u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
60u64 hwpoison_filter_flags_mask;
61u64 hwpoison_filter_flags_value;
1bfe5feb 62EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
63EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
64EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
65EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
66EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
67
68static int hwpoison_filter_dev(struct page *p)
69{
70 struct address_space *mapping;
71 dev_t dev;
72
73 if (hwpoison_filter_dev_major == ~0U &&
74 hwpoison_filter_dev_minor == ~0U)
75 return 0;
76
77 /*
78 * page_mapping() does not accept slab page
79 */
80 if (PageSlab(p))
81 return -EINVAL;
82
83 mapping = page_mapping(p);
84 if (mapping == NULL || mapping->host == NULL)
85 return -EINVAL;
86
87 dev = mapping->host->i_sb->s_dev;
88 if (hwpoison_filter_dev_major != ~0U &&
89 hwpoison_filter_dev_major != MAJOR(dev))
90 return -EINVAL;
91 if (hwpoison_filter_dev_minor != ~0U &&
92 hwpoison_filter_dev_minor != MINOR(dev))
93 return -EINVAL;
94
95 return 0;
96}
97
478c5ffc
WF
98static int hwpoison_filter_flags(struct page *p)
99{
100 if (!hwpoison_filter_flags_mask)
101 return 0;
102
103 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
104 hwpoison_filter_flags_value)
105 return 0;
106 else
107 return -EINVAL;
108}
109
4fd466eb
AK
110/*
111 * This allows stress tests to limit test scope to a collection of tasks
112 * by putting them under some memcg. This prevents killing unrelated/important
113 * processes such as /sbin/init. Note that the target task may share clean
114 * pages with init (eg. libc text), which is harmless. If the target task
115 * share _dirty_ pages with another task B, the test scheme must make sure B
116 * is also included in the memcg. At last, due to race conditions this filter
117 * can only guarantee that the page either belongs to the memcg tasks, or is
118 * a freed page.
119 */
120#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
121u64 hwpoison_filter_memcg;
122EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
123static int hwpoison_filter_task(struct page *p)
124{
125 struct mem_cgroup *mem;
126 struct cgroup_subsys_state *css;
127 unsigned long ino;
128
129 if (!hwpoison_filter_memcg)
130 return 0;
131
132 mem = try_get_mem_cgroup_from_page(p);
133 if (!mem)
134 return -EINVAL;
135
136 css = mem_cgroup_css(mem);
137 /* root_mem_cgroup has NULL dentries */
138 if (!css->cgroup->dentry)
139 return -EINVAL;
140
141 ino = css->cgroup->dentry->d_inode->i_ino;
142 css_put(css);
143
144 if (ino != hwpoison_filter_memcg)
145 return -EINVAL;
146
147 return 0;
148}
149#else
150static int hwpoison_filter_task(struct page *p) { return 0; }
151#endif
152
7c116f2b
WF
153int hwpoison_filter(struct page *p)
154{
1bfe5feb
HL
155 if (!hwpoison_filter_enable)
156 return 0;
157
7c116f2b
WF
158 if (hwpoison_filter_dev(p))
159 return -EINVAL;
160
478c5ffc
WF
161 if (hwpoison_filter_flags(p))
162 return -EINVAL;
163
4fd466eb
AK
164 if (hwpoison_filter_task(p))
165 return -EINVAL;
166
7c116f2b
WF
167 return 0;
168}
27df5068
AK
169#else
170int hwpoison_filter(struct page *p)
171{
172 return 0;
173}
174#endif
175
7c116f2b
WF
176EXPORT_SYMBOL_GPL(hwpoison_filter);
177
6a46079c
AK
178/*
179 * Send all the processes who have the page mapped an ``action optional''
180 * signal.
181 */
182static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
183 unsigned long pfn)
184{
185 struct siginfo si;
186 int ret;
187
188 printk(KERN_ERR
189 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
190 pfn, t->comm, t->pid);
191 si.si_signo = SIGBUS;
192 si.si_errno = 0;
193 si.si_code = BUS_MCEERR_AO;
194 si.si_addr = (void *)addr;
195#ifdef __ARCH_SI_TRAPNO
196 si.si_trapno = trapno;
197#endif
198 si.si_addr_lsb = PAGE_SHIFT;
199 /*
200 * Don't use force here, it's convenient if the signal
201 * can be temporarily blocked.
202 * This could cause a loop when the user sets SIGBUS
203 * to SIG_IGN, but hopefully noone will do that?
204 */
205 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
206 if (ret < 0)
207 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
208 t->comm, t->pid, ret);
209 return ret;
210}
211
588f9ce6
AK
212/*
213 * When a unknown page type is encountered drain as many buffers as possible
214 * in the hope to turn the page into a LRU or free page, which we can handle.
