]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/hugetlb.c
[PATCH] Hugepages need clear_user_highpage() not clear_highpage()
[net-next-2.6.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
5da7ca86 16
63551ae0
DG
17#include <asm/page.h>
18#include <asm/pgtable.h>
19
20#include <linux/hugetlb.h>
1da177e4
LT
21
22const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
23static unsigned long nr_huge_pages, free_huge_pages;
24unsigned long max_huge_pages;
25static struct list_head hugepage_freelists[MAX_NUMNODES];
26static unsigned int nr_huge_pages_node[MAX_NUMNODES];
27static unsigned int free_huge_pages_node[MAX_NUMNODES];
0bd0f9fb
EP
28
29/*
30 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
31 */
1da177e4
LT
32static DEFINE_SPINLOCK(hugetlb_lock);
33
34static void enqueue_huge_page(struct page *page)
35{
36 int nid = page_to_nid(page);
37 list_add(&page->lru, &hugepage_freelists[nid]);
38 free_huge_pages++;
39 free_huge_pages_node[nid]++;
40}
41
5da7ca86
CL
42static struct page *dequeue_huge_page(struct vm_area_struct *vma,
43 unsigned long address)
1da177e4
LT
44{
45 int nid = numa_node_id();
46 struct page *page = NULL;
5da7ca86 47 struct zonelist *zonelist = huge_zonelist(vma, address);
96df9333 48 struct zone **z;
1da177e4 49
96df9333
CL
50 for (z = zonelist->zones; *z; z++) {
51 nid = (*z)->zone_pgdat->node_id;
aea47ff3
CL
52 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
53 !list_empty(&hugepage_freelists[nid]))
96df9333 54 break;
1da177e4 55 }
96df9333
CL
56
57 if (*z) {
1da177e4
LT
58 page = list_entry(hugepage_freelists[nid].next,
59 struct page, lru);
60 list_del(&page->lru);
61 free_huge_pages--;
62 free_huge_pages_node[nid]--;
63 }
64 return page;
65}
66
67static struct page *alloc_fresh_huge_page(void)
68{
69 static int nid = 0;
70 struct page *page;
71 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
72 HUGETLB_PAGE_ORDER);
73 nid = (nid + 1) % num_online_nodes();
74 if (page) {
0bd0f9fb 75 spin_lock(&hugetlb_lock);
1da177e4
LT
76 nr_huge_pages++;
77 nr_huge_pages_node[page_to_nid(page)]++;
0bd0f9fb 78 spin_unlock(&hugetlb_lock);
1da177e4
LT
79 }
80 return page;
81}
82
83void free_huge_page(struct page *page)
84{
85 BUG_ON(page_count(page));
86
87 INIT_LIST_HEAD(&page->lru);
88 page[1].mapping = NULL;
89
90 spin_lock(&hugetlb_lock);
91 enqueue_huge_page(page);
92 spin_unlock(&hugetlb_lock);
93}
94
5da7ca86 95struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
1da177e4
LT
96{
97 struct page *page;
98 int i;
99
100 spin_lock(&hugetlb_lock);
5da7ca86 101 page = dequeue_huge_page(vma, addr);
1da177e4
LT
102 if (!page) {
103 spin_unlock(&hugetlb_lock);
104 return NULL;
105 }
106 spin_unlock(&hugetlb_lock);
107 set_page_count(page, 1);
108 page[1].mapping = (void *)free_huge_page;
109 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
a2dfef69 110 clear_user_highpage(&page[i], addr);
1da177e4
LT
111 return page;
112}
113
114static int __init hugetlb_init(void)
115{
116 unsigned long i;
117 struct page *page;
118
3c726f8d
BH
119 if (HPAGE_SHIFT == 0)
120 return 0;
121
1da177e4
LT
122 for (i = 0; i < MAX_NUMNODES; ++i)
123 INIT_LIST_HEAD(&hugepage_freelists[i]);
124
125 for (i = 0; i < max_huge_pages; ++i) {
126 page = alloc_fresh_huge_page();
127 if (!page)
128 break;
129 spin_lock(&hugetlb_lock);
130 enqueue_huge_page(page);
131 spin_unlock(&hugetlb_lock);
132 }
