]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/workqueue.c
workqueue: improve destroy_workqueue() debuggability
[net-next-2.6.git] / kernel / workqueue.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
e1f8e874 12 * Andrew Morton
1da177e4
LT
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
89ada679 15 *
cde53535 16 * Made to use alloc_percpu by Christoph Lameter.
1da177e4
LT
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
1fa44eca 30#include <linux/hardirq.h>
46934023 31#include <linux/mempolicy.h>
341a5958 32#include <linux/freezer.h>
d5abe669
PZ
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
4e6045f1 35#include <linux/lockdep.h>
c34056a3 36#include <linux/idr.h>
e22bee78
TH
37
38#include "workqueue_sched.h"
1da177e4 39
c8e55f36 40enum {
db7bccf4 41 /* global_cwq flags */
e22bee78
TH
42 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
43 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
44 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 45 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
649027d7 46 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
db7bccf4 47
c8e55f36
TH
48 /* worker flags */
49 WORKER_STARTED = 1 << 0, /* started */
50 WORKER_DIE = 1 << 1, /* die die die */
51 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 52 WORKER_PREP = 1 << 3, /* preparing to run works */
db7bccf4 53 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
e22bee78 54 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 55 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 56 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 57
fb0e7beb 58 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
f3421797 59 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
db7bccf4
TH
60
61 /* gcwq->trustee_state */
62 TRUSTEE_START = 0, /* start */
63 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
64 TRUSTEE_BUTCHER = 2, /* butcher workers */
65 TRUSTEE_RELEASE = 3, /* release workers */
66 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36
TH
67
68 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
69 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
70 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 71
e22bee78
TH
72 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
73 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
74
75 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
76 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
77 CREATE_COOLDOWN = HZ, /* time to breath after fail */
db7bccf4 78 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
e22bee78
TH
79
80 /*
81 * Rescue workers are used only on emergencies and shared by
82 * all cpus. Give -20.
83 */
84 RESCUER_NICE_LEVEL = -20,
c8e55f36 85};
1da177e4
LT
86
87/*
4690c4ab
TH
88 * Structure fields follow one of the following exclusion rules.
89 *
e41e704b
TH
90 * I: Modifiable by initialization/destruction paths and read-only for
91 * everyone else.
4690c4ab 92 *
e22bee78
TH
93 * P: Preemption protected. Disabling preemption is enough and should
94 * only be modified and accessed from the local cpu.
95 *
8b03ae3c 96 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 97 *
e22bee78
TH
98 * X: During normal operation, modification requires gcwq->lock and
99 * should be done only from local cpu. Either disabling preemption
100 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 101 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 102 *
73f53c4a
TH
103 * F: wq->flush_mutex protected.
104 *
4690c4ab 105 * W: workqueue_lock protected.
1da177e4 106 */
1da177e4 107
8b03ae3c 108struct global_cwq;
1da177e4 109
e22bee78
TH
110/*
111 * The poor guys doing the actual heavy lifting. All on-duty workers
112 * are either serving the manager role, on idle list or on busy hash.
113 */
c34056a3 114struct worker {
c8e55f36
TH
115 /* on idle list while idle, on busy hash table while busy */
116 union {
117 struct list_head entry; /* L: while idle */
118 struct hlist_node hentry; /* L: while busy */
119 };
1da177e4 120
c34056a3 121 struct work_struct *current_work; /* L: work being processed */
8cca0eea 122 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 123 struct list_head scheduled; /* L: scheduled works */
c34056a3 124 struct task_struct *task; /* I: worker task */
8b03ae3c 125 struct global_cwq *gcwq; /* I: the associated gcwq */
e22bee78
TH
126 /* 64 bytes boundary on 64bit, 32 on 32bit */
127 unsigned long last_active; /* L: last active timestamp */
128 unsigned int flags; /* X: flags */
c34056a3 129 int id; /* I: worker id */
e22bee78 130 struct work_struct rebind_work; /* L: rebind worker to cpu */
c34056a3
TH
131};
132
8b03ae3c 133/*
e22bee78
TH
134 * Global per-cpu workqueue. There's one and only one for each cpu
135 * and all works are queued and processed here regardless of their
136 * target workqueues.
8b03ae3c
TH
137 */
138struct global_cwq {
139 spinlock_t lock; /* the gcwq lock */
7e11629d 140 struct list_head worklist; /* L: list of pending works */
8b03ae3c 141 unsigned int cpu; /* I: the associated cpu */
db7bccf4 142 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36
TH
143
144 int nr_workers; /* L: total number of workers */
145 int nr_idle; /* L: currently idle ones */
146
147 /* workers are chained either in the idle_list or busy_hash */
e22bee78 148 struct list_head idle_list; /* X: list of idle workers */
c8e55f36
TH
149 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
150 /* L: hash of busy workers */
151
e22bee78
TH
152 struct timer_list idle_timer; /* L: worker idle timeout */
153 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
154
8b03ae3c 155 struct ida worker_ida; /* L: for worker IDs */
db7bccf4
TH
156
157 struct task_struct *trustee; /* L: for gcwq shutdown */
158 unsigned int trustee_state; /* L: trustee state */
159 wait_queue_head_t trustee_wait; /* trustee wait */
e22bee78 160 struct worker *first_idle; /* L: first idle worker */
8b03ae3c
TH
161} ____cacheline_aligned_in_smp;
162
1da177e4 163/*
502ca9d8 164 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
165 * work_struct->data are used for flags and thus cwqs need to be
166 * aligned at two's power of the number of flag bits.
1da177e4
LT
167 */
168struct cpu_workqueue_struct {
8b03ae3c 169 struct global_cwq *gcwq; /* I: the associated gcwq */
4690c4ab 170 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
171 int work_color; /* L: current color */
172 int flush_color; /* L: flushing color */
173 int nr_in_flight[WORK_NR_COLORS];
174 /* L: nr of in_flight works */
1e19ffc6 175 int nr_active; /* L: nr of active works */
a0a1a5fd 176 int max_active; /* L: max active works */
1e19ffc6 177 struct list_head delayed_works; /* L: delayed works */
0f900049 178};
1da177e4 179
73f53c4a
TH
180/*
181 * Structure used to wait for workqueue flush.
182 */
183struct wq_flusher {
184 struct list_head list; /* F: list of flushers */
185 int flush_color; /* F: flush color waiting for */
186 struct completion done; /* flush completion */
187};
188
f2e005aa
TH
189/*
190 * All cpumasks are assumed to be always set on UP and thus can't be
191 * used to determine whether there's something to be done.
192 */
193#ifdef CONFIG_SMP
194typedef cpumask_var_t mayday_mask_t;
195#define mayday_test_and_set_cpu(cpu, mask) \
196 cpumask_test_and_set_cpu((cpu), (mask))
197#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
198#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
199#define alloc_mayday_mask(maskp, gfp) alloc_cpumask_var((maskp), (gfp))
200#define free_mayday_mask(mask) free_cpumask_var((mask))
201#else
202typedef unsigned long mayday_mask_t;
203#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
204#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
205#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
206#define alloc_mayday_mask(maskp, gfp) true
207#define free_mayday_mask(mask) do { } while (0)
208#endif
1da177e4
LT
209
210/*
211 * The externally visible workqueue abstraction is an array of
212 * per-CPU workqueues:
213 */
214struct workqueue_struct {
97e37d7b 215 unsigned int flags; /* I: WQ_* flags */
bdbc5dd7
TH
216 union {
217 struct cpu_workqueue_struct __percpu *pcpu;
218 struct cpu_workqueue_struct *single;
219 unsigned long v;
220 } cpu_wq; /* I: cwq's */
4690c4ab 221 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
222
223 struct mutex flush_mutex; /* protects wq flushing */
224 int work_color; /* F: current work color */
225 int flush_color; /* F: current flush color */
226 atomic_t nr_cwqs_to_flush; /* flush in progress */
227 struct wq_flusher *first_flusher; /* F: first flusher */
228 struct list_head flusher_queue; /* F: flush waiters */
229 struct list_head flusher_overflow; /* F: flush overflow list */
230
f2e005aa 231 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
232 struct worker *rescuer; /* I: rescue worker */
233
dcd989cb 234 int saved_max_active; /* W: saved cwq max_active */
4690c4ab 235 const char *name; /* I: workqueue name */
4e6045f1 236#ifdef CONFIG_LOCKDEP
4690c4ab 237 struct lockdep_map lockdep_map;
4e6045f1 238#endif
1da177e4
LT
239};
240
d320c038
TH
241struct workqueue_struct *system_wq __read_mostly;
242struct workqueue_struct *system_long_wq __read_mostly;
243struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 244struct workqueue_struct *system_unbound_wq __read_mostly;
d320c038
TH
245EXPORT_SYMBOL_GPL(system_wq);
246EXPORT_SYMBOL_GPL(system_long_wq);
247EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 248EXPORT_SYMBOL_GPL(system_unbound_wq);
d320c038 249
db7bccf4
TH
250#define for_each_busy_worker(worker, i, pos, gcwq) \
251 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
252 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
253
f3421797
TH
254static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
255 unsigned int sw)
256{
257 if (cpu < nr_cpu_ids) {
258 if (sw & 1) {
259 cpu = cpumask_next(cpu, mask);
260 if (cpu < nr_cpu_ids)
261 return cpu;
262 }
263 if (sw & 2)
264 return WORK_CPU_UNBOUND;
265 }
266 return WORK_CPU_NONE;
267}
268
269static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
270 struct workqueue_struct *wq)
271{
272 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
273}
274
09884951
TH
275/*
276 * CPU iterators
277 *
278 * An extra gcwq is defined for an invalid cpu number
279 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
280 * specific CPU. The following iterators are similar to
281 * for_each_*_cpu() iterators but also considers the unbound gcwq.
282 *
283 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
284 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
285 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
286 * WORK_CPU_UNBOUND for unbound workqueues
287 */
f3421797
TH
288#define for_each_gcwq_cpu(cpu) \
289 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
290 (cpu) < WORK_CPU_NONE; \
291 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
292
293#define for_each_online_gcwq_cpu(cpu) \
294 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
295 (cpu) < WORK_CPU_NONE; \
296 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
297
298#define for_each_cwq_cpu(cpu, wq) \
299 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
300 (cpu) < WORK_CPU_NONE; \
301 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
302
a25909a4
PM
303#ifdef CONFIG_LOCKDEP
304/**
305 * in_workqueue_context() - in context of specified workqueue?
306 * @wq: the workqueue of interest
307 *
308 * Checks lockdep state to see if the current task is executing from
309 * within a workqueue item. This function exists only if lockdep is
310 * enabled.
311 */
312int in_workqueue_context(struct workqueue_struct *wq)
313{
314 return lock_is_held(&wq->lockdep_map);
315}
316#endif
317
dc186ad7
TG
318#ifdef CONFIG_DEBUG_OBJECTS_WORK
319
320static struct debug_obj_descr work_debug_descr;
321
322/*
323 * fixup_init is called when:
324 * - an active object is initialized
325 */
326static int work_fixup_init(void *addr, enum debug_obj_state state)
327{
328 struct work_struct *work = addr;
329
330 switch (state) {
331 case ODEBUG_STATE_ACTIVE:
332 cancel_work_sync(work);
333 debug_object_init(work, &work_debug_descr);
334 return 1;
335 default:
336 return 0;
337 }
338}
339
340/*
341 * fixup_activate is called when:
342 * - an active object is activated
343 * - an unknown object is activated (might be a statically initialized object)
344 */
345static int work_fixup_activate(void *addr, enum debug_obj_state state)
346{
347 struct work_struct *work = addr;
348
349 switch (state) {
350
351 case ODEBUG_STATE_NOTAVAILABLE:
352 /*
353 * This is not really a fixup. The work struct was
354 * statically initialized. We just make sure that it
355 * is tracked in the object tracker.
356 */
22df02bb 357 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
358 debug_object_init(work, &work_debug_descr);
359 debug_object_activate(work, &work_debug_descr);
360 return 0;
361 }
362 WARN_ON_ONCE(1);
363 return 0;
364
365 case ODEBUG_STATE_ACTIVE:
366 WARN_ON(1);
367
368 default:
369 return 0;
370 }
371}
372
373/*
374 * fixup_free is called when:
375 * - an active object is freed
376 */
377static int work_fixup_free(void *addr, enum debug_obj_state state)
378{
379 struct work_struct *work = addr;
380
381 switch (state) {
382 case ODEBUG_STATE_ACTIVE:
383 cancel_work_sync(work);
384 debug_object_free(work, &work_debug_descr);
385 return 1;
386 default:
387 return 0;
388 }
389}
390
391static struct debug_obj_descr work_debug_descr = {
392 .name = "work_struct",
393 .fixup_init = work_fixup_init,
394 .fixup_activate = work_fixup_activate,
395 .fixup_free = work_fixup_free,
396};
397
398static inline void debug_work_activate(struct work_struct *work)
399{
400 debug_object_activate(work, &work_debug_descr);
401}
402
403static inline void debug_work_deactivate(struct work_struct *work)
404{
405 debug_object_deactivate(work, &work_debug_descr);
406}
407
408void __init_work(struct work_struct *work, int onstack)
409{
410 if (onstack)
411 debug_object_init_on_stack(work, &work_debug_descr);
412 else
413 debug_object_init(work, &work_debug_descr);
414}
415EXPORT_SYMBOL_GPL(__init_work);
416
417void destroy_work_on_stack(struct work_struct *work)
418{
419 debug_object_free(work, &work_debug_descr);
420}
421EXPORT_SYMBOL_GPL(destroy_work_on_stack);
422
423#else
424static inline void debug_work_activate(struct work_struct *work) { }
425static inline void debug_work_deactivate(struct work_struct *work) { }
426#endif
427
95402b38
GS
428/* Serializes the accesses to the list of workqueues. */
429static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 430static LIST_HEAD(workqueues);
a0a1a5fd 431static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 432
e22bee78
TH
433/*
434 * The almighty global cpu workqueues. nr_running is the only field
435 * which is expected to be used frequently by other cpus via
436 * try_to_wake_up(). Put it in a separate cacheline.
437 */
8b03ae3c 438static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e22bee78 439static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
8b03ae3c 440
f3421797
TH
441/*
442 * Global cpu workqueue and nr_running counter for unbound gcwq. The
443 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
444 * workers have WORKER_UNBOUND set.
445 */
446static struct global_cwq unbound_global_cwq;
447static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
448
c34056a3 449static int worker_thread(void *__worker);
1da177e4 450
8b03ae3c
TH
451static struct global_cwq *get_gcwq(unsigned int cpu)
452{
f3421797
TH
453 if (cpu != WORK_CPU_UNBOUND)
454 return &per_cpu(global_cwq, cpu);
455 else
456 return &unbound_global_cwq;
8b03ae3c
TH
457}
458
e22bee78
TH
459static atomic_t *get_gcwq_nr_running(unsigned int cpu)
460{
f3421797
TH
461 if (cpu != WORK_CPU_UNBOUND)
462 return &per_cpu(gcwq_nr_running, cpu);
463 else
464 return &unbound_gcwq_nr_running;
e22bee78
TH
465}
466
1537663f
TH
467static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
468 struct workqueue_struct *wq)
b1f4ec17 469{
f3421797
TH
470 if (!(wq->flags & WQ_UNBOUND)) {
471 if (likely(cpu < nr_cpu_ids)) {
472#ifdef CONFIG_SMP
473 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
bdbc5dd7 474#else
f3421797 475 return wq->cpu_wq.single;
bdbc5dd7 476#endif
f3421797
TH
477 }
478 } else if (likely(cpu == WORK_CPU_UNBOUND))
479 return wq->cpu_wq.single;
480 return NULL;
b1f4ec17
ON
481}
482
73f53c4a
TH
483static unsigned int work_color_to_flags(int color)
484{
485 return color << WORK_STRUCT_COLOR_SHIFT;
486}
487
488static int get_work_color(struct work_struct *work)
489{
490 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
491 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
492}
493
494static int work_next_color(int color)
495{
496 return (color + 1) % WORK_NR_COLORS;
497}
1da177e4 498
14441960 499/*
e120153d
TH
500 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
501 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
502 * cleared and the work data contains the cpu number it was last on.