215 */
facb6011 216void shake_page(struct page *p, int access)
588f9ce6
AK
217{
218 if (!PageSlab(p)) {
219 lru_add_drain_all();
220 if (PageLRU(p))
221 return;
222 drain_all_pages();
223 if (PageLRU(p) || is_free_buddy_page(p))
224 return;
225 }
facb6011 226
588f9ce6 227 /*
facb6011
AK
228 * Only all shrink_slab here (which would also
229 * shrink other caches) if access is not potentially fatal.
588f9ce6 230 */
facb6011
AK
231 if (access) {
232 int nr;
233 do {
234 nr = shrink_slab(1000, GFP_KERNEL, 1000);
235 if (page_count(p) == 0)
236 break;
237 } while (nr > 10);
238 }
588f9ce6
AK
239}
240EXPORT_SYMBOL_GPL(shake_page);
241
6a46079c
AK
242/*
243 * Kill all processes that have a poisoned page mapped and then isolate
244 * the page.
245 *
246 * General strategy:
247 * Find all processes having the page mapped and kill them.
248 * But we keep a page reference around so that the page is not
249 * actually freed yet.
250 * Then stash the page away
251 *
252 * There's no convenient way to get back to mapped processes
253 * from the VMAs. So do a brute-force search over all
254 * running processes.
255 *
256 * Remember that machine checks are not common (or rather
257 * if they are common you have other problems), so this shouldn't
258 * be a performance issue.
259 *
260 * Also there are some races possible while we get from the
261 * error detection to actually handle it.
262 */
263
264struct to_kill {
265 struct list_head nd;
266 struct task_struct *tsk;
267 unsigned long addr;
268 unsigned addr_valid:1;
269};
270
271/*
272 * Failure handling: if we can't find or can't kill a process there's
273 * not much we can do. We just print a message and ignore otherwise.
274 */
275
276/*
277 * Schedule a process for later kill.
278 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
279 * TBD would GFP_NOIO be enough?
280 */
281static void add_to_kill(struct task_struct *tsk, struct page *p,
282 struct vm_area_struct *vma,
283 struct list_head *to_kill,
284 struct to_kill **tkc)
285{
286 struct to_kill *tk;
287
288 if (*tkc) {
289 tk = *tkc;
290 *tkc = NULL;
291 } else {
292 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
293 if (!tk) {
294 printk(KERN_ERR
295 "MCE: Out of memory while machine check handling\n");
296 return;
297 }
298 }
299 tk->addr = page_address_in_vma(p, vma);
300 tk->addr_valid = 1;
301
302 /*
303 * In theory we don't have to kill when the page was
304 * munmaped. But it could be also a mremap. Since that's
305 * likely very rare kill anyways just out of paranoia, but use
306 * a SIGKILL because the error is not contained anymore.
307 */
308 if (tk->addr == -EFAULT) {
309 pr_debug("MCE: Unable to find user space address %lx in %s\n",
310 page_to_pfn(p), tsk->comm);
311 tk->addr_valid = 0;
312 }
313 get_task_struct(tsk);
314 tk->tsk = tsk;
315 list_add_tail(&tk->nd, to_kill);
316}
317
318/*
319 * Kill the processes that have been collected earlier.
320 *
321 * Only do anything when DOIT is set, otherwise just free the list
322 * (this is used for clean pages which do not need killing)
323 * Also when FAIL is set do a force kill because something went
324 * wrong earlier.
325 */
326static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
327 int fail, unsigned long pfn)
328{
329 struct to_kill *tk, *next;
330
331 list_for_each_entry_safe (tk, next, to_kill, nd) {
332 if (doit) {
333 /*
af901ca1 334 * In case something went wrong with munmapping
6a46079c
AK
335 * make sure the process doesn't catch the
336 * signal and then access the memory. Just kill it.
6a46079c
AK
337 */
338 if (fail || tk->addr_valid == 0) {
339 printk(KERN_ERR
340 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 pfn, tk->tsk->comm, tk->tsk->pid);
342 force_sig(SIGKILL, tk->tsk);
343 }
344
345 /*
346 * In theory the process could have mapped
347 * something else on the address in-between. We could
348 * check for that, but we need to tell the
349 * process anyways.
350 */
351 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
352 pfn) < 0)
353 printk(KERN_ERR
354 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
356 }
357 put_task_struct(tk->tsk);
358 kfree(tk);
359 }
360}
361
362static int task_early_kill(struct task_struct *tsk)
363{
364 if (!tsk->mm)
365 return 0;
366 if (tsk->flags & PF_MCE_PROCESS)
367 return !!(tsk->flags & PF_MCE_EARLY);
368 return sysctl_memory_failure_early_kill;
369}
370
371/*
372 * Collect processes when the error hit an anonymous page.
