]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/filemap.c
[PATCH] FRV: Clean up bootmem allocator's page freeing algorithm
[net-next-2.6.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/config.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/compiler.h>
16#include <linux/fs.h>
17#include <linux/aio.h>
18#include <linux/kernel_stat.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
ceffc078 31#include "filemap.h"
1da177e4 32/*
1da177e4
LT
33 * FIXME: remove all knowledge of the buffer layer from the core VM
34 */
35#include <linux/buffer_head.h> /* for generic_osync_inode */
36
37#include <asm/uaccess.h>
38#include <asm/mman.h>
39
5ce7852c
AB
40static ssize_t
41generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
42 loff_t offset, unsigned long nr_segs);
43
1da177e4
LT
44/*
45 * Shared mappings implemented 30.11.1994. It's not fully working yet,
46 * though.
47 *
48 * Shared mappings now work. 15.8.1995 Bruno.
49 *
50 * finished 'unifying' the page and buffer cache and SMP-threaded the
51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
52 *
53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
54 */
55
56/*
57 * Lock ordering:
58 *
59 * ->i_mmap_lock (vmtruncate)
60 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
61 * ->swap_lock (exclusive_swap_page, others)
62 * ->mapping->tree_lock
1da177e4
LT
63 *
64 * ->i_sem
65 * ->i_mmap_lock (truncate->unmap_mapping_range)
66 *
67 * ->mmap_sem
68 * ->i_mmap_lock
b8072f09 69 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
70 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
71 *
72 * ->mmap_sem
73 * ->lock_page (access_process_vm)
74 *
75 * ->mmap_sem
76 * ->i_sem (msync)
77 *
78 * ->i_sem
79 * ->i_alloc_sem (various)
80 *
81 * ->inode_lock
82 * ->sb_lock (fs/fs-writeback.c)
83 * ->mapping->tree_lock (__sync_single_inode)
84 *
85 * ->i_mmap_lock
86 * ->anon_vma.lock (vma_adjust)
87 *
88 * ->anon_vma.lock
b8072f09 89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 90 *
b8072f09 91 * ->page_table_lock or pte_lock
5d337b91 92 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * ->inode_lock (page_remove_rmap->set_page_dirty)
99 * ->inode_lock (zap_pte_range->set_page_dirty)
100 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
101 *
102 * ->task->proc_lock
103 * ->dcache_lock (proc_pid_lookup)
104 */
105
106/*
107 * Remove a page from the page cache and free it. Caller has to make
108 * sure the page is locked and that nobody else uses it - or that usage
109 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
110 */
111void __remove_from_page_cache(struct page *page)
112{
113 struct address_space *mapping = page->mapping;
114
115 radix_tree_delete(&mapping->page_tree, page->index);
116 page->mapping = NULL;
117 mapping->nrpages--;
118 pagecache_acct(-1);
119}
120
121void remove_from_page_cache(struct page *page)
122{
123 struct address_space *mapping = page->mapping;
124
cd7619d6 125 BUG_ON(!PageLocked(page));
1da177e4
LT
126
127 write_lock_irq(&mapping->tree_lock);
128 __remove_from_page_cache(page);
129 write_unlock_irq(&mapping->tree_lock);
130}
131
132static int sync_page(void *word)
133{
134 struct address_space *mapping;
135 struct page *page;
136
07808b74 137 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
138
139 /*
dd1d5afc
WLII
140 * page_mapping() is being called without PG_locked held.
141 * Some knowledge of the state and use of the page is used to
142 * reduce the requirements down to a memory barrier.
143 * The danger here is of a stale page_mapping() return value
144 * indicating a struct address_space different from the one it's
145 * associated with when it is associated with one.
146 * After smp_mb(), it's either the correct page_mapping() for
147 * the page, or an old page_mapping() and the page's own
148 * page_mapping() has gone NULL.
149 * The ->sync_page() address_space operation must tolerate
150 * page_mapping() going NULL. By an amazing coincidence,
151 * this comes about because none of the users of the page
152 * in the ->sync_page() methods make essential use of the
153 * page_mapping(), merely passing the page down to the backing
154 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 155 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
156 * of interest. When page_mapping() does go NULL, the entire
157 * call stack gracefully ignores the page and returns.
158 * -- wli
1da177e4
LT
159 */
160 smp_mb();
161 mapping = page_mapping(page);
162 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
163 mapping->a_ops->sync_page(page);
164 io_schedule();
165 return 0;
166}
167
168/**
169 * filemap_fdatawrite_range - start writeback against all of a mapping's
170 * dirty pages that lie within the byte offsets <start, end>
67be2dd1
MW
171 * @mapping: address space structure to write
172 * @start: offset in bytes where the range starts
173 * @end: offset in bytes where the range ends
174 * @sync_mode: enable synchronous operation
1da177e4
LT
175 *
176 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
177 * opposed to a regular memory * cleansing writeback. The difference between
178 * these two operations is that if a dirty page/buffer is encountered, it must
179 * be waited upon, and not just skipped over.
180 */
181static int __filemap_fdatawrite_range(struct address_space *mapping,
182 loff_t start, loff_t end, int sync_mode)
183{
184 int ret;
185 struct writeback_control wbc = {
186 .sync_mode = sync_mode,
187 .nr_to_write = mapping->nrpages * 2,
188 .start = start,
189 .end = end,
190 };
191
192 if (!mapping_cap_writeback_dirty(mapping))
193 return 0;
194
195 ret = do_writepages(mapping, &wbc);
196 return ret;
197}
198
199static inline int __filemap_fdatawrite(struct address_space *mapping,
200 int sync_mode)
201{
202 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
203}
204
205int filemap_fdatawrite(struct address_space *mapping)
206{
207 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
208}
209EXPORT_SYMBOL(filemap_fdatawrite);
210
211static int filemap_fdatawrite_range(struct address_space *mapping,
212 loff_t start, loff_t end)
213{
214 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
215}
216
217/*
218 * This is a mostly non-blocking flush. Not suitable for data-integrity
219 * purposes - I/O may not be started against all dirty pages.
220 */
221int filemap_flush(struct address_space *mapping)
222{
223 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
224}
225EXPORT_SYMBOL(filemap_flush);
226
227/*
228 * Wait for writeback to complete against pages indexed by start->end
229 * inclusive
230 */
231static int wait_on_page_writeback_range(struct address_space *mapping,
232 pgoff_t start, pgoff_t end)
233{
234 struct pagevec pvec;
235 int nr_pages;
236 int ret = 0;
237 pgoff_t index;
238
239 if (end < start)
240 return 0;
241
242 pagevec_init(&pvec, 0);
243 index = start;
244 while ((index <= end) &&
245 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
246 PAGECACHE_TAG_WRITEBACK,
247 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
248 unsigned i;
249
250 for (i = 0; i < nr_pages; i++) {
251 struct page *page = pvec.pages[i];
252
253 /* until radix tree lookup accepts end_index */
254 if (page->index > end)
255 continue;
256
257 wait_on_page_writeback(page);
258 if (PageError(page))
259 ret = -EIO;
260 }
261 pagevec_release(&pvec);
262 cond_resched();
263 }
264
265 /* Check for outstanding write errors */
266 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
267 ret = -ENOSPC;
268 if (test_and_clear_bit(AS_EIO, &mapping->flags))
269 ret = -EIO;
270
271 return ret;
272}
273
274/*
275 * Write and wait upon all the pages in the passed range. This is a "data
276 * integrity" operation. It waits upon in-flight writeout before starting and
277 * waiting upon new writeout. If there was an IO error, return it.
278 *
279 * We need to re-take i_sem during the generic_osync_inode list walk because
280 * it is otherwise livelockable.
281 */
282int sync_page_range(struct inode *inode, struct address_space *mapping,
283 loff_t pos, size_t count)
284{
285 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
286 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
287 int ret;
288
289 if (!mapping_cap_writeback_dirty(mapping) || !count)
290 return 0;
291 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
292 if (ret == 0) {
293 down(&inode->i_sem);
294 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
295 up(&inode->i_sem);
296 }
297 if (ret == 0)
298 ret = wait_on_page_writeback_range(mapping, start, end);
299 return ret;
300}
301EXPORT_SYMBOL(sync_page_range);
302
303/*
304 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
305 * as it forces O_SYNC writers to different parts of the same file
306 * to be serialised right until io completion.
