]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/hugetlb.c
[PATCH] Fix COW D-cache aliasing on fork
[net-next-2.6.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
3935baa9 16#include <linux/mutex.h>
5da7ca86 17
63551ae0
DG
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
7835e98b 22#include "internal.h"
1da177e4
LT
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
a43a8c39 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
1da177e4
LT
26unsigned long max_huge_pages;
27static struct list_head hugepage_freelists[MAX_NUMNODES];
28static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29static unsigned int free_huge_pages_node[MAX_NUMNODES];
3935baa9
DG
30/*
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 */
33static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 34
79ac6ba4
DG
35static void clear_huge_page(struct page *page, unsigned long addr)
36{
37 int i;
38
39 might_sleep();
40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41 cond_resched();
42 clear_user_highpage(page + i, addr);
43 }
44}
45
46static void copy_huge_page(struct page *dst, struct page *src,
47 unsigned long addr)
48{
49 int i;
50
51 might_sleep();
52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53 cond_resched();
54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
55 }
56}
57
1da177e4
LT
58static void enqueue_huge_page(struct page *page)
59{
60 int nid = page_to_nid(page);
61 list_add(&page->lru, &hugepage_freelists[nid]);
62 free_huge_pages++;
63 free_huge_pages_node[nid]++;
64}
65
5da7ca86
CL
66static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67 unsigned long address)
1da177e4
LT
68{
69 int nid = numa_node_id();
70 struct page *page = NULL;
5da7ca86 71 struct zonelist *zonelist = huge_zonelist(vma, address);
96df9333 72 struct zone **z;
1da177e4 73
96df9333 74 for (z = zonelist->zones; *z; z++) {
89fa3024 75 nid = zone_to_nid(*z);
02a0e53d 76 if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
aea47ff3 77 !list_empty(&hugepage_freelists[nid]))
96df9333 78 break;
1da177e4 79 }
96df9333
CL
80
81 if (*z) {
1da177e4
LT
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
87 }
88 return page;
89}
90
27a85ef1
DG
91static void free_huge_page(struct page *page)
92{
93 BUG_ON(page_count(page));
94
95 INIT_LIST_HEAD(&page->lru);
96
97 spin_lock(&hugetlb_lock);
98 enqueue_huge_page(page);
99 spin_unlock(&hugetlb_lock);
100}
101
a482289d 102static int alloc_fresh_huge_page(void)
1da177e4
LT
103{
104 static int nid = 0;
105 struct page *page;
106 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
107 HUGETLB_PAGE_ORDER);
fdb7cc59
PJ
108 nid = next_node(nid, node_online_map);
109 if (nid == MAX_NUMNODES)
110 nid = first_node(node_online_map);
1da177e4 111 if (page) {
33f2ef89 112 set_compound_page_dtor(page, free_huge_page);
0bd0f9fb 113 spin_lock(&hugetlb_lock);
1da177e4
LT
114 nr_huge_pages++;
115 nr_huge_pages_node[page_to_nid(page)]++;
0bd0f9fb 116 spin_unlock(&hugetlb_lock);
a482289d
NP
117 put_page(page); /* free it into the hugepage allocator */
118 return 1;
1da177e4 119 }
a482289d 120 return 0;
1da177e4
LT
121}
122
27a85ef1
DG
123static struct page *alloc_huge_page(struct vm_area_struct *vma,
124 unsigned long addr)
1da177e4
LT
125{
126 struct page *page;
1da177e4
LT
127
128 spin_lock(&hugetlb_lock);
a43a8c39
KC
129 if (vma->vm_flags & VM_MAYSHARE)
130 resv_huge_pages--;
131 else if (free_huge_pages <= resv_huge_pages)
132 goto fail;
b45b5bd6
DG
133
134 page = dequeue_huge_page(vma, addr);
135 if (!page)
136 goto fail;
137
1da177e4 138 spin_unlock(&hugetlb_lock);
7835e98b 139 set_page_refcounted(page);
1da177e4 140 return page;
b45b5bd6 141
a43a8c39 142fail:
b45b5bd6
DG
143 spin_unlock(&hugetlb_lock);
144 return NULL;
145}
146
1da177e4
LT
147static int __init hugetlb_init(void)