373 */
374static void collect_procs_anon(struct page *page, struct list_head *to_kill,
375 struct to_kill **tkc)
376{
377 struct vm_area_struct *vma;
378 struct task_struct *tsk;
379 struct anon_vma *av;
380
381 read_lock(&tasklist_lock);
382 av = page_lock_anon_vma(page);
383 if (av == NULL) /* Not actually mapped anymore */
384 goto out;
385 for_each_process (tsk) {
386 if (!task_early_kill(tsk))
387 continue;
388 list_for_each_entry (vma, &av->head, anon_vma_node) {
389 if (!page_mapped_in_vma(page, vma))
390 continue;
391 if (vma->vm_mm == tsk->mm)
392 add_to_kill(tsk, page, vma, to_kill, tkc);
393 }
394 }
395 page_unlock_anon_vma(av);
396out:
397 read_unlock(&tasklist_lock);
398}
399
400/*
401 * Collect processes when the error hit a file mapped page.
402 */
403static void collect_procs_file(struct page *page, struct list_head *to_kill,
404 struct to_kill **tkc)
405{
406 struct vm_area_struct *vma;
407 struct task_struct *tsk;
408 struct prio_tree_iter iter;
409 struct address_space *mapping = page->mapping;
410
411 /*
412 * A note on the locking order between the two locks.
413 * We don't rely on this particular order.
414 * If you have some other code that needs a different order
415 * feel free to switch them around. Or add a reverse link
416 * from mm_struct to task_struct, then this could be all
417 * done without taking tasklist_lock and looping over all tasks.
418 */
419
420 read_lock(&tasklist_lock);
421 spin_lock(&mapping->i_mmap_lock);
422 for_each_process(tsk) {
423 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
424
425 if (!task_early_kill(tsk))
426 continue;
427
428 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
429 pgoff) {
430 /*
431 * Send early kill signal to tasks where a vma covers
432 * the page but the corrupted page is not necessarily
433 * mapped it in its pte.
434 * Assume applications who requested early kill want
435 * to be informed of all such data corruptions.
436 */
437 if (vma->vm_mm == tsk->mm)
438 add_to_kill(tsk, page, vma, to_kill, tkc);
439 }
440 }
441 spin_unlock(&mapping->i_mmap_lock);
442 read_unlock(&tasklist_lock);
443}
444
445/*
446 * Collect the processes who have the corrupted page mapped to kill.
447 * This is done in two steps for locking reasons.
448 * First preallocate one tokill structure outside the spin locks,
449 * so that we can kill at least one process reasonably reliable.
450 */
451static void collect_procs(struct page *page, struct list_head *tokill)
452{
453 struct to_kill *tk;
454
455 if (!page->mapping)
456 return;
457
458 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
459 if (!tk)
460 return;
461 if (PageAnon(page))
462 collect_procs_anon(page, tokill, &tk);
463 else
464 collect_procs_file(page, tokill, &tk);
465 kfree(tk);
466}
467
468/*
469 * Error handlers for various types of pages.
470 */
471
472enum outcome {
d95ea51e
WF
473 IGNORED, /* Error: cannot be handled */
474 FAILED, /* Error: handling failed */
6a46079c 475 DELAYED, /* Will be handled later */
6a46079c
AK
476 RECOVERED, /* Successfully recovered */
477};
478
479static const char *action_name[] = {
d95ea51e 480 [IGNORED] = "Ignored",
6a46079c
AK
481 [FAILED] = "Failed",
482 [DELAYED] = "Delayed",
6a46079c
AK
483 [RECOVERED] = "Recovered",
484};
485
dc2a1cbf
WF
486/*
487 * XXX: It is possible that a page is isolated from LRU cache,
488 * and then kept in swap cache or failed to remove from page cache.
489 * The page count will stop it from being freed by unpoison.
490 * Stress tests should be aware of this memory leak problem.
491 */
492static int delete_from_lru_cache(struct page *p)
493{
494 if (!isolate_lru_page(p)) {
495 /*
496 * Clear sensible page flags, so that the buddy system won't
497 * complain when the page is unpoison-and-freed.
498 */
499 ClearPageActive(p);
500 ClearPageUnevictable(p);
501 /*
502 * drop the page count elevated by isolate_lru_page()
503 */
504 page_cache_release(p);
505 return 0;
506 }
507 return -EIO;
508}
509
6a46079c
AK
510/*
511 * Error hit kernel page.
512 * Do nothing, try to be lucky and not touch this instead. For a few cases we
513 * could be more sophisticated.
514 */
515static int me_kernel(struct page *p, unsigned long pfn)
6a46079c
AK
516{
517 return IGNORED;
518}
519
520/*
521 * Page in unknown state. Do nothing.
522 */
523static int me_unknown(struct page *p, unsigned long pfn)
524{
525 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
526 return FAILED;
527}
528
6a46079c
AK
529/*
530 * Clean (or cleaned) page cache page.