307 */
5ce7852c
AB
308static int sync_page_range_nolock(struct inode *inode,
309 struct address_space *mapping,
310 loff_t pos, size_t count)
1da177e4
LT
311{
312 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
313 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
314 int ret;
315
316 if (!mapping_cap_writeback_dirty(mapping) || !count)
317 return 0;
318 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
319 if (ret == 0)
320 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
321 if (ret == 0)
322 ret = wait_on_page_writeback_range(mapping, start, end);
323 return ret;
324}
1da177e4
LT
325
326/**
327 * filemap_fdatawait - walk the list of under-writeback pages of the given
328 * address space and wait for all of them.
329 *
330 * @mapping: address space structure to wait for
331 */
332int filemap_fdatawait(struct address_space *mapping)
333{
334 loff_t i_size = i_size_read(mapping->host);
335
336 if (i_size == 0)
337 return 0;
338
339 return wait_on_page_writeback_range(mapping, 0,
340 (i_size - 1) >> PAGE_CACHE_SHIFT);
341}
342EXPORT_SYMBOL(filemap_fdatawait);
343
344int filemap_write_and_wait(struct address_space *mapping)
345{
346 int retval = 0;
347
348 if (mapping->nrpages) {
349 retval = filemap_fdatawrite(mapping);
350 if (retval == 0)
351 retval = filemap_fdatawait(mapping);
352 }
353 return retval;
354}
355
356int filemap_write_and_wait_range(struct address_space *mapping,
357 loff_t lstart, loff_t lend)
358{
359 int retval = 0;
360
361 if (mapping->nrpages) {
362 retval = __filemap_fdatawrite_range(mapping, lstart, lend,
363 WB_SYNC_ALL);
364 if (retval == 0)
365 retval = wait_on_page_writeback_range(mapping,
366 lstart >> PAGE_CACHE_SHIFT,
367 lend >> PAGE_CACHE_SHIFT);
368 }
369 return retval;
370}
371
372/*
373 * This function is used to add newly allocated pagecache pages:
374 * the page is new, so we can just run SetPageLocked() against it.
375 * The other page state flags were set by rmqueue().
376 *
377 * This function does not add the page to the LRU. The caller must do that.
378 */
379int add_to_page_cache(struct page *page, struct address_space *mapping,
6daa0e28 380 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
381{
382 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
383
384 if (error == 0) {
385 write_lock_irq(&mapping->tree_lock);
386 error = radix_tree_insert(&mapping->page_tree, offset, page);
387 if (!error) {
388 page_cache_get(page);
389 SetPageLocked(page);
390 page->mapping = mapping;
391 page->index = offset;
392 mapping->nrpages++;
393 pagecache_acct(1);
394 }
395 write_unlock_irq(&mapping->tree_lock);
396 radix_tree_preload_end();
397 }
398 return error;
399}
400
401EXPORT_SYMBOL(add_to_page_cache);
402
403int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 404 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
405{
406 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
407 if (ret == 0)
408 lru_cache_add(page);
409 return ret;
410}
411
412/*
413 * In order to wait for pages to become available there must be
414 * waitqueues associated with pages. By using a hash table of
415 * waitqueues where the bucket discipline is to maintain all
416 * waiters on the same queue and wake all when any of the pages
417 * become available, and for the woken contexts to check to be
418 * sure the appropriate page became available, this saves space
419 * at a cost of "thundering herd" phenomena during rare hash
420 * collisions.
421 */
422static wait_queue_head_t *page_waitqueue(struct page *page)
423{
424 const struct zone *zone = page_zone(page);
425
426 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
427}
428
429static inline void wake_up_page(struct page *page, int bit)
430{
431 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
432}
433
434void fastcall wait_on_page_bit(struct page *page, int bit_nr)
435{
436 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
437
438 if (test_bit(bit_nr, &page->flags))
439 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
440 TASK_UNINTERRUPTIBLE);
441}
442EXPORT_SYMBOL(wait_on_page_bit);
443
444/**
445 * unlock_page() - unlock a locked page
446 *
447 * @page: the page
448 *
449 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
450 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
451 * mechananism between PageLocked pages and PageWriteback pages is shared.
452 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
453 *
454 * The first mb is necessary to safely close the critical section opened by the
455 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
456 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
457 * parallel wait_on_page_locked()).
458 */
459void fastcall unlock_page(struct page *page)
460{
461 smp_mb__before_clear_bit();
462 if (!TestClearPageLocked(page))
463 BUG();
464 smp_mb__after_clear_bit();
465 wake_up_page(page, PG_locked);
466}
467EXPORT_SYMBOL(unlock_page);
468
469/*
470 * End writeback against a page.
471 */
472void end_page_writeback(struct page *page)
473{
474 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
475 if (!test_clear_page_writeback(page))
476 BUG();
477 }
478 smp_mb__after_clear_bit();
479 wake_up_page(page, PG_writeback);
480}
481EXPORT_SYMBOL(end_page_writeback);
482
483/*
484 * Get a lock on the page, assuming we need to sleep to get it.
485 *
486 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
487 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
488 * chances are that on the second loop, the block layer's plug list is empty,
489 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
490 */
491void fastcall __lock_page(struct page *page)
492{
493 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
494
495 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
496 TASK_UNINTERRUPTIBLE);
497}
498EXPORT_SYMBOL(__lock_page);
499
500/*
501 * a rather lightweight function, finding and getting a reference to a
502 * hashed page atomically.
503 */
504struct page * find_get_page(struct address_space *mapping, unsigned long offset)
505{
506 struct page *page;
507
508 read_lock_irq(&mapping->tree_lock);
509 page = radix_tree_lookup(&mapping->page_tree, offset);
510 if (page)
511 page_cache_get(page);
512 read_unlock_irq(&mapping->tree_lock);
513 return page;
514}
515
516EXPORT_SYMBOL(find_get_page);
517
518/*
519 * Same as above, but trylock it instead of incrementing the count.
520 */
521struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
522{
523 struct page *page;
524
525 read_lock_irq(&mapping->tree_lock);
526 page = radix_tree_lookup(&mapping->page_tree, offset);
527 if (page && TestSetPageLocked(page))
528 page = NULL;
529 read_unlock_irq(&mapping->tree_lock);
530 return page;
531}
532
533EXPORT_SYMBOL(find_trylock_page);
534
535/**
536 * find_lock_page - locate, pin and lock a pagecache page
537 *
67be2dd1
MW
538 * @mapping: the address_space to search
539 * @offset: the page index
1da177e4
LT
540 *
541 * Locates the desired pagecache page, locks it, increments its reference
542 * count and returns its address.
543 *
544 * Returns zero if the page was not present. find_lock_page() may sleep.
545 */
546struct page *find_lock_page(struct address_space *mapping,
547 unsigned long offset)
548{
549 struct page *page;
550
551 read_lock_irq(&mapping->tree_lock);
552repeat:
553 page = radix_tree_lookup(&mapping->page_tree, offset);
554 if (page) {
555 page_cache_get(page);
556 if (TestSetPageLocked(page)) {
557 read_unlock_irq(&mapping->tree_lock);
558 lock_page(page);
559 read_lock_irq(&mapping->tree_lock);
560
561 /* Has the page been truncated while we slept? */
562 if (page->mapping != mapping || page->index != offset) {
563 unlock_page(page);
564 page_cache_release(page);
565 goto repeat;
566 }
567 }
568 }
569 read_unlock_irq(&mapping->tree_lock);
570 return page;
571}
572
573EXPORT_SYMBOL(find_lock_page);
574
575/**
576 * find_or_create_page - locate or add a pagecache page
577 *
67be2dd1
MW
578 * @mapping: the page's address_space
579 * @index: the page's index into the mapping
580 * @gfp_mask: page allocation mode
1da177e4
LT
581 *
582 * Locates a page in the pagecache. If the page is not present, a new page
583 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
584 * LRU list. The returned page is locked and has its reference count
585 * incremented.
586 *
587 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
588 * allocation!
589 *
590 * find_or_create_page() returns the desired page's address, or zero on
591 * memory exhaustion.