7a22ad75
TH
503 *
504 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
505 * cwq, cpu or clear work->data. These functions should only be
506 * called while the work is owned - ie. while the PENDING bit is set.
507 *
508 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
509 * corresponding to a work. gcwq is available once the work has been
510 * queued anywhere after initialization. cwq is available only from
511 * queueing until execution starts.
14441960 512 */
7a22ad75
TH
513static inline void set_work_data(struct work_struct *work, unsigned long data,
514 unsigned long flags)
365970a1 515{
4594bf15 516 BUG_ON(!work_pending(work));
7a22ad75
TH
517 atomic_long_set(&work->data, data | flags | work_static(work));
518}
365970a1 519
7a22ad75
TH
520static void set_work_cwq(struct work_struct *work,
521 struct cpu_workqueue_struct *cwq,
522 unsigned long extra_flags)
523{
524 set_work_data(work, (unsigned long)cwq,
e120153d 525 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
526}
527
7a22ad75
TH
528static void set_work_cpu(struct work_struct *work, unsigned int cpu)
529{
530 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
531}
f756d5e2 532
7a22ad75 533static void clear_work_data(struct work_struct *work)
1da177e4 534{
7a22ad75 535 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
536}
537
7a22ad75 538static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 539{
e120153d 540 unsigned long data = atomic_long_read(&work->data);
7a22ad75 541
e120153d
TH
542 if (data & WORK_STRUCT_CWQ)
543 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
544 else
545 return NULL;
4d707b9f
ON
546}
547
7a22ad75 548static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 549{
e120153d 550 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
551 unsigned int cpu;
552
e120153d
TH
553 if (data & WORK_STRUCT_CWQ)
554 return ((struct cpu_workqueue_struct *)
555 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
7a22ad75
TH
556
557 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 558 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
559 return NULL;
560
f3421797 561 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 562 return get_gcwq(cpu);
b1f4ec17
ON
563}
564
e22bee78
TH
565/*
566 * Policy functions. These define the policies on how the global
567 * worker pool is managed. Unless noted otherwise, these functions
568 * assume that they're being called with gcwq->lock held.
569 */
570
649027d7 571static bool __need_more_worker(struct global_cwq *gcwq)
a848e3b6 572{
649027d7
TH
573 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
574 gcwq->flags & GCWQ_HIGHPRI_PENDING;
a848e3b6
ON
575}
576
4594bf15 577/*
e22bee78
TH
578 * Need to wake up a worker? Called from anything but currently
579 * running workers.
4594bf15 580 */
e22bee78 581static bool need_more_worker(struct global_cwq *gcwq)
365970a1 582{
649027d7 583 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
e22bee78 584}
4594bf15 585
e22bee78
TH
586/* Can I start working? Called from busy but !running workers. */
587static bool may_start_working(struct global_cwq *gcwq)
588{
589 return gcwq->nr_idle;
590}
591
592/* Do I need to keep working? Called from currently running workers. */
593static bool keep_working(struct global_cwq *gcwq)
594{
595 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
596
597 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
598}
599
600/* Do we need a new worker? Called from manager. */
601static bool need_to_create_worker(struct global_cwq *gcwq)
602{
603 return need_more_worker(gcwq) && !may_start_working(gcwq);
604}
365970a1 605
e22bee78
TH
606/* Do I need to be the manager? */
607static bool need_to_manage_workers(struct global_cwq *gcwq)
608{
609 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
610}
611
612/* Do we have too many workers and should some go away? */
613static bool too_many_workers(struct global_cwq *gcwq)
614{
615 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
616 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
617 int nr_busy = gcwq->nr_workers - nr_idle;
618
619 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
620}
621
4d707b9f 622/*
e22bee78
TH
623 * Wake up functions.
624 */
625
7e11629d
TH
626/* Return the first worker. Safe with preemption disabled */
627static struct worker *first_worker(struct global_cwq *gcwq)
628{
629 if (unlikely(list_empty(&gcwq->idle_list)))
630 return NULL;
631
632 return list_first_entry(&gcwq->idle_list, struct worker, entry);
633}
634
635/**
636 * wake_up_worker - wake up an idle worker
637 * @gcwq: gcwq to wake worker for
638 *
639 * Wake up the first idle worker of @gcwq.
640 *
641 * CONTEXT:
642 * spin_lock_irq(gcwq->lock).
643 */
644static void wake_up_worker(struct global_cwq *gcwq)
645{
646 struct worker *worker = first_worker(gcwq);
647
648 if (likely(worker))
649 wake_up_process(worker->task);
650}
651
d302f017 652/**
e22bee78
TH
653 * wq_worker_waking_up - a worker is waking up
654 * @task: task waking up
655 * @cpu: CPU @task is waking up to
656 *
657 * This function is called during try_to_wake_up() when a worker is
658 * being awoken.
659 *
660 * CONTEXT:
661 * spin_lock_irq(rq->lock)
662 */
663void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
664{
665 struct worker *worker = kthread_data(task);
666
667 if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
668 atomic_inc(get_gcwq_nr_running(cpu));
669}
670
671/**
672 * wq_worker_sleeping - a worker is going to sleep
673 * @task: task going to sleep
674 * @cpu: CPU in question, must be the current CPU number
675 *
676 * This function is called during schedule() when a busy worker is
677 * going to sleep. Worker on the same cpu can be woken up by
678 * returning pointer to its task.
679 *
680 * CONTEXT:
681 * spin_lock_irq(rq->lock)
682 *
683 * RETURNS:
684 * Worker task on @cpu to wake up, %NULL if none.
685 */
686struct task_struct *wq_worker_sleeping(struct task_struct *task,
687 unsigned int cpu)
688{
689 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
690 struct global_cwq *gcwq = get_gcwq(cpu);
691 atomic_t *nr_running = get_gcwq_nr_running(cpu);
692
693 if (unlikely(worker->flags & WORKER_NOT_RUNNING))
694 return NULL;
695
696 /* this can only happen on the local cpu */
697 BUG_ON(cpu != raw_smp_processor_id());
698
699 /*
700 * The counterpart of the following dec_and_test, implied mb,
701 * worklist not empty test sequence is in insert_work().
702 * Please read comment there.
703 *
704 * NOT_RUNNING is clear. This means that trustee is not in
705 * charge and we're running on the local cpu w/ rq lock held
706 * and preemption disabled, which in turn means that none else
707 * could be manipulating idle_list, so dereferencing idle_list
708 * without gcwq lock is safe.
709 */
710 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
711 to_wakeup = first_worker(gcwq);
712 return to_wakeup ? to_wakeup->task : NULL;
713}
714
715/**
716 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 717 * @worker: self
d302f017
TH
718 * @flags: flags to set
719 * @wakeup: wakeup an idle worker if necessary
720 *
e22bee78
TH
721 * Set @flags in @worker->flags and adjust nr_running accordingly. If
722 * nr_running becomes zero and @wakeup is %true, an idle worker is
723 * woken up.
d302f017 724 *
cb444766
TH
725 * CONTEXT:
726 * spin_lock_irq(gcwq->lock)
d302f017
TH
727 */
728static inline void worker_set_flags(struct worker *worker, unsigned int flags,
729 bool wakeup)
730{
e22bee78
TH
731 struct global_cwq *gcwq = worker->gcwq;
732
cb444766
TH
733 WARN_ON_ONCE(worker->task != current);
734
e22bee78
TH
735 /*
736 * If transitioning into NOT_RUNNING, adjust nr_running and
737 * wake up an idle worker as necessary if requested by
738 * @wakeup.
739 */
740 if ((flags & WORKER_NOT_RUNNING) &&
741 !(worker->flags & WORKER_NOT_RUNNING)) {
742 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
743
744 if (wakeup) {
745 if (atomic_dec_and_test(nr_running) &&
746 !list_empty(&gcwq->worklist))
747 wake_up_worker(gcwq);
748 } else
749 atomic_dec(nr_running);
750 }
751
d302f017
TH
752 worker->flags |= flags;
753}
754
755/**
e22bee78 756 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 757 * @worker: self
d302f017
TH
758 * @flags: flags to clear
759 *
e22bee78 760 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 761 *
cb444766
TH
762 * CONTEXT:
763 * spin_lock_irq(gcwq->lock)
d302f017
TH
764 */
765static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
766{
e22bee78
TH
767 struct global_cwq *gcwq = worker->gcwq;
768 unsigned int oflags = worker->flags;
769
cb444766
TH
770 WARN_ON_ONCE(worker->task != current);
771
d302f017 772 worker->flags &= ~flags;
e22bee78
TH
773
774 /* if transitioning out of NOT_RUNNING, increment nr_running */
775 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
776 if (!(worker->flags & WORKER_NOT_RUNNING))
777 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
d302f017
TH
778}
779
c8e55f36
TH
780/**
781 * busy_worker_head - return the busy hash head for a work
782 * @gcwq: gcwq of interest
783 * @work: work to be hashed
784 *
785 * Return hash head of @gcwq for @work.
786 *
787 * CONTEXT:
788 * spin_lock_irq(gcwq->lock).
789 *
790 * RETURNS:
791 * Pointer to the hash head.
792 */
793static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
794 struct work_struct *work)
795{
796 const int base_shift = ilog2(sizeof(struct work_struct));
797 unsigned long v = (unsigned long)work;
798
799 /* simple shift and fold hash, do we need something better? */
800 v >>= base_shift;
801 v += v >> BUSY_WORKER_HASH_ORDER;
802 v &= BUSY_WORKER_HASH_MASK;
803
804 return &gcwq->busy_hash[v];
805}
806
8cca0eea
TH
807/**
808 * __find_worker_executing_work - find worker which is executing a work
809 * @gcwq: gcwq of interest
810 * @bwh: hash head as returned by busy_worker_head()
811 * @work: work to find worker for
812 *
813 * Find a worker which is executing @work on @gcwq. @bwh should be
814 * the hash head obtained by calling busy_worker_head() with the same
815 * work.
816 *
817 * CONTEXT:
818 * spin_lock_irq(gcwq->lock).
819 *
820 * RETURNS:
821 * Pointer to worker which is executing @work if found, NULL
822 * otherwise.
823 */
824static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
825 struct hlist_head *bwh,
826 struct work_struct *work)
827{
828 struct worker *worker;
829 struct hlist_node *tmp;
830
831 hlist_for_each_entry(worker, tmp, bwh, hentry)
832 if (worker->current_work == work)
833 return worker;
834 return NULL;
835}
836
837/**
838 * find_worker_executing_work - find worker which is executing a work
839 * @gcwq: gcwq of interest
840 * @work: work to find worker for
841 *
842 * Find a worker which is executing @work on @gcwq. This function is
843 * identical to __find_worker_executing_work() except that this
844 * function calculates @bwh itself.
845 *
846 * CONTEXT:
847 * spin_lock_irq(gcwq->lock).
848 *
849 * RETURNS:
850 * Pointer to worker which is executing @work if found, NULL
851 * otherwise.
4d707b9f 852 */
8cca0eea
TH
853static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
854 struct work_struct *work)
4d707b9f 855{
8cca0eea
TH
856 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
857 work);
4d707b9f
ON
858}
859
649027d7
TH
860/**
861 * gcwq_determine_ins_pos - find insertion position
862 * @gcwq: gcwq of interest
863 * @cwq: cwq a work is being queued for
864 *
865 * A work for @cwq is about to be queued on @gcwq, determine insertion
866 * position for the work. If @cwq is for HIGHPRI wq, the work is
867 * queued at the head of the queue but in FIFO order with respect to
868 * other HIGHPRI works; otherwise, at the end of the queue. This
869 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
870 * there are HIGHPRI works pending.
871 *
872 * CONTEXT:
873 * spin_lock_irq(gcwq->lock).
874 *
875 * RETURNS:
876 * Pointer to inserstion position.
877 */
878static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
879 struct cpu_workqueue_struct *cwq)
365970a1 880{
649027d7
TH
881 struct work_struct *twork;
882
883 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
884 return &gcwq->worklist;
885
886 list_for_each_entry(twork, &gcwq->worklist, entry) {
887 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
888
889 if (!(tcwq->wq->flags & WQ_HIGHPRI))
890 break;
891 }
892
893 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
894 return &twork->entry;
365970a1
DH
895}
896
4690c4ab 897/**
7e11629d 898 * insert_work - insert a work into gcwq
4690c4ab
TH
899 * @cwq: cwq @work belongs to
900 * @work: work to insert
901 * @head: insertion point
902 * @extra_flags: extra WORK_STRUCT_* flags to set
903 *
7e11629d
TH
904 * Insert @work which belongs to @cwq into @gcwq after @head.
905 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
906 *
907 * CONTEXT:
8b03ae3c 908 * spin_lock_irq(gcwq->lock).
4690c4ab 909 */
b89deed3 910static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
911 struct work_struct *work, struct list_head *head,
912 unsigned int extra_flags)
b89deed3 913{
e22bee78
TH
914 struct global_cwq *gcwq = cwq->gcwq;
915
4690c4ab 916 /* we own @work, set data and link */
7a22ad75 917 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 918
6e84d644
ON
919 /*
920 * Ensure that we get the right work->data if we see the
921 * result of list_add() below, see try_to_grab_pending().
922 */
923 smp_wmb();
4690c4ab 924
1a4d9b0a 925 list_add_tail(&work->entry, head);
e22bee78
TH
926
927 /*
928 * Ensure either worker_sched_deactivated() sees the above
929 * list_add_tail() or we see zero nr_running to avoid workers
930 * lying around lazily while there are works to be processed.
931 */
932 smp_mb();
933
649027d7 934 if (__need_more_worker(gcwq))
e22bee78 935 wake_up_worker(gcwq);
b89deed3
ON
936}
937
4690c4ab 938static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
939 struct work_struct *work)
940{
502ca9d8
TH
941 struct global_cwq *gcwq;
942 struct cpu_workqueue_struct *cwq;
1e19ffc6 943 struct list_head *worklist;
1da177e4
LT
944 unsigned long flags;
945
dc186ad7 946 debug_work_activate(work);
1e19ffc6 947
e41e704b
TH
948 if (WARN_ON_ONCE(wq->flags & WQ_DYING))
949 return;
950
c7fc77f7
TH
951 /* determine gcwq to use */
952 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
953 struct global_cwq *last_gcwq;
954
c7fc77f7
TH
955 if (unlikely(cpu == WORK_CPU_UNBOUND))
956 cpu = raw_smp_processor_id();
957
18aa9eff
TH
958 /*
959 * It's multi cpu. If @wq is non-reentrant and @work
960 * was previously on a different cpu, it might still
961 * be running there, in which case the work needs to
962 * be queued on that cpu to guarantee non-reentrance.