133 max_huge_pages = free_huge_pages = nr_huge_pages = i;
134 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
135 return 0;
136}
137module_init(hugetlb_init);
138
139static int __init hugetlb_setup(char *s)
140{
141 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
142 max_huge_pages = 0;
143 return 1;
144}
145__setup("hugepages=", hugetlb_setup);
146
147#ifdef CONFIG_SYSCTL
148static void update_and_free_page(struct page *page)
149{
150 int i;
151 nr_huge_pages--;
152 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
153 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
154 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
155 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
156 1 << PG_private | 1<< PG_writeback);
157 set_page_count(&page[i], 0);
158 }
159 set_page_count(page, 1);
160 __free_pages(page, HUGETLB_PAGE_ORDER);
161}
162
163#ifdef CONFIG_HIGHMEM
164static void try_to_free_low(unsigned long count)
165{
166 int i, nid;
167 for (i = 0; i < MAX_NUMNODES; ++i) {
168 struct page *page, *next;
169 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
170 if (PageHighMem(page))
171 continue;
172 list_del(&page->lru);
173 update_and_free_page(page);
174 nid = page_zone(page)->zone_pgdat->node_id;
175 free_huge_pages--;
176 free_huge_pages_node[nid]--;
177 if (count >= nr_huge_pages)
178 return;
179 }
180 }
181}
182#else
183static inline void try_to_free_low(unsigned long count)
184{
185}
186#endif
187
188static unsigned long set_max_huge_pages(unsigned long count)
189{
190 while (count > nr_huge_pages) {
191 struct page *page = alloc_fresh_huge_page();
192 if (!page)
193 return nr_huge_pages;
194 spin_lock(&hugetlb_lock);
195 enqueue_huge_page(page);
196 spin_unlock(&hugetlb_lock);
197 }
198 if (count >= nr_huge_pages)
199 return nr_huge_pages;
200
201 spin_lock(&hugetlb_lock);
202 try_to_free_low(count);
203 while (count < nr_huge_pages) {
5da7ca86 204 struct page *page = dequeue_huge_page(NULL, 0);
1da177e4
LT
205 if (!page)
206 break;
207 update_and_free_page(page);
208 }
209 spin_unlock(&hugetlb_lock);
210 return nr_huge_pages;
211}
212
213int hugetlb_sysctl_handler(struct ctl_table *table, int write,
214 struct file *file, void __user *buffer,
215 size_t *length, loff_t *ppos)
216{
217 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
218 max_huge_pages = set_max_huge_pages(max_huge_pages);
219 return 0;
220}
221#endif /* CONFIG_SYSCTL */
222
223int hugetlb_report_meminfo(char *buf)
224{
225 return sprintf(buf,
226 "HugePages_Total: %5lu\n"
227 "HugePages_Free: %5lu\n"
228 "Hugepagesize: %5lu kB\n",
229 nr_huge_pages,
230 free_huge_pages,
231 HPAGE_SIZE/1024);
232}
233
234int hugetlb_report_node_meminfo(int nid, char *buf)
235{
236 return sprintf(buf,
237 "Node %d HugePages_Total: %5u\n"
238 "Node %d HugePages_Free: %5u\n",
239 nid, nr_huge_pages_node[nid],
240 nid, free_huge_pages_node[nid]);
241}
242
243int is_hugepage_mem_enough(size_t size)
244{
245 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
246}
247
248/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
249unsigned long hugetlb_total_pages(void)
250{
251 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
252}
1da177e4
LT
253
254/*
255 * We cannot handle pagefaults against hugetlb pages at all. They cause
256 * handle_mm_fault() to try to instantiate regular-sized pages in the
257 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
258 * this far.