592 */
593struct page *find_or_create_page(struct address_space *mapping,
6daa0e28 594 unsigned long index, gfp_t gfp_mask)
1da177e4
LT
595{
596 struct page *page, *cached_page = NULL;
597 int err;
598repeat:
599 page = find_lock_page(mapping, index);
600 if (!page) {
601 if (!cached_page) {
602 cached_page = alloc_page(gfp_mask);
603 if (!cached_page)
604 return NULL;
605 }
606 err = add_to_page_cache_lru(cached_page, mapping,
607 index, gfp_mask);
608 if (!err) {
609 page = cached_page;
610 cached_page = NULL;
611 } else if (err == -EEXIST)
612 goto repeat;
613 }
614 if (cached_page)
615 page_cache_release(cached_page);
616 return page;
617}
618
619EXPORT_SYMBOL(find_or_create_page);
620
621/**
622 * find_get_pages - gang pagecache lookup
623 * @mapping: The address_space to search
624 * @start: The starting page index
625 * @nr_pages: The maximum number of pages
626 * @pages: Where the resulting pages are placed
627 *
628 * find_get_pages() will search for and return a group of up to
629 * @nr_pages pages in the mapping. The pages are placed at @pages.
630 * find_get_pages() takes a reference against the returned pages.
631 *
632 * The search returns a group of mapping-contiguous pages with ascending
633 * indexes. There may be holes in the indices due to not-present pages.
634 *
635 * find_get_pages() returns the number of pages which were found.
636 */
637unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
638 unsigned int nr_pages, struct page **pages)
639{
640 unsigned int i;
641 unsigned int ret;
642
643 read_lock_irq(&mapping->tree_lock);
644 ret = radix_tree_gang_lookup(&mapping->page_tree,
645 (void **)pages, start, nr_pages);
646 for (i = 0; i < ret; i++)
647 page_cache_get(pages[i]);
648 read_unlock_irq(&mapping->tree_lock);
649 return ret;
650}
651
652/*
653 * Like find_get_pages, except we only return pages which are tagged with
654 * `tag'. We update *index to index the next page for the traversal.
655 */
656unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
657 int tag, unsigned int nr_pages, struct page **pages)
658{
659 unsigned int i;
660 unsigned int ret;
661
662 read_lock_irq(&mapping->tree_lock);
663 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
664 (void **)pages, *index, nr_pages, tag);
665 for (i = 0; i < ret; i++)
666 page_cache_get(pages[i]);
667 if (ret)
668 *index = pages[ret - 1]->index + 1;
669 read_unlock_irq(&mapping->tree_lock);
670 return ret;
671}
672
673/*
674 * Same as grab_cache_page, but do not wait if the page is unavailable.
675 * This is intended for speculative data generators, where the data can
676 * be regenerated if the page couldn't be grabbed. This routine should
677 * be safe to call while holding the lock for another page.
678 *
679 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
680 * and deadlock against the caller's locked page.
681 */
682struct page *
683grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
684{
685 struct page *page = find_get_page(mapping, index);
6daa0e28 686 gfp_t gfp_mask;
1da177e4
LT
687
688 if (page) {
689 if (!TestSetPageLocked(page))
690 return page;
691 page_cache_release(page);
692 return NULL;
693 }
694 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
695 page = alloc_pages(gfp_mask, 0);
696 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
697 page_cache_release(page);
698 page = NULL;
699 }
700 return page;
701}
702
703EXPORT_SYMBOL(grab_cache_page_nowait);
704
705/*
706 * This is a generic file read routine, and uses the
707 * mapping->a_ops->readpage() function for the actual low-level
708 * stuff.
709 *
710 * This is really ugly. But the goto's actually try to clarify some
711 * of the logic when it comes to error handling etc.
712 *
713 * Note the struct file* is only passed for the use of readpage. It may be
714 * NULL.
715 */
716void do_generic_mapping_read(struct address_space *mapping,
717 struct file_ra_state *_ra,
718 struct file *filp,
719 loff_t *ppos,
720 read_descriptor_t *desc,
721 read_actor_t actor)
722{
723 struct inode *inode = mapping->host;
724 unsigned long index;
725 unsigned long end_index;
726 unsigned long offset;
727 unsigned long last_index;
728 unsigned long next_index;
729 unsigned long prev_index;
730 loff_t isize;
731 struct page *cached_page;
732 int error;
733 struct file_ra_state ra = *_ra;
734
735 cached_page = NULL;
736 index = *ppos >> PAGE_CACHE_SHIFT;
737 next_index = index;
738 prev_index = ra.prev_page;
739 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
740 offset = *ppos & ~PAGE_CACHE_MASK;
741
742 isize = i_size_read(inode);
743 if (!isize)
744 goto out;
745
746 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
747 for (;;) {
748 struct page *page;
749 unsigned long nr, ret;
750
751 /* nr is the maximum number of bytes to copy from this page */
752 nr = PAGE_CACHE_SIZE;
753 if (index >= end_index) {
754 if (index > end_index)
755 goto out;
756 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
757 if (nr <= offset) {
758 goto out;
759 }
760 }
761 nr = nr - offset;
762
763 cond_resched();
764 if (index == next_index)
765 next_index = page_cache_readahead(mapping, &ra, filp,
766 index, last_index - index);
767
768find_page:
769 page = find_get_page(mapping, index);
770 if (unlikely(page == NULL)) {
771 handle_ra_miss(mapping, &ra, index);
772 goto no_cached_page;
773 }
774 if (!PageUptodate(page))
775 goto page_not_up_to_date;
776page_ok:
777
778 /* If users can be writing to this page using arbitrary
779 * virtual addresses, take care about potential aliasing
780 * before reading the page on the kernel side.
781 */
782 if (mapping_writably_mapped(mapping))
783 flush_dcache_page(page);
784
785 /*
786 * When (part of) the same page is read multiple times
787 * in succession, only mark it as accessed the first time.
788 */
789 if (prev_index != index)
790 mark_page_accessed(page);
791 prev_index = index;
792
793 /*
794 * Ok, we have the page, and it's up-to-date, so
795 * now we can copy it to user space...
796 *
797 * The actor routine returns how many bytes were actually used..
798 * NOTE! This may not be the same as how much of a user buffer
799 * we filled up (we may be padding etc), so we can only update
800 * "pos" here (the actor routine has to update the user buffer
801 * pointers and the remaining count).
802 */
803 ret = actor(desc, page, offset, nr);
804 offset += ret;
805 index += offset >> PAGE_CACHE_SHIFT;
806 offset &= ~PAGE_CACHE_MASK;
807
808 page_cache_release(page);
809 if (ret == nr && desc->count)
810 continue;
811 goto out;
812
813page_not_up_to_date:
814 /* Get exclusive access to the page ... */
815 lock_page(page);
816
817 /* Did it get unhashed before we got the lock? */
818 if (!page->mapping) {
819 unlock_page(page);
820 page_cache_release(page);
821 continue;
822 }
823
824 /* Did somebody else fill it already? */
825 if (PageUptodate(page)) {
826 unlock_page(page);
827 goto page_ok;
828 }
829
830readpage:
831 /* Start the actual read. The read will unlock the page. */
832 error = mapping->a_ops->readpage(filp, page);
833
994fc28c
ZB
834 if (unlikely(error)) {
835 if (error == AOP_TRUNCATED_PAGE) {
836 page_cache_release(page);
837 goto find_page;
838 }
1da177e4 839 goto readpage_error;
994fc28c 840 }
1da177e4
LT
841
842 if (!PageUptodate(page)) {
843 lock_page(page);
844 if (!PageUptodate(page)) {
845 if (page->mapping == NULL) {
846 /*
847 * invalidate_inode_pages got it
848 */
849 unlock_page(page);
850 page_cache_release(page);
851 goto find_page;
852 }
853 unlock_page(page);
854 error = -EIO;
855 goto readpage_error;
856 }
857 unlock_page(page);
858 }
859
860 /*
861 * i_size must be checked after we have done ->readpage.
862 *
863 * Checking i_size after the readpage allows us to calculate
864 * the correct value for "nr", which means the zero-filled
865 * part of the page is not copied back to userspace (unless
866 * another truncate extends the file - this is desired though).
867 */
868 isize = i_size_read(inode);
869 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
870 if (unlikely(!isize || index > end_index)) {
871 page_cache_release(page);
872 goto out;
873 }
874
875 /* nr is the maximum number of bytes to copy from this page */
876 nr = PAGE_CACHE_SIZE;
877 if (index == end_index) {
878 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
879 if (nr <= offset) {
880 page_cache_release(page);
881 goto out;
882 }
883 }
884 nr = nr - offset;
885 goto page_ok;
886
887readpage_error:
888 /* UHHUH! A synchronous read error occurred. Report it */
889 desc->error = error;
890 page_cache_release(page);
891 goto out;
892
893no_cached_page:
894 /*
895 * Ok, it wasn't cached, so we need to create a new
896 * page..