963 */
502ca9d8 964 gcwq = get_gcwq(cpu);
18aa9eff
TH
965 if (wq->flags & WQ_NON_REENTRANT &&
966 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
967 struct worker *worker;
968
969 spin_lock_irqsave(&last_gcwq->lock, flags);
970
971 worker = find_worker_executing_work(last_gcwq, work);
972
973 if (worker && worker->current_cwq->wq == wq)
974 gcwq = last_gcwq;
975 else {
976 /* meh... not running there, queue here */
977 spin_unlock_irqrestore(&last_gcwq->lock, flags);
978 spin_lock_irqsave(&gcwq->lock, flags);
979 }
980 } else
981 spin_lock_irqsave(&gcwq->lock, flags);
f3421797
TH
982 } else {
983 gcwq = get_gcwq(WORK_CPU_UNBOUND);
984 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
985 }
986
987 /* gcwq determined, get cwq and queue */
988 cwq = get_cwq(gcwq->cpu, wq);
989
4690c4ab 990 BUG_ON(!list_empty(&work->entry));
1e19ffc6 991
73f53c4a 992 cwq->nr_in_flight[cwq->work_color]++;
1e19ffc6
TH
993
994 if (likely(cwq->nr_active < cwq->max_active)) {
995 cwq->nr_active++;
649027d7 996 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1e19ffc6
TH
997 } else
998 worklist = &cwq->delayed_works;
999
1000 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
1001
8b03ae3c 1002 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
1003}
1004
0fcb78c2
REB
1005/**
1006 * queue_work - queue work on a workqueue
1007 * @wq: workqueue to use
1008 * @work: work to queue
1009 *
057647fc 1010 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 1011 *
00dfcaf7
ON
1012 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1013 * it can be processed by another CPU.
1da177e4 1014 */
7ad5b3a5 1015int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1016{
ef1ca236
ON
1017 int ret;
1018
1019 ret = queue_work_on(get_cpu(), wq, work);
1020 put_cpu();
1021
1da177e4
LT
1022 return ret;
1023}
ae90dd5d 1024EXPORT_SYMBOL_GPL(queue_work);
1da177e4 1025
c1a220e7
ZR
1026/**
1027 * queue_work_on - queue work on specific cpu
1028 * @cpu: CPU number to execute work on
1029 * @wq: workqueue to use
1030 * @work: work to queue
1031 *
1032 * Returns 0 if @work was already on a queue, non-zero otherwise.
1033 *
1034 * We queue the work to a specific CPU, the caller must ensure it
1035 * can't go away.
1036 */
1037int
1038queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1039{
1040 int ret = 0;
1041
22df02bb 1042 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1043 __queue_work(cpu, wq, work);
c1a220e7
ZR
1044 ret = 1;
1045 }
1046 return ret;
1047}
1048EXPORT_SYMBOL_GPL(queue_work_on);
1049
6d141c3f 1050static void delayed_work_timer_fn(unsigned long __data)
1da177e4 1051{
52bad64d 1052 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1053 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1054
4690c4ab 1055 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
1056}
1057
0fcb78c2
REB
1058/**
1059 * queue_delayed_work - queue work on a workqueue after delay
1060 * @wq: workqueue to use
af9997e4 1061 * @dwork: delayable work to queue
0fcb78c2
REB
1062 * @delay: number of jiffies to wait before queueing
1063 *
057647fc 1064 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1065 */
7ad5b3a5 1066int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 1067 struct delayed_work *dwork, unsigned long delay)
1da177e4 1068{
52bad64d 1069 if (delay == 0)
63bc0362 1070 return queue_work(wq, &dwork->work);
1da177e4 1071
63bc0362 1072 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 1073}
ae90dd5d 1074EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 1075
0fcb78c2
REB
1076/**
1077 * queue_delayed_work_on - queue work on specific CPU after delay
1078 * @cpu: CPU number to execute work on
1079 * @wq: workqueue to use
af9997e4 1080 * @dwork: work to queue
0fcb78c2
REB
1081 * @delay: number of jiffies to wait before queueing
1082 *
057647fc 1083 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1084 */
7a6bc1cd 1085int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 1086 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
1087{
1088 int ret = 0;
52bad64d
DH
1089 struct timer_list *timer = &dwork->timer;
1090 struct work_struct *work = &dwork->work;
7a6bc1cd 1091
22df02bb 1092 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1093 unsigned int lcpu;
7a22ad75 1094
7a6bc1cd
VP
1095 BUG_ON(timer_pending(timer));
1096 BUG_ON(!list_empty(&work->entry));
1097
8a3e77cc
AL
1098 timer_stats_timer_set_start_info(&dwork->timer);
1099
7a22ad75
TH
1100 /*
1101 * This stores cwq for the moment, for the timer_fn.
1102 * Note that the work's gcwq is preserved to allow
1103 * reentrance detection for delayed works.
1104 */
c7fc77f7
TH
1105 if (!(wq->flags & WQ_UNBOUND)) {
1106 struct global_cwq *gcwq = get_work_gcwq(work);
1107
1108 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1109 lcpu = gcwq->cpu;
1110 else
1111 lcpu = raw_smp_processor_id();
1112 } else
1113 lcpu = WORK_CPU_UNBOUND;
1114
7a22ad75 1115 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1116
7a6bc1cd 1117 timer->expires = jiffies + delay;
52bad64d 1118 timer->data = (unsigned long)dwork;
7a6bc1cd 1119 timer->function = delayed_work_timer_fn;
63bc0362
ON
1120
1121 if (unlikely(cpu >= 0))
1122 add_timer_on(timer, cpu);
1123 else
1124 add_timer(timer);
7a6bc1cd
VP
1125 ret = 1;
1126 }
1127 return ret;
1128}
ae90dd5d 1129EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1130
c8e55f36
TH
1131/**
1132 * worker_enter_idle - enter idle state
1133 * @worker: worker which is entering idle state
1134 *
1135 * @worker is entering idle state. Update stats and idle timer if
1136 * necessary.
1137 *
1138 * LOCKING:
1139 * spin_lock_irq(gcwq->lock).
1140 */
1141static void worker_enter_idle(struct worker *worker)
1da177e4 1142{
c8e55f36
TH
1143 struct global_cwq *gcwq = worker->gcwq;
1144
1145 BUG_ON(worker->flags & WORKER_IDLE);
1146 BUG_ON(!list_empty(&worker->entry) &&
1147 (worker->hentry.next || worker->hentry.pprev));
1148
cb444766
TH
1149 /* can't use worker_set_flags(), also called from start_worker() */
1150 worker->flags |= WORKER_IDLE;
c8e55f36 1151 gcwq->nr_idle++;
e22bee78 1152 worker->last_active = jiffies;
c8e55f36
TH
1153
1154 /* idle_list is LIFO */
1155 list_add(&worker->entry, &gcwq->idle_list);
db7bccf4 1156
e22bee78
TH
1157 if (likely(!(worker->flags & WORKER_ROGUE))) {
1158 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1159 mod_timer(&gcwq->idle_timer,
1160 jiffies + IDLE_WORKER_TIMEOUT);
1161 } else
db7bccf4 1162 wake_up_all(&gcwq->trustee_wait);
cb444766
TH
1163
1164 /* sanity check nr_running */
1165 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1166 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
c8e55f36
TH
1167}
1168
1169/**
1170 * worker_leave_idle - leave idle state
1171 * @worker: worker which is leaving idle state
1172 *
1173 * @worker is leaving idle state. Update stats.
1174 *
1175 * LOCKING:
1176 * spin_lock_irq(gcwq->lock).
1177 */
1178static void worker_leave_idle(struct worker *worker)
1179{
1180 struct global_cwq *gcwq = worker->gcwq;
1181
1182 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1183 worker_clr_flags(worker, WORKER_IDLE);
c8e55f36
TH
1184 gcwq->nr_idle--;
1185 list_del_init(&worker->entry);
1186}
1187
e22bee78
TH
1188/**
1189 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1190 * @worker: self
1191 *
1192 * Works which are scheduled while the cpu is online must at least be
1193 * scheduled to a worker which is bound to the cpu so that if they are
1194 * flushed from cpu callbacks while cpu is going down, they are
1195 * guaranteed to execute on the cpu.
1196 *
1197 * This function is to be used by rogue workers and rescuers to bind
1198 * themselves to the target cpu and may race with cpu going down or
1199 * coming online. kthread_bind() can't be used because it may put the
1200 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1201 * verbatim as it's best effort and blocking and gcwq may be
1202 * [dis]associated in the meantime.
1203 *
1204 * This function tries set_cpus_allowed() and locks gcwq and verifies
1205 * the binding against GCWQ_DISASSOCIATED which is set during
1206 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1207 * idle state or fetches works without dropping lock, it can guarantee
1208 * the scheduling requirement described in the first paragraph.
1209 *
1210 * CONTEXT:
1211 * Might sleep. Called without any lock but returns with gcwq->lock
1212 * held.
1213 *
1214 * RETURNS:
1215 * %true if the associated gcwq is online (@worker is successfully
1216 * bound), %false if offline.
1217 */
1218static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1219__acquires(&gcwq->lock)
e22bee78
TH
1220{
1221 struct global_cwq *gcwq = worker->gcwq;
1222 struct task_struct *task = worker->task;
1223
1224 while (true) {
4e6045f1 1225 /*
e22bee78
TH
1226 * The following call may fail, succeed or succeed
1227 * without actually migrating the task to the cpu if
1228 * it races with cpu hotunplug operation. Verify
1229 * against GCWQ_DISASSOCIATED.
4e6045f1 1230 */
f3421797
TH
1231 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1232 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1233
1234 spin_lock_irq(&gcwq->lock);
1235 if (gcwq->flags & GCWQ_DISASSOCIATED)
1236 return false;
1237 if (task_cpu(task) == gcwq->cpu &&
1238 cpumask_equal(&current->cpus_allowed,
1239 get_cpu_mask(gcwq->cpu)))
1240 return true;
1241 spin_unlock_irq(&gcwq->lock);
1242
1243 /* CPU has come up inbetween, retry migration */
1244 cpu_relax();
1245 }
1246}
1247
1248/*
1249 * Function for worker->rebind_work used to rebind rogue busy workers
1250 * to the associated cpu which is coming back online. This is
1251 * scheduled by cpu up but can race with other cpu hotplug operations
1252 * and may be executed twice without intervening cpu down.
1253 */
1254static void worker_rebind_fn(struct work_struct *work)
1255{
1256 struct worker *worker = container_of(work, struct worker, rebind_work);
1257 struct global_cwq *gcwq = worker->gcwq;
1258
1259 if (worker_maybe_bind_and_lock(worker))
1260 worker_clr_flags(worker, WORKER_REBIND);
1261
1262 spin_unlock_irq(&gcwq->lock);
1263}
1264
c34056a3
TH
1265static struct worker *alloc_worker(void)
1266{
1267 struct worker *worker;
1268
1269 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1270 if (worker) {
1271 INIT_LIST_HEAD(&worker->entry);
affee4b2 1272 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1273 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1274 /* on creation a worker is in !idle && prep state */
1275 worker->flags = WORKER_PREP;
c8e55f36 1276 }
c34056a3
TH
1277 return worker;
1278}
1279
1280/**
1281 * create_worker - create a new workqueue worker
7e11629d 1282 * @gcwq: gcwq the new worker will belong to
c34056a3
TH
1283 * @bind: whether to set affinity to @cpu or not
1284 *
7e11629d 1285 * Create a new worker which is bound to @gcwq. The returned worker
c34056a3
TH
1286 * can be started by calling start_worker() or destroyed using
1287 * destroy_worker().
1288 *
1289 * CONTEXT:
1290 * Might sleep. Does GFP_KERNEL allocations.
1291 *
1292 * RETURNS:
1293 * Pointer to the newly created worker.
1294 */
7e11629d 1295static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
c34056a3 1296{
f3421797 1297 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
c34056a3 1298 struct worker *worker = NULL;
f3421797 1299 int id = -1;
c34056a3 1300
8b03ae3c
TH
1301 spin_lock_irq(&gcwq->lock);
1302 while (ida_get_new(&gcwq->worker_ida, &id)) {
1303 spin_unlock_irq(&gcwq->lock);
1304 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
c34056a3 1305 goto fail;
8b03ae3c 1306 spin_lock_irq(&gcwq->lock);
c34056a3 1307 }
8b03ae3c 1308 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1309
1310 worker = alloc_worker();
1311 if (!worker)
1312 goto fail;
1313
8b03ae3c 1314 worker->gcwq = gcwq;
c34056a3
TH
1315 worker->id = id;
1316
f3421797
TH
1317 if (!on_unbound_cpu)
1318 worker->task = kthread_create(worker_thread, worker,
1319 "kworker/%u:%d", gcwq->cpu, id);
1320 else
1321 worker->task = kthread_create(worker_thread, worker,
1322 "kworker/u:%d", id);
c34056a3
TH
1323 if (IS_ERR(worker->task))
1324 goto fail;
1325
db7bccf4
TH
1326 /*
1327 * A rogue worker will become a regular one if CPU comes
1328 * online later on. Make sure every worker has
1329 * PF_THREAD_BOUND set.
1330 */
f3421797 1331 if (bind && !on_unbound_cpu)
8b03ae3c 1332 kthread_bind(worker->task, gcwq->cpu);
f3421797 1333 else {
db7bccf4 1334 worker->task->flags |= PF_THREAD_BOUND;
f3421797
TH
1335 if (on_unbound_cpu)
1336 worker->flags |= WORKER_UNBOUND;
1337 }
c34056a3
TH
1338
1339 return worker;
1340fail:
1341 if (id >= 0) {
8b03ae3c
TH
1342 spin_lock_irq(&gcwq->lock);
1343 ida_remove(&gcwq->worker_ida, id);
1344 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1345 }
1346 kfree(worker);
1347 return NULL;
1348}
1349
1350/**
1351 * start_worker - start a newly created worker
1352 * @worker: worker to start
1353 *
c8e55f36 1354 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1355 *
1356 * CONTEXT:
8b03ae3c 1357 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1358 */
1359static void start_worker(struct worker *worker)
1360{
cb444766 1361 worker->flags |= WORKER_STARTED;
c8e55f36
TH
1362 worker->gcwq->nr_workers++;
1363 worker_enter_idle(worker);
c34056a3
TH
1364 wake_up_process(worker->task);
1365}
1366
1367/**
1368 * destroy_worker - destroy a workqueue worker
1369 * @worker: worker to be destroyed
1370 *
c8e55f36
TH
1371 * Destroy @worker and adjust @gcwq stats accordingly.
