]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/hugetlb.c
mm: use two zonelist that are filtered by GFP mask
[net-next-2.6.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
3935baa9 16#include <linux/mutex.h>
5da7ca86 17
63551ae0
DG
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
7835e98b 22#include "internal.h"
1da177e4
LT
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
a43a8c39 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
7893d1d5 26static unsigned long surplus_huge_pages;
064d9efe 27static unsigned long nr_overcommit_huge_pages;
1da177e4 28unsigned long max_huge_pages;
064d9efe 29unsigned long sysctl_overcommit_huge_pages;
1da177e4
LT
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
7893d1d5 33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
63b4613c 36static int hugetlb_next_nid;
396faf03 37
3935baa9
DG
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 42
79ac6ba4
DG
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45 int i;
46
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
281e0e3b 50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
51 }
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 55 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
56{
57 int i;
58
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
9de455b2 62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
63 }
64}
65
1da177e4
LT
66static void enqueue_huge_page(struct page *page)
67{
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
72}
73
348e1e04
NA
74static struct page *dequeue_huge_page(void)
75{
76 int nid;
77 struct page *page = NULL;
78
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
87 }
88 }
89 return page;
90}
91
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
5da7ca86 93 unsigned long address)
1da177e4 94{
31a5c6e4 95 int nid;
1da177e4 96 struct page *page = NULL;
480eccf9 97 struct mempolicy *mpol;
396faf03 98 struct zonelist *zonelist = huge_zonelist(vma, address,
480eccf9 99 htlb_alloc_mask, &mpol);
54a6eb5c 100 struct zone *zone, **z;
1da177e4 101
54a6eb5c
MG
102 for_each_zone_zonelist(zone, z, zonelist, MAX_NR_ZONES - 1) {
103 nid = zone_to_nid(zone);
104 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
3abf7afd
AM
105 !list_empty(&hugepage_freelists[nid])) {
106 page = list_entry(hugepage_freelists[nid].next,
107 struct page, lru);
108 list_del(&page->lru);
109 free_huge_pages--;
110 free_huge_pages_node[nid]--;
e4e574b7
AL
111 if (vma && vma->vm_flags & VM_MAYSHARE)
112 resv_huge_pages--;
5ab3ee7b 113 break;
3abf7afd 114 }
1da177e4 115 }
480eccf9 116 mpol_free(mpol); /* unref if mpol !NULL */
1da177e4
LT
117 return page;
118}
119
6af2acb6
AL
120static void update_and_free_page(struct page *page)
121{
122 int i;
123 nr_huge_pages--;
124 nr_huge_pages_node[page_to_nid(page)]--;
125 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
126 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
127 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
128 1 << PG_private | 1<< PG_writeback);
129 }
130 set_compound_page_dtor(page, NULL);
131 set_page_refcounted(page);
132 __free_pages(page, HUGETLB_PAGE_ORDER);
133}
134
27a85ef1
DG
135static void free_huge_page(struct page *page)
136{
7893d1d5 137 int nid = page_to_nid(page);
c79fb75e 138 struct address_space *mapping;
27a85ef1 139
c79fb75e 140 mapping = (struct address_space *) page_private(page);
e5df70ab 141 set_page_private(page, 0);
7893d1d5 142 BUG_ON(page_count(page));
27a85ef1
DG
143 INIT_LIST_HEAD(&page->lru);
144
145 spin_lock(&hugetlb_lock);
7893d1d5
AL
146 if (surplus_huge_pages_node[nid]) {
147 update_and_free_page(page);
148 surplus_huge_pages--;
149 surplus_huge_pages_node[nid]--;
150 } else {
151 enqueue_huge_page(page);
152 }
27a85ef1 153 spin_unlock(&hugetlb_lock);
c79fb75e 154 if (mapping)
9a119c05 155 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
156}
157
7893d1d5
AL
158/*
159 * Increment or decrement surplus_huge_pages. Keep node-specific counters
160 * balanced by operating on them in a round-robin fashion.
161 * Returns 1 if an adjustment was made.
162 */
163static int adjust_pool_surplus(int delta)
164{
165 static int prev_nid;
166 int nid = prev_nid;
167 int ret = 0;
168
169 VM_BUG_ON(delta != -1 && delta != 1);
170 do {
171 nid = next_node(nid, node_online_map);
172 if (nid == MAX_NUMNODES)
173 nid = first_node(node_online_map);
174
175 /* To shrink on this node, there must be a surplus page */
176 if (delta < 0 && !surplus_huge_pages_node[nid])
177 continue;
178 /* Surplus cannot exceed the total number of pages */
179 if (delta > 0 && surplus_huge_pages_node[nid] >=
180 nr_huge_pages_node[nid])
181 continue;
182
183 surplus_huge_pages += delta;
184 surplus_huge_pages_node[nid] += delta;
185 ret = 1;
186 break;
187 } while (nid != prev_nid);
188
189 prev_nid = nid;
190 return ret;
191}
192
63b4613c 193static struct page *alloc_fresh_huge_page_node(int nid)
1da177e4 194{
1da177e4 195 struct page *page;
f96efd58 196
63b4613c
NA
197 page = alloc_pages_node(nid,
198 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
199 HUGETLB_PAGE_ORDER);
1da177e4 200 if (page) {
33f2ef89 201 set_compound_page_dtor(page, free_huge_page);
0bd0f9fb 202 spin_lock(&hugetlb_lock);
1da177e4 203 nr_huge_pages++;
63b4613c 204 nr_huge_pages_node[nid]++;
0bd0f9fb 205 spin_unlock(&hugetlb_lock);
a482289d 206 put_page(page); /* free it into the hugepage allocator */
1da177e4 207 }
63b4613c
NA
208
209 return page;
210}
211
212static int alloc_fresh_huge_page(void)
213{
214 struct page *page;
215 int start_nid;
216 int next_nid;
217 int ret = 0;
218
219 start_nid = hugetlb_next_nid;
220
221 do {
222 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
223 if (page)
224 ret = 1;
225 /*
226 * Use a helper variable to find the next node and then
227 * copy it back to hugetlb_next_nid afterwards:
228 * otherwise there's a window in which a racer might
229 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
230 * But we don't need to use a spin_lock here: it really
231 * doesn't matter if occasionally a racer chooses the
232 * same nid as we do. Move nid forward in the mask even
233 * if we just successfully allocated a hugepage so that
234 * the next caller gets hugepages on the next node.