148{
149 unsigned long i;
1da177e4 150
3c726f8d
BH
151 if (HPAGE_SHIFT == 0)
152 return 0;
153
1da177e4
LT
154 for (i = 0; i < MAX_NUMNODES; ++i)
155 INIT_LIST_HEAD(&hugepage_freelists[i]);
156
157 for (i = 0; i < max_huge_pages; ++i) {
a482289d 158 if (!alloc_fresh_huge_page())
1da177e4 159 break;
1da177e4
LT
160 }
161 max_huge_pages = free_huge_pages = nr_huge_pages = i;
162 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
163 return 0;
164}
165module_init(hugetlb_init);
166
167static int __init hugetlb_setup(char *s)
168{
169 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
170 max_huge_pages = 0;
171 return 1;
172}
173__setup("hugepages=", hugetlb_setup);
174
175#ifdef CONFIG_SYSCTL
176static void update_and_free_page(struct page *page)
177{
178 int i;
179 nr_huge_pages--;
4415cc8d 180 nr_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
181 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
182 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
183 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
184 1 << PG_private | 1<< PG_writeback);
1da177e4 185 }
a482289d 186 page[1].lru.next = NULL;
7835e98b 187 set_page_refcounted(page);
1da177e4
LT
188 __free_pages(page, HUGETLB_PAGE_ORDER);
189}
190
191#ifdef CONFIG_HIGHMEM
192static void try_to_free_low(unsigned long count)
193{
4415cc8d
CL
194 int i;
195
1da177e4
LT
196 for (i = 0; i < MAX_NUMNODES; ++i) {
197 struct page *page, *next;
198 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
199 if (PageHighMem(page))
200 continue;
201 list_del(&page->lru);
202 update_and_free_page(page);
1da177e4 203 free_huge_pages--;
4415cc8d 204 free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
205 if (count >= nr_huge_pages)
206 return;
207 }
208 }
209}
210#else
211static inline void try_to_free_low(unsigned long count)
212{
213}
214#endif
215
216static unsigned long set_max_huge_pages(unsigned long count)
217{
218 while (count > nr_huge_pages) {
a482289d 219 if (!alloc_fresh_huge_page())
1da177e4 220 return nr_huge_pages;
1da177e4
LT
221 }
222 if (count >= nr_huge_pages)
223 return nr_huge_pages;
224
225 spin_lock(&hugetlb_lock);
a43a8c39 226 count = max(count, resv_huge_pages);
1da177e4
LT
227 try_to_free_low(count);
228 while (count < nr_huge_pages) {
5da7ca86 229 struct page *page = dequeue_huge_page(NULL, 0);
1da177e4
LT
230 if (!page)
231 break;
232 update_and_free_page(page);
233 }
234 spin_unlock(&hugetlb_lock);
235 return nr_huge_pages;
236}
237
238int hugetlb_sysctl_handler(struct ctl_table *table, int write,
239 struct file *file, void __user *buffer,
240 size_t *length, loff_t *ppos)
241{
242 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
243 max_huge_pages = set_max_huge_pages(max_huge_pages);
244 return 0;
245}
246#endif /* CONFIG_SYSCTL */
247
248int hugetlb_report_meminfo(char *buf)
249{
250 return sprintf(buf,
251 "HugePages_Total: %5lu\n"
252 "HugePages_Free: %5lu\n"
a43a8c39 253 "HugePages_Rsvd: %5lu\n"
1da177e4
LT
254 "Hugepagesize: %5lu kB\n",
255 nr_huge_pages,
256 free_huge_pages,
a43a8c39 257 resv_huge_pages,
1da177e4
LT
258 HPAGE_SIZE/1024);
259}
260
261int hugetlb_report_node_meminfo(int nid, char *buf)
262{
263 return sprintf(buf,
264 "Node %d HugePages_Total: %5u\n"
265 "Node %d HugePages_Free: %5u\n",
266 nid, nr_huge_pages_node[nid],
267 nid, free_huge_pages_node[nid]);
268}
269
1da177e4
LT
270/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
271unsigned long hugetlb_total_pages(void)
272{
273 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
274}
1da177e4
LT
275
276/*
277 * We cannot handle pagefaults against hugetlb pages at all. They cause
278 * handle_mm_fault() to try to instantiate regular-sized pages in the
279 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
280 * this far.