1372 *
1373 * CONTEXT:
1374 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1375 */
1376static void destroy_worker(struct worker *worker)
1377{
8b03ae3c 1378 struct global_cwq *gcwq = worker->gcwq;
c34056a3
TH
1379 int id = worker->id;
1380
1381 /* sanity check frenzy */
1382 BUG_ON(worker->current_work);
affee4b2 1383 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1384
c8e55f36
TH
1385 if (worker->flags & WORKER_STARTED)
1386 gcwq->nr_workers--;
1387 if (worker->flags & WORKER_IDLE)
1388 gcwq->nr_idle--;
1389
1390 list_del_init(&worker->entry);
cb444766 1391 worker->flags |= WORKER_DIE;
c8e55f36
TH
1392
1393 spin_unlock_irq(&gcwq->lock);
1394
c34056a3
TH
1395 kthread_stop(worker->task);
1396 kfree(worker);
1397
8b03ae3c
TH
1398 spin_lock_irq(&gcwq->lock);
1399 ida_remove(&gcwq->worker_ida, id);
c34056a3
TH
1400}
1401
e22bee78
TH
1402static void idle_worker_timeout(unsigned long __gcwq)
1403{
1404 struct global_cwq *gcwq = (void *)__gcwq;
1405
1406 spin_lock_irq(&gcwq->lock);
1407
1408 if (too_many_workers(gcwq)) {
1409 struct worker *worker;
1410 unsigned long expires;
1411
1412 /* idle_list is kept in LIFO order, check the last one */
1413 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1414 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1415
1416 if (time_before(jiffies, expires))
1417 mod_timer(&gcwq->idle_timer, expires);
1418 else {
1419 /* it's been idle for too long, wake up manager */
1420 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1421 wake_up_worker(gcwq);
d5abe669 1422 }
e22bee78
TH
1423 }
1424
1425 spin_unlock_irq(&gcwq->lock);
1426}
d5abe669 1427
e22bee78
TH
1428static bool send_mayday(struct work_struct *work)
1429{
1430 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1431 struct workqueue_struct *wq = cwq->wq;
f3421797 1432 unsigned int cpu;
e22bee78
TH
1433
1434 if (!(wq->flags & WQ_RESCUER))
1435 return false;
1436
1437 /* mayday mayday mayday */
f3421797
TH
1438 cpu = cwq->gcwq->cpu;
1439 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1440 if (cpu == WORK_CPU_UNBOUND)
1441 cpu = 0;
f2e005aa 1442 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1443 wake_up_process(wq->rescuer->task);
1444 return true;
1445}
1446
1447static void gcwq_mayday_timeout(unsigned long __gcwq)
1448{
1449 struct global_cwq *gcwq = (void *)__gcwq;
1450 struct work_struct *work;
1451
1452 spin_lock_irq(&gcwq->lock);
1453
1454 if (need_to_create_worker(gcwq)) {
1455 /*
1456 * We've been trying to create a new worker but
1457 * haven't been successful. We might be hitting an
1458 * allocation deadlock. Send distress signals to
1459 * rescuers.
1460 */
1461 list_for_each_entry(work, &gcwq->worklist, entry)
1462 send_mayday(work);
1da177e4 1463 }
e22bee78
TH
1464
1465 spin_unlock_irq(&gcwq->lock);
1466
1467 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1468}
1469
e22bee78
TH
1470/**
1471 * maybe_create_worker - create a new worker if necessary
1472 * @gcwq: gcwq to create a new worker for
1473 *
1474 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1475 * have at least one idle worker on return from this function. If
1476 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1477 * sent to all rescuers with works scheduled on @gcwq to resolve
1478 * possible allocation deadlock.
1479 *
1480 * On return, need_to_create_worker() is guaranteed to be false and
1481 * may_start_working() true.
1482 *
1483 * LOCKING:
1484 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1485 * multiple times. Does GFP_KERNEL allocations. Called only from
1486 * manager.
1487 *
1488 * RETURNS:
1489 * false if no action was taken and gcwq->lock stayed locked, true
1490 * otherwise.
1491 */
1492static bool maybe_create_worker(struct global_cwq *gcwq)
06bd6ebf
NK
1493__releases(&gcwq->lock)
1494__acquires(&gcwq->lock)
1da177e4 1495{
e22bee78
TH
1496 if (!need_to_create_worker(gcwq))
1497 return false;
1498restart:
9f9c2364
TH
1499 spin_unlock_irq(&gcwq->lock);
1500
e22bee78
TH
1501 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1502 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1503
1504 while (true) {
1505 struct worker *worker;
1506
e22bee78
TH
1507 worker = create_worker(gcwq, true);
1508 if (worker) {
1509 del_timer_sync(&gcwq->mayday_timer);
1510 spin_lock_irq(&gcwq->lock);
1511 start_worker(worker);
1512 BUG_ON(need_to_create_worker(gcwq));
1513 return true;
1514 }
1515
1516 if (!need_to_create_worker(gcwq))
1517 break;
1da177e4 1518
e22bee78
TH
1519 __set_current_state(TASK_INTERRUPTIBLE);
1520 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1521
e22bee78
TH
1522 if (!need_to_create_worker(gcwq))
1523 break;
1524 }
1525
e22bee78
TH
1526 del_timer_sync(&gcwq->mayday_timer);
1527 spin_lock_irq(&gcwq->lock);
1528 if (need_to_create_worker(gcwq))
1529 goto restart;
1530 return true;
1531}
1532
1533/**
1534 * maybe_destroy_worker - destroy workers which have been idle for a while
1535 * @gcwq: gcwq to destroy workers for
1536 *
1537 * Destroy @gcwq workers which have been idle for longer than
1538 * IDLE_WORKER_TIMEOUT.
1539 *
1540 * LOCKING:
1541 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1542 * multiple times. Called only from manager.
1543 *
1544 * RETURNS:
1545 * false if no action was taken and gcwq->lock stayed locked, true
1546 * otherwise.
1547 */
1548static bool maybe_destroy_workers(struct global_cwq *gcwq)
1549{
1550 bool ret = false;
1da177e4 1551
e22bee78
TH
1552 while (too_many_workers(gcwq)) {
1553 struct worker *worker;
1554 unsigned long expires;
3af24433 1555
e22bee78
TH
1556 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1557 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1558
e22bee78
TH
1559 if (time_before(jiffies, expires)) {
1560 mod_timer(&gcwq->idle_timer, expires);
3af24433 1561 break;
e22bee78 1562 }
1da177e4 1563
e22bee78
TH
1564 destroy_worker(worker);
1565 ret = true;
1da177e4 1566 }
3af24433 1567
e22bee78
TH
1568 return ret;
1569}
1570
1571/**
1572 * manage_workers - manage worker pool
1573 * @worker: self
1574 *
1575 * Assume the manager role and manage gcwq worker pool @worker belongs
1576 * to. At any given time, there can be only zero or one manager per
1577 * gcwq. The exclusion is handled automatically by this function.
1578 *
1579 * The caller can safely start processing works on false return. On
1580 * true return, it's guaranteed that need_to_create_worker() is false
1581 * and may_start_working() is true.
1582 *
1583 * CONTEXT:
1584 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1585 * multiple times. Does GFP_KERNEL allocations.
1586 *
1587 * RETURNS:
1588 * false if no action was taken and gcwq->lock stayed locked, true if
1589 * some action was taken.
1590 */
1591static bool manage_workers(struct worker *worker)
1592{
1593 struct global_cwq *gcwq = worker->gcwq;
1594 bool ret = false;
1595
1596 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1597 return ret;
1598
1599 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1600 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1601
1602 /*
1603 * Destroy and then create so that may_start_working() is true
1604 * on return.
1605 */
1606 ret |= maybe_destroy_workers(gcwq);
1607 ret |= maybe_create_worker(gcwq);
1608
1609 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1610
1611 /*
1612 * The trustee might be waiting to take over the manager
1613 * position, tell it we're done.
1614 */
1615 if (unlikely(gcwq->trustee))
1616 wake_up_all(&gcwq->trustee_wait);
1617
1618 return ret;
1619}
1620
affee4b2
TH
1621/**
1622 * move_linked_works - move linked works to a list
1623 * @work: start of series of works to be scheduled
1624 * @head: target list to append @work to
1625 * @nextp: out paramter for nested worklist walking
1626 *
1627 * Schedule linked works starting from @work to @head. Work series to
1628 * be scheduled starts at @work and includes any consecutive work with
1629 * WORK_STRUCT_LINKED set in its predecessor.
1630 *
1631 * If @nextp is not NULL, it's updated to point to the next work of
1632 * the last scheduled work. This allows move_linked_works() to be
1633 * nested inside outer list_for_each_entry_safe().
1634 *
1635 * CONTEXT:
8b03ae3c 1636 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1637 */
1638static void move_linked_works(struct work_struct *work, struct list_head *head,
1639 struct work_struct **nextp)
1640{
1641 struct work_struct *n;
1642
1643 /*
1644 * Linked worklist will always end before the end of the list,
1645 * use NULL for list head.
1646 */
1647 list_for_each_entry_safe_from(work, n, NULL, entry) {
1648 list_move_tail(&work->entry, head);
1649 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1650 break;
1651 }
1652
1653 /*
1654 * If we're already inside safe list traversal and have moved
1655 * multiple works to the scheduled queue, the next position
1656 * needs to be updated.
1657 */
1658 if (nextp)
1659 *nextp = n;
1660}
1661
1e19ffc6
TH
1662static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1663{
1664 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1665 struct work_struct, entry);
649027d7 1666 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1e19ffc6 1667
649027d7 1668 move_linked_works(work, pos, NULL);
1e19ffc6
TH
1669 cwq->nr_active++;
1670}
1671
73f53c4a
TH
1672/**
1673 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1674 * @cwq: cwq of interest
1675 * @color: color of work which left the queue
1676 *
1677 * A work either has completed or is removed from pending queue,
1678 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1679 *
1680 * CONTEXT:
8b03ae3c 1681 * spin_lock_irq(gcwq->lock).
73f53c4a
TH
1682 */
1683static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1684{
1685 /* ignore uncolored works */
1686 if (color == WORK_NO_COLOR)
1687 return;
1688
1689 cwq->nr_in_flight[color]--;
1e19ffc6
TH
1690 cwq->nr_active--;
1691
502ca9d8
TH
1692 if (!list_empty(&cwq->delayed_works)) {
1693 /* one down, submit a delayed one */
1694 if (cwq->nr_active < cwq->max_active)
1695 cwq_activate_first_delayed(cwq);
502ca9d8 1696 }
73f53c4a
TH
1697
1698 /* is flush in progress and are we at the flushing tip? */
1699 if (likely(cwq->flush_color != color))
1700 return;
1701
1702 /* are there still in-flight works? */
1703 if (cwq->nr_in_flight[color])
1704 return;
1705
1706 /* this cwq is done, clear flush_color */
1707 cwq->flush_color = -1;
1708
1709 /*
1710 * If this was the last cwq, wake up the first flusher. It
1711 * will handle the rest.
1712 */
1713 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1714 complete(&cwq->wq->first_flusher->done);
1715}
1716
a62428c0
TH
1717/**
1718 * process_one_work - process single work
c34056a3 1719 * @worker: self
a62428c0
TH
1720 * @work: work to process
1721 *
1722 * Process @work. This function contains all the logics necessary to
1723 * process a single work including synchronization against and
1724 * interaction with other workers on the same cpu, queueing and
1725 * flushing. As long as context requirement is met, any worker can
1726 * call this function to process a work.
1727 *
1728 * CONTEXT:
8b03ae3c 1729 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1730 */
c34056a3 1731static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1732__releases(&gcwq->lock)
1733__acquires(&gcwq->lock)
a62428c0 1734{
7e11629d 1735 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
8b03ae3c 1736 struct global_cwq *gcwq = cwq->gcwq;
c8e55f36 1737 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1738 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1739 work_func_t f = work->func;
73f53c4a 1740 int work_color;
7e11629d 1741 struct worker *collision;
a62428c0
TH
1742#ifdef CONFIG_LOCKDEP
1743 /*
1744 * It is permissible to free the struct work_struct from
1745 * inside the function that is called from it, this we need to
1746 * take into account for lockdep too. To avoid bogus "held
1747 * lock freed" warnings as well as problems when looking into
1748 * work->lockdep_map, make a copy and use that here.
1749 */
1750 struct lockdep_map lockdep_map = work->lockdep_map;
1751#endif
7e11629d
TH
1752 /*
1753 * A single work shouldn't be executed concurrently by
1754 * multiple workers on a single cpu. Check whether anyone is
1755 * already processing the work. If so, defer the work to the
1756 * currently executing one.
1757 */
1758 collision = __find_worker_executing_work(gcwq, bwh, work);
1759 if (unlikely(collision)) {
1760 move_linked_works(work, &collision->scheduled, NULL);
1761 return;
1762 }
1763
a62428c0 1764 /* claim and process */
a62428c0 1765 debug_work_deactivate(work);
c8e55f36 1766 hlist_add_head(&worker->hentry, bwh);
c34056a3 1767 worker->current_work = work;
8cca0eea 1768 worker->current_cwq = cwq;
73f53c4a 1769 work_color = get_work_color(work);
7a22ad75 1770
7a22ad75
TH
1771 /* record the current cpu number in the work data and dequeue */
1772 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1773 list_del_init(&work->entry);
1774
649027d7
TH
1775 /*
1776 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1777 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1778 */
1779 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1780 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1781 struct work_struct, entry);
1782
1783 if (!list_empty(&gcwq->worklist) &&
1784 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1785 wake_up_worker(gcwq);
1786 else
1787 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1788 }
1789
fb0e7beb
TH
1790 /*
1791 * CPU intensive works don't participate in concurrency
1792 * management. They're the scheduler's responsibility.
1793 */
1794 if (unlikely(cpu_intensive))
1795 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1796
8b03ae3c 1797 spin_unlock_irq(&gcwq->lock);
a62428c0 1798
a62428c0
TH
1799 work_clear_pending(work);
1800 lock_map_acquire(&cwq->wq->lockdep_map);
1801 lock_map_acquire(&lockdep_map);
1802 f(work);
1803 lock_map_release(&lockdep_map);
1804 lock_map_release(&cwq->wq->lockdep_map);
1805
1806 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1807 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1808 "%s/0x%08x/%d\n",
1809 current->comm, preempt_count(), task_pid_nr(current));
1810 printk(KERN_ERR " last function: ");
1811 print_symbol("%s\n", (unsigned long)f);
1812 debug_show_held_locks(current);
1813 dump_stack();
1814 }
1815
8b03ae3c 1816 spin_lock_irq(&gcwq->lock);
a62428c0 1817
fb0e7beb
TH
1818 /* clear cpu intensive status */
1819 if (unlikely(cpu_intensive))
1820 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1821
a62428c0 1822 /* we're done with it, release */
c8e55f36 1823 hlist_del_init(&worker->hentry);
c34056a3 1824 worker->current_work = NULL;
8cca0eea 1825 worker->current_cwq = NULL;
73f53c4a 1826 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
1827}
1828
affee4b2
TH
1829/**
1830 * process_scheduled_works - process scheduled works
1831 * @worker: self
1832 *
1833 * Process all scheduled works. Please note that the scheduled list
1834 * may change while processing a work, so this function repeatedly
1835 * fetches a work from the top and executes it.
1836 *
1837 * CONTEXT:
8b03ae3c 1838 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1839 * multiple times.
1840 */
1841static void process_scheduled_works(struct worker *worker)
1da177e4 1842{
affee4b2
TH
1843 while (!list_empty(&worker->scheduled)) {
1844 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1845 struct work_struct, entry);
c34056a3 1846 process_one_work(worker, work);
1da177e4 1847 }
1da177e4
LT
1848}
1849
4690c4ab
TH
1850/**
1851 * worker_thread - the worker thread function
c34056a3 1852 * @__worker: self
4690c4ab 1853 *
e22bee78
TH
1854 * The gcwq worker thread function. There's a single dynamic pool of
1855 * these per each cpu. These workers process all works regardless of
1856 * their specific target workqueue. The only exception is works which
1857 * belong to workqueues with a rescuer which will be explained in
1858 * rescuer_thread().