897 */
898 if (!cached_page) {
899 cached_page = page_cache_alloc_cold(mapping);
900 if (!cached_page) {
901 desc->error = -ENOMEM;
902 goto out;
903 }
904 }
905 error = add_to_page_cache_lru(cached_page, mapping,
906 index, GFP_KERNEL);
907 if (error) {
908 if (error == -EEXIST)
909 goto find_page;
910 desc->error = error;
911 goto out;
912 }
913 page = cached_page;
914 cached_page = NULL;
915 goto readpage;
916 }
917
918out:
919 *_ra = ra;
920
921 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
922 if (cached_page)
923 page_cache_release(cached_page);
924 if (filp)
925 file_accessed(filp);
926}
927
928EXPORT_SYMBOL(do_generic_mapping_read);
929
930int file_read_actor(read_descriptor_t *desc, struct page *page,
931 unsigned long offset, unsigned long size)
932{
933 char *kaddr;
934 unsigned long left, count = desc->count;
935
936 if (size > count)
937 size = count;
938
939 /*
940 * Faults on the destination of a read are common, so do it before
941 * taking the kmap.
942 */
943 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
944 kaddr = kmap_atomic(page, KM_USER0);
945 left = __copy_to_user_inatomic(desc->arg.buf,
946 kaddr + offset, size);
947 kunmap_atomic(kaddr, KM_USER0);
948 if (left == 0)
949 goto success;
950 }
951
952 /* Do it the slow way */
953 kaddr = kmap(page);
954 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
955 kunmap(page);
956
957 if (left) {
958 size -= left;
959 desc->error = -EFAULT;
960 }
961success:
962 desc->count = count - size;
963 desc->written += size;
964 desc->arg.buf += size;
965 return size;
966}
967
968/*
969 * This is the "read()" routine for all filesystems
970 * that can use the page cache directly.
971 */
972ssize_t
973__generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
974 unsigned long nr_segs, loff_t *ppos)
975{
976 struct file *filp = iocb->ki_filp;
977 ssize_t retval;
978 unsigned long seg;
979 size_t count;
980
981 count = 0;
982 for (seg = 0; seg < nr_segs; seg++) {
983 const struct iovec *iv = &iov[seg];
984
985 /*
986 * If any segment has a negative length, or the cumulative
987 * length ever wraps negative then return -EINVAL.
988 */
989 count += iv->iov_len;
990 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
991 return -EINVAL;
992 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
993 continue;
994 if (seg == 0)
995 return -EFAULT;
996 nr_segs = seg;
997 count -= iv->iov_len; /* This segment is no good */
998 break;
999 }
1000
1001 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1002 if (filp->f_flags & O_DIRECT) {
1003 loff_t pos = *ppos, size;
1004 struct address_space *mapping;
1005 struct inode *inode;
1006
1007 mapping = filp->f_mapping;
1008 inode = mapping->host;
1009 retval = 0;
1010 if (!count)
1011 goto out; /* skip atime */
1012 size = i_size_read(inode);
1013 if (pos < size) {
1014 retval = generic_file_direct_IO(READ, iocb,
1015 iov, pos, nr_segs);
b5c44c21 1016 if (retval > 0 && !is_sync_kiocb(iocb))
1da177e4
LT
1017 retval = -EIOCBQUEUED;
1018 if (retval > 0)
1019 *ppos = pos + retval;
1020 }
1021 file_accessed(filp);
1022 goto out;
1023 }
1024
1025 retval = 0;
1026 if (count) {
1027 for (seg = 0; seg < nr_segs; seg++) {
1028 read_descriptor_t desc;
1029
1030 desc.written = 0;
1031 desc.arg.buf = iov[seg].iov_base;
1032 desc.count = iov[seg].iov_len;
1033 if (desc.count == 0)
1034 continue;
1035 desc.error = 0;
1036 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1037 retval += desc.written;
39e88ca2
TH
1038 if (desc.error) {
1039 retval = retval ?: desc.error;
1da177e4
LT
1040 break;
1041 }
1042 }
1043 }
1044out:
1045 return retval;
1046}
1047
1048EXPORT_SYMBOL(__generic_file_aio_read);
1049
1050ssize_t
1051generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1052{
1053 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1054
1055 BUG_ON(iocb->ki_pos != pos);
1056 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1057}
1058
1059EXPORT_SYMBOL(generic_file_aio_read);
1060
1061ssize_t
1062generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1063{
1064 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1065 struct kiocb kiocb;
1066 ssize_t ret;
1067
1068 init_sync_kiocb(&kiocb, filp);
1069 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1070 if (-EIOCBQUEUED == ret)
1071 ret = wait_on_sync_kiocb(&kiocb);
1072 return ret;
1073}
1074
1075EXPORT_SYMBOL(generic_file_read);
1076
1077int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1078{
1079 ssize_t written;
1080 unsigned long count = desc->count;
1081 struct file *file = desc->arg.data;
1082
1083 if (size > count)
1084 size = count;
1085
1086 written = file->f_op->sendpage(file, page, offset,
1087 size, &file->f_pos, size<count);
1088 if (written < 0) {
1089 desc->error = written;
1090 written = 0;
1091 }
1092 desc->count = count - written;
1093 desc->written += written;
1094 return written;
1095}
1096
1097ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1098 size_t count, read_actor_t actor, void *target)
1099{
1100 read_descriptor_t desc;
1101
1102 if (!count)
1103 return 0;
1104
1105 desc.written = 0;
1106 desc.count = count;
1107 desc.arg.data = target;
1108 desc.error = 0;
1109
1110 do_generic_file_read(in_file, ppos, &desc, actor);
1111 if (desc.written)
1112 return desc.written;
1113 return desc.error;
1114}
1115
1116EXPORT_SYMBOL(generic_file_sendfile);
1117
1118static ssize_t
1119do_readahead(struct address_space *mapping, struct file *filp,
1120 unsigned long index, unsigned long nr)
1121{
1122 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1123 return -EINVAL;
1124
1125 force_page_cache_readahead(mapping, filp, index,
1126 max_sane_readahead(nr));
1127 return 0;
1128}
1129
1130asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1131{
1132 ssize_t ret;
1133 struct file *file;
1134
1135 ret = -EBADF;
1136 file = fget(fd);
1137 if (file) {
1138 if (file->f_mode & FMODE_READ) {
1139 struct address_space *mapping = file->f_mapping;
1140 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1141 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1142 unsigned long len = end - start + 1;
1143 ret = do_readahead(mapping, file, start, len);
1144 }
1145 fput(file);
1146 }
1147 return ret;
1148}
1149
1150#ifdef CONFIG_MMU
1151/*
1152 * This adds the requested page to the page cache if it isn't already there,
1153 * and schedules an I/O to read in its contents from disk.
1154 */
1155static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1156static int fastcall page_cache_read(struct file * file, unsigned long offset)
1157{
1158 struct address_space *mapping = file->f_mapping;
1159 struct page *page;
994fc28c 1160 int ret;
1da177e4 1161
994fc28c
ZB
1162 do {
1163 page = page_cache_alloc_cold(mapping);
1164 if (!page)
1165 return -ENOMEM;
1166
1167 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1168 if (ret == 0)
1169 ret = mapping->a_ops->readpage(file, page);
1170 else if (ret == -EEXIST)
1171 ret = 0; /* losing race to add is OK */
1da177e4 1172
1da177e4 1173 page_cache_release(page);
1da177e4 1174
994fc28c
ZB
1175 } while (ret == AOP_TRUNCATED_PAGE);
1176
1177 return ret;
1da177e4
LT
1178}
1179
1180#define MMAP_LOTSAMISS (100)
1181
1182/*
1183 * filemap_nopage() is invoked via the vma operations vector for a
1184 * mapped memory region to read in file data during a page fault.
1185 *
1186 * The goto's are kind of ugly, but this streamlines the normal case of having
1187 * it in the page cache, and handles the special cases reasonably without
1188 * having a lot of duplicated code.
1189 */
1190struct page *filemap_nopage(struct vm_area_struct *area,
1191 unsigned long address, int *type)
1192{
1193 int error;
1194 struct file *file = area->vm_file;
1195 struct address_space *mapping = file->f_mapping;
1196 struct file_ra_state *ra = &file->f_ra;
1197 struct inode *inode = mapping->host;
1198 struct page *page;
1199 unsigned long size, pgoff;
1200 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1201
1202 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1203
1204retry_all:
1205 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1206 if (pgoff >= size)
1207 goto outside_data_content;
1208
1209 /* If we don't want any read-ahead, don't bother */
1210 if (VM_RandomReadHint(area))
1211 goto no_cached_page;
1212
1213 /*
1214 * The readahead code wants to be told about each and every page
1215 * so it can build and shrink its windows appropriately
1216 *
1217 * For sequential accesses, we use the generic readahead logic.