531 */
532static int me_pagecache_clean(struct page *p, unsigned long pfn)
533{
534 int err;
535 int ret = FAILED;
536 struct address_space *mapping;
537
dc2a1cbf
WF
538 delete_from_lru_cache(p);
539
6a46079c
AK
540 /*
541 * For anonymous pages we're done the only reference left
542 * should be the one m_f() holds.
543 */
544 if (PageAnon(p))
545 return RECOVERED;
546
547 /*
548 * Now truncate the page in the page cache. This is really
549 * more like a "temporary hole punch"
550 * Don't do this for block devices when someone else
551 * has a reference, because it could be file system metadata
552 * and that's not safe to truncate.
553 */
554 mapping = page_mapping(p);
555 if (!mapping) {
556 /*
557 * Page has been teared down in the meanwhile
558 */
559 return FAILED;
560 }
561
562 /*
563 * Truncation is a bit tricky. Enable it per file system for now.
564 *
565 * Open: to take i_mutex or not for this? Right now we don't.
566 */
567 if (mapping->a_ops->error_remove_page) {
568 err = mapping->a_ops->error_remove_page(mapping, p);
569 if (err != 0) {
570 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
571 pfn, err);
572 } else if (page_has_private(p) &&
573 !try_to_release_page(p, GFP_NOIO)) {
574 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
575 } else {
576 ret = RECOVERED;
577 }
578 } else {
579 /*
580 * If the file system doesn't support it just invalidate
581 * This fails on dirty or anything with private pages
582 */
583 if (invalidate_inode_page(p))
584 ret = RECOVERED;
585 else
586 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
587 pfn);
588 }
589 return ret;
590}
591
592/*
593 * Dirty cache page page
594 * Issues: when the error hit a hole page the error is not properly
595 * propagated.
596 */
597static int me_pagecache_dirty(struct page *p, unsigned long pfn)
598{
599 struct address_space *mapping = page_mapping(p);
600
601 SetPageError(p);
602 /* TBD: print more information about the file. */
603 if (mapping) {
604 /*
605 * IO error will be reported by write(), fsync(), etc.
606 * who check the mapping.
607 * This way the application knows that something went
608 * wrong with its dirty file data.
609 *
610 * There's one open issue:
611 *
612 * The EIO will be only reported on the next IO
613 * operation and then cleared through the IO map.
614 * Normally Linux has two mechanisms to pass IO error
615 * first through the AS_EIO flag in the address space
616 * and then through the PageError flag in the page.
617 * Since we drop pages on memory failure handling the
618 * only mechanism open to use is through AS_AIO.
619 *
620 * This has the disadvantage that it gets cleared on
621 * the first operation that returns an error, while
622 * the PageError bit is more sticky and only cleared
623 * when the page is reread or dropped. If an
624 * application assumes it will always get error on
625 * fsync, but does other operations on the fd before
626 * and the page is dropped inbetween then the error
627 * will not be properly reported.
628 *
629 * This can already happen even without hwpoisoned
630 * pages: first on metadata IO errors (which only
631 * report through AS_EIO) or when the page is dropped
632 * at the wrong time.
633 *
634 * So right now we assume that the application DTRT on
635 * the first EIO, but we're not worse than other parts
636 * of the kernel.
637 */
638 mapping_set_error(mapping, EIO);
639 }
640
641 return me_pagecache_clean(p, pfn);
642}
643
644/*
645 * Clean and dirty swap cache.
646 *
647 * Dirty swap cache page is tricky to handle. The page could live both in page
648 * cache and swap cache(ie. page is freshly swapped in). So it could be
649 * referenced concurrently by 2 types of PTEs:
650 * normal PTEs and swap PTEs. We try to handle them consistently by calling
651 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
652 * and then
653 * - clear dirty bit to prevent IO
654 * - remove from LRU
655 * - but keep in the swap cache, so that when we return to it on
656 * a later page fault, we know the application is accessing
657 * corrupted data and shall be killed (we installed simple
658 * interception code in do_swap_page to catch it).
659 *
660 * Clean swap cache pages can be directly isolated. A later page fault will
661 * bring in the known good data from disk.
662 */
663static int me_swapcache_dirty(struct page *p, unsigned long pfn)
664{
6a46079c
AK
665 ClearPageDirty(p);
666 /* Trigger EIO in shmem: */
667 ClearPageUptodate(p);
668
dc2a1cbf
WF
669 if (!delete_from_lru_cache(p))
670 return DELAYED;
671 else
672 return FAILED;
6a46079c
AK
673}
674
675static int me_swapcache_clean(struct page *p, unsigned long pfn)
676{
6a46079c 677 delete_from_swap_cache(p);
e43c3afb 678
dc2a1cbf
WF
679 if (!delete_from_lru_cache(p))
680 return RECOVERED;
681 else
682 return FAILED;
6a46079c
AK
683}
684
685/*
686 * Huge pages. Needs work.