281 */
282static struct page *hugetlb_nopage(struct vm_area_struct *vma,
283 unsigned long address, int *unused)
284{
285 BUG();
286 return NULL;
287}
288
289struct vm_operations_struct hugetlb_vm_ops = {
290 .nopage = hugetlb_nopage,
291};
292
1e8f889b
DG
293static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
294 int writable)
63551ae0
DG
295{
296 pte_t entry;
297
1e8f889b 298 if (writable) {
63551ae0
DG
299 entry =
300 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
301 } else {
302 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
303 }
304 entry = pte_mkyoung(entry);
305 entry = pte_mkhuge(entry);
306
307 return entry;
308}
309
1e8f889b
DG
310static void set_huge_ptep_writable(struct vm_area_struct *vma,
311 unsigned long address, pte_t *ptep)
312{
313 pte_t entry;
314
315 entry = pte_mkwrite(pte_mkdirty(*ptep));
316 ptep_set_access_flags(vma, address, ptep, entry, 1);
317 update_mmu_cache(vma, address, entry);
318 lazy_mmu_prot_update(entry);
319}
320
321
63551ae0
DG
322int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
323 struct vm_area_struct *vma)
324{
325 pte_t *src_pte, *dst_pte, entry;
326 struct page *ptepage;
1c59827d 327 unsigned long addr;
1e8f889b
DG
328 int cow;
329
330 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 331
1c59827d 332 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
333 src_pte = huge_pte_offset(src, addr);
334 if (!src_pte)
335 continue;
63551ae0
DG
336 dst_pte = huge_pte_alloc(dst, addr);
337 if (!dst_pte)
338 goto nomem;
c74df32c 339 spin_lock(&dst->page_table_lock);
1c59827d 340 spin_lock(&src->page_table_lock);
c74df32c 341 if (!pte_none(*src_pte)) {
1e8f889b
DG
342 if (cow)
343 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
344 entry = *src_pte;
345 ptepage = pte_page(entry);
346 get_page(ptepage);
1c59827d
HD
347 set_huge_pte_at(dst, addr, dst_pte, entry);
348 }
349 spin_unlock(&src->page_table_lock);
c74df32c 350 spin_unlock(&dst->page_table_lock);
63551ae0
DG
351 }
352 return 0;
353
354nomem:
355 return -ENOMEM;
356}
357
502717f4
KC
358void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
359 unsigned long end)
63551ae0
DG
360{
361 struct mm_struct *mm = vma->vm_mm;
362 unsigned long address;
c7546f8f 363 pte_t *ptep;
63551ae0
DG
364 pte_t pte;
365 struct page *page;
fe1668ae 366 struct page *tmp;
c0a499c2
KC
367 /*
368 * A page gathering list, protected by per file i_mmap_lock. The
369 * lock is used to avoid list corruption from multiple unmapping
370 * of the same page since we are using page->lru.
371 */
fe1668ae 372 LIST_HEAD(page_list);
63551ae0
DG
373
374 WARN_ON(!is_vm_hugetlb_page(vma));
375 BUG_ON(start & ~HPAGE_MASK);
376 BUG_ON(end & ~HPAGE_MASK);
377
508034a3 378 spin_lock(&mm->page_table_lock);
63551ae0 379 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 380 ptep = huge_pte_offset(mm, address);
4c887265 381 if (!ptep)
c7546f8f
DG
382 continue;
383
39dde65c
KC
384 if (huge_pmd_unshare(mm, &address, ptep))
385 continue;
386
c7546f8f 387 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
388 if (pte_none(pte))
389 continue;
c7546f8f 390
63551ae0 391 page = pte_page(pte);
fe1668ae 392 list_add(&page->lru, &page_list);
63551ae0 393 }
1da177e4 394 spin_unlock(&mm->page_table_lock);
508034a3 395 flush_tlb_range(vma, start, end);
fe1668ae
KC
396 list_for_each_entry_safe(page, tmp, &page_list, lru) {
397 list_del(&page->lru);
398 put_page(page);
399 }
1da177e4 400}
63551ae0 401
502717f4
KC
402void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
403 unsigned long end)
404{
405 /*
406 * It is undesirable to test vma->vm_file as it should be non-null
407 * for valid hugetlb area. However, vm_file will be NULL in the error
408 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
409 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
410 * to clean up. Since no pte has actually been setup, it is safe to
411 * do nothing in this case.