4690c4ab 1859 */
c34056a3 1860static int worker_thread(void *__worker)
1da177e4 1861{
c34056a3 1862 struct worker *worker = __worker;
8b03ae3c 1863 struct global_cwq *gcwq = worker->gcwq;
1da177e4 1864
e22bee78
TH
1865 /* tell the scheduler that this is a workqueue worker */
1866 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 1867woke_up:
c8e55f36 1868 spin_lock_irq(&gcwq->lock);
1da177e4 1869
c8e55f36
TH
1870 /* DIE can be set only while we're idle, checking here is enough */
1871 if (worker->flags & WORKER_DIE) {
1872 spin_unlock_irq(&gcwq->lock);
e22bee78 1873 worker->task->flags &= ~PF_WQ_WORKER;
c8e55f36
TH
1874 return 0;
1875 }
affee4b2 1876
c8e55f36 1877 worker_leave_idle(worker);
db7bccf4 1878recheck:
e22bee78
TH
1879 /* no more worker necessary? */
1880 if (!need_more_worker(gcwq))
1881 goto sleep;
1882
1883 /* do we need to manage? */
1884 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1885 goto recheck;
1886
c8e55f36
TH
1887 /*
1888 * ->scheduled list can only be filled while a worker is
1889 * preparing to process a work or actually processing it.
1890 * Make sure nobody diddled with it while I was sleeping.
1891 */
1892 BUG_ON(!list_empty(&worker->scheduled));
1893
e22bee78
TH
1894 /*
1895 * When control reaches this point, we're guaranteed to have
1896 * at least one idle worker or that someone else has already
1897 * assumed the manager role.
1898 */
1899 worker_clr_flags(worker, WORKER_PREP);
1900
1901 do {
c8e55f36 1902 struct work_struct *work =
7e11629d 1903 list_first_entry(&gcwq->worklist,
c8e55f36
TH
1904 struct work_struct, entry);
1905
1906 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1907 /* optimization path, not strictly necessary */
1908 process_one_work(worker, work);
1909 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 1910 process_scheduled_works(worker);
c8e55f36
TH
1911 } else {
1912 move_linked_works(work, &worker->scheduled, NULL);
1913 process_scheduled_works(worker);
affee4b2 1914 }
e22bee78
TH
1915 } while (keep_working(gcwq));
1916
1917 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 1918sleep:
e22bee78
TH
1919 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1920 goto recheck;
d313dd85 1921
c8e55f36 1922 /*
e22bee78
TH
1923 * gcwq->lock is held and there's no work to process and no
1924 * need to manage, sleep. Workers are woken up only while
1925 * holding gcwq->lock or from local cpu, so setting the
1926 * current state before releasing gcwq->lock is enough to
1927 * prevent losing any event.
c8e55f36
TH
1928 */
1929 worker_enter_idle(worker);
1930 __set_current_state(TASK_INTERRUPTIBLE);
1931 spin_unlock_irq(&gcwq->lock);
1932 schedule();
1933 goto woke_up;
1da177e4
LT
1934}
1935
e22bee78
TH
1936/**
1937 * rescuer_thread - the rescuer thread function
1938 * @__wq: the associated workqueue
1939 *
1940 * Workqueue rescuer thread function. There's one rescuer for each
1941 * workqueue which has WQ_RESCUER set.
1942 *
1943 * Regular work processing on a gcwq may block trying to create a new
1944 * worker which uses GFP_KERNEL allocation which has slight chance of
1945 * developing into deadlock if some works currently on the same queue
1946 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1947 * the problem rescuer solves.
1948 *
1949 * When such condition is possible, the gcwq summons rescuers of all
1950 * workqueues which have works queued on the gcwq and let them process
1951 * those works so that forward progress can be guaranteed.
1952 *
1953 * This should happen rarely.
1954 */
1955static int rescuer_thread(void *__wq)
1956{
1957 struct workqueue_struct *wq = __wq;
1958 struct worker *rescuer = wq->rescuer;
1959 struct list_head *scheduled = &rescuer->scheduled;
f3421797 1960 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
1961 unsigned int cpu;
1962
1963 set_user_nice(current, RESCUER_NICE_LEVEL);
1964repeat:
1965 set_current_state(TASK_INTERRUPTIBLE);
1966
1967 if (kthread_should_stop())
1968 return 0;
1969
f3421797
TH
1970 /*
1971 * See whether any cpu is asking for help. Unbounded
1972 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
1973 */
f2e005aa 1974 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
1975 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
1976 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
e22bee78
TH
1977 struct global_cwq *gcwq = cwq->gcwq;
1978 struct work_struct *work, *n;
1979
1980 __set_current_state(TASK_RUNNING);
f2e005aa 1981 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
1982
1983 /* migrate to the target cpu if possible */
1984 rescuer->gcwq = gcwq;
1985 worker_maybe_bind_and_lock(rescuer);
1986
1987 /*
1988 * Slurp in all works issued via this workqueue and
1989 * process'em.
1990 */
1991 BUG_ON(!list_empty(&rescuer->scheduled));
1992 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
1993 if (get_work_cwq(work) == cwq)
1994 move_linked_works(work, scheduled, &n);
1995
1996 process_scheduled_works(rescuer);
1997 spin_unlock_irq(&gcwq->lock);
1998 }
1999
2000 schedule();
2001 goto repeat;
1da177e4
LT
2002}
2003
fc2e4d70
ON
2004struct wq_barrier {
2005 struct work_struct work;
2006 struct completion done;
2007};
2008
2009static void wq_barrier_func(struct work_struct *work)
2010{
2011 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2012 complete(&barr->done);
2013}
2014
4690c4ab
TH
2015/**
2016 * insert_wq_barrier - insert a barrier work
2017 * @cwq: cwq to insert barrier into
2018 * @barr: wq_barrier to insert
affee4b2
TH
2019 * @target: target work to attach @barr to
2020 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2021 *
affee4b2
TH
2022 * @barr is linked to @target such that @barr is completed only after
2023 * @target finishes execution. Please note that the ordering
2024 * guarantee is observed only with respect to @target and on the local
2025 * cpu.
2026 *
2027 * Currently, a queued barrier can't be canceled. This is because
2028 * try_to_grab_pending() can't determine whether the work to be
2029 * grabbed is at the head of the queue and thus can't clear LINKED
2030 * flag of the previous work while there must be a valid next work
2031 * after a work with LINKED flag set.
2032 *
2033 * Note that when @worker is non-NULL, @target may be modified
2034 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2035 *
2036 * CONTEXT:
8b03ae3c 2037 * spin_lock_irq(gcwq->lock).
4690c4ab 2038 */
83c22520 2039static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2040 struct wq_barrier *barr,
2041 struct work_struct *target, struct worker *worker)
fc2e4d70 2042{
affee4b2
TH
2043 struct list_head *head;
2044 unsigned int linked = 0;
2045
dc186ad7 2046 /*
8b03ae3c 2047 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2048 * as we know for sure that this will not trigger any of the
2049 * checks and call back into the fixup functions where we
2050 * might deadlock.
2051 */
2052 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
22df02bb 2053 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2054 init_completion(&barr->done);
83c22520 2055
affee4b2
TH
2056 /*
2057 * If @target is currently being executed, schedule the
2058 * barrier to the worker; otherwise, put it after @target.
2059 */
2060 if (worker)
2061 head = worker->scheduled.next;
2062 else {
2063 unsigned long *bits = work_data_bits(target);
2064
2065 head = target->entry.next;
2066 /* there can already be other linked works, inherit and set */
2067 linked = *bits & WORK_STRUCT_LINKED;
2068 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2069 }
2070
dc186ad7 2071 debug_work_activate(&barr->work);
affee4b2
TH
2072 insert_work(cwq, &barr->work, head,
2073 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2074}
2075
73f53c4a
TH
2076/**
2077 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2078 * @wq: workqueue being flushed
2079 * @flush_color: new flush color, < 0 for no-op
2080 * @work_color: new work color, < 0 for no-op
2081 *
2082 * Prepare cwqs for workqueue flushing.
2083 *
2084 * If @flush_color is non-negative, flush_color on all cwqs should be
2085 * -1. If no cwq has in-flight commands at the specified color, all
2086 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2087 * has in flight commands, its cwq->flush_color is set to
2088 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2089 * wakeup logic is armed and %true is returned.
2090 *
2091 * The caller should have initialized @wq->first_flusher prior to
2092 * calling this function with non-negative @flush_color. If
2093 * @flush_color is negative, no flush color update is done and %false
2094 * is returned.
2095 *
2096 * If @work_color is non-negative, all cwqs should have the same
2097 * work_color which is previous to @work_color and all will be
2098 * advanced to @work_color.
2099 *
2100 * CONTEXT:
2101 * mutex_lock(wq->flush_mutex).
2102 *
2103 * RETURNS:
2104 * %true if @flush_color >= 0 and there's something to flush. %false
2105 * otherwise.
2106 */
2107static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2108 int flush_color, int work_color)
1da177e4 2109{
73f53c4a
TH
2110 bool wait = false;
2111 unsigned int cpu;
1da177e4 2112
73f53c4a
TH
2113 if (flush_color >= 0) {
2114 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2115 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2116 }
2355b70f 2117
f3421797 2118 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2119 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2120 struct global_cwq *gcwq = cwq->gcwq;
fc2e4d70 2121
8b03ae3c 2122 spin_lock_irq(&gcwq->lock);
83c22520 2123
73f53c4a
TH
2124 if (flush_color >= 0) {
2125 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2126
73f53c4a
TH
2127 if (cwq->nr_in_flight[flush_color]) {
2128 cwq->flush_color = flush_color;
2129 atomic_inc(&wq->nr_cwqs_to_flush);
2130 wait = true;
2131 }
2132 }
1da177e4 2133
73f53c4a
TH
2134 if (work_color >= 0) {
2135 BUG_ON(work_color != work_next_color(cwq->work_color));
2136 cwq->work_color = work_color;
2137 }
1da177e4 2138
8b03ae3c 2139 spin_unlock_irq(&gcwq->lock);
1da177e4 2140 }
2355b70f 2141
73f53c4a
TH
2142 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2143 complete(&wq->first_flusher->done);
14441960 2144
73f53c4a 2145 return wait;
1da177e4
LT
2146}
2147
0fcb78c2 2148/**
1da177e4 2149 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2150 * @wq: workqueue to flush
1da177e4
LT
2151 *
2152 * Forces execution of the workqueue and blocks until its completion.
2153 * This is typically used in driver shutdown handlers.
2154 *
fc2e4d70
ON
2155 * We sleep until all works which were queued on entry have been handled,
2156 * but we are not livelocked by new incoming ones.
1da177e4 2157 */
7ad5b3a5 2158void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2159{
73f53c4a
TH
2160 struct wq_flusher this_flusher = {
2161 .list = LIST_HEAD_INIT(this_flusher.list),
2162 .flush_color = -1,
2163 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2164 };
2165 int next_color;
1da177e4 2166
3295f0ef
IM
2167 lock_map_acquire(&wq->lockdep_map);
2168 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2169
2170 mutex_lock(&wq->flush_mutex);
2171
2172 /*
2173 * Start-to-wait phase
2174 */
2175 next_color = work_next_color(wq->work_color);
2176
2177 if (next_color != wq->flush_color) {
2178 /*
2179 * Color space is not full. The current work_color
2180 * becomes our flush_color and work_color is advanced
2181 * by one.
2182 */
2183 BUG_ON(!list_empty(&wq->flusher_overflow));
2184 this_flusher.flush_color = wq->work_color;
2185 wq->work_color = next_color;
2186
2187 if (!wq->first_flusher) {
2188 /* no flush in progress, become the first flusher */
2189 BUG_ON(wq->flush_color != this_flusher.flush_color);
2190
2191 wq->first_flusher = &this_flusher;
2192
2193 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2194 wq->work_color)) {
2195 /* nothing to flush, done */
2196 wq->flush_color = next_color;
2197 wq->first_flusher = NULL;
2198 goto out_unlock;
2199 }
2200 } else {
2201 /* wait in queue */
2202 BUG_ON(wq->flush_color == this_flusher.flush_color);
2203 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2204 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2205 }
2206 } else {
2207 /*
2208 * Oops, color space is full, wait on overflow queue.
2209 * The next flush completion will assign us
2210 * flush_color and transfer to flusher_queue.
2211 */
2212 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2213 }
2214
2215 mutex_unlock(&wq->flush_mutex);
2216
2217 wait_for_completion(&this_flusher.done);
2218
2219 /*
2220 * Wake-up-and-cascade phase
2221 *
2222 * First flushers are responsible for cascading flushes and
2223 * handling overflow. Non-first flushers can simply return.
2224 */
2225 if (wq->first_flusher != &this_flusher)
2226 return;
2227
2228 mutex_lock(&wq->flush_mutex);
2229
4ce48b37
TH
2230 /* we might have raced, check again with mutex held */
2231 if (wq->first_flusher != &this_flusher)
2232 goto out_unlock;
2233
73f53c4a
TH
2234 wq->first_flusher = NULL;
2235
2236 BUG_ON(!list_empty(&this_flusher.list));
2237 BUG_ON(wq->flush_color != this_flusher.flush_color);
2238
2239 while (true) {
2240 struct wq_flusher *next, *tmp;
2241
2242 /* complete all the flushers sharing the current flush color */
2243 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2244 if (next->flush_color != wq->flush_color)
2245 break;
2246 list_del_init(&next->list);
2247 complete(&next->done);
2248 }
2249
2250 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2251 wq->flush_color != work_next_color(wq->work_color));
2252
2253 /* this flush_color is finished, advance by one */
2254 wq->flush_color = work_next_color(wq->flush_color);
2255
2256 /* one color has been freed, handle overflow queue */
2257 if (!list_empty(&wq->flusher_overflow)) {
2258 /*
2259 * Assign the same color to all overflowed
2260 * flushers, advance work_color and append to
2261 * flusher_queue. This is the start-to-wait
2262 * phase for these overflowed flushers.
2263 */
2264 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2265 tmp->flush_color = wq->work_color;
2266
2267 wq->work_color = work_next_color(wq->work_color);
2268
2269 list_splice_tail_init(&wq->flusher_overflow,
2270 &wq->flusher_queue);
2271 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2272 }
2273
2274 if (list_empty(&wq->flusher_queue)) {
2275 BUG_ON(wq->flush_color != wq->work_color);
2276 break;
2277 }
2278
2279 /*
2280 * Need to flush more colors. Make the next flusher
2281 * the new first flusher and arm cwqs.
2282 */
2283 BUG_ON(wq->flush_color == wq->work_color);
2284 BUG_ON(wq->flush_color != next->flush_color);
2285
2286 list_del_init(&next->list);
2287 wq->first_flusher = next;
2288
2289 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2290 break;
2291
2292 /*
2293 * Meh... this color is already done, clear first
2294 * flusher and repeat cascading.
2295 */
2296 wq->first_flusher = NULL;
2297 }
2298
2299out_unlock:
2300 mutex_unlock(&wq->flush_mutex);
1da177e4 2301}
ae90dd5d 2302EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2303
db700897
ON
2304/**
2305 * flush_work - block until a work_struct's callback has terminated
2306 * @work: the work which is to be flushed
2307 *
a67da70d
ON
2308 * Returns false if @work has already terminated.
2309 *
db700897
ON
2310 * It is expected that, prior to calling flush_work(), the caller has
2311 * arranged for the work to not be requeued, otherwise it doesn't make
2312 * sense to use this function.