687 * Issues:
688 * No rmap support so we cannot find the original mapper. In theory could walk
689 * all MMs and look for the mappings, but that would be non atomic and racy.
690 * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
691 * like just walking the current process and hoping it has it mapped (that
692 * should be usually true for the common "shared database cache" case)
693 * Should handle free huge pages and dequeue them too, but this needs to
694 * handle huge page accounting correctly.
695 */
696static int me_huge_page(struct page *p, unsigned long pfn)
697{
698 return FAILED;
699}
700
701/*
702 * Various page states we can handle.
703 *
704 * A page state is defined by its current page->flags bits.
705 * The table matches them in order and calls the right handler.
706 *
707 * This is quite tricky because we can access page at any time
708 * in its live cycle, so all accesses have to be extremly careful.
709 *
710 * This is not complete. More states could be added.
711 * For any missing state don't attempt recovery.
712 */
713
714#define dirty (1UL << PG_dirty)
715#define sc (1UL << PG_swapcache)
716#define unevict (1UL << PG_unevictable)
717#define mlock (1UL << PG_mlocked)
718#define writeback (1UL << PG_writeback)
719#define lru (1UL << PG_lru)
720#define swapbacked (1UL << PG_swapbacked)
721#define head (1UL << PG_head)
722#define tail (1UL << PG_tail)
723#define compound (1UL << PG_compound)
724#define slab (1UL << PG_slab)
6a46079c
AK
725#define reserved (1UL << PG_reserved)
726
727static struct page_state {
728 unsigned long mask;
729 unsigned long res;
730 char *msg;
731 int (*action)(struct page *p, unsigned long pfn);
732} error_states[] = {
d95ea51e 733 { reserved, reserved, "reserved kernel", me_kernel },
95d01fc6
WF
734 /*
735 * free pages are specially detected outside this table:
736 * PG_buddy pages only make a small fraction of all free pages.
737 */
6a46079c
AK
738
739 /*
740 * Could in theory check if slab page is free or if we can drop
741 * currently unused objects without touching them. But just
742 * treat it as standard kernel for now.
743 */
744 { slab, slab, "kernel slab", me_kernel },
745
746#ifdef CONFIG_PAGEFLAGS_EXTENDED
747 { head, head, "huge", me_huge_page },
748 { tail, tail, "huge", me_huge_page },
749#else
750 { compound, compound, "huge", me_huge_page },
751#endif
752
753 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
754 { sc|dirty, sc, "swapcache", me_swapcache_clean },
755
756 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
757 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
758
6a46079c
AK
759 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
760 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
6a46079c
AK
761
762 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
763 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
6a46079c
AK
764
765 /*
766 * Catchall entry: must be at end.
767 */
768 { 0, 0, "unknown page state", me_unknown },
769};
770
2326c467
AK
771#undef dirty
772#undef sc
773#undef unevict
774#undef mlock
775#undef writeback
776#undef lru
777#undef swapbacked
778#undef head
779#undef tail
780#undef compound
781#undef slab
782#undef reserved
783
6a46079c
AK
784static void action_result(unsigned long pfn, char *msg, int result)
785{
a7560fc8 786 struct page *page = pfn_to_page(pfn);
6a46079c
AK
787
788 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
789 pfn,
a7560fc8 790 PageDirty(page) ? "dirty " : "",
6a46079c
AK
791 msg, action_name[result]);
792}
793
794static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 795 unsigned long pfn)
6a46079c
AK
796{
797 int result;
7456b040 798 int count;
6a46079c
AK
799
800 result = ps->action(p, pfn);
801 action_result(pfn, ps->msg, result);
7456b040 802
bd1ce5f9 803 count = page_count(p) - 1;
138ce286
WF
804 if (ps->action == me_swapcache_dirty && result == DELAYED)
805 count--;
806 if (count != 0) {
6a46079c
AK
807 printk(KERN_ERR
808 "MCE %#lx: %s page still referenced by %d users\n",
7456b040 809 pfn, ps->msg, count);
138ce286
WF
810 result = FAILED;
811 }
6a46079c
AK
812
813 /* Could do more checks here if page looks ok */
814 /*
815 * Could adjust zone counters here to correct for the missing page.
816 */
817
138ce286 818 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
6a46079c
AK
819}
820
821#define N_UNMAP_TRIES 5
822
823/*
824 * Do all that is necessary to remove user space mappings. Unmap
825 * the pages and send SIGBUS to the processes if the data was dirty.
826 */
1668bfd5 827static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
6a46079c
AK
828 int trapno)
829{
830 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
831 struct address_space *mapping;
832 LIST_HEAD(tokill);
833 int ret;
834 int i;
835 int kill = 1;
836
1668bfd5
WF
837 if (PageReserved(p) || PageSlab(p))
838 return SWAP_SUCCESS;
6a46079c 839
6a46079c
AK
840 /*
841 * This check implies we don't kill processes if their pages
842 * are in the swap cache early. Those are always late kills.