412 */
413 if (vma->vm_file) {
414 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
415 __unmap_hugepage_range(vma, start, end);
416 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
417 }
418}
419
1e8f889b
DG
420static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
421 unsigned long address, pte_t *ptep, pte_t pte)
422{
423 struct page *old_page, *new_page;
79ac6ba4 424 int avoidcopy;
1e8f889b
DG
425
426 old_page = pte_page(pte);
427
428 /* If no-one else is actually using this page, avoid the copy
429 * and just make the page writable */
430 avoidcopy = (page_count(old_page) == 1);
431 if (avoidcopy) {
432 set_huge_ptep_writable(vma, address, ptep);
433 return VM_FAULT_MINOR;
434 }
435
436 page_cache_get(old_page);
5da7ca86 437 new_page = alloc_huge_page(vma, address);
1e8f889b
DG
438
439 if (!new_page) {
440 page_cache_release(old_page);
0df420d8 441 return VM_FAULT_OOM;
1e8f889b
DG
442 }
443
444 spin_unlock(&mm->page_table_lock);
79ac6ba4 445 copy_huge_page(new_page, old_page, address);
1e8f889b
DG
446 spin_lock(&mm->page_table_lock);
447
448 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
449 if (likely(pte_same(*ptep, pte))) {
450 /* Break COW */
451 set_huge_pte_at(mm, address, ptep,
452 make_huge_pte(vma, new_page, 1));
453 /* Make the old page be freed below */
454 new_page = old_page;
455 }
456 page_cache_release(new_page);
457 page_cache_release(old_page);
458 return VM_FAULT_MINOR;
459}
460
86e5216f 461int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 462 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
463{
464 int ret = VM_FAULT_SIGBUS;
4c887265
AL
465 unsigned long idx;
466 unsigned long size;
4c887265
AL
467 struct page *page;
468 struct address_space *mapping;
1e8f889b 469 pte_t new_pte;
4c887265 470
4c887265
AL
471 mapping = vma->vm_file->f_mapping;
472 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
473 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
474
475 /*
476 * Use page lock to guard against racing truncation
477 * before we get page_table_lock.
478 */
6bda666a
CL
479retry:
480 page = find_lock_page(mapping, idx);
481 if (!page) {
ebed4bfc
HD
482 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
483 if (idx >= size)
484 goto out;
6bda666a
CL
485 if (hugetlb_get_quota(mapping))
486 goto out;
487 page = alloc_huge_page(vma, address);
488 if (!page) {
489 hugetlb_put_quota(mapping);
0df420d8 490 ret = VM_FAULT_OOM;
6bda666a
CL
491 goto out;
492 }
79ac6ba4 493 clear_huge_page(page, address);
ac9b9c66 494
6bda666a
CL
495 if (vma->vm_flags & VM_SHARED) {
496 int err;
497
498 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
499 if (err) {
500 put_page(page);
501 hugetlb_put_quota(mapping);
502 if (err == -EEXIST)
503 goto retry;
504 goto out;
505 }
506 } else
507 lock_page(page);
508 }
1e8f889b 509
ac9b9c66 510 spin_lock(&mm->page_table_lock);
4c887265
AL
511 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
512 if (idx >= size)
513 goto backout;
514
515 ret = VM_FAULT_MINOR;
86e5216f 516 if (!pte_none(*ptep))
4c887265
AL
517 goto backout;
518
1e8f889b
DG
519 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
520 && (vma->vm_flags & VM_SHARED)));
521 set_huge_pte_at(mm, address, ptep, new_pte);
522
523 if (write_access && !(vma->vm_flags & VM_SHARED)) {
524 /* Optimization, do the COW without a second fault */
525 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
526 }
527
ac9b9c66 528 spin_unlock(&mm->page_table_lock);
4c887265
AL
529 unlock_page(page);
530out:
ac9b9c66 531 return ret;
4c887265
AL
532
533backout:
534 spin_unlock(&mm->page_table_lock);
535 hugetlb_put_quota(mapping);
536 unlock_page(page);
537 put_page(page);
538 goto out;
ac9b9c66
HD
539}
540
86e5216f
AL
541int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
542 unsigned long address, int write_access)
543{
544 pte_t *ptep;
545 pte_t entry;
1e8f889b 546 int ret;
3935baa9 547 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
86e5216f
AL
548
549 ptep = huge_pte_alloc(mm, address);
550 if (!ptep)
551 return VM_FAULT_OOM;
552
3935baa9
DG
553 /*
554 * Serialize hugepage allocation and instantiation, so that we don't
555 * get spurious allocation failures if two CPUs race to instantiate
556 * the same page in the page cache.