2313 */
2314int flush_work(struct work_struct *work)
2315{
affee4b2 2316 struct worker *worker = NULL;
8b03ae3c 2317 struct global_cwq *gcwq;
db700897 2318 struct cpu_workqueue_struct *cwq;
db700897
ON
2319 struct wq_barrier barr;
2320
2321 might_sleep();
7a22ad75
TH
2322 gcwq = get_work_gcwq(work);
2323 if (!gcwq)
db700897
ON
2324 return 0;
2325
8b03ae3c 2326 spin_lock_irq(&gcwq->lock);
db700897
ON
2327 if (!list_empty(&work->entry)) {
2328 /*
2329 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2330 * If it was re-queued to a different gcwq under us, we
2331 * are not going to wait.
db700897
ON
2332 */
2333 smp_rmb();
7a22ad75
TH
2334 cwq = get_work_cwq(work);
2335 if (unlikely(!cwq || gcwq != cwq->gcwq))
4690c4ab 2336 goto already_gone;
db700897 2337 } else {
7a22ad75 2338 worker = find_worker_executing_work(gcwq, work);
affee4b2 2339 if (!worker)
4690c4ab 2340 goto already_gone;
7a22ad75 2341 cwq = worker->current_cwq;
db700897 2342 }
db700897 2343
affee4b2 2344 insert_wq_barrier(cwq, &barr, work, worker);
8b03ae3c 2345 spin_unlock_irq(&gcwq->lock);
7a22ad75
TH
2346
2347 lock_map_acquire(&cwq->wq->lockdep_map);
2348 lock_map_release(&cwq->wq->lockdep_map);
db700897
ON
2349
2350 wait_for_completion(&barr.done);
dc186ad7 2351 destroy_work_on_stack(&barr.work);
db700897 2352 return 1;
4690c4ab 2353already_gone:
8b03ae3c 2354 spin_unlock_irq(&gcwq->lock);
4690c4ab 2355 return 0;
db700897
ON
2356}
2357EXPORT_SYMBOL_GPL(flush_work);
2358
6e84d644 2359/*
1f1f642e 2360 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2361 * so this work can't be re-armed in any way.
2362 */
2363static int try_to_grab_pending(struct work_struct *work)
2364{
8b03ae3c 2365 struct global_cwq *gcwq;
1f1f642e 2366 int ret = -1;
6e84d644 2367
22df02bb 2368 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2369 return 0;
6e84d644
ON
2370
2371 /*
2372 * The queueing is in progress, or it is already queued. Try to
2373 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2374 */
7a22ad75
TH
2375 gcwq = get_work_gcwq(work);
2376 if (!gcwq)
6e84d644
ON
2377 return ret;
2378
8b03ae3c 2379 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2380 if (!list_empty(&work->entry)) {
2381 /*
7a22ad75 2382 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2383 * In that case we must see the new value after rmb(), see
2384 * insert_work()->wmb().
2385 */
2386 smp_rmb();
7a22ad75 2387 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2388 debug_work_deactivate(work);
6e84d644 2389 list_del_init(&work->entry);
7a22ad75
TH
2390 cwq_dec_nr_in_flight(get_work_cwq(work),
2391 get_work_color(work));
6e84d644
ON
2392 ret = 1;
2393 }
2394 }
8b03ae3c 2395 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2396
2397 return ret;
2398}
2399
7a22ad75 2400static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
b89deed3
ON
2401{
2402 struct wq_barrier barr;
affee4b2 2403 struct worker *worker;
b89deed3 2404
8b03ae3c 2405 spin_lock_irq(&gcwq->lock);
b89deed3 2406
7a22ad75
TH
2407 worker = find_worker_executing_work(gcwq, work);
2408 if (unlikely(worker))
2409 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
affee4b2 2410
8b03ae3c 2411 spin_unlock_irq(&gcwq->lock);
b89deed3 2412
affee4b2 2413 if (unlikely(worker)) {
b89deed3 2414 wait_for_completion(&barr.done);
dc186ad7
TG
2415 destroy_work_on_stack(&barr.work);
2416 }
b89deed3
ON
2417}
2418
6e84d644 2419static void wait_on_work(struct work_struct *work)
b89deed3 2420{
b1f4ec17 2421 int cpu;
b89deed3 2422
f293ea92
ON
2423 might_sleep();
2424
3295f0ef
IM
2425 lock_map_acquire(&work->lockdep_map);
2426 lock_map_release(&work->lockdep_map);
4e6045f1 2427
f3421797 2428 for_each_gcwq_cpu(cpu)
7a22ad75 2429 wait_on_cpu_work(get_gcwq(cpu), work);
6e84d644
ON
2430}
2431
1f1f642e
ON
2432static int __cancel_work_timer(struct work_struct *work,
2433 struct timer_list* timer)
2434{
2435 int ret;
2436
2437 do {
2438 ret = (timer && likely(del_timer(timer)));
2439 if (!ret)
2440 ret = try_to_grab_pending(work);
2441 wait_on_work(work);
2442 } while (unlikely(ret < 0));
2443
7a22ad75 2444 clear_work_data(work);
1f1f642e
ON
2445 return ret;
2446}
2447
6e84d644
ON
2448/**
2449 * cancel_work_sync - block until a work_struct's callback has terminated
2450 * @work: the work which is to be flushed
2451 *
1f1f642e
ON
2452 * Returns true if @work was pending.
2453 *
6e84d644
ON
2454 * cancel_work_sync() will cancel the work if it is queued. If the work's
2455 * callback appears to be running, cancel_work_sync() will block until it
2456 * has completed.
2457 *
2458 * It is possible to use this function if the work re-queues itself. It can
2459 * cancel the work even if it migrates to another workqueue, however in that
2460 * case it only guarantees that work->func() has completed on the last queued
2461 * workqueue.
2462 *
2463 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
2464 * pending, otherwise it goes into a busy-wait loop until the timer expires.
2465 *
2466 * The caller must ensure that workqueue_struct on which this work was last
2467 * queued can't be destroyed before this function returns.
2468 */
1f1f642e 2469int cancel_work_sync(struct work_struct *work)
6e84d644 2470{
1f1f642e 2471 return __cancel_work_timer(work, NULL);
b89deed3 2472}
28e53bdd 2473EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2474
6e84d644 2475/**
f5a421a4 2476 * cancel_delayed_work_sync - reliably kill off a delayed work.
6e84d644
ON
2477 * @dwork: the delayed work struct
2478 *
1f1f642e
ON
2479 * Returns true if @dwork was pending.
2480 *
6e84d644
ON
2481 * It is possible to use this function if @dwork rearms itself via queue_work()
2482 * or queue_delayed_work(). See also the comment for cancel_work_sync().
2483 */
1f1f642e 2484int cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2485{
1f1f642e 2486 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2487}
f5a421a4 2488EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2489
0fcb78c2
REB
2490/**
2491 * schedule_work - put work task in global workqueue
2492 * @work: job to be done
2493 *
5b0f437d
BVA
2494 * Returns zero if @work was already on the kernel-global workqueue and
2495 * non-zero otherwise.
2496 *
2497 * This puts a job in the kernel-global workqueue if it was not already
2498 * queued and leaves it in the same position on the kernel-global
2499 * workqueue otherwise.
0fcb78c2 2500 */
7ad5b3a5 2501int schedule_work(struct work_struct *work)
1da177e4 2502{
d320c038 2503 return queue_work(system_wq, work);
1da177e4 2504}
ae90dd5d 2505EXPORT_SYMBOL(schedule_work);
1da177e4 2506
c1a220e7
ZR
2507/*
2508 * schedule_work_on - put work task on a specific cpu
2509 * @cpu: cpu to put the work task on
2510 * @work: job to be done
2511 *
2512 * This puts a job on a specific cpu
2513 */
2514int schedule_work_on(int cpu, struct work_struct *work)
2515{
d320c038 2516 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2517}
2518EXPORT_SYMBOL(schedule_work_on);
2519
0fcb78c2
REB
2520/**
2521 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2522 * @dwork: job to be done
2523 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2524 *
2525 * After waiting for a given time this puts a job in the kernel-global
2526 * workqueue.
2527 */
7ad5b3a5 2528int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 2529 unsigned long delay)
1da177e4 2530{
d320c038 2531 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2532}
ae90dd5d 2533EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2534
8c53e463
LT
2535/**
2536 * flush_delayed_work - block until a dwork_struct's callback has terminated
2537 * @dwork: the delayed work which is to be flushed
2538 *
2539 * Any timeout is cancelled, and any pending work is run immediately.
2540 */
2541void flush_delayed_work(struct delayed_work *dwork)
2542{
2543 if (del_timer_sync(&dwork->timer)) {
7a22ad75 2544 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
4690c4ab 2545 &dwork->work);
8c53e463
LT
2546 put_cpu();
2547 }
2548 flush_work(&dwork->work);
2549}
2550EXPORT_SYMBOL(flush_delayed_work);
2551
0fcb78c2
REB
2552/**
2553 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2554 * @cpu: cpu to use
52bad64d 2555 * @dwork: job to be done
0fcb78c2
REB
2556 * @delay: number of jiffies to wait
2557 *
2558 * After waiting for a given time this puts a job in the kernel-global
2559 * workqueue on the specified CPU.
2560 */
1da177e4 2561int schedule_delayed_work_on(int cpu,
52bad64d 2562 struct delayed_work *dwork, unsigned long delay)
1da177e4 2563{
d320c038 2564 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2565}
ae90dd5d 2566EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2567
b6136773
AM
2568/**
2569 * schedule_on_each_cpu - call a function on each online CPU from keventd
2570 * @func: the function to call
b6136773
AM
2571 *
2572 * Returns zero on success.
2573 * Returns -ve errno on failure.
2574 *
b6136773
AM
2575 * schedule_on_each_cpu() is very slow.
2576 */
65f27f38 2577int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2578{
2579 int cpu;
38f51568 2580 struct work_struct __percpu *works;
15316ba8 2581
b6136773
AM
2582 works = alloc_percpu(struct work_struct);
2583 if (!works)
15316ba8 2584 return -ENOMEM;
b6136773 2585
93981800
TH
2586 get_online_cpus();
2587
15316ba8 2588 for_each_online_cpu(cpu) {
9bfb1839
IM
2589 struct work_struct *work = per_cpu_ptr(works, cpu);
2590
2591 INIT_WORK(work, func);
b71ab8c2 2592 schedule_work_on(cpu, work);
65a64464 2593 }
93981800
TH
2594
2595 for_each_online_cpu(cpu)
2596 flush_work(per_cpu_ptr(works, cpu));
2597
95402b38 2598 put_online_cpus();
b6136773 2599 free_percpu(works);
15316ba8
CL
2600 return 0;
2601}
2602
eef6a7d5
AS
2603/**
2604 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2605 *
2606 * Forces execution of the kernel-global workqueue and blocks until its
2607 * completion.
2608 *
2609 * Think twice before calling this function! It's very easy to get into
2610 * trouble if you don't take great care. Either of the following situations
2611 * will lead to deadlock:
2612 *
2613 * One of the work items currently on the workqueue needs to acquire
2614 * a lock held by your code or its caller.
2615 *
2616 * Your code is running in the context of a work routine.
2617 *
2618 * They will be detected by lockdep when they occur, but the first might not
2619 * occur very often. It depends on what work items are on the workqueue and
2620 * what locks they need, which you have no control over.
2621 *
2622 * In most situations flushing the entire workqueue is overkill; you merely
2623 * need to know that a particular work item isn't queued and isn't running.
2624 * In such cases you should use cancel_delayed_work_sync() or
2625 * cancel_work_sync() instead.
2626 */
1da177e4
LT
2627void flush_scheduled_work(void)
2628{
d320c038 2629 flush_workqueue(system_wq);
1da177e4 2630}
ae90dd5d 2631EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2632
1fa44eca
JB
2633/**
2634 * execute_in_process_context - reliably execute the routine with user context
2635 * @fn: the function to execute
1fa44eca
JB
2636 * @ew: guaranteed storage for the execute work structure (must
2637 * be available when the work executes)
2638 *
2639 * Executes the function immediately if process context is available,
2640 * otherwise schedules the function for delayed execution.
2641 *
2642 * Returns: 0 - function was executed
2643 * 1 - function was scheduled for execution
2644 */
65f27f38 2645int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2646{
2647 if (!in_interrupt()) {
65f27f38 2648 fn(&ew->work);
1fa44eca
JB
2649 return 0;
2650 }
2651
65f27f38 2652 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2653 schedule_work(&ew->work);
2654
2655 return 1;
2656}
2657EXPORT_SYMBOL_GPL(execute_in_process_context);
2658
1da177e4
LT
2659int keventd_up(void)
2660{
d320c038 2661 return system_wq != NULL;
1da177e4
LT
2662}
2663
bdbc5dd7 2664static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 2665{
65a64464 2666 /*
0f900049
TH
2667 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2668 * Make sure that the alignment isn't lower than that of
2669 * unsigned long long.
65a64464 2670 */
0f900049
TH
2671 const size_t size = sizeof(struct cpu_workqueue_struct);
2672 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2673 __alignof__(unsigned long long));
931ac77e
TH
2674#ifdef CONFIG_SMP
2675 bool percpu = !(wq->flags & WQ_UNBOUND);
2676#else
2677 bool percpu = false;
2678#endif
65a64464 2679
931ac77e 2680 if (percpu)
f3421797 2681 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 2682 else {
f3421797
TH
2683 void *ptr;
2684
2685 /*
2686 * Allocate enough room to align cwq and put an extra
2687 * pointer at the end pointing back to the originally
2688 * allocated pointer which will be used for free.
2689 */
2690 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2691 if (ptr) {
2692 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2693 *(void **)(wq->cpu_wq.single + 1) = ptr;
2694 }
bdbc5dd7 2695 }
f3421797 2696
0f900049 2697 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
2698 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2699 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
2700}
2701
bdbc5dd7 2702static void free_cwqs(struct workqueue_struct *wq)
0f900049 2703{
931ac77e
TH
2704#ifdef CONFIG_SMP
2705 bool percpu = !(wq->flags & WQ_UNBOUND);
2706#else
2707 bool percpu = false;
2708#endif
2709
2710 if (percpu)
f3421797
TH
2711 free_percpu(wq->cpu_wq.pcpu);
2712 else if (wq->cpu_wq.single) {
2713 /* the pointer to free is stored right after the cwq */
bdbc5dd7 2714 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 2715 }
0f900049
TH
2716}
2717
f3421797
TH
2718static int wq_clamp_max_active(int max_active, unsigned int flags,
2719 const char *name)
b71ab8c2 2720{
f3421797
TH
2721 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2722
2723 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
2724 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2725 "is out of range, clamping between %d and %d\n",
f3421797 2726 max_active, name, 1, lim);
b71ab8c2 2727
f3421797 2728 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
2729}
2730
d320c038
TH
2731struct workqueue_struct *__alloc_workqueue_key(const char *name,
2732 unsigned int flags,
2733 int max_active,
2734 struct lock_class_key *key,
2735 const char *lock_name)
1da177e4 2736{
1da177e4 2737 struct workqueue_struct *wq;
c34056a3 2738 unsigned int cpu;
1da177e4 2739
f3421797
TH
2740 /*
2741 * Unbound workqueues aren't concurrency managed and should be
2742 * dispatched to workers immediately.