843 */
844 if (!page_mapped(p))
1668bfd5
WF
845 return SWAP_SUCCESS;
846
847 if (PageCompound(p) || PageKsm(p))
848 return SWAP_FAIL;
6a46079c
AK
849
850 if (PageSwapCache(p)) {
851 printk(KERN_ERR
852 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
853 ttu |= TTU_IGNORE_HWPOISON;
854 }
855
856 /*
857 * Propagate the dirty bit from PTEs to struct page first, because we
858 * need this to decide if we should kill or just drop the page.
db0480b3
WF
859 * XXX: the dirty test could be racy: set_page_dirty() may not always
860 * be called inside page lock (it's recommended but not enforced).
6a46079c
AK
861 */
862 mapping = page_mapping(p);
863 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
864 if (page_mkclean(p)) {
865 SetPageDirty(p);
866 } else {
867 kill = 0;
868 ttu |= TTU_IGNORE_HWPOISON;
869 printk(KERN_INFO
870 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
871 pfn);
872 }
873 }
874
875 /*
876 * First collect all the processes that have the page
877 * mapped in dirty form. This has to be done before try_to_unmap,
878 * because ttu takes the rmap data structures down.
879 *
880 * Error handling: We ignore errors here because
881 * there's nothing that can be done.
882 */
883 if (kill)
884 collect_procs(p, &tokill);
885
886 /*
887 * try_to_unmap can fail temporarily due to races.
888 * Try a few times (RED-PEN better strategy?)
889 */
890 for (i = 0; i < N_UNMAP_TRIES; i++) {
891 ret = try_to_unmap(p, ttu);
892 if (ret == SWAP_SUCCESS)
893 break;
894 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
895 }
896
897 if (ret != SWAP_SUCCESS)
898 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
899 pfn, page_mapcount(p));
900
901 /*
902 * Now that the dirty bit has been propagated to the
903 * struct page and all unmaps done we can decide if
904 * killing is needed or not. Only kill when the page
905 * was dirty, otherwise the tokill list is merely
906 * freed. When there was a problem unmapping earlier
907 * use a more force-full uncatchable kill to prevent
908 * any accesses to the poisoned memory.
909 */
910 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
911 ret != SWAP_SUCCESS, pfn);
1668bfd5
WF
912
913 return ret;
6a46079c
AK
914}
915
82ba011b 916int __memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
917{
918 struct page_state *ps;
919 struct page *p;
920 int res;
921
922 if (!sysctl_memory_failure_recovery)
923 panic("Memory failure from trap %d on page %lx", trapno, pfn);
924
925 if (!pfn_valid(pfn)) {
a7560fc8
WF
926 printk(KERN_ERR
927 "MCE %#lx: memory outside kernel control\n",
928 pfn);
929 return -ENXIO;
6a46079c
AK
930 }
931
932 p = pfn_to_page(pfn);
933 if (TestSetPageHWPoison(p)) {
d95ea51e 934 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
935 return 0;
936 }
937
938 atomic_long_add(1, &mce_bad_pages);
939
940 /*
941 * We need/can do nothing about count=0 pages.
942 * 1) it's a free page, and therefore in safe hand:
943 * prep_new_page() will be the gate keeper.
944 * 2) it's part of a non-compound high order page.
945 * Implies some kernel user: cannot stop them from
946 * R/W the page; let's pray that the page has been
947 * used and will be freed some time later.
948 * In fact it's dangerous to directly bump up page count from 0,
949 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
950 */
82ba011b
AK
951 if (!(flags & MF_COUNT_INCREASED) &&
952 !get_page_unless_zero(compound_head(p))) {
8d22ba1b
WF
953 if (is_free_buddy_page(p)) {
954 action_result(pfn, "free buddy", DELAYED);
955 return 0;
956 } else {
957 action_result(pfn, "high order kernel", IGNORED);
958 return -EBUSY;
959 }
6a46079c
AK
960 }
961
e43c3afb
WF
962 /*
963 * We ignore non-LRU pages for good reasons.
964 * - PG_locked is only well defined for LRU pages and a few others
965 * - to avoid races with __set_page_locked()
966 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
967 * The check (unnecessarily) ignores LRU pages being isolated and
968 * walked by the page reclaim code, however that's not a big loss.
969 */
970 if (!PageLRU(p))
facb6011 971 shake_page(p, 0);
dc2a1cbf 972 if (!PageLRU(p)) {
0474a60e
AK
973 /*
974 * shake_page could have turned it free.