235 */
236 next_nid = next_node(hugetlb_next_nid, node_online_map);
237 if (next_nid == MAX_NUMNODES)
238 next_nid = first_node(node_online_map);
239 hugetlb_next_nid = next_nid;
240 } while (!page && hugetlb_next_nid != start_nid);
241
242 return ret;
1da177e4
LT
243}
244
7893d1d5
AL
245static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
246 unsigned long address)
247{
248 struct page *page;
d1c3fb1f 249 unsigned int nid;
7893d1d5 250
d1c3fb1f
NA
251 /*
252 * Assume we will successfully allocate the surplus page to
253 * prevent racing processes from causing the surplus to exceed
254 * overcommit
255 *
256 * This however introduces a different race, where a process B
257 * tries to grow the static hugepage pool while alloc_pages() is
258 * called by process A. B will only examine the per-node
259 * counters in determining if surplus huge pages can be
260 * converted to normal huge pages in adjust_pool_surplus(). A
261 * won't be able to increment the per-node counter, until the
262 * lock is dropped by B, but B doesn't drop hugetlb_lock until
263 * no more huge pages can be converted from surplus to normal
264 * state (and doesn't try to convert again). Thus, we have a
265 * case where a surplus huge page exists, the pool is grown, and
266 * the surplus huge page still exists after, even though it
267 * should just have been converted to a normal huge page. This
268 * does not leak memory, though, as the hugepage will be freed
269 * once it is out of use. It also does not allow the counters to
270 * go out of whack in adjust_pool_surplus() as we don't modify
271 * the node values until we've gotten the hugepage and only the
272 * per-node value is checked there.
273 */
274 spin_lock(&hugetlb_lock);
275 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
276 spin_unlock(&hugetlb_lock);
277 return NULL;
278 } else {
279 nr_huge_pages++;
280 surplus_huge_pages++;
281 }
282 spin_unlock(&hugetlb_lock);
283
7893d1d5
AL
284 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
285 HUGETLB_PAGE_ORDER);
d1c3fb1f
NA
286
287 spin_lock(&hugetlb_lock);
7893d1d5 288 if (page) {
2668db91
AL
289 /*
290 * This page is now managed by the hugetlb allocator and has
291 * no users -- drop the buddy allocator's reference.
292 */
293 put_page_testzero(page);
294 VM_BUG_ON(page_count(page));
d1c3fb1f 295 nid = page_to_nid(page);
7893d1d5 296 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
297 /*
298 * We incremented the global counters already
299 */
300 nr_huge_pages_node[nid]++;
301 surplus_huge_pages_node[nid]++;
302 } else {
303 nr_huge_pages--;
304 surplus_huge_pages--;
7893d1d5 305 }
d1c3fb1f 306 spin_unlock(&hugetlb_lock);
7893d1d5
AL
307
308 return page;
309}
310
e4e574b7
AL
311/*
312 * Increase the hugetlb pool such that it can accomodate a reservation
313 * of size 'delta'.
314 */
315static int gather_surplus_pages(int delta)
316{
317 struct list_head surplus_list;
318 struct page *page, *tmp;
319 int ret, i;
320 int needed, allocated;
321
322 needed = (resv_huge_pages + delta) - free_huge_pages;
ac09b3a1
AL
323 if (needed <= 0) {
324 resv_huge_pages += delta;
e4e574b7 325 return 0;
ac09b3a1 326 }
e4e574b7
AL
327
328 allocated = 0;
329 INIT_LIST_HEAD(&surplus_list);
330
331 ret = -ENOMEM;
332retry:
333 spin_unlock(&hugetlb_lock);
334 for (i = 0; i < needed; i++) {
335 page = alloc_buddy_huge_page(NULL, 0);
336 if (!page) {
337 /*
338 * We were not able to allocate enough pages to
339 * satisfy the entire reservation so we free what
340 * we've allocated so far.
341 */
342 spin_lock(&hugetlb_lock);
343 needed = 0;
344 goto free;
345 }
346
347 list_add(&page->lru, &surplus_list);
348 }
349 allocated += needed;
350
351 /*
352 * After retaking hugetlb_lock, we need to recalculate 'needed'
353 * because either resv_huge_pages or free_huge_pages may have changed.