1218 */
1219 if (VM_SequentialReadHint(area))
1220 page_cache_readahead(mapping, ra, file, pgoff, 1);
1221
1222 /*
1223 * Do we have something in the page cache already?
1224 */
1225retry_find:
1226 page = find_get_page(mapping, pgoff);
1227 if (!page) {
1228 unsigned long ra_pages;
1229
1230 if (VM_SequentialReadHint(area)) {
1231 handle_ra_miss(mapping, ra, pgoff);
1232 goto no_cached_page;
1233 }
1234 ra->mmap_miss++;
1235
1236 /*
1237 * Do we miss much more than hit in this file? If so,
1238 * stop bothering with read-ahead. It will only hurt.
1239 */
1240 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1241 goto no_cached_page;
1242
1243 /*
1244 * To keep the pgmajfault counter straight, we need to
1245 * check did_readaround, as this is an inner loop.
1246 */
1247 if (!did_readaround) {
1248 majmin = VM_FAULT_MAJOR;
1249 inc_page_state(pgmajfault);
1250 }
1251 did_readaround = 1;
1252 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1253 if (ra_pages) {
1254 pgoff_t start = 0;
1255
1256 if (pgoff > ra_pages / 2)
1257 start = pgoff - ra_pages / 2;
1258 do_page_cache_readahead(mapping, file, start, ra_pages);
1259 }
1260 page = find_get_page(mapping, pgoff);
1261 if (!page)
1262 goto no_cached_page;
1263 }
1264
1265 if (!did_readaround)
1266 ra->mmap_hit++;
1267
1268 /*
1269 * Ok, found a page in the page cache, now we need to check
1270 * that it's up-to-date.
1271 */
1272 if (!PageUptodate(page))
1273 goto page_not_uptodate;
1274
1275success:
1276 /*
1277 * Found the page and have a reference on it.
1278 */
1279 mark_page_accessed(page);
1280 if (type)
1281 *type = majmin;
1282 return page;
1283
1284outside_data_content:
1285 /*
1286 * An external ptracer can access pages that normally aren't
1287 * accessible..
1288 */
1289 if (area->vm_mm == current->mm)
1290 return NULL;
1291 /* Fall through to the non-read-ahead case */
1292no_cached_page:
1293 /*
1294 * We're only likely to ever get here if MADV_RANDOM is in
1295 * effect.
1296 */
1297 error = page_cache_read(file, pgoff);
1298 grab_swap_token();
1299
1300 /*
1301 * The page we want has now been added to the page cache.
1302 * In the unlikely event that someone removed it in the
1303 * meantime, we'll just come back here and read it again.
1304 */
1305 if (error >= 0)
1306 goto retry_find;
1307
1308 /*
1309 * An error return from page_cache_read can result if the
1310 * system is low on memory, or a problem occurs while trying
1311 * to schedule I/O.
1312 */
1313 if (error == -ENOMEM)
1314 return NOPAGE_OOM;
1315 return NULL;
1316
1317page_not_uptodate:
1318 if (!did_readaround) {
1319 majmin = VM_FAULT_MAJOR;
1320 inc_page_state(pgmajfault);
1321 }
1322 lock_page(page);
1323
1324 /* Did it get unhashed while we waited for it? */
1325 if (!page->mapping) {
1326 unlock_page(page);
1327 page_cache_release(page);
1328 goto retry_all;
1329 }
1330
1331 /* Did somebody else get it up-to-date? */
1332 if (PageUptodate(page)) {
1333 unlock_page(page);
1334 goto success;
1335 }
1336
994fc28c
ZB
1337 error = mapping->a_ops->readpage(file, page);
1338 if (!error) {
1da177e4
LT
1339 wait_on_page_locked(page);
1340 if (PageUptodate(page))
1341 goto success;
994fc28c
ZB
1342 } else if (error == AOP_TRUNCATED_PAGE) {
1343 page_cache_release(page);
1344 goto retry_find;
1da177e4
LT
1345 }
1346
1347 /*
1348 * Umm, take care of errors if the page isn't up-to-date.
1349 * Try to re-read it _once_. We do this synchronously,
1350 * because there really aren't any performance issues here
1351 * and we need to check for errors.
1352 */
1353 lock_page(page);
1354
1355 /* Somebody truncated the page on us? */
1356 if (!page->mapping) {
1357 unlock_page(page);
1358 page_cache_release(page);
1359 goto retry_all;
1360 }
1361
1362 /* Somebody else successfully read it in? */
1363 if (PageUptodate(page)) {
1364 unlock_page(page);
1365 goto success;
1366 }
1367 ClearPageError(page);
994fc28c
ZB
1368 error = mapping->a_ops->readpage(file, page);
1369 if (!error) {
1da177e4
LT
1370 wait_on_page_locked(page);
1371 if (PageUptodate(page))
1372 goto success;
994fc28c
ZB
1373 } else if (error == AOP_TRUNCATED_PAGE) {
1374 page_cache_release(page);
1375 goto retry_find;
1da177e4
LT
1376 }
1377
1378 /*
1379 * Things didn't work out. Return zero to tell the
1380 * mm layer so, possibly freeing the page cache page first.
1381 */
1382 page_cache_release(page);
1383 return NULL;
1384}
1385
1386EXPORT_SYMBOL(filemap_nopage);
1387
1388static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1389 int nonblock)
1390{
1391 struct address_space *mapping = file->f_mapping;
1392 struct page *page;
1393 int error;
1394
1395 /*
1396 * Do we have something in the page cache already?
1397 */
1398retry_find:
1399 page = find_get_page(mapping, pgoff);
1400 if (!page) {
1401 if (nonblock)
1402 return NULL;
1403 goto no_cached_page;
1404 }
1405
1406 /*
1407 * Ok, found a page in the page cache, now we need to check
1408 * that it's up-to-date.
1409 */
d3457342
JM
1410 if (!PageUptodate(page)) {
1411 if (nonblock) {
1412 page_cache_release(page);
1413 return NULL;
1414 }
1da177e4 1415 goto page_not_uptodate;
d3457342 1416 }
1da177e4
LT
1417
1418success:
1419 /*
1420 * Found the page and have a reference on it.
1421 */
1422 mark_page_accessed(page);
1423 return page;
1424
1425no_cached_page:
1426 error = page_cache_read(file, pgoff);
1427
1428 /*
1429 * The page we want has now been added to the page cache.
1430 * In the unlikely event that someone removed it in the
1431 * meantime, we'll just come back here and read it again.
1432 */
1433 if (error >= 0)
1434 goto retry_find;
1435
1436 /*
1437 * An error return from page_cache_read can result if the
1438 * system is low on memory, or a problem occurs while trying
1439 * to schedule I/O.
1440 */
1441 return NULL;
1442
1443page_not_uptodate:
1444 lock_page(page);
1445
1446 /* Did it get unhashed while we waited for it? */
1447 if (!page->mapping) {
1448 unlock_page(page);
1449 goto err;
1450 }
1451
1452 /* Did somebody else get it up-to-date? */
1453 if (PageUptodate(page)) {
1454 unlock_page(page);
1455 goto success;
1456 }
1457
994fc28c
ZB
1458 error = mapping->a_ops->readpage(file, page);
1459 if (!error) {
1da177e4
LT
1460 wait_on_page_locked(page);
1461 if (PageUptodate(page))
1462 goto success;
994fc28c
ZB
1463 } else if (error == AOP_TRUNCATED_PAGE) {
1464 page_cache_release(page);
1465 goto retry_find;
1da177e4
LT
1466 }
1467
1468 /*
1469 * Umm, take care of errors if the page isn't up-to-date.
1470 * Try to re-read it _once_. We do this synchronously,
1471 * because there really aren't any performance issues here
1472 * and we need to check for errors.