2743 */
2744 if (flags & WQ_UNBOUND)
2745 flags |= WQ_HIGHPRI;
2746
d320c038 2747 max_active = max_active ?: WQ_DFL_ACTIVE;
f3421797 2748 max_active = wq_clamp_max_active(max_active, flags, name);
1e19ffc6 2749
3af24433
ON
2750 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2751 if (!wq)
4690c4ab 2752 goto err;
3af24433 2753
97e37d7b 2754 wq->flags = flags;
a0a1a5fd 2755 wq->saved_max_active = max_active;
73f53c4a
TH
2756 mutex_init(&wq->flush_mutex);
2757 atomic_set(&wq->nr_cwqs_to_flush, 0);
2758 INIT_LIST_HEAD(&wq->flusher_queue);
2759 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 2760
3af24433 2761 wq->name = name;
eb13ba87 2762 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 2763 INIT_LIST_HEAD(&wq->list);
3af24433 2764
bdbc5dd7
TH
2765 if (alloc_cwqs(wq) < 0)
2766 goto err;
2767
f3421797 2768 for_each_cwq_cpu(cpu, wq) {
1537663f 2769 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2770 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 2771
0f900049 2772 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
8b03ae3c 2773 cwq->gcwq = gcwq;
c34056a3 2774 cwq->wq = wq;
73f53c4a 2775 cwq->flush_color = -1;
1e19ffc6 2776 cwq->max_active = max_active;
1e19ffc6 2777 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 2778 }
1537663f 2779
e22bee78
TH
2780 if (flags & WQ_RESCUER) {
2781 struct worker *rescuer;
2782
f2e005aa 2783 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
2784 goto err;
2785
2786 wq->rescuer = rescuer = alloc_worker();
2787 if (!rescuer)
2788 goto err;
2789
2790 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2791 if (IS_ERR(rescuer->task))
2792 goto err;
2793
e22bee78
TH
2794 rescuer->task->flags |= PF_THREAD_BOUND;
2795 wake_up_process(rescuer->task);
3af24433
ON
2796 }
2797
a0a1a5fd
TH
2798 /*
2799 * workqueue_lock protects global freeze state and workqueues
2800 * list. Grab it, set max_active accordingly and add the new
2801 * workqueue to workqueues list.
2802 */
1537663f 2803 spin_lock(&workqueue_lock);
a0a1a5fd
TH
2804
2805 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
f3421797 2806 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
2807 get_cwq(cpu, wq)->max_active = 0;
2808
1537663f 2809 list_add(&wq->list, &workqueues);
a0a1a5fd 2810
1537663f
TH
2811 spin_unlock(&workqueue_lock);
2812
3af24433 2813 return wq;
4690c4ab
TH
2814err:
2815 if (wq) {
bdbc5dd7 2816 free_cwqs(wq);
f2e005aa 2817 free_mayday_mask(wq->mayday_mask);
e22bee78 2818 kfree(wq->rescuer);
4690c4ab
TH
2819 kfree(wq);
2820 }
2821 return NULL;
3af24433 2822}
d320c038 2823EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 2824
3af24433
ON
2825/**
2826 * destroy_workqueue - safely terminate a workqueue
2827 * @wq: target workqueue
2828 *
2829 * Safely destroy a workqueue. All work currently pending will be done first.
2830 */
2831void destroy_workqueue(struct workqueue_struct *wq)
2832{
c8e55f36 2833 unsigned int cpu;
3af24433 2834
e41e704b 2835 wq->flags |= WQ_DYING;
a0a1a5fd
TH
2836 flush_workqueue(wq);
2837
2838 /*
2839 * wq list is used to freeze wq, remove from list after
2840 * flushing is complete in case freeze races us.
2841 */
95402b38 2842 spin_lock(&workqueue_lock);
b1f4ec17 2843 list_del(&wq->list);
95402b38 2844 spin_unlock(&workqueue_lock);
3af24433 2845
e22bee78 2846 /* sanity check */
f3421797 2847 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
2848 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2849 int i;
2850
73f53c4a
TH
2851 for (i = 0; i < WORK_NR_COLORS; i++)
2852 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
2853 BUG_ON(cwq->nr_active);
2854 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 2855 }
9b41ea72 2856
e22bee78
TH
2857 if (wq->flags & WQ_RESCUER) {
2858 kthread_stop(wq->rescuer->task);
f2e005aa 2859 free_mayday_mask(wq->mayday_mask);
8d9df9f0 2860 kfree(wq->rescuer);
e22bee78
TH
2861 }
2862
bdbc5dd7 2863 free_cwqs(wq);
3af24433
ON
2864 kfree(wq);
2865}
2866EXPORT_SYMBOL_GPL(destroy_workqueue);
2867
dcd989cb
TH
2868/**
2869 * workqueue_set_max_active - adjust max_active of a workqueue
2870 * @wq: target workqueue
2871 * @max_active: new max_active value.
2872 *
2873 * Set max_active of @wq to @max_active.
2874 *
2875 * CONTEXT:
2876 * Don't call from IRQ context.
2877 */
2878void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2879{
2880 unsigned int cpu;
2881
f3421797 2882 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
2883
2884 spin_lock(&workqueue_lock);
2885
2886 wq->saved_max_active = max_active;
2887
f3421797 2888 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
2889 struct global_cwq *gcwq = get_gcwq(cpu);
2890
2891 spin_lock_irq(&gcwq->lock);
2892
2893 if (!(wq->flags & WQ_FREEZEABLE) ||
2894 !(gcwq->flags & GCWQ_FREEZING))
2895 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 2896
dcd989cb 2897 spin_unlock_irq(&gcwq->lock);
65a64464 2898 }
93981800 2899
dcd989cb 2900 spin_unlock(&workqueue_lock);
15316ba8 2901}
dcd989cb 2902EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 2903
eef6a7d5 2904/**
dcd989cb
TH
2905 * workqueue_congested - test whether a workqueue is congested
2906 * @cpu: CPU in question
2907 * @wq: target workqueue
eef6a7d5 2908 *
dcd989cb
TH
2909 * Test whether @wq's cpu workqueue for @cpu is congested. There is
2910 * no synchronization around this function and the test result is
2911 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 2912 *
dcd989cb
TH
2913 * RETURNS:
2914 * %true if congested, %false otherwise.
eef6a7d5 2915 */
dcd989cb 2916bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 2917{
dcd989cb
TH
2918 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2919
2920 return !list_empty(&cwq->delayed_works);
1da177e4 2921}
dcd989cb 2922EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 2923
1fa44eca 2924/**
dcd989cb
TH
2925 * work_cpu - return the last known associated cpu for @work
2926 * @work: the work of interest
1fa44eca 2927 *
dcd989cb 2928 * RETURNS:
bdbc5dd7 2929 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 2930 */
dcd989cb 2931unsigned int work_cpu(struct work_struct *work)
1fa44eca 2932{
dcd989cb 2933 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 2934
bdbc5dd7 2935 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 2936}
dcd989cb 2937EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 2938
dcd989cb
TH
2939/**
2940 * work_busy - test whether a work is currently pending or running
2941 * @work: the work to be tested
2942 *
2943 * Test whether @work is currently pending or running. There is no
2944 * synchronization around this function and the test result is
2945 * unreliable and only useful as advisory hints or for debugging.
2946 * Especially for reentrant wqs, the pending state might hide the
2947 * running state.
2948 *
2949 * RETURNS:
2950 * OR'd bitmask of WORK_BUSY_* bits.
2951 */
2952unsigned int work_busy(struct work_struct *work)
1da177e4 2953{
dcd989cb
TH
2954 struct global_cwq *gcwq = get_work_gcwq(work);
2955 unsigned long flags;
2956 unsigned int ret = 0;
1da177e4 2957
dcd989cb
TH
2958 if (!gcwq)
2959 return false;
1da177e4 2960
dcd989cb 2961 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 2962
dcd989cb
TH
2963 if (work_pending(work))
2964 ret |= WORK_BUSY_PENDING;
2965 if (find_worker_executing_work(gcwq, work))
2966 ret |= WORK_BUSY_RUNNING;
1da177e4 2967
dcd989cb 2968 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 2969
dcd989cb 2970 return ret;
1da177e4 2971}
dcd989cb 2972EXPORT_SYMBOL_GPL(work_busy);
1da177e4 2973
db7bccf4
TH
2974/*
2975 * CPU hotplug.
2976 *
e22bee78
TH
2977 * There are two challenges in supporting CPU hotplug. Firstly, there
2978 * are a lot of assumptions on strong associations among work, cwq and
2979 * gcwq which make migrating pending and scheduled works very
2980 * difficult to implement without impacting hot paths. Secondly,
2981 * gcwqs serve mix of short, long and very long running works making
2982 * blocked draining impractical.
2983 *
2984 * This is solved by allowing a gcwq to be detached from CPU, running
2985 * it with unbound (rogue) workers and allowing it to be reattached
2986 * later if the cpu comes back online. A separate thread is created
2987 * to govern a gcwq in such state and is called the trustee of the
2988 * gcwq.
db7bccf4
TH
2989 *
2990 * Trustee states and their descriptions.
2991 *
2992 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2993 * new trustee is started with this state.
2994 *
2995 * IN_CHARGE Once started, trustee will enter this state after
e22bee78
TH
2996 * assuming the manager role and making all existing
2997 * workers rogue. DOWN_PREPARE waits for trustee to
2998 * enter this state. After reaching IN_CHARGE, trustee
2999 * tries to execute the pending worklist until it's empty
3000 * and the state is set to BUTCHER, or the state is set
3001 * to RELEASE.
db7bccf4
TH
3002 *
3003 * BUTCHER Command state which is set by the cpu callback after
3004 * the cpu has went down. Once this state is set trustee
3005 * knows that there will be no new works on the worklist
3006 * and once the worklist is empty it can proceed to
3007 * killing idle workers.
3008 *
3009 * RELEASE Command state which is set by the cpu callback if the
3010 * cpu down has been canceled or it has come online
3011 * again. After recognizing this state, trustee stops
e22bee78
TH
3012 * trying to drain or butcher and clears ROGUE, rebinds
3013 * all remaining workers back to the cpu and releases
3014 * manager role.
db7bccf4
TH
3015 *
3016 * DONE Trustee will enter this state after BUTCHER or RELEASE
3017 * is complete.
3018 *
3019 * trustee CPU draining
3020 * took over down complete
3021 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3022 * | | ^
3023 * | CPU is back online v return workers |
3024 * ----------------> RELEASE --------------
3025 */
1da177e4 3026
db7bccf4
TH
3027/**
3028 * trustee_wait_event_timeout - timed event wait for trustee
3029 * @cond: condition to wait for
3030 * @timeout: timeout in jiffies
3031 *
3032 * wait_event_timeout() for trustee to use. Handles locking and
3033 * checks for RELEASE request.
3034 *
3035 * CONTEXT:
3036 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3037 * multiple times. To be used by trustee.
3038 *
3039 * RETURNS:
3040 * Positive indicating left time if @cond is satisfied, 0 if timed
3041 * out, -1 if canceled.
3042 */
3043#define trustee_wait_event_timeout(cond, timeout) ({ \
3044 long __ret = (timeout); \
3045 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3046 __ret) { \
3047 spin_unlock_irq(&gcwq->lock); \
3048 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3049 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3050 __ret); \
3051 spin_lock_irq(&gcwq->lock); \
3052 } \
3053 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3054})
3af24433 3055
db7bccf4
TH
3056/**
3057 * trustee_wait_event - event wait for trustee
3058 * @cond: condition to wait for
3059 *
3060 * wait_event() for trustee to use. Automatically handles locking and
3061 * checks for CANCEL request.
3062 *
3063 * CONTEXT:
3064 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3065 * multiple times. To be used by trustee.
3066 *
3067 * RETURNS:
3068 * 0 if @cond is satisfied, -1 if canceled.
3069 */
3070#define trustee_wait_event(cond) ({ \
3071 long __ret1; \
3072 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3073 __ret1 < 0 ? -1 : 0; \
3074})
1da177e4 3075
db7bccf4 3076static int __cpuinit trustee_thread(void *__gcwq)
3af24433 3077{
db7bccf4
TH
3078 struct global_cwq *gcwq = __gcwq;
3079 struct worker *worker;
e22bee78 3080 struct work_struct *work;
db7bccf4 3081 struct hlist_node *pos;
e22bee78 3082 long rc;
db7bccf4 3083 int i;
3af24433 3084
db7bccf4
TH
3085 BUG_ON(gcwq->cpu != smp_processor_id());
3086
3087 spin_lock_irq(&gcwq->lock);
3af24433 3088 /*
e22bee78
TH
3089 * Claim the manager position and make all workers rogue.
3090 * Trustee must be bound to the target cpu and can't be
3091 * cancelled.
3af24433 3092 */
db7bccf4 3093 BUG_ON(gcwq->cpu != smp_processor_id());
e22bee78
TH
3094 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3095 BUG_ON(rc < 0);
3af24433 3096
e22bee78 3097 gcwq->flags |= GCWQ_MANAGING_WORKERS;
e1d8aa9f 3098
db7bccf4 3099 list_for_each_entry(worker, &gcwq->idle_list, entry)
cb444766 3100 worker->flags |= WORKER_ROGUE;
3af24433 3101
db7bccf4 3102 for_each_busy_worker(worker, i, pos, gcwq)
cb444766 3103 worker->flags |= WORKER_ROGUE;
06ba38a9 3104
e22bee78
TH
3105 /*
3106 * Call schedule() so that we cross rq->lock and thus can
3107 * guarantee sched callbacks see the rogue flag. This is
3108 * necessary as scheduler callbacks may be invoked from other
3109 * cpus.
3110 */
3111 spin_unlock_irq(&gcwq->lock);
3112 schedule();
3113 spin_lock_irq(&gcwq->lock);
06ba38a9 3114
e22bee78 3115 /*
cb444766
TH
3116 * Sched callbacks are disabled now. Zap nr_running. After
3117 * this, nr_running stays zero and need_more_worker() and
3118 * keep_working() are always true as long as the worklist is
3119 * not empty.
e22bee78 3120 */
cb444766 3121 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
1da177e4 3122
e22bee78
TH
3123 spin_unlock_irq(&gcwq->lock);
3124 del_timer_sync(&gcwq->idle_timer);
3125 spin_lock_irq(&gcwq->lock);
3af24433 3126
db7bccf4
TH
3127 /*
3128 * We're now in charge. Notify and proceed to drain. We need
3129 * to keep the gcwq running during the whole CPU down
3130 * procedure as other cpu hotunplug callbacks may need to
3131 * flush currently running tasks.
3132 */
3133 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3134 wake_up_all(&gcwq->trustee_wait);
3af24433 3135
db7bccf4
TH
3136 /*
3137 * The original cpu is in the process of dying and may go away
3138 * anytime now. When that happens, we and all workers would
e22bee78
TH
3139 * be migrated to other cpus. Try draining any left work. We
3140 * want to get it over with ASAP - spam rescuers, wake up as
3141 * many idlers as necessary and create new ones till the
3142 * worklist is empty. Note that if the gcwq is frozen, there
3143 * may be frozen works in freezeable cwqs. Don't declare
3144 * completion while frozen.
db7bccf4
TH
3145 */
3146 while (gcwq->nr_workers != gcwq->nr_idle ||
3147 gcwq->flags & GCWQ_FREEZING ||
3148 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
e22bee78
TH
3149 int nr_works = 0;
3150
3151 list_for_each_entry(work, &gcwq->worklist, entry) {
3152 send_mayday(work);
3153 nr_works++;
3154 }
3af24433 3155
e22bee78
TH
3156 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3157 if (!nr_works--)
3158 break;
3159 wake_up_process(worker->task);
3160 }
3161
3162 if (need_to_create_worker(gcwq)) {
3163 spin_unlock_irq(&gcwq->lock);
3164 worker = create_worker(gcwq, false);
3165 spin_lock_irq(&gcwq->lock);
3166 if (worker) {
cb444766 3167 worker->flags |= WORKER_ROGUE;
e22bee78
TH
3168 start_worker(worker);
3169 }
1da177e4 3170 }
3af24433 3171
db7bccf4
TH
3172 /* give a breather */
3173 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3174 break;
3af24433 3175 }
1da177e4 3176
14441960 3177 /*
e22bee78
TH
3178 * Either all works have been scheduled and cpu is down, or
3179 * cpu down has already been canceled. Wait for and butcher
3180 * all workers till we're canceled.