354 */
355 spin_lock(&hugetlb_lock);
356 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
357 if (needed > 0)
358 goto retry;
359
360 /*
361 * The surplus_list now contains _at_least_ the number of extra pages
362 * needed to accomodate the reservation. Add the appropriate number
363 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
364 * allocator. Commit the entire reservation here to prevent another
365 * process from stealing the pages as they are added to the pool but
366 * before they are reserved.
e4e574b7
AL
367 */
368 needed += allocated;
ac09b3a1 369 resv_huge_pages += delta;
e4e574b7
AL
370 ret = 0;
371free:
372 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
373 list_del(&page->lru);
374 if ((--needed) >= 0)
375 enqueue_huge_page(page);
af767cbd
AL
376 else {
377 /*
2668db91
AL
378 * The page has a reference count of zero already, so
379 * call free_huge_page directly instead of using
380 * put_page. This must be done with hugetlb_lock
af767cbd
AL
381 * unlocked which is safe because free_huge_page takes
382 * hugetlb_lock before deciding how to free the page.
383 */
384 spin_unlock(&hugetlb_lock);
2668db91 385 free_huge_page(page);
af767cbd
AL
386 spin_lock(&hugetlb_lock);
387 }
e4e574b7
AL
388 }
389
390 return ret;
391}
392
393/*
394 * When releasing a hugetlb pool reservation, any surplus pages that were
395 * allocated to satisfy the reservation must be explicitly freed if they were
396 * never used.
397 */
8cde045c 398static void return_unused_surplus_pages(unsigned long unused_resv_pages)
e4e574b7
AL
399{
400 static int nid = -1;
401 struct page *page;
402 unsigned long nr_pages;
403
11320d17
NA
404 /*
405 * We want to release as many surplus pages as possible, spread
406 * evenly across all nodes. Iterate across all nodes until we
407 * can no longer free unreserved surplus pages. This occurs when
408 * the nodes with surplus pages have no free pages.
409 */
410 unsigned long remaining_iterations = num_online_nodes();
411
ac09b3a1
AL
412 /* Uncommit the reservation */
413 resv_huge_pages -= unused_resv_pages;
414
e4e574b7
AL
415 nr_pages = min(unused_resv_pages, surplus_huge_pages);
416
11320d17 417 while (remaining_iterations-- && nr_pages) {
e4e574b7
AL
418 nid = next_node(nid, node_online_map);
419 if (nid == MAX_NUMNODES)
420 nid = first_node(node_online_map);
421
422 if (!surplus_huge_pages_node[nid])
423 continue;
424
425 if (!list_empty(&hugepage_freelists[nid])) {
426 page = list_entry(hugepage_freelists[nid].next,
427 struct page, lru);
428 list_del(&page->lru);
429 update_and_free_page(page);
430 free_huge_pages--;
431 free_huge_pages_node[nid]--;
432 surplus_huge_pages--;
433 surplus_huge_pages_node[nid]--;
434 nr_pages--;
11320d17 435 remaining_iterations = num_online_nodes();
e4e574b7
AL
436 }
437 }
438}
439
348ea204
AL
440
441static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
442 unsigned long addr)
1da177e4 443{
348ea204 444 struct page *page;
1da177e4
LT
445
446 spin_lock(&hugetlb_lock);
348e1e04 447 page = dequeue_huge_page_vma(vma, addr);
1da177e4 448 spin_unlock(&hugetlb_lock);
90d8b7e6 449 return page ? page : ERR_PTR(-VM_FAULT_OOM);
348ea204 450}
b45b5bd6 451
348ea204
AL
452static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
453 unsigned long addr)
454{
455 struct page *page = NULL;
7893d1d5 456
90d8b7e6
AL
457 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
458 return ERR_PTR(-VM_FAULT_SIGBUS);
459
348ea204
AL
460 spin_lock(&hugetlb_lock);
461 if (free_huge_pages > resv_huge_pages)
348e1e04 462 page = dequeue_huge_page_vma(vma, addr);
348ea204 463 spin_unlock(&hugetlb_lock);
68842c9b 464 if (!page) {
7893d1d5 465 page = alloc_buddy_huge_page(vma, addr);
68842c9b
KC
466 if (!page) {
467 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
468 return ERR_PTR(-VM_FAULT_OOM);
469 }
470 }
471 return page;
348ea204
AL
472}
473
474static struct page *alloc_huge_page(struct vm_area_struct *vma,
475 unsigned long addr)
476{
477 struct page *page;
2fc39cec
AL
478 struct address_space *mapping = vma->vm_file->f_mapping;
479
348ea204
AL
480 if (vma->vm_flags & VM_MAYSHARE)
481 page = alloc_huge_page_shared(vma, addr);
482 else
483 page = alloc_huge_page_private(vma, addr);
90d8b7e6
AL
484
485 if (!IS_ERR(page)) {
348ea204 486 set_page_refcounted(page);
2fc39cec 487 set_page_private(page, (unsigned long) mapping);
90d8b7e6
AL
488 }
489 return page;
b45b5bd6
DG
490}
491
1da177e4
LT
492static int __init hugetlb_init(void)
493{
494 unsigned long i;
1da177e4 495
3c726f8d
BH
496 if (HPAGE_SHIFT == 0)
497 return 0;
498
1da177e4
LT
499 for (i = 0; i < MAX_NUMNODES; ++i)
500 INIT_LIST_HEAD(&hugepage_freelists[i]);
501
63b4613c
NA
502 hugetlb_next_nid = first_node(node_online_map);
503
1da177e4 504 for (i = 0; i < max_huge_pages; ++i) {
a482289d 505 if (!alloc_fresh_huge_page())
1da177e4 506 break;
1da177e4
LT
507 }
508 max_huge_pages = free_huge_pages = nr_huge_pages = i;
509 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
510 return 0;
511}
512module_init(hugetlb_init);
513
514static int __init hugetlb_setup(char *s)
515{
516 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
517 max_huge_pages = 0;
518 return 1;
519}
520__setup("hugepages=", hugetlb_setup);
521
8a630112
KC
522static unsigned int cpuset_mems_nr(unsigned int *array)
523{
524 int node;
525 unsigned int nr = 0;
526
527 for_each_node_mask(node, cpuset_current_mems_allowed)
528 nr += array[node];
529
530 return nr;
531}
532
1da177e4 533#ifdef CONFIG_SYSCTL
1da177e4
LT