975 */
976 if (is_free_buddy_page(p)) {
977 action_result(pfn, "free buddy, 2nd try", DELAYED);
978 return 0;
979 }
e43c3afb
WF
980 action_result(pfn, "non LRU", IGNORED);
981 put_page(p);
982 return -EBUSY;
983 }
e43c3afb 984
6a46079c
AK
985 /*
986 * Lock the page and wait for writeback to finish.
987 * It's very difficult to mess with pages currently under IO
988 * and in many cases impossible, so we just avoid it here.
989 */
990 lock_page_nosync(p);
847ce401
WF
991
992 /*
993 * unpoison always clear PG_hwpoison inside page lock
994 */
995 if (!PageHWPoison(p)) {
d95ea51e 996 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
847ce401
WF
997 res = 0;
998 goto out;
999 }
7c116f2b
WF
1000 if (hwpoison_filter(p)) {
1001 if (TestClearPageHWPoison(p))
1002 atomic_long_dec(&mce_bad_pages);
1003 unlock_page(p);
1004 put_page(p);
1005 return 0;
1006 }
847ce401 1007
6a46079c
AK
1008 wait_on_page_writeback(p);
1009
1010 /*
1011 * Now take care of user space mappings.
1668bfd5 1012 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
6a46079c 1013 */
1668bfd5
WF
1014 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1015 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1016 res = -EBUSY;
1017 goto out;
1018 }
6a46079c
AK
1019
1020 /*
1021 * Torn down by someone else?
1022 */
dc2a1cbf 1023 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
6a46079c 1024 action_result(pfn, "already truncated LRU", IGNORED);
d95ea51e 1025 res = -EBUSY;
6a46079c
AK
1026 goto out;
1027 }
1028
1029 res = -EBUSY;
1030 for (ps = error_states;; ps++) {
dc2a1cbf 1031 if ((p->flags & ps->mask) == ps->res) {
bd1ce5f9 1032 res = page_action(ps, p, pfn);
6a46079c
AK
1033 break;
1034 }
1035 }
1036out:
1037 unlock_page(p);
1038 return res;
1039}
1040EXPORT_SYMBOL_GPL(__memory_failure);
1041
1042/**
1043 * memory_failure - Handle memory failure of a page.
1044 * @pfn: Page Number of the corrupted page
1045 * @trapno: Trap number reported in the signal to user space.
1046 *
1047 * This function is called by the low level machine check code
1048 * of an architecture when it detects hardware memory corruption
1049 * of a page. It tries its best to recover, which includes
1050 * dropping pages, killing processes etc.
1051 *
1052 * The function is primarily of use for corruptions that
1053 * happen outside the current execution context (e.g. when
1054 * detected by a background scrubber)
1055 *
1056 * Must run in process context (e.g. a work queue) with interrupts
1057 * enabled and no spinlocks hold.
1058 */
1059void memory_failure(unsigned long pfn, int trapno)
1060{
1061 __memory_failure(pfn, trapno, 0);
1062}
847ce401
WF
1063
1064/**
1065 * unpoison_memory - Unpoison a previously poisoned page
1066 * @pfn: Page number of the to be unpoisoned page
1067 *
1068 * Software-unpoison a page that has been poisoned by
1069 * memory_failure() earlier.
1070 *
1071 * This is only done on the software-level, so it only works
1072 * for linux injected failures, not real hardware failures
1073 *
1074 * Returns 0 for success, otherwise -errno.
1075 */
1076int unpoison_memory(unsigned long pfn)
1077{
1078 struct page *page;
1079 struct page *p;
1080 int freeit = 0;
1081
1082 if (!pfn_valid(pfn))
1083 return -ENXIO;
1084
1085 p = pfn_to_page(pfn);
1086 page = compound_head(p);
1087
1088 if (!PageHWPoison(p)) {
1089 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1090 return 0;
1091 }
1092
1093 if (!get_page_unless_zero(page)) {
1094 if (TestClearPageHWPoison(p))
1095 atomic_long_dec(&mce_bad_pages);
1096 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1097 return 0;
1098 }
1099
1100 lock_page_nosync(page);
1101 /*
1102 * This test is racy because PG_hwpoison is set outside of page lock.
1103 * That's acceptable because that won't trigger kernel panic. Instead,
1104 * the PG_hwpoison page will be caught and isolated on the entrance to
1105 * the free buddy page pool.
1106 */
1107 if (TestClearPageHWPoison(p)) {
1108 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1109 atomic_long_dec(&mce_bad_pages);
1110 freeit = 1;
1111 }
1112 unlock_page(page);
1113
1114 put_page(page);
1115 if (freeit)
1116 put_page(page);
1117
1118 return 0;
1119}
1120EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1121
1122static struct page *new_page(struct page *p, unsigned long private, int **x)
1123{
12686d15
AK
1124 int nid = page_to_nid(p);
1125 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1126}
1127
1128/*
1129 * Safely get reference count of an arbitrary page.