557 */
558 mutex_lock(&hugetlb_instantiation_mutex);
86e5216f 559 entry = *ptep;
3935baa9
DG
560 if (pte_none(entry)) {
561 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
562 mutex_unlock(&hugetlb_instantiation_mutex);
563 return ret;
564 }
86e5216f 565
1e8f889b
DG
566 ret = VM_FAULT_MINOR;
567
568 spin_lock(&mm->page_table_lock);
569 /* Check for a racing update before calling hugetlb_cow */
570 if (likely(pte_same(entry, *ptep)))
571 if (write_access && !pte_write(entry))
572 ret = hugetlb_cow(mm, vma, address, ptep, entry);
573 spin_unlock(&mm->page_table_lock);
3935baa9 574 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
575
576 return ret;
86e5216f
AL
577}
578
63551ae0
DG
579int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
580 struct page **pages, struct vm_area_struct **vmas,
581 unsigned long *position, int *length, int i)
582{
d5d4b0aa
KC
583 unsigned long pfn_offset;
584 unsigned long vaddr = *position;
63551ae0
DG
585 int remainder = *length;
586
1c59827d 587 spin_lock(&mm->page_table_lock);
63551ae0 588 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
589 pte_t *pte;
590 struct page *page;
63551ae0 591
4c887265
AL
592 /*
593 * Some archs (sparc64, sh*) have multiple pte_ts to
594 * each hugepage. We have to make * sure we get the
595 * first, for the page indexing below to work.
596 */
597 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 598
4c887265
AL
599 if (!pte || pte_none(*pte)) {
600 int ret;
63551ae0 601
4c887265
AL
602 spin_unlock(&mm->page_table_lock);
603 ret = hugetlb_fault(mm, vma, vaddr, 0);
604 spin_lock(&mm->page_table_lock);
605 if (ret == VM_FAULT_MINOR)
606 continue;
63551ae0 607
4c887265
AL
608 remainder = 0;
609 if (!i)
610 i = -EFAULT;
611 break;
612 }
613
d5d4b0aa
KC
614 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
615 page = pte_page(*pte);
616same_page:
d6692183
KC
617 if (pages) {
618 get_page(page);
d5d4b0aa 619 pages[i] = page + pfn_offset;
d6692183 620 }
63551ae0
DG
621
622 if (vmas)
623 vmas[i] = vma;
624
625 vaddr += PAGE_SIZE;
d5d4b0aa 626 ++pfn_offset;
63551ae0
DG
627 --remainder;
628 ++i;
d5d4b0aa
KC
629 if (vaddr < vma->vm_end && remainder &&
630 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
631 /*
632 * We use pfn_offset to avoid touching the pageframes
633 * of this compound page.
634 */
635 goto same_page;
636 }
63551ae0 637 }
1c59827d 638 spin_unlock(&mm->page_table_lock);
63551ae0
DG
639 *length = remainder;
640 *position = vaddr;
641
642 return i;
643}
8f860591
ZY
644
645void hugetlb_change_protection(struct vm_area_struct *vma,
646 unsigned long address, unsigned long end, pgprot_t newprot)
647{
648 struct mm_struct *mm = vma->vm_mm;
649 unsigned long start = address;
650 pte_t *ptep;
651 pte_t pte;
652
653 BUG_ON(address >= end);
654 flush_cache_range(vma, address, end);
655
39dde65c 656 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
657 spin_lock(&mm->page_table_lock);
658 for (; address < end; address += HPAGE_SIZE) {
659 ptep = huge_pte_offset(mm, address);
660 if (!ptep)
661 continue;
39dde65c
KC
662 if (huge_pmd_unshare(mm, &address, ptep))
663 continue;
8f860591
ZY
664 if (!pte_none(*ptep)) {
665 pte = huge_ptep_get_and_clear(mm, address, ptep);
666 pte = pte_mkhuge(pte_modify(pte, newprot));
667 set_huge_pte_at(mm, address, ptep, pte);
668 lazy_mmu_prot_update(pte);
669 }
670 }
671 spin_unlock(&mm->page_table_lock);
39dde65c 672 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
673
674 flush_tlb_range(vma, start, end);
675}
676
a43a8c39
KC
677struct file_region {
678 struct list_head link;
679 long from;
680 long to;
681};
682
683static long region_add(struct list_head *head, long f, long t)
684{