534#ifdef CONFIG_HIGHMEM
535static void try_to_free_low(unsigned long count)
536{
4415cc8d
CL
537 int i;
538
1da177e4
LT
539 for (i = 0; i < MAX_NUMNODES; ++i) {
540 struct page *page, *next;
541 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
6b0c880d
AL
542 if (count >= nr_huge_pages)
543 return;
1da177e4
LT
544 if (PageHighMem(page))
545 continue;
546 list_del(&page->lru);
547 update_and_free_page(page);
1da177e4 548 free_huge_pages--;
4415cc8d 549 free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
550 }
551 }
552}
553#else
554static inline void try_to_free_low(unsigned long count)
555{
556}
557#endif
558
7893d1d5 559#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
1da177e4
LT
560static unsigned long set_max_huge_pages(unsigned long count)
561{
7893d1d5 562 unsigned long min_count, ret;
1da177e4 563
7893d1d5
AL
564 /*
565 * Increase the pool size
566 * First take pages out of surplus state. Then make up the
567 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
568 *
569 * We might race with alloc_buddy_huge_page() here and be unable
570 * to convert a surplus huge page to a normal huge page. That is
571 * not critical, though, it just means the overall size of the
572 * pool might be one hugepage larger than it needs to be, but
573 * within all the constraints specified by the sysctls.
7893d1d5 574 */
1da177e4 575 spin_lock(&hugetlb_lock);
7893d1d5
AL
576 while (surplus_huge_pages && count > persistent_huge_pages) {
577 if (!adjust_pool_surplus(-1))
578 break;
579 }
580
581 while (count > persistent_huge_pages) {
582 int ret;
583 /*
584 * If this allocation races such that we no longer need the
585 * page, free_huge_page will handle it by freeing the page
586 * and reducing the surplus.
587 */
588 spin_unlock(&hugetlb_lock);
589 ret = alloc_fresh_huge_page();
590 spin_lock(&hugetlb_lock);
591 if (!ret)
592 goto out;
593
594 }
7893d1d5
AL
595
596 /*
597 * Decrease the pool size
598 * First return free pages to the buddy allocator (being careful
599 * to keep enough around to satisfy reservations). Then place
600 * pages into surplus state as needed so the pool will shrink
601 * to the desired size as pages become free.
d1c3fb1f
NA
602 *
603 * By placing pages into the surplus state independent of the
604 * overcommit value, we are allowing the surplus pool size to
605 * exceed overcommit. There are few sane options here. Since
606 * alloc_buddy_huge_page() is checking the global counter,
607 * though, we'll note that we're not allowed to exceed surplus
608 * and won't grow the pool anywhere else. Not until one of the
609 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 610 */
6b0c880d
AL
611 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
612 min_count = max(count, min_count);
7893d1d5
AL
613 try_to_free_low(min_count);
614 while (min_count < persistent_huge_pages) {
348e1e04 615 struct page *page = dequeue_huge_page();
1da177e4
LT
616 if (!page)
617 break;
618 update_and_free_page(page);
619 }
7893d1d5
AL
620 while (count < persistent_huge_pages) {
621 if (!adjust_pool_surplus(1))
622 break;
623 }
624out:
625 ret = persistent_huge_pages;
1da177e4 626 spin_unlock(&hugetlb_lock);
7893d1d5 627 return ret;
1da177e4
LT
628}
629
630int hugetlb_sysctl_handler(struct ctl_table *table, int write,
631 struct file *file, void __user *buffer,
632 size_t *length, loff_t *ppos)
633{
634 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
635 max_huge_pages = set_max_huge_pages(max_huge_pages);
636 return 0;
637}
396faf03
MG
638
639int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
640 struct file *file, void __user *buffer,
641 size_t *length, loff_t *ppos)
642{
643 proc_dointvec(table, write, file, buffer, length, ppos);
644 if (hugepages_treat_as_movable)
645 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
646 else
647 htlb_alloc_mask = GFP_HIGHUSER;
648 return 0;
649}
650
a3d0c6aa
NA
651int hugetlb_overcommit_handler(struct ctl_table *table, int write,
652 struct file *file, void __user *buffer,
653 size_t *length, loff_t *ppos)
654{
a3d0c6aa 655 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
064d9efe
NA
656 spin_lock(&hugetlb_lock);
657 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
a3d0c6aa
NA
658 spin_unlock(&hugetlb_lock);
659 return 0;
660}
661
1da177e4
LT
662#endif /* CONFIG_SYSCTL */
663
664int hugetlb_report_meminfo(char *buf)
665{
666 return sprintf(buf,
667 "HugePages_Total: %5lu\n"
668 "HugePages_Free: %5lu\n"
a43a8c39 669 "HugePages_Rsvd: %5lu\n"
7893d1d5 670 "HugePages_Surp: %5lu\n"
1da177e4
LT
671 "Hugepagesize: %5lu kB\n",
672 nr_huge_pages,
673 free_huge_pages,
a43a8c39 674 resv_huge_pages,
7893d1d5 675 surplus_huge_pages,
1da177e4
LT
676 HPAGE_SIZE/1024);
677}
678
679int hugetlb_report_node_meminfo(int nid, char *buf)
680{
681 return sprintf(buf,
682 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
683 "Node %d HugePages_Free: %5u\n"
684 "Node %d HugePages_Surp: %5u\n",
1da177e4 685 nid, nr_huge_pages_node[nid],
a1de0919
NA
686 nid, free_huge_pages_node[nid],
687 nid, surplus_huge_pages_node[nid]);
1da177e4
LT
688}
689
1da177e4
LT
690/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
691unsigned long hugetlb_total_pages(void)
692{
693 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
694}
1da177e4
LT
695
696/*
697 * We cannot handle pagefaults against hugetlb pages at all. They cause
698 * handle_mm_fault() to try to instantiate regular-sized pages in the
699 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
700 * this far.