1473 */
1474 lock_page(page);
1475
1476 /* Somebody truncated the page on us? */
1477 if (!page->mapping) {
1478 unlock_page(page);
1479 goto err;
1480 }
1481 /* Somebody else successfully read it in? */
1482 if (PageUptodate(page)) {
1483 unlock_page(page);
1484 goto success;
1485 }
1486
1487 ClearPageError(page);
994fc28c
ZB
1488 error = mapping->a_ops->readpage(file, page);
1489 if (!error) {
1da177e4
LT
1490 wait_on_page_locked(page);
1491 if (PageUptodate(page))
1492 goto success;
994fc28c
ZB
1493 } else if (error == AOP_TRUNCATED_PAGE) {
1494 page_cache_release(page);
1495 goto retry_find;
1da177e4
LT
1496 }
1497
1498 /*
1499 * Things didn't work out. Return zero to tell the
1500 * mm layer so, possibly freeing the page cache page first.
1501 */
1502err:
1503 page_cache_release(page);
1504
1505 return NULL;
1506}
1507
1508int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1509 unsigned long len, pgprot_t prot, unsigned long pgoff,
1510 int nonblock)
1511{
1512 struct file *file = vma->vm_file;
1513 struct address_space *mapping = file->f_mapping;
1514 struct inode *inode = mapping->host;
1515 unsigned long size;
1516 struct mm_struct *mm = vma->vm_mm;
1517 struct page *page;
1518 int err;
1519
1520 if (!nonblock)
1521 force_page_cache_readahead(mapping, vma->vm_file,
1522 pgoff, len >> PAGE_CACHE_SHIFT);
1523
1524repeat:
1525 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1526 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1527 return -EINVAL;
1528
1529 page = filemap_getpage(file, pgoff, nonblock);
d44ed4f8
PBG
1530
1531 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1532 * done in shmem_populate calling shmem_getpage */
1da177e4
LT
1533 if (!page && !nonblock)
1534 return -ENOMEM;
d44ed4f8 1535
1da177e4
LT
1536 if (page) {
1537 err = install_page(mm, vma, addr, page, prot);
1538 if (err) {
1539 page_cache_release(page);
1540 return err;
1541 }
65500d23 1542 } else if (vma->vm_flags & VM_NONLINEAR) {
d44ed4f8
PBG
1543 /* No page was found just because we can't read it in now (being
1544 * here implies nonblock != 0), but the page may exist, so set
1545 * the PTE to fault it in later. */
1da177e4
LT
1546 err = install_file_pte(mm, vma, addr, pgoff, prot);
1547 if (err)
1548 return err;
1549 }
1550
1551 len -= PAGE_SIZE;
1552 addr += PAGE_SIZE;
1553 pgoff++;
1554 if (len)
1555 goto repeat;
1556
1557 return 0;
1558}
b1459461 1559EXPORT_SYMBOL(filemap_populate);
1da177e4
LT
1560
1561struct vm_operations_struct generic_file_vm_ops = {
1562 .nopage = filemap_nopage,
1563 .populate = filemap_populate,
1564};
1565
1566/* This is used for a general mmap of a disk file */
1567
1568int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1569{
1570 struct address_space *mapping = file->f_mapping;
1571
1572 if (!mapping->a_ops->readpage)
1573 return -ENOEXEC;
1574 file_accessed(file);
1575 vma->vm_ops = &generic_file_vm_ops;
1576 return 0;
1577}
1da177e4
LT
1578
1579/*
1580 * This is for filesystems which do not implement ->writepage.
1581 */
1582int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1583{
1584 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1585 return -EINVAL;
1586 return generic_file_mmap(file, vma);
1587}
1588#else
1589int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1590{
1591 return -ENOSYS;
1592}
1593int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1594{
1595 return -ENOSYS;
1596}
1597#endif /* CONFIG_MMU */
1598
1599EXPORT_SYMBOL(generic_file_mmap);
1600EXPORT_SYMBOL(generic_file_readonly_mmap);
1601
1602static inline struct page *__read_cache_page(struct address_space *mapping,
1603 unsigned long index,
1604 int (*filler)(void *,struct page*),
1605 void *data)
1606{
1607 struct page *page, *cached_page = NULL;
1608 int err;
1609repeat:
1610 page = find_get_page(mapping, index);
1611 if (!page) {
1612 if (!cached_page) {
1613 cached_page = page_cache_alloc_cold(mapping);
1614 if (!cached_page)
1615 return ERR_PTR(-ENOMEM);
1616 }
1617 err = add_to_page_cache_lru(cached_page, mapping,
1618 index, GFP_KERNEL);
1619 if (err == -EEXIST)
1620 goto repeat;
1621 if (err < 0) {
1622 /* Presumably ENOMEM for radix tree node */
1623 page_cache_release(cached_page);
1624 return ERR_PTR(err);
1625 }
1626 page = cached_page;
1627 cached_page = NULL;
1628 err = filler(data, page);
1629 if (err < 0) {
1630 page_cache_release(page);
1631 page = ERR_PTR(err);
1632 }
1633 }
1634 if (cached_page)
1635 page_cache_release(cached_page);
1636 return page;
1637}
1638
1639/*
1640 * Read into the page cache. If a page already exists,
1641 * and PageUptodate() is not set, try to fill the page.
1642 */
1643struct page *read_cache_page(struct address_space *mapping,
1644 unsigned long index,
1645 int (*filler)(void *,struct page*),
1646 void *data)
1647{
1648 struct page *page;
1649 int err;
1650
1651retry:
1652 page = __read_cache_page(mapping, index, filler, data);
1653 if (IS_ERR(page))
1654 goto out;
1655 mark_page_accessed(page);
1656 if (PageUptodate(page))
1657 goto out;
1658
1659 lock_page(page);
1660 if (!page->mapping) {
1661 unlock_page(page);
1662 page_cache_release(page);
1663 goto retry;
1664 }
1665 if (PageUptodate(page)) {
1666 unlock_page(page);
1667 goto out;
1668 }
1669 err = filler(data, page);
1670 if (err < 0) {
1671 page_cache_release(page);
1672 page = ERR_PTR(err);
1673 }
1674 out:
1675 return page;
1676}
1677
1678EXPORT_SYMBOL(read_cache_page);
1679
1680/*
1681 * If the page was newly created, increment its refcount and add it to the
1682 * caller's lru-buffering pagevec. This function is specifically for
1683 * generic_file_write().
1684 */
1685static inline struct page *
1686__grab_cache_page(struct address_space *mapping, unsigned long index,
1687 struct page **cached_page, struct pagevec *lru_pvec)
1688{
1689 int err;
1690 struct page *page;
1691repeat:
1692 page = find_lock_page(mapping, index);
1693 if (!page) {
1694 if (!*cached_page) {
1695 *cached_page = page_cache_alloc(mapping);
1696 if (!*cached_page)
1697 return NULL;
1698 }
1699 err = add_to_page_cache(*cached_page, mapping,
1700 index, GFP_KERNEL);
1701 if (err == -EEXIST)
1702 goto repeat;
1703 if (err == 0) {
1704 page = *cached_page;
1705 page_cache_get(page);
1706 if (!pagevec_add(lru_pvec, page))
1707 __pagevec_lru_add(lru_pvec);
1708 *cached_page = NULL;
1709 }
1710 }
1711 return page;
1712}
1713
1714/*
1715 * The logic we want is
1716 *
1717 * if suid or (sgid and xgrp)
1718 * remove privs
1719 */
1720int remove_suid(struct dentry *dentry)
1721{
1722 mode_t mode = dentry->d_inode->i_mode;
1723 int kill = 0;
1724 int result = 0;
1725
1726 /* suid always must be killed */
1727 if (unlikely(mode & S_ISUID))
1728 kill = ATTR_KILL_SUID;
1729
1730 /*
1731 * sgid without any exec bits is just a mandatory locking mark; leave
1732 * it alone. If some exec bits are set, it's a real sgid; kill it.
1733 */
1734 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1735 kill |= ATTR_KILL_SGID;
1736
1737 if (unlikely(kill && !capable(CAP_FSETID))) {
1738 struct iattr newattrs;
1739
1740 newattrs.ia_valid = ATTR_FORCE | kill;
1741 result = notify_change(dentry, &newattrs);
1742 }
1743 return result;
1744}
1745EXPORT_SYMBOL(remove_suid);
1746
ceffc078 1747size_t
1da177e4
LT
1748__filemap_copy_from_user_iovec(char *vaddr,
1749 const struct iovec *iov, size_t base, size_t bytes)
1750{
1751 size_t copied = 0, left = 0;
1752
1753 while (bytes) {
1754 char __user *buf = iov->iov_base + base;
1755 int copy = min(bytes, iov->iov_len - base);
1756
1757 base = 0;
1758 left = __copy_from_user_inatomic(vaddr, buf, copy);
1759 copied += copy;
1760 bytes -= copy;
1761 vaddr += copy;
1762 iov++;
1763
1764 if (unlikely(left)) {
1765 /* zero the rest of the target like __copy_from_user */
1766 if (bytes)
1767 memset(vaddr, 0, bytes);
1768 break;
1769 }
1770 }
1771 return copied - left;
1772}
1773
1da177e4
LT
1774/*
1775 * Performs necessary checks before doing a write
1776 *
1777 * Can adjust writing position aor amount of bytes to write.
