]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/workqueue.c
workqueue: implement WQ_NON_REENTRANT
[net-next-2.6.git] / kernel / workqueue.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
e1f8e874 12 * Andrew Morton
1da177e4
LT
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
89ada679 15 *
cde53535 16 * Made to use alloc_percpu by Christoph Lameter.
1da177e4
LT
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
1fa44eca 30#include <linux/hardirq.h>
46934023 31#include <linux/mempolicy.h>
341a5958 32#include <linux/freezer.h>
d5abe669
PZ
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
4e6045f1 35#include <linux/lockdep.h>
c34056a3 36#include <linux/idr.h>
1da177e4 37
c8e55f36 38enum {
db7bccf4
TH
39 /* global_cwq flags */
40 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
41
c8e55f36
TH
42 /* worker flags */
43 WORKER_STARTED = 1 << 0, /* started */
44 WORKER_DIE = 1 << 1, /* die die die */
45 WORKER_IDLE = 1 << 2, /* is idle */
db7bccf4
TH
46 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
47
48 /* gcwq->trustee_state */
49 TRUSTEE_START = 0, /* start */
50 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
51 TRUSTEE_BUTCHER = 2, /* butcher workers */
52 TRUSTEE_RELEASE = 3, /* release workers */
53 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36
TH
54
55 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
56 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
57 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4
TH
58
59 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
c8e55f36
TH
60};
61
4690c4ab
TH
62/*
63 * Structure fields follow one of the following exclusion rules.
64 *
65 * I: Set during initialization and read-only afterwards.
66 *
8b03ae3c 67 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 68 *
73f53c4a
TH
69 * F: wq->flush_mutex protected.
70 *
4690c4ab
TH
71 * W: workqueue_lock protected.
72 */
73
8b03ae3c 74struct global_cwq;
c34056a3
TH
75struct cpu_workqueue_struct;
76
77struct worker {
c8e55f36
TH
78 /* on idle list while idle, on busy hash table while busy */
79 union {
80 struct list_head entry; /* L: while idle */
81 struct hlist_node hentry; /* L: while busy */
82 };
83
c34056a3 84 struct work_struct *current_work; /* L: work being processed */
8cca0eea 85 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 86 struct list_head scheduled; /* L: scheduled works */
c34056a3 87 struct task_struct *task; /* I: worker task */
8b03ae3c 88 struct global_cwq *gcwq; /* I: the associated gcwq */
c34056a3 89 struct cpu_workqueue_struct *cwq; /* I: the associated cwq */
c8e55f36 90 unsigned int flags; /* L: flags */
c34056a3
TH
91 int id; /* I: worker id */
92};
93
8b03ae3c
TH
94/*
95 * Global per-cpu workqueue.
96 */
97struct global_cwq {
98 spinlock_t lock; /* the gcwq lock */
99 unsigned int cpu; /* I: the associated cpu */
db7bccf4 100 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36
TH
101
102 int nr_workers; /* L: total number of workers */
103 int nr_idle; /* L: currently idle ones */
104
105 /* workers are chained either in the idle_list or busy_hash */
106 struct list_head idle_list; /* L: list of idle workers */
107 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
108 /* L: hash of busy workers */
109
8b03ae3c 110 struct ida worker_ida; /* L: for worker IDs */
db7bccf4
TH
111
112 struct task_struct *trustee; /* L: for gcwq shutdown */
113 unsigned int trustee_state; /* L: trustee state */
114 wait_queue_head_t trustee_wait; /* trustee wait */
8b03ae3c
TH
115} ____cacheline_aligned_in_smp;
116
1da177e4 117/*
502ca9d8 118 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
119 * work_struct->data are used for flags and thus cwqs need to be
120 * aligned at two's power of the number of flag bits.
1da177e4
LT
121 */
122struct cpu_workqueue_struct {
8b03ae3c 123 struct global_cwq *gcwq; /* I: the associated gcwq */
1da177e4 124 struct list_head worklist;
c34056a3 125 struct worker *worker;
4690c4ab 126 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
127 int work_color; /* L: current color */
128 int flush_color; /* L: flushing color */
129 int nr_in_flight[WORK_NR_COLORS];
130 /* L: nr of in_flight works */
1e19ffc6 131 int nr_active; /* L: nr of active works */
a0a1a5fd 132 int max_active; /* L: max active works */
1e19ffc6 133 struct list_head delayed_works; /* L: delayed works */
0f900049 134};
1da177e4 135
73f53c4a
TH
136/*
137 * Structure used to wait for workqueue flush.