701 */
d0217ac0 702static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
703{
704 BUG();
d0217ac0 705 return 0;
1da177e4
LT
706}
707
708struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 709 .fault = hugetlb_vm_op_fault,
1da177e4
LT
710};
711
1e8f889b
DG
712static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
713 int writable)
63551ae0
DG
714{
715 pte_t entry;
716
1e8f889b 717 if (writable) {
63551ae0
DG
718 entry =
719 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
720 } else {
721 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
722 }
723 entry = pte_mkyoung(entry);
724 entry = pte_mkhuge(entry);
725
726 return entry;
727}
728
1e8f889b
DG
729static void set_huge_ptep_writable(struct vm_area_struct *vma,
730 unsigned long address, pte_t *ptep)
731{
732 pte_t entry;
733
734 entry = pte_mkwrite(pte_mkdirty(*ptep));
8dab5241
BH
735 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
736 update_mmu_cache(vma, address, entry);
8dab5241 737 }
1e8f889b
DG
738}
739
740
63551ae0
DG
741int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
742 struct vm_area_struct *vma)
743{
744 pte_t *src_pte, *dst_pte, entry;
745 struct page *ptepage;
1c59827d 746 unsigned long addr;
1e8f889b
DG
747 int cow;
748
749 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 750
1c59827d 751 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
752 src_pte = huge_pte_offset(src, addr);
753 if (!src_pte)
754 continue;
63551ae0
DG
755 dst_pte = huge_pte_alloc(dst, addr);
756 if (!dst_pte)
757 goto nomem;
c5c99429
LW
758
759 /* If the pagetables are shared don't copy or take references */
760 if (dst_pte == src_pte)
761 continue;
762
c74df32c 763 spin_lock(&dst->page_table_lock);
1c59827d 764 spin_lock(&src->page_table_lock);
c74df32c 765 if (!pte_none(*src_pte)) {
1e8f889b
DG
766 if (cow)
767 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
768 entry = *src_pte;
769 ptepage = pte_page(entry);
770 get_page(ptepage);
1c59827d
HD
771 set_huge_pte_at(dst, addr, dst_pte, entry);
772 }
773 spin_unlock(&src->page_table_lock);
c74df32c 774 spin_unlock(&dst->page_table_lock);
63551ae0
DG
775 }
776 return 0;
777
778nomem:
779 return -ENOMEM;
780}
781
502717f4
KC
782void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
783 unsigned long end)
63551ae0
DG
784{
785 struct mm_struct *mm = vma->vm_mm;
786 unsigned long address;
c7546f8f 787 pte_t *ptep;
63551ae0
DG
788 pte_t pte;
789 struct page *page;
fe1668ae 790 struct page *tmp;
c0a499c2
KC
791 /*
792 * A page gathering list, protected by per file i_mmap_lock. The
793 * lock is used to avoid list corruption from multiple unmapping
794 * of the same page since we are using page->lru.
795 */
fe1668ae 796 LIST_HEAD(page_list);
63551ae0
DG
797
798 WARN_ON(!is_vm_hugetlb_page(vma));
799 BUG_ON(start & ~HPAGE_MASK);
800 BUG_ON(end & ~HPAGE_MASK);
801
508034a3 802 spin_lock(&mm->page_table_lock);
63551ae0 803 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 804 ptep = huge_pte_offset(mm, address);
4c887265 805 if (!ptep)
c7546f8f
DG
806 continue;
807
39dde65c
KC
808 if (huge_pmd_unshare(mm, &address, ptep))
809 continue;
810
c7546f8f 811 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
812 if (pte_none(pte))
813 continue;
c7546f8f 814
63551ae0 815 page = pte_page(pte);
6649a386
KC
816 if (pte_dirty(pte))
817 set_page_dirty(page);
fe1668ae 818 list_add(&page->lru, &page_list);
63551ae0 819 }
1da177e4 820 spin_unlock(&mm->page_table_lock);
508034a3 821 flush_tlb_range(vma, start, end);
fe1668ae
KC
822 list_for_each_entry_safe(page, tmp, &page_list, lru) {
823 list_del(&page->lru);
824 put_page(page);
825 }
1da177e4 826}
63551ae0 827
502717f4
KC
828void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
829 unsigned long end)
830{
831 /*
832 * It is undesirable to test vma->vm_file as it should be non-null
833 * for valid hugetlb area. However, vm_file will be NULL in the error
834 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
835 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
836 * to clean up. Since no pte has actually been setup, it is safe to
837 * do nothing in this case.