1778 * Returns appropriate error code that caller should return or
1779 * zero in case that write should be allowed.
1780 */
1781inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1782{
1783 struct inode *inode = file->f_mapping->host;
1784 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1785
1786 if (unlikely(*pos < 0))
1787 return -EINVAL;
1788
1da177e4
LT
1789 if (!isblk) {
1790 /* FIXME: this is for backwards compatibility with 2.4 */
1791 if (file->f_flags & O_APPEND)
1792 *pos = i_size_read(inode);
1793
1794 if (limit != RLIM_INFINITY) {
1795 if (*pos >= limit) {
1796 send_sig(SIGXFSZ, current, 0);
1797 return -EFBIG;
1798 }
1799 if (*count > limit - (typeof(limit))*pos) {
1800 *count = limit - (typeof(limit))*pos;
1801 }
1802 }
1803 }
1804
1805 /*
1806 * LFS rule
1807 */
1808 if (unlikely(*pos + *count > MAX_NON_LFS &&
1809 !(file->f_flags & O_LARGEFILE))) {
1810 if (*pos >= MAX_NON_LFS) {
1811 send_sig(SIGXFSZ, current, 0);
1812 return -EFBIG;
1813 }
1814 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1815 *count = MAX_NON_LFS - (unsigned long)*pos;
1816 }
1817 }
1818
1819 /*
1820 * Are we about to exceed the fs block limit ?
1821 *
1822 * If we have written data it becomes a short write. If we have
1823 * exceeded without writing data we send a signal and return EFBIG.
1824 * Linus frestrict idea will clean these up nicely..
1825 */
1826 if (likely(!isblk)) {
1827 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1828 if (*count || *pos > inode->i_sb->s_maxbytes) {
1829 send_sig(SIGXFSZ, current, 0);
1830 return -EFBIG;
1831 }
1832 /* zero-length writes at ->s_maxbytes are OK */
1833 }
1834
1835 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1836 *count = inode->i_sb->s_maxbytes - *pos;
1837 } else {
1838 loff_t isize;
1839 if (bdev_read_only(I_BDEV(inode)))
1840 return -EPERM;
1841 isize = i_size_read(inode);
1842 if (*pos >= isize) {
1843 if (*count || *pos > isize)
1844 return -ENOSPC;
1845 }
1846
1847 if (*pos + *count > isize)
1848 *count = isize - *pos;
1849 }
1850 return 0;
1851}
1852EXPORT_SYMBOL(generic_write_checks);
1853
1854ssize_t
1855generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1856 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1857 size_t count, size_t ocount)
1858{
1859 struct file *file = iocb->ki_filp;
1860 struct address_space *mapping = file->f_mapping;
1861 struct inode *inode = mapping->host;
1862 ssize_t written;
1863
1864 if (count != ocount)
1865 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1866
1867 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1868 if (written > 0) {
1869 loff_t end = pos + written;
1870 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1871 i_size_write(inode, end);
1872 mark_inode_dirty(inode);
1873 }
1874 *ppos = end;
1875 }
1876
1877 /*
1878 * Sync the fs metadata but not the minor inode changes and
1879 * of course not the data as we did direct DMA for the IO.
1880 * i_sem is held, which protects generic_osync_inode() from
1881 * livelocking.
1882 */
1e8a81c5
HH
1883 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1884 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1885 if (err < 0)
1886 written = err;
1887 }
1da177e4
LT
1888 if (written == count && !is_sync_kiocb(iocb))
1889 written = -EIOCBQUEUED;
1890 return written;
1891}
1892EXPORT_SYMBOL(generic_file_direct_write);
1893
1894ssize_t
1895generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1896 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1897 size_t count, ssize_t written)
1898{
1899 struct file *file = iocb->ki_filp;
1900 struct address_space * mapping = file->f_mapping;
1901 struct address_space_operations *a_ops = mapping->a_ops;
1902 struct inode *inode = mapping->host;
1903 long status = 0;
1904 struct page *page;
1905 struct page *cached_page = NULL;
1906 size_t bytes;
1907 struct pagevec lru_pvec;
1908 const struct iovec *cur_iov = iov; /* current iovec */
1909 size_t iov_base = 0; /* offset in the current iovec */
1910 char __user *buf;
1911
1912 pagevec_init(&lru_pvec, 0);
1913
1914 /*
1915 * handle partial DIO write. Adjust cur_iov if needed.
1916 */
1917 if (likely(nr_segs == 1))
1918 buf = iov->iov_base + written;
1919 else {
1920 filemap_set_next_iovec(&cur_iov, &iov_base, written);
f021e921 1921 buf = cur_iov->iov_base + iov_base;
1da177e4
LT
1922 }
1923
1924 do {
1925 unsigned long index;
1926 unsigned long offset;
a5117181 1927 unsigned long maxlen;
1da177e4
LT
1928 size_t copied;
1929
1930 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1931 index = pos >> PAGE_CACHE_SHIFT;
1932 bytes = PAGE_CACHE_SIZE - offset;
1933 if (bytes > count)
1934 bytes = count;
1935
1936 /*
1937 * Bring in the user page that we will copy from _first_.
1938 * Otherwise there's a nasty deadlock on copying from the
1939 * same page as we're writing to, without it being marked
1940 * up-to-date.
1941 */
a5117181
MS
1942 maxlen = cur_iov->iov_len - iov_base;
1943 if (maxlen > bytes)
1944 maxlen = bytes;
1945 fault_in_pages_readable(buf, maxlen);
1da177e4
LT
1946
1947 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1948 if (!page) {
1949 status = -ENOMEM;
1950 break;
1951 }
1952
1953 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1954 if (unlikely(status)) {
1955 loff_t isize = i_size_read(inode);
994fc28c
ZB
1956
1957 if (status != AOP_TRUNCATED_PAGE)
1958 unlock_page(page);
1959 page_cache_release(page);
1960 if (status == AOP_TRUNCATED_PAGE)
1961 continue;
1da177e4
LT
1962 /*
1963 * prepare_write() may have instantiated a few blocks
1964 * outside i_size. Trim these off again.
1965 */
1da177e4
LT
1966 if (pos + bytes > isize)
1967 vmtruncate(inode, isize);
1968 break;
1969 }
1970 if (likely(nr_segs == 1))
1971 copied = filemap_copy_from_user(page, offset,
1972 buf, bytes);
1973 else
1974 copied = filemap_copy_from_user_iovec(page, offset,
1975 cur_iov, iov_base, bytes);
1976 flush_dcache_page(page);
1977 status = a_ops->commit_write(file, page, offset, offset+bytes);
994fc28c
ZB
1978 if (status == AOP_TRUNCATED_PAGE) {
1979 page_cache_release(page);
1980 continue;
1981 }
1da177e4
LT
1982 if (likely(copied > 0)) {
1983 if (!status)
1984 status = copied;
1985
1986 if (status >= 0) {
1987 written += status;
1988 count -= status;
1989 pos += status;
1990 buf += status;
f021e921 1991 if (unlikely(nr_segs > 1)) {
1da177e4
LT
1992 filemap_set_next_iovec(&cur_iov,
1993 &iov_base, status);
b0cfbd99
BP
1994 if (count)
1995 buf = cur_iov->iov_base +
1996 iov_base;
a5117181
MS
1997 } else {
1998 iov_base += status;
f021e921 1999 }
1da177e4
LT
2000 }
2001 }
2002 if (unlikely(copied != bytes))
2003 if (status >= 0)
2004 status = -EFAULT;
2005 unlock_page(page);
2006 mark_page_accessed(page);
2007 page_cache_release(page);
2008 if (status < 0)
2009 break;
2010 balance_dirty_pages_ratelimited(mapping);
2011 cond_resched();
2012 } while (count);
2013 *ppos = pos;
2014
2015 if (cached_page)
2016 page_cache_release(cached_page);
2017
2018 /*
2019 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2020 */
2021 if (likely(status >= 0)) {
2022 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2023 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2024 status = generic_osync_inode(inode, mapping,
2025 OSYNC_METADATA|OSYNC_DATA);
2026 }
2027 }
2028
2029 /*
2030 * If we get here for O_DIRECT writes then we must have fallen through
2031 * to buffered writes (block instantiation inside i_size). So we sync
2032 * the file data here, to try to honour O_DIRECT expectations.