14441960 3181 */
e22bee78
TH
3182 do {
3183 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3184 while (!list_empty(&gcwq->idle_list))
3185 destroy_worker(list_first_entry(&gcwq->idle_list,
3186 struct worker, entry));
3187 } while (gcwq->nr_workers && rc >= 0);
4e6045f1 3188
14441960 3189 /*
e22bee78
TH
3190 * At this point, either draining has completed and no worker
3191 * is left, or cpu down has been canceled or the cpu is being
3192 * brought back up. There shouldn't be any idle one left.
3193 * Tell the remaining busy ones to rebind once it finishes the
3194 * currently scheduled works by scheduling the rebind_work.
14441960 3195 */
e22bee78
TH
3196 WARN_ON(!list_empty(&gcwq->idle_list));
3197
3198 for_each_busy_worker(worker, i, pos, gcwq) {
3199 struct work_struct *rebind_work = &worker->rebind_work;
3200
3201 /*
3202 * Rebind_work may race with future cpu hotplug
3203 * operations. Use a separate flag to mark that
3204 * rebinding is scheduled.
3205 */
cb444766
TH
3206 worker->flags |= WORKER_REBIND;
3207 worker->flags &= ~WORKER_ROGUE;
e22bee78
TH
3208
3209 /* queue rebind_work, wq doesn't matter, use the default one */
3210 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3211 work_data_bits(rebind_work)))
3212 continue;
3213
3214 debug_work_activate(rebind_work);
d320c038 3215 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
e22bee78
TH
3216 worker->scheduled.next,
3217 work_color_to_flags(WORK_NO_COLOR));
3218 }
3219
3220 /* relinquish manager role */
3221 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3222
db7bccf4
TH
3223 /* notify completion */
3224 gcwq->trustee = NULL;
3225 gcwq->trustee_state = TRUSTEE_DONE;
3226 wake_up_all(&gcwq->trustee_wait);
3227 spin_unlock_irq(&gcwq->lock);
3228 return 0;
3af24433
ON
3229}
3230
3231/**
db7bccf4
TH
3232 * wait_trustee_state - wait for trustee to enter the specified state
3233 * @gcwq: gcwq the trustee of interest belongs to
3234 * @state: target state to wait for
3af24433 3235 *
db7bccf4
TH
3236 * Wait for the trustee to reach @state. DONE is already matched.
3237 *
3238 * CONTEXT:
3239 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3240 * multiple times. To be used by cpu_callback.
3af24433 3241 */
db7bccf4 3242static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
06bd6ebf
NK
3243__releases(&gcwq->lock)
3244__acquires(&gcwq->lock)
3af24433 3245{
db7bccf4
TH
3246 if (!(gcwq->trustee_state == state ||
3247 gcwq->trustee_state == TRUSTEE_DONE)) {
3248 spin_unlock_irq(&gcwq->lock);
3249 __wait_event(gcwq->trustee_wait,
3250 gcwq->trustee_state == state ||
3251 gcwq->trustee_state == TRUSTEE_DONE);
3252 spin_lock_irq(&gcwq->lock);
3253 }
3af24433 3254}
3af24433
ON
3255
3256static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3257 unsigned long action,
3258 void *hcpu)
3259{
3260 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
3261 struct global_cwq *gcwq = get_gcwq(cpu);
3262 struct task_struct *new_trustee = NULL;
e22bee78 3263 struct worker *uninitialized_var(new_worker);
db7bccf4 3264 unsigned long flags;
3af24433 3265
8bb78442
RW
3266 action &= ~CPU_TASKS_FROZEN;
3267
3af24433 3268 switch (action) {
db7bccf4
TH
3269 case CPU_DOWN_PREPARE:
3270 new_trustee = kthread_create(trustee_thread, gcwq,
3271 "workqueue_trustee/%d\n", cpu);
3272 if (IS_ERR(new_trustee))
3273 return notifier_from_errno(PTR_ERR(new_trustee));
3274 kthread_bind(new_trustee, cpu);
e22bee78 3275 /* fall through */
3af24433 3276 case CPU_UP_PREPARE:
e22bee78
TH
3277 BUG_ON(gcwq->first_idle);
3278 new_worker = create_worker(gcwq, false);
3279 if (!new_worker) {
3280 if (new_trustee)
3281 kthread_stop(new_trustee);
3282 return NOTIFY_BAD;
3af24433 3283 }
1da177e4
LT
3284 }
3285
db7bccf4
TH
3286 /* some are called w/ irq disabled, don't disturb irq status */
3287 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 3288
00dfcaf7 3289 switch (action) {
db7bccf4
TH
3290 case CPU_DOWN_PREPARE:
3291 /* initialize trustee and tell it to acquire the gcwq */
3292 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3293 gcwq->trustee = new_trustee;
3294 gcwq->trustee_state = TRUSTEE_START;
3295 wake_up_process(gcwq->trustee);
3296 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
e22bee78
TH
3297 /* fall through */
3298 case CPU_UP_PREPARE:
3299 BUG_ON(gcwq->first_idle);
3300 gcwq->first_idle = new_worker;
3301 break;
3302
3303 case CPU_DYING:
3304 /*
3305 * Before this, the trustee and all workers except for
3306 * the ones which are still executing works from
3307 * before the last CPU down must be on the cpu. After
3308 * this, they'll all be diasporas.
3309 */
3310 gcwq->flags |= GCWQ_DISASSOCIATED;
db7bccf4
TH
3311 break;
3312
3da1c84c 3313 case CPU_POST_DEAD:
db7bccf4 3314 gcwq->trustee_state = TRUSTEE_BUTCHER;
e22bee78
TH
3315 /* fall through */
3316 case CPU_UP_CANCELED:
3317 destroy_worker(gcwq->first_idle);
3318 gcwq->first_idle = NULL;
db7bccf4
TH
3319 break;
3320
3321 case CPU_DOWN_FAILED:
3322 case CPU_ONLINE:
e22bee78 3323 gcwq->flags &= ~GCWQ_DISASSOCIATED;
db7bccf4
TH
3324 if (gcwq->trustee_state != TRUSTEE_DONE) {
3325 gcwq->trustee_state = TRUSTEE_RELEASE;
3326 wake_up_process(gcwq->trustee);
3327 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 3328 }
db7bccf4 3329
e22bee78
TH
3330 /*
3331 * Trustee is done and there might be no worker left.
3332 * Put the first_idle in and request a real manager to
3333 * take a look.
3334 */
3335 spin_unlock_irq(&gcwq->lock);
3336 kthread_bind(gcwq->first_idle->task, cpu);
3337 spin_lock_irq(&gcwq->lock);
3338 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3339 start_worker(gcwq->first_idle);
3340 gcwq->first_idle = NULL;
db7bccf4 3341 break;
00dfcaf7
ON
3342 }
3343
db7bccf4
TH
3344 spin_unlock_irqrestore(&gcwq->lock, flags);
3345
1537663f 3346 return notifier_from_errno(0);
1da177e4 3347}
1da177e4 3348
2d3854a3 3349#ifdef CONFIG_SMP
8ccad40d 3350
2d3854a3 3351struct work_for_cpu {
6b44003e 3352 struct completion completion;
2d3854a3
RR
3353 long (*fn)(void *);
3354 void *arg;
3355 long ret;
3356};
3357
6b44003e 3358static int do_work_for_cpu(void *_wfc)
2d3854a3 3359{
6b44003e 3360 struct work_for_cpu *wfc = _wfc;
2d3854a3 3361 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3362 complete(&wfc->completion);
3363 return 0;
2d3854a3
RR
3364}
3365
3366/**
3367 * work_on_cpu - run a function in user context on a particular cpu
3368 * @cpu: the cpu to run on
3369 * @fn: the function to run
3370 * @arg: the function arg
3371 *
31ad9081
RR
3372 * This will return the value @fn returns.
3373 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3374 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3375 */
3376long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3377{
6b44003e
AM
3378 struct task_struct *sub_thread;
3379 struct work_for_cpu wfc = {
3380 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3381 .fn = fn,
3382 .arg = arg,
3383 };
3384
3385 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3386 if (IS_ERR(sub_thread))
3387 return PTR_ERR(sub_thread);
3388 kthread_bind(sub_thread, cpu);
3389 wake_up_process(sub_thread);
3390 wait_for_completion(&wfc.completion);
2d3854a3
RR
3391 return wfc.ret;
3392}
3393EXPORT_SYMBOL_GPL(work_on_cpu);
3394#endif /* CONFIG_SMP */
3395
a0a1a5fd
TH
3396#ifdef CONFIG_FREEZER
3397
3398/**
3399 * freeze_workqueues_begin - begin freezing workqueues
3400 *
3401 * Start freezing workqueues. After this function returns, all
3402 * freezeable workqueues will queue new works to their frozen_works
7e11629d 3403 * list instead of gcwq->worklist.
a0a1a5fd
TH
3404 *
3405 * CONTEXT:
8b03ae3c 3406 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3407 */
3408void freeze_workqueues_begin(void)
3409{
a0a1a5fd
TH
3410 unsigned int cpu;
3411
3412 spin_lock(&workqueue_lock);
3413
3414 BUG_ON(workqueue_freezing);
3415 workqueue_freezing = true;
3416
f3421797 3417 for_each_gcwq_cpu(cpu) {
8b03ae3c 3418 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3419 struct workqueue_struct *wq;
8b03ae3c
TH
3420
3421 spin_lock_irq(&gcwq->lock);
3422
db7bccf4
TH
3423 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3424 gcwq->flags |= GCWQ_FREEZING;
3425
a0a1a5fd
TH
3426 list_for_each_entry(wq, &workqueues, list) {
3427 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3428
f3421797 3429 if (cwq && wq->flags & WQ_FREEZEABLE)
a0a1a5fd 3430 cwq->max_active = 0;
a0a1a5fd 3431 }
8b03ae3c
TH
3432
3433 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3434 }
3435
3436 spin_unlock(&workqueue_lock);
3437}
3438
3439/**
3440 * freeze_workqueues_busy - are freezeable workqueues still busy?
3441 *
3442 * Check whether freezing is complete. This function must be called
3443 * between freeze_workqueues_begin() and thaw_workqueues().
3444 *
3445 * CONTEXT:
3446 * Grabs and releases workqueue_lock.
3447 *
3448 * RETURNS:
3449 * %true if some freezeable workqueues are still busy. %false if
3450 * freezing is complete.
3451 */
3452bool freeze_workqueues_busy(void)
3453{
a0a1a5fd
TH
3454 unsigned int cpu;
3455 bool busy = false;
3456
3457 spin_lock(&workqueue_lock);
3458
3459 BUG_ON(!workqueue_freezing);
3460
f3421797 3461 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3462 struct workqueue_struct *wq;
a0a1a5fd
TH
3463 /*
3464 * nr_active is monotonically decreasing. It's safe
3465 * to peek without lock.
3466 */
3467 list_for_each_entry(wq, &workqueues, list) {
3468 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3469
f3421797 3470 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
a0a1a5fd
TH
3471 continue;
3472
3473 BUG_ON(cwq->nr_active < 0);
3474 if (cwq->nr_active) {
3475 busy = true;
3476 goto out_unlock;
3477 }
3478 }
3479 }
3480out_unlock:
3481 spin_unlock(&workqueue_lock);
3482 return busy;
3483}
3484
3485/**
3486 * thaw_workqueues - thaw workqueues
3487 *
3488 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3489 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3490 *
3491 * CONTEXT:
8b03ae3c 3492 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3493 */
3494void thaw_workqueues(void)
3495{
a0a1a5fd
TH
3496 unsigned int cpu;
3497
3498 spin_lock(&workqueue_lock);
3499
3500 if (!workqueue_freezing)
3501 goto out_unlock;
3502
f3421797 3503 for_each_gcwq_cpu(cpu) {
8b03ae3c 3504 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3505 struct workqueue_struct *wq;
8b03ae3c
TH
3506
3507 spin_lock_irq(&gcwq->lock);
3508
db7bccf4
TH
3509 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3510 gcwq->flags &= ~GCWQ_FREEZING;
3511
a0a1a5fd
TH
3512 list_for_each_entry(wq, &workqueues, list) {
3513 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3514
f3421797 3515 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
a0a1a5fd
TH
3516 continue;
3517
a0a1a5fd
TH
3518 /* restore max_active and repopulate worklist */
3519 cwq->max_active = wq->saved_max_active;
3520
3521 while (!list_empty(&cwq->delayed_works) &&
3522 cwq->nr_active < cwq->max_active)
3523 cwq_activate_first_delayed(cwq);
a0a1a5fd 3524 }
8b03ae3c 3525
e22bee78
TH
3526 wake_up_worker(gcwq);
3527
8b03ae3c 3528 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3529 }
3530
3531 workqueue_freezing = false;
3532out_unlock:
3533 spin_unlock(&workqueue_lock);
3534}
3535#endif /* CONFIG_FREEZER */
3536
6ee0578b 3537static int __init init_workqueues(void)
1da177e4 3538{
c34056a3 3539 unsigned int cpu;
c8e55f36 3540 int i;
c34056a3 3541
f6500947 3542 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
3543
3544 /* initialize gcwqs */
f3421797 3545 for_each_gcwq_cpu(cpu) {
8b03ae3c
TH
3546 struct global_cwq *gcwq = get_gcwq(cpu);
3547
3548 spin_lock_init(&gcwq->lock);
7e11629d 3549 INIT_LIST_HEAD(&gcwq->worklist);
8b03ae3c 3550 gcwq->cpu = cpu;
f3421797
TH
3551 if (cpu == WORK_CPU_UNBOUND)
3552 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3553
c8e55f36
TH
3554 INIT_LIST_HEAD(&gcwq->idle_list);
3555 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3556 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3557
e22bee78
TH
3558 init_timer_deferrable(&gcwq->idle_timer);
3559 gcwq->idle_timer.function = idle_worker_timeout;
3560 gcwq->idle_timer.data = (unsigned long)gcwq;
e7577c50 3561
e22bee78
TH
3562 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3563 (unsigned long)gcwq);
3564
8b03ae3c 3565 ida_init(&gcwq->worker_ida);
db7bccf4
TH
3566
3567 gcwq->trustee_state = TRUSTEE_DONE;
3568 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
3569 }
3570
e22bee78 3571 /* create the initial worker */
f3421797 3572 for_each_online_gcwq_cpu(cpu) {
e22bee78
TH
3573 struct global_cwq *gcwq = get_gcwq(cpu);
3574 struct worker *worker;
3575
3576 worker = create_worker(gcwq, true);
3577 BUG_ON(!worker);
3578 spin_lock_irq(&gcwq->lock);
3579 start_worker(worker);
3580 spin_unlock_irq(&gcwq->lock);
3581 }
3582
d320c038
TH
3583 system_wq = alloc_workqueue("events", 0, 0);
3584 system_long_wq = alloc_workqueue("events_long", 0, 0);
3585 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3586 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3587 WQ_UNBOUND_MAX_ACTIVE);
d320c038 3588 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
6ee0578b 3589 return 0;
1da177e4 3590}
6ee0578b 3591early_initcall(init_workqueues);