259 */
260static struct page *hugetlb_nopage(struct vm_area_struct *vma,
261 unsigned long address, int *unused)
262{
263 BUG();
264 return NULL;
265}
266
267struct vm_operations_struct hugetlb_vm_ops = {
268 .nopage = hugetlb_nopage,
269};
270
1e8f889b
DG
271static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
272 int writable)
63551ae0
DG
273{
274 pte_t entry;
275
1e8f889b 276 if (writable) {
63551ae0
DG
277 entry =
278 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
279 } else {
280 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
281 }
282 entry = pte_mkyoung(entry);
283 entry = pte_mkhuge(entry);
284
285 return entry;
286}
287
1e8f889b
DG
288static void set_huge_ptep_writable(struct vm_area_struct *vma,
289 unsigned long address, pte_t *ptep)
290{
291 pte_t entry;
292
293 entry = pte_mkwrite(pte_mkdirty(*ptep));
294 ptep_set_access_flags(vma, address, ptep, entry, 1);
295 update_mmu_cache(vma, address, entry);
296 lazy_mmu_prot_update(entry);
297}
298
299
63551ae0
DG
300int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
301 struct vm_area_struct *vma)
302{
303 pte_t *src_pte, *dst_pte, entry;
304 struct page *ptepage;
1c59827d 305 unsigned long addr;
1e8f889b
DG
306 int cow;
307
308 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 309
1c59827d 310 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
311 src_pte = huge_pte_offset(src, addr);
312 if (!src_pte)
313 continue;
63551ae0
DG
314 dst_pte = huge_pte_alloc(dst, addr);
315 if (!dst_pte)
316 goto nomem;
c74df32c 317 spin_lock(&dst->page_table_lock);
1c59827d 318 spin_lock(&src->page_table_lock);
c74df32c 319 if (!pte_none(*src_pte)) {
1e8f889b
DG
320 if (cow)
321 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
322 entry = *src_pte;
323 ptepage = pte_page(entry);
324 get_page(ptepage);
4294621f 325 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
1c59827d
HD
326 set_huge_pte_at(dst, addr, dst_pte, entry);
327 }
328 spin_unlock(&src->page_table_lock);
c74df32c 329 spin_unlock(&dst->page_table_lock);
63551ae0
DG
330 }
331 return 0;
332
333nomem:
334 return -ENOMEM;
335}
336
337void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
338 unsigned long end)
339{
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
c7546f8f 342 pte_t *ptep;
63551ae0
DG
343 pte_t pte;
344 struct page *page;
345
346 WARN_ON(!is_vm_hugetlb_page(vma));
347 BUG_ON(start & ~HPAGE_MASK);
348 BUG_ON(end & ~HPAGE_MASK);
349
508034a3
HD
350 spin_lock(&mm->page_table_lock);
351
365e9c87
HD
352 /* Update high watermark before we lower rss */
353 update_hiwater_rss(mm);
354
63551ae0 355 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 356 ptep = huge_pte_offset(mm, address);
4c887265 357 if (!ptep)
c7546f8f
DG
358 continue;
359
360 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
361 if (pte_none(pte))
362 continue;
c7546f8f 363
63551ae0
DG
364 page = pte_page(pte);
365 put_page(page);
4294621f 366 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
63551ae0 367 }
63551ae0 368
1da177e4 369 spin_unlock(&mm->page_table_lock);
508034a3 370 flush_tlb_range(vma, start, end);
1da177e4 371}
63551ae0 372
1e8f889b
DG
373static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
374 unsigned long address, pte_t *ptep, pte_t pte)
375{
376 struct page *old_page, *new_page;
377 int i, avoidcopy;
378
379 old_page = pte_page(pte);
380
381 /* If no-one else is actually using this page, avoid the copy
382 * and just make the page writable */
383 avoidcopy = (page_count(old_page) == 1);
384 if (avoidcopy) {
385 set_huge_ptep_writable(vma, address, ptep);
386 return VM_FAULT_MINOR;
387 }
388
389 page_cache_get(old_page);
5da7ca86 390 new_page = alloc_huge_page(vma, address);
1e8f889b
DG
391
392 if (!new_page) {
393 page_cache_release(old_page);
394
395 /* Logically this is OOM, not a SIGBUS, but an OOM
396 * could cause the kernel to go killing other
397 * processes which won't help the hugepage situation
398 * at all (?) */
399 return VM_FAULT_SIGBUS;
400 }
401
402 spin_unlock(&mm->page_table_lock);
403 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
404 copy_user_highpage(new_page + i, old_page + i,
405 address + i*PAGE_SIZE);
406 spin_lock(&mm->page_table_lock);
407
408 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
409 if (likely(pte_same(*ptep, pte))) {
410 /* Break COW */
411 set_huge_pte_at(mm, address, ptep,
412 make_huge_pte(vma, new_page, 1));
413 /* Make the old page be freed below */
414 new_page = old_page;
415 }
416 page_cache_release(new_page);
417 page_cache_release(old_page);
418 return VM_FAULT_MINOR;
419}
420
86e5216f 421int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 422 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
423{
424 int ret = VM_FAULT_SIGBUS;
4c887265
AL
425 unsigned long idx;
426 unsigned long size;
4c887265
AL
427 struct page *page;
428 struct address_space *mapping;
1e8f889b 429 pte_t new_pte;
4c887265 430
4c887265
AL
431 mapping = vma->vm_file->f_mapping;
432 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
433 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
434
435 /*
436 * Use page lock to guard against racing truncation
437 * before we get page_table_lock.