838 */
839 if (vma->vm_file) {
840 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
841 __unmap_hugepage_range(vma, start, end);
842 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
843 }
844}
845
1e8f889b
DG
846static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
847 unsigned long address, pte_t *ptep, pte_t pte)
848{
849 struct page *old_page, *new_page;
79ac6ba4 850 int avoidcopy;
1e8f889b
DG
851
852 old_page = pte_page(pte);
853
854 /* If no-one else is actually using this page, avoid the copy
855 * and just make the page writable */
856 avoidcopy = (page_count(old_page) == 1);
857 if (avoidcopy) {
858 set_huge_ptep_writable(vma, address, ptep);
83c54070 859 return 0;
1e8f889b
DG
860 }
861
862 page_cache_get(old_page);
5da7ca86 863 new_page = alloc_huge_page(vma, address);
1e8f889b 864
2fc39cec 865 if (IS_ERR(new_page)) {
1e8f889b 866 page_cache_release(old_page);
2fc39cec 867 return -PTR_ERR(new_page);
1e8f889b
DG
868 }
869
870 spin_unlock(&mm->page_table_lock);
9de455b2 871 copy_huge_page(new_page, old_page, address, vma);
0ed361de 872 __SetPageUptodate(new_page);
1e8f889b
DG
873 spin_lock(&mm->page_table_lock);
874
875 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
876 if (likely(pte_same(*ptep, pte))) {
877 /* Break COW */
878 set_huge_pte_at(mm, address, ptep,
879 make_huge_pte(vma, new_page, 1));
880 /* Make the old page be freed below */
881 new_page = old_page;
882 }
883 page_cache_release(new_page);
884 page_cache_release(old_page);
83c54070 885 return 0;
1e8f889b
DG
886}
887
a1ed3dda 888static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 889 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
890{
891 int ret = VM_FAULT_SIGBUS;
4c887265
AL
892 unsigned long idx;
893 unsigned long size;
4c887265
AL
894 struct page *page;
895 struct address_space *mapping;
1e8f889b 896 pte_t new_pte;
4c887265 897
4c887265
AL
898 mapping = vma->vm_file->f_mapping;
899 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
900 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
901
902 /*
903 * Use page lock to guard against racing truncation
904 * before we get page_table_lock.
905 */
6bda666a
CL
906retry:
907 page = find_lock_page(mapping, idx);
908 if (!page) {
ebed4bfc
HD
909 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
910 if (idx >= size)
911 goto out;
6bda666a 912 page = alloc_huge_page(vma, address);
2fc39cec
AL
913 if (IS_ERR(page)) {
914 ret = -PTR_ERR(page);
6bda666a
CL
915 goto out;
916 }
79ac6ba4 917 clear_huge_page(page, address);
0ed361de 918 __SetPageUptodate(page);
ac9b9c66 919
6bda666a
CL
920 if (vma->vm_flags & VM_SHARED) {
921 int err;
45c682a6 922 struct inode *inode = mapping->host;
6bda666a
CL
923
924 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
925 if (err) {
926 put_page(page);
6bda666a
CL
927 if (err == -EEXIST)
928 goto retry;
929 goto out;
930 }
45c682a6
KC
931
932 spin_lock(&inode->i_lock);
933 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
934 spin_unlock(&inode->i_lock);
6bda666a
CL
935 } else
936 lock_page(page);
937 }
1e8f889b 938
ac9b9c66 939 spin_lock(&mm->page_table_lock);
4c887265
AL
940 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
941 if (idx >= size)
942 goto backout;
943
83c54070 944 ret = 0;
86e5216f 945 if (!pte_none(*ptep))
4c887265
AL
946 goto backout;
947
1e8f889b
DG
948 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
949 && (vma->vm_flags & VM_SHARED)));
950 set_huge_pte_at(mm, address, ptep, new_pte);
951
952 if (write_access && !(vma->vm_flags & VM_SHARED)) {
953 /* Optimization, do the COW without a second fault */
954 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
955 }
956
ac9b9c66 957 spin_unlock(&mm->page_table_lock);
4c887265
AL
958 unlock_page(page);
959out:
ac9b9c66 960 return ret;
4c887265
AL
961
962backout:
963 spin_unlock(&mm->page_table_lock);
4c887265
AL
964 unlock_page(page);
965 put_page(page);
966 goto out;
ac9b9c66
HD
967}
968
86e5216f
AL
969int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
970 unsigned long address, int write_access)
971{
972 pte_t *ptep;
973 pte_t entry;
1e8f889b 974 int ret;
3935baa9 975 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
86e5216f
AL
976
977 ptep = huge_pte_alloc(mm, address);
978 if (!ptep)
979 return VM_FAULT_OOM;
980
3935baa9
DG
981 /*
982 * Serialize hugepage allocation and instantiation, so that we don't
983 * get spurious allocation failures if two CPUs race to instantiate
984 * the same page in the page cache.