2033 */
2034 if (unlikely(file->f_flags & O_DIRECT) && written)
2035 status = filemap_write_and_wait(mapping);
2036
2037 pagevec_lru_add(&lru_pvec);
2038 return written ? written : status;
2039}
2040EXPORT_SYMBOL(generic_file_buffered_write);
2041
5ce7852c 2042static ssize_t
1da177e4
LT
2043__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2044 unsigned long nr_segs, loff_t *ppos)
2045{
2046 struct file *file = iocb->ki_filp;
2047 struct address_space * mapping = file->f_mapping;
2048 size_t ocount; /* original count */
2049 size_t count; /* after file limit checks */
2050 struct inode *inode = mapping->host;
2051 unsigned long seg;
2052 loff_t pos;
2053 ssize_t written;
2054 ssize_t err;
2055
2056 ocount = 0;
2057 for (seg = 0; seg < nr_segs; seg++) {
2058 const struct iovec *iv = &iov[seg];
2059
2060 /*
2061 * If any segment has a negative length, or the cumulative
2062 * length ever wraps negative then return -EINVAL.
2063 */
2064 ocount += iv->iov_len;
2065 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2066 return -EINVAL;
2067 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2068 continue;
2069 if (seg == 0)
2070 return -EFAULT;
2071 nr_segs = seg;
2072 ocount -= iv->iov_len; /* This segment is no good */
2073 break;
2074 }
2075
2076 count = ocount;
2077 pos = *ppos;
2078
2079 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2080
2081 /* We can write back this queue in page reclaim */
2082 current->backing_dev_info = mapping->backing_dev_info;
2083 written = 0;
2084
2085 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2086 if (err)
2087 goto out;
2088
2089 if (count == 0)
2090 goto out;
2091
2092 err = remove_suid(file->f_dentry);
2093 if (err)
2094 goto out;
2095
2096 inode_update_time(inode, 1);
2097
2098 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2099 if (unlikely(file->f_flags & O_DIRECT)) {
2100 written = generic_file_direct_write(iocb, iov,
2101 &nr_segs, pos, ppos, count, ocount);
2102 if (written < 0 || written == count)
2103 goto out;
2104 /*
2105 * direct-io write to a hole: fall through to buffered I/O
2106 * for completing the rest of the request.
2107 */
2108 pos += written;
2109 count -= written;
2110 }
2111
2112 written = generic_file_buffered_write(iocb, iov, nr_segs,
2113 pos, ppos, count, written);
2114out:
2115 current->backing_dev_info = NULL;
2116 return written ? written : err;
2117}
2118EXPORT_SYMBOL(generic_file_aio_write_nolock);
2119
2120ssize_t
2121generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2122 unsigned long nr_segs, loff_t *ppos)
2123{
2124 struct file *file = iocb->ki_filp;
2125 struct address_space *mapping = file->f_mapping;
2126 struct inode *inode = mapping->host;
2127 ssize_t ret;
2128 loff_t pos = *ppos;
2129
2130 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2131
2132 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2133 int err;
2134
2135 err = sync_page_range_nolock(inode, mapping, pos, ret);
2136 if (err < 0)
2137 ret = err;
2138 }
2139 return ret;
2140}
2141
5ce7852c 2142static ssize_t
1da177e4
LT
2143__generic_file_write_nolock(struct file *file, const struct iovec *iov,
2144 unsigned long nr_segs, loff_t *ppos)
2145{
2146 struct kiocb kiocb;
2147 ssize_t ret;
2148
2149 init_sync_kiocb(&kiocb, file);
2150 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2151 if (ret == -EIOCBQUEUED)
2152 ret = wait_on_sync_kiocb(&kiocb);
2153 return ret;
2154}
2155
2156ssize_t
2157generic_file_write_nolock(struct file *file, const struct iovec *iov,
2158 unsigned long nr_segs, loff_t *ppos)
2159{
2160 struct kiocb kiocb;
2161 ssize_t ret;
2162
2163 init_sync_kiocb(&kiocb, file);
2164 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2165 if (-EIOCBQUEUED == ret)
2166 ret = wait_on_sync_kiocb(&kiocb);
2167 return ret;
2168}
2169EXPORT_SYMBOL(generic_file_write_nolock);
2170
2171ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2172 size_t count, loff_t pos)
2173{
2174 struct file *file = iocb->ki_filp;
2175 struct address_space *mapping = file->f_mapping;
2176 struct inode *inode = mapping->host;
2177 ssize_t ret;
2178 struct iovec local_iov = { .iov_base = (void __user *)buf,
2179 .iov_len = count };
2180
2181 BUG_ON(iocb->ki_pos != pos);
2182
2183 down(&inode->i_sem);
2184 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2185 &iocb->ki_pos);
2186 up(&inode->i_sem);
2187
2188 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2189 ssize_t err;
2190
2191 err = sync_page_range(inode, mapping, pos, ret);
2192 if (err < 0)
2193 ret = err;
2194 }
2195 return ret;
2196}
2197EXPORT_SYMBOL(generic_file_aio_write);
2198
2199ssize_t generic_file_write(struct file *file, const char __user *buf,
2200 size_t count, loff_t *ppos)
2201{
2202 struct address_space *mapping = file->f_mapping;
2203 struct inode *inode = mapping->host;
2204 ssize_t ret;
2205 struct iovec local_iov = { .iov_base = (void __user *)buf,
2206 .iov_len = count };
2207
2208 down(&inode->i_sem);
2209 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2210 up(&inode->i_sem);
2211
2212 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2213 ssize_t err;
2214
2215 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2216 if (err < 0)
2217 ret = err;
2218 }
2219 return ret;
2220}
2221EXPORT_SYMBOL(generic_file_write);
2222
2223ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2224 unsigned long nr_segs, loff_t *ppos)
2225{
2226 struct kiocb kiocb;
2227 ssize_t ret;
2228
2229 init_sync_kiocb(&kiocb, filp);
2230 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2231 if (-EIOCBQUEUED == ret)
2232 ret = wait_on_sync_kiocb(&kiocb);
2233 return ret;
2234}
2235EXPORT_SYMBOL(generic_file_readv);
2236
2237ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2238 unsigned long nr_segs, loff_t *ppos)
2239{
2240 struct address_space *mapping = file->f_mapping;
2241 struct inode *inode = mapping->host;
2242 ssize_t ret;
2243
2244 down(&inode->i_sem);
2245 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2246 up(&inode->i_sem);
2247
2248 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2249 int err;
2250
2251 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2252 if (err < 0)
2253 ret = err;
2254 }
2255 return ret;
2256}
2257EXPORT_SYMBOL(generic_file_writev);
2258
2259/*
2260 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something
2261 * went wrong during pagecache shootdown.
2262 */
5ce7852c 2263static ssize_t
1da177e4
LT
2264generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2265 loff_t offset, unsigned long nr_segs)
2266{
2267 struct file *file = iocb->ki_filp;
2268 struct address_space *mapping = file->f_mapping;
2269 ssize_t retval;
2270 size_t write_len = 0;
2271
2272 /*
2273 * If it's a write, unmap all mmappings of the file up-front. This
2274 * will cause any pte dirty bits to be propagated into the pageframes
2275 * for the subsequent filemap_write_and_wait().
2276 */
2277 if (rw == WRITE) {
2278 write_len = iov_length(iov, nr_segs);
2279 if (mapping_mapped(mapping))
2280 unmap_mapping_range(mapping, offset, write_len, 0);
2281 }
2282
2283 retval = filemap_write_and_wait(mapping);
2284 if (retval == 0) {
2285 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2286 offset, nr_segs);
2287 if (rw == WRITE && mapping->nrpages) {
2288 pgoff_t end = (offset + write_len - 1)
2289 >> PAGE_CACHE_SHIFT;
2290 int err = invalidate_inode_pages2_range(mapping,
2291 offset >> PAGE_CACHE_SHIFT, end);
2292 if (err)
2293 retval = err;
2294 }
2295 }
2296 return retval;
2297}