685 struct file_region *rg, *nrg, *trg;
686
687 /* Locate the region we are either in or before. */
688 list_for_each_entry(rg, head, link)
689 if (f <= rg->to)
690 break;
691
692 /* Round our left edge to the current segment if it encloses us. */
693 if (f > rg->from)
694 f = rg->from;
695
696 /* Check for and consume any regions we now overlap with. */
697 nrg = rg;
698 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
699 if (&rg->link == head)
700 break;
701 if (rg->from > t)
702 break;
703
704 /* If this area reaches higher then extend our area to
705 * include it completely. If this is not the first area
706 * which we intend to reuse, free it. */
707 if (rg->to > t)
708 t = rg->to;
709 if (rg != nrg) {
710 list_del(&rg->link);
711 kfree(rg);
712 }
713 }
714 nrg->from = f;
715 nrg->to = t;
716 return 0;
717}
718
719static long region_chg(struct list_head *head, long f, long t)
720{
721 struct file_region *rg, *nrg;
722 long chg = 0;
723
724 /* Locate the region we are before or in. */
725 list_for_each_entry(rg, head, link)
726 if (f <= rg->to)
727 break;
728
729 /* If we are below the current region then a new region is required.
730 * Subtle, allocate a new region at the position but make it zero
731 * size such that we can guarentee to record the reservation. */
732 if (&rg->link == head || t < rg->from) {
733 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
734 if (nrg == 0)
735 return -ENOMEM;
736 nrg->from = f;
737 nrg->to = f;
738 INIT_LIST_HEAD(&nrg->link);
739 list_add(&nrg->link, rg->link.prev);
740
741 return t - f;
742 }
743
744 /* Round our left edge to the current segment if it encloses us. */
745 if (f > rg->from)
746 f = rg->from;
747 chg = t - f;
748
749 /* Check for and consume any regions we now overlap with. */
750 list_for_each_entry(rg, rg->link.prev, link) {
751 if (&rg->link == head)
752 break;
753 if (rg->from > t)
754 return chg;
755
756 /* We overlap with this area, if it extends futher than
757 * us then we must extend ourselves. Account for its
758 * existing reservation. */
759 if (rg->to > t) {
760 chg += rg->to - t;
761 t = rg->to;
762 }
763 chg -= rg->to - rg->from;
764 }
765 return chg;
766}
767
768static long region_truncate(struct list_head *head, long end)
769{
770 struct file_region *rg, *trg;
771 long chg = 0;
772
773 /* Locate the region we are either in or before. */
774 list_for_each_entry(rg, head, link)
775 if (end <= rg->to)
776 break;
777 if (&rg->link == head)
778 return 0;
779
780 /* If we are in the middle of a region then adjust it. */
781 if (end > rg->from) {
782 chg = rg->to - end;
783 rg->to = end;
784 rg = list_entry(rg->link.next, typeof(*rg), link);
785 }
786
787 /* Drop any remaining regions. */
788 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
789 if (&rg->link == head)
790 break;
791 chg += rg->to - rg->from;
792 list_del(&rg->link);
793 kfree(rg);
794 }
795 return chg;
796}
797
798static int hugetlb_acct_memory(long delta)
799{
800 int ret = -ENOMEM;
801
802 spin_lock(&hugetlb_lock);
803 if ((delta + resv_huge_pages) <= free_huge_pages) {
804 resv_huge_pages += delta;
805 ret = 0;
806 }
807 spin_unlock(&hugetlb_lock);
808 return ret;
809}
810
811int hugetlb_reserve_pages(struct inode *inode, long from, long to)
812{
813 long ret, chg;
814
815 chg = region_chg(&inode->i_mapping->private_list, from, to);
816 if (chg < 0)
817 return chg;
818 ret = hugetlb_acct_memory(chg);
819 if (ret < 0)
820 return ret;
821 region_add(&inode->i_mapping->private_list, from, to);
822 return 0;
823}
824
825void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
826{
827 long chg = region_truncate(&inode->i_mapping->private_list, offset);
828 hugetlb_acct_memory(freed - chg);
829}