985 */
986 mutex_lock(&hugetlb_instantiation_mutex);
86e5216f 987 entry = *ptep;
3935baa9
DG
988 if (pte_none(entry)) {
989 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
990 mutex_unlock(&hugetlb_instantiation_mutex);
991 return ret;
992 }
86e5216f 993
83c54070 994 ret = 0;
1e8f889b
DG
995
996 spin_lock(&mm->page_table_lock);
997 /* Check for a racing update before calling hugetlb_cow */
998 if (likely(pte_same(entry, *ptep)))
999 if (write_access && !pte_write(entry))
1000 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1001 spin_unlock(&mm->page_table_lock);
3935baa9 1002 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
1003
1004 return ret;
86e5216f
AL
1005}
1006
63551ae0
DG
1007int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1008 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
1009 unsigned long *position, int *length, int i,
1010 int write)
63551ae0 1011{
d5d4b0aa
KC
1012 unsigned long pfn_offset;
1013 unsigned long vaddr = *position;
63551ae0
DG
1014 int remainder = *length;
1015
1c59827d 1016 spin_lock(&mm->page_table_lock);
63551ae0 1017 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
1018 pte_t *pte;
1019 struct page *page;
63551ae0 1020
4c887265
AL
1021 /*
1022 * Some archs (sparc64, sh*) have multiple pte_ts to
1023 * each hugepage. We have to make * sure we get the
1024 * first, for the page indexing below to work.
1025 */
1026 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 1027
72fad713 1028 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
4c887265 1029 int ret;
63551ae0 1030
4c887265 1031 spin_unlock(&mm->page_table_lock);
5b23dbe8 1032 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 1033 spin_lock(&mm->page_table_lock);
a89182c7 1034 if (!(ret & VM_FAULT_ERROR))
4c887265 1035 continue;
63551ae0 1036
4c887265
AL
1037 remainder = 0;
1038 if (!i)
1039 i = -EFAULT;
1040 break;
1041 }
1042
d5d4b0aa
KC
1043 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1044 page = pte_page(*pte);
1045same_page:
d6692183
KC
1046 if (pages) {
1047 get_page(page);
d5d4b0aa 1048 pages[i] = page + pfn_offset;
d6692183 1049 }
63551ae0
DG
1050
1051 if (vmas)
1052 vmas[i] = vma;
1053
1054 vaddr += PAGE_SIZE;
d5d4b0aa 1055 ++pfn_offset;
63551ae0
DG
1056 --remainder;
1057 ++i;
d5d4b0aa
KC
1058 if (vaddr < vma->vm_end && remainder &&
1059 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1060 /*
1061 * We use pfn_offset to avoid touching the pageframes
1062 * of this compound page.
1063 */
1064 goto same_page;
1065 }
63551ae0 1066 }
1c59827d 1067 spin_unlock(&mm->page_table_lock);
63551ae0
DG
1068 *length = remainder;
1069 *position = vaddr;
1070
1071 return i;
1072}
8f860591
ZY
1073
1074void hugetlb_change_protection(struct vm_area_struct *vma,
1075 unsigned long address, unsigned long end, pgprot_t newprot)
1076{
1077 struct mm_struct *mm = vma->vm_mm;
1078 unsigned long start = address;
1079 pte_t *ptep;
1080 pte_t pte;
1081
1082 BUG_ON(address >= end);
1083 flush_cache_range(vma, address, end);
1084
39dde65c 1085 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1086 spin_lock(&mm->page_table_lock);
1087 for (; address < end; address += HPAGE_SIZE) {
1088 ptep = huge_pte_offset(mm, address);
1089 if (!ptep)
1090 continue;
39dde65c
KC
1091 if (huge_pmd_unshare(mm, &address, ptep))
1092 continue;
8f860591
ZY
1093 if (!pte_none(*ptep)) {
1094 pte = huge_ptep_get_and_clear(mm, address, ptep);
1095 pte = pte_mkhuge(pte_modify(pte, newprot));
1096 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
1097 }
1098 }
1099 spin_unlock(&mm->page_table_lock);
39dde65c 1100 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1101
1102 flush_tlb_range(vma, start, end);
1103}
1104
a43a8c39
KC
1105struct file_region {
1106 struct list_head link;
1107 long from;
1108 long to;
1109};
1110
1111static long region_add(struct list_head *head, long f, long t)
1112{
1113 struct file_region *rg, *nrg, *trg;
1114
1115 /* Locate the region we are either in or before. */
1116 list_for_each_entry(rg, head, link)
1117 if (f <= rg->to)
1118 break;
1119
1120 /* Round our left edge to the current segment if it encloses us. */
1121 if (f > rg->from)
1122 f = rg->from;
1123
1124 /* Check for and consume any regions we now overlap with. */
1125 nrg = rg;
1126 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1127 if (&rg->link == head)
1128 break;
1129 if (rg->from > t)
1130 break;
1131
1132 /* If this area reaches higher then extend our area to
1133 * include it completely. If this is not the first area
1134 * which we intend to reuse, free it. */
1135 if (rg->to > t)
1136 t = rg->to;
1137 if (rg != nrg) {
1138 list_del(&rg->link);
1139 kfree(rg);
1140 }
1141 }
1142 nrg->from = f;
1143 nrg->to = t;
1144 return 0;
1145}
1146
1147static long region_chg(struct list_head *head, long f, long t)
1148{
1149 struct file_region *rg, *nrg;
1150 long chg = 0;
1151
1152 /* Locate the region we are before or in. */
1153 list_for_each_entry(rg, head, link)
1154 if (f <= rg->to)
1155 break;
1156
1157 /* If we are below the current region then a new region is required.