1130 * Returns 0 for a free page, -EIO for a zero refcount page
1131 * that is not free, and 1 for any other page type.
1132 * For 1 the page is returned with increased page count, otherwise not.
1133 */
1134static int get_any_page(struct page *p, unsigned long pfn, int flags)
1135{
1136 int ret;
1137
1138 if (flags & MF_COUNT_INCREASED)
1139 return 1;
1140
1141 /*
1142 * The lock_system_sleep prevents a race with memory hotplug,
1143 * because the isolation assumes there's only a single user.
1144 * This is a big hammer, a better would be nicer.
1145 */
1146 lock_system_sleep();
1147
1148 /*
1149 * Isolate the page, so that it doesn't get reallocated if it
1150 * was free.
1151 */
1152 set_migratetype_isolate(p);
1153 if (!get_page_unless_zero(compound_head(p))) {
1154 if (is_free_buddy_page(p)) {
1155 pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1156 /* Set hwpoison bit while page is still isolated */
1157 SetPageHWPoison(p);
1158 ret = 0;
1159 } else {
1160 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1161 pfn, p->flags);
1162 ret = -EIO;
1163 }
1164 } else {
1165 /* Not a free page */
1166 ret = 1;
1167 }
1168 unset_migratetype_isolate(p);
1169 unlock_system_sleep();
1170 return ret;
1171}
1172
1173/**
1174 * soft_offline_page - Soft offline a page.
1175 * @page: page to offline
1176 * @flags: flags. Same as memory_failure().
1177 *
1178 * Returns 0 on success, otherwise negated errno.
1179 *
1180 * Soft offline a page, by migration or invalidation,
1181 * without killing anything. This is for the case when
1182 * a page is not corrupted yet (so it's still valid to access),
1183 * but has had a number of corrected errors and is better taken
1184 * out.
1185 *
1186 * The actual policy on when to do that is maintained by
1187 * user space.
1188 *
1189 * This should never impact any application or cause data loss,
1190 * however it might take some time.
1191 *
1192 * This is not a 100% solution for all memory, but tries to be
1193 * ``good enough'' for the majority of memory.
1194 */
1195int soft_offline_page(struct page *page, int flags)
1196{
1197 int ret;
1198 unsigned long pfn = page_to_pfn(page);
1199
1200 ret = get_any_page(page, pfn, flags);
1201 if (ret < 0)
1202 return ret;
1203 if (ret == 0)
1204 goto done;
1205
1206 /*
1207 * Page cache page we can handle?
1208 */
1209 if (!PageLRU(page)) {
1210 /*
1211 * Try to free it.
1212 */
1213 put_page(page);
1214 shake_page(page, 1);
1215
1216 /*
1217 * Did it turn free?
1218 */
1219 ret = get_any_page(page, pfn, 0);
1220 if (ret < 0)
1221 return ret;
1222 if (ret == 0)
1223 goto done;
1224 }
1225 if (!PageLRU(page)) {
1226 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1227 pfn, page->flags);
1228 return -EIO;
1229 }
1230
1231 lock_page(page);
1232 wait_on_page_writeback(page);
1233
1234 /*
1235 * Synchronized using the page lock with memory_failure()
1236 */
1237 if (PageHWPoison(page)) {
1238 unlock_page(page);
1239 put_page(page);
1240 pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1241 return -EBUSY;
1242 }
1243
1244 /*
1245 * Try to invalidate first. This should work for
1246 * non dirty unmapped page cache pages.
1247 */
1248 ret = invalidate_inode_page(page);
1249 unlock_page(page);
1250
1251 /*
1252 * Drop count because page migration doesn't like raised
1253 * counts. The page could get re-allocated, but if it becomes
1254 * LRU the isolation will just fail.
1255 * RED-PEN would be better to keep it isolated here, but we
1256 * would need to fix isolation locking first.
1257 */
1258 put_page(page);
1259 if (ret == 1) {
1260 ret = 0;
1261 pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1262 goto done;
1263 }
1264
1265 /*
1266 * Simple invalidation didn't work.
1267 * Try to migrate to a new page instead. migrate.c
1268 * handles a large number of cases for us.
1269 */
1270 ret = isolate_lru_page(page);
1271 if (!ret) {
1272 LIST_HEAD(pagelist);
1273
1274 list_add(&page->lru, &pagelist);
1275 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1276 if (ret) {
1277 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1278 pfn, ret, page->flags);
1279 if (ret > 0)
1280 ret = -EIO;
1281 }
1282 } else {
1283 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1284 pfn, ret, page_count(page), page->flags);
1285 }
1286 if (ret)
1287 return ret;
1288
1289done:
1290 atomic_long_add(1, &mce_bad_pages);
1291 SetPageHWPoison(page);
1292 /* keep elevated page count for bad page */
1293 return ret;
1294}