438 */
6bda666a
CL
439retry:
440 page = find_lock_page(mapping, idx);
441 if (!page) {
442 if (hugetlb_get_quota(mapping))
443 goto out;
444 page = alloc_huge_page(vma, address);
445 if (!page) {
446 hugetlb_put_quota(mapping);
64b4a954
CL
447 /*
448 * No huge pages available. So this is an OOM
449 * condition but we do not want to trigger the OOM
450 * killer, so we return VM_FAULT_SIGBUS.
451 *
452 * A program using hugepages may fault with Bus Error
453 * because no huge pages are available in the cpuset, per
454 * memory policy or because all are in use!
455 */
6bda666a
CL
456 goto out;
457 }
ac9b9c66 458
6bda666a
CL
459 if (vma->vm_flags & VM_SHARED) {
460 int err;
461
462 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
463 if (err) {
464 put_page(page);
465 hugetlb_put_quota(mapping);
466 if (err == -EEXIST)
467 goto retry;
468 goto out;
469 }
470 } else
471 lock_page(page);
472 }
1e8f889b 473
ac9b9c66 474 spin_lock(&mm->page_table_lock);
4c887265
AL
475 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
476 if (idx >= size)
477 goto backout;
478
479 ret = VM_FAULT_MINOR;
86e5216f 480 if (!pte_none(*ptep))
4c887265
AL
481 goto backout;
482
483 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
1e8f889b
DG
484 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
485 && (vma->vm_flags & VM_SHARED)));
486 set_huge_pte_at(mm, address, ptep, new_pte);
487
488 if (write_access && !(vma->vm_flags & VM_SHARED)) {
489 /* Optimization, do the COW without a second fault */
490 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
491 }
492
ac9b9c66 493 spin_unlock(&mm->page_table_lock);
4c887265
AL
494 unlock_page(page);
495out:
ac9b9c66 496 return ret;
4c887265
AL
497
498backout:
499 spin_unlock(&mm->page_table_lock);
500 hugetlb_put_quota(mapping);
501 unlock_page(page);
502 put_page(page);
503 goto out;
ac9b9c66
HD
504}
505
86e5216f
AL
506int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
507 unsigned long address, int write_access)
508{
509 pte_t *ptep;
510 pte_t entry;
1e8f889b 511 int ret;
86e5216f
AL
512
513 ptep = huge_pte_alloc(mm, address);
514 if (!ptep)
515 return VM_FAULT_OOM;
516
517 entry = *ptep;
518 if (pte_none(entry))
1e8f889b 519 return hugetlb_no_page(mm, vma, address, ptep, write_access);
86e5216f 520
1e8f889b
DG
521 ret = VM_FAULT_MINOR;
522
523 spin_lock(&mm->page_table_lock);
524 /* Check for a racing update before calling hugetlb_cow */
525 if (likely(pte_same(entry, *ptep)))
526 if (write_access && !pte_write(entry))
527 ret = hugetlb_cow(mm, vma, address, ptep, entry);
528 spin_unlock(&mm->page_table_lock);
529
530 return ret;
86e5216f
AL
531}
532
63551ae0
DG
533int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
534 struct page **pages, struct vm_area_struct **vmas,
535 unsigned long *position, int *length, int i)
536{
537 unsigned long vpfn, vaddr = *position;
538 int remainder = *length;
539
63551ae0 540 vpfn = vaddr/PAGE_SIZE;
1c59827d 541 spin_lock(&mm->page_table_lock);
63551ae0 542 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
543 pte_t *pte;
544 struct page *page;
63551ae0 545
4c887265
AL
546 /*
547 * Some archs (sparc64, sh*) have multiple pte_ts to
548 * each hugepage. We have to make * sure we get the
549 * first, for the page indexing below to work.
550 */
551 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 552
4c887265
AL
553 if (!pte || pte_none(*pte)) {
554 int ret;
63551ae0 555
4c887265
AL
556 spin_unlock(&mm->page_table_lock);
557 ret = hugetlb_fault(mm, vma, vaddr, 0);
558 spin_lock(&mm->page_table_lock);
559 if (ret == VM_FAULT_MINOR)
560 continue;
63551ae0 561
4c887265
AL
562 remainder = 0;
563 if (!i)
564 i = -EFAULT;
565 break;
566 }
567
568 if (pages) {
569 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
63551ae0
DG
570 get_page(page);
571 pages[i] = page;
572 }
573
574 if (vmas)
575 vmas[i] = vma;
576
577 vaddr += PAGE_SIZE;
578 ++vpfn;
579 --remainder;
580 ++i;
581 }
1c59827d 582 spin_unlock(&mm->page_table_lock);
63551ae0
DG
583 *length = remainder;
584 *position = vaddr;
585
586 return i;
587}