1158 * Subtle, allocate a new region at the position but make it zero
183ff22b 1159 * size such that we can guarantee to record the reservation. */
a43a8c39
KC
1160 if (&rg->link == head || t < rg->from) {
1161 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
c80544dc 1162 if (!nrg)
a43a8c39
KC
1163 return -ENOMEM;
1164 nrg->from = f;
1165 nrg->to = f;
1166 INIT_LIST_HEAD(&nrg->link);
1167 list_add(&nrg->link, rg->link.prev);
1168
1169 return t - f;
1170 }
1171
1172 /* Round our left edge to the current segment if it encloses us. */
1173 if (f > rg->from)
1174 f = rg->from;
1175 chg = t - f;
1176
1177 /* Check for and consume any regions we now overlap with. */
1178 list_for_each_entry(rg, rg->link.prev, link) {
1179 if (&rg->link == head)
1180 break;
1181 if (rg->from > t)
1182 return chg;
1183
1184 /* We overlap with this area, if it extends futher than
1185 * us then we must extend ourselves. Account for its
1186 * existing reservation. */
1187 if (rg->to > t) {
1188 chg += rg->to - t;
1189 t = rg->to;
1190 }
1191 chg -= rg->to - rg->from;
1192 }
1193 return chg;
1194}
1195
1196static long region_truncate(struct list_head *head, long end)
1197{
1198 struct file_region *rg, *trg;
1199 long chg = 0;
1200
1201 /* Locate the region we are either in or before. */
1202 list_for_each_entry(rg, head, link)
1203 if (end <= rg->to)
1204 break;
1205 if (&rg->link == head)
1206 return 0;
1207
1208 /* If we are in the middle of a region then adjust it. */
1209 if (end > rg->from) {
1210 chg = rg->to - end;
1211 rg->to = end;
1212 rg = list_entry(rg->link.next, typeof(*rg), link);
1213 }
1214
1215 /* Drop any remaining regions. */
1216 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1217 if (&rg->link == head)
1218 break;
1219 chg += rg->to - rg->from;
1220 list_del(&rg->link);
1221 kfree(rg);
1222 }
1223 return chg;
1224}
1225
1226static int hugetlb_acct_memory(long delta)
1227{
1228 int ret = -ENOMEM;
1229
1230 spin_lock(&hugetlb_lock);
8a630112
KC
1231 /*
1232 * When cpuset is configured, it breaks the strict hugetlb page
1233 * reservation as the accounting is done on a global variable. Such
1234 * reservation is completely rubbish in the presence of cpuset because
1235 * the reservation is not checked against page availability for the
1236 * current cpuset. Application can still potentially OOM'ed by kernel
1237 * with lack of free htlb page in cpuset that the task is in.
1238 * Attempt to enforce strict accounting with cpuset is almost
1239 * impossible (or too ugly) because cpuset is too fluid that
1240 * task or memory node can be dynamically moved between cpusets.
1241 *
1242 * The change of semantics for shared hugetlb mapping with cpuset is
1243 * undesirable. However, in order to preserve some of the semantics,
1244 * we fall back to check against current free page availability as
1245 * a best attempt and hopefully to minimize the impact of changing
1246 * semantics that cpuset has.
1247 */
e4e574b7
AL
1248 if (delta > 0) {
1249 if (gather_surplus_pages(delta) < 0)
1250 goto out;
1251
ac09b3a1
AL
1252 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1253 return_unused_surplus_pages(delta);
e4e574b7 1254 goto out;
ac09b3a1 1255 }
e4e574b7
AL
1256 }
1257
1258 ret = 0;
e4e574b7
AL
1259 if (delta < 0)
1260 return_unused_surplus_pages((unsigned long) -delta);
1261
1262out:
1263 spin_unlock(&hugetlb_lock);
1264 return ret;
1265}
1266
1267int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1268{
1269 long ret, chg;
1270
1271 chg = region_chg(&inode->i_mapping->private_list, from, to);
1272 if (chg < 0)
1273 return chg;
8a630112 1274
90d8b7e6
AL
1275 if (hugetlb_get_quota(inode->i_mapping, chg))
1276 return -ENOSPC;
a43a8c39 1277 ret = hugetlb_acct_memory(chg);
68842c9b
KC
1278 if (ret < 0) {
1279 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 1280 return ret;
68842c9b 1281 }
a43a8c39
KC
1282 region_add(&inode->i_mapping->private_list, from, to);
1283 return 0;
1284}
1285
1286void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1287{
1288 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
1289
1290 spin_lock(&inode->i_lock);
1291 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1292 spin_unlock(&inode->i_lock);
1293
90d8b7e6
AL
1294 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1295 hugetlb_acct_memory(-(chg - freed));
a43a8c39 1296}