138 */
139struct wq_flusher {
140 struct list_head list; /* F: list of flushers */
141 int flush_color; /* F: flush color waiting for */
142 struct completion done; /* flush completion */
143};
144
1da177e4
LT
145/*
146 * The externally visible workqueue abstraction is an array of
147 * per-CPU workqueues:
148 */
149struct workqueue_struct {
97e37d7b 150 unsigned int flags; /* I: WQ_* flags */
4690c4ab
TH
151 struct cpu_workqueue_struct *cpu_wq; /* I: cwq's */
152 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
153
154 struct mutex flush_mutex; /* protects wq flushing */
155 int work_color; /* F: current work color */
156 int flush_color; /* F: current flush color */
157 atomic_t nr_cwqs_to_flush; /* flush in progress */
158 struct wq_flusher *first_flusher; /* F: first flusher */
159 struct list_head flusher_queue; /* F: flush waiters */
160 struct list_head flusher_overflow; /* F: flush overflow list */
161
502ca9d8
TH
162 unsigned long single_cpu; /* cpu for single cpu wq */
163
a0a1a5fd 164 int saved_max_active; /* I: saved cwq max_active */
4690c4ab 165 const char *name; /* I: workqueue name */
4e6045f1 166#ifdef CONFIG_LOCKDEP
4690c4ab 167 struct lockdep_map lockdep_map;
4e6045f1 168#endif
1da177e4
LT
169};
170
db7bccf4
TH
171#define for_each_busy_worker(worker, i, pos, gcwq) \
172 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
173 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
174
dc186ad7
TG
175#ifdef CONFIG_DEBUG_OBJECTS_WORK
176
177static struct debug_obj_descr work_debug_descr;
178
179/*
180 * fixup_init is called when:
181 * - an active object is initialized
182 */
183static int work_fixup_init(void *addr, enum debug_obj_state state)
184{
185 struct work_struct *work = addr;
186
187 switch (state) {
188 case ODEBUG_STATE_ACTIVE:
189 cancel_work_sync(work);
190 debug_object_init(work, &work_debug_descr);
191 return 1;
192 default:
193 return 0;
194 }
195}
196
197/*
198 * fixup_activate is called when:
199 * - an active object is activated
200 * - an unknown object is activated (might be a statically initialized object)
201 */
202static int work_fixup_activate(void *addr, enum debug_obj_state state)
203{
204 struct work_struct *work = addr;
205
206 switch (state) {
207
208 case ODEBUG_STATE_NOTAVAILABLE:
209 /*
210 * This is not really a fixup. The work struct was
211 * statically initialized. We just make sure that it
212 * is tracked in the object tracker.
213 */
22df02bb 214 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
215 debug_object_init(work, &work_debug_descr);
216 debug_object_activate(work, &work_debug_descr);
217 return 0;
218 }
219 WARN_ON_ONCE(1);
220 return 0;
221
222 case ODEBUG_STATE_ACTIVE:
223 WARN_ON(1);
224
225 default:
226 return 0;
227 }
228}
229
230/*
231 * fixup_free is called when:
232 * - an active object is freed
233 */
234static int work_fixup_free(void *addr, enum debug_obj_state state)
235{
236 struct work_struct *work = addr;
237
238 switch (state) {
239 case ODEBUG_STATE_ACTIVE:
240 cancel_work_sync(work);
241 debug_object_free(work, &work_debug_descr);
242 return 1;
243 default:
244 return 0;
245 }
246}
247
248static struct debug_obj_descr work_debug_descr = {
249 .name = "work_struct",
250 .fixup_init = work_fixup_init,
251 .fixup_activate = work_fixup_activate,
252 .fixup_free = work_fixup_free,
253};
254
255static inline void debug_work_activate(struct work_struct *work)
256{
257 debug_object_activate(work, &work_debug_descr);
258}
259
260static inline void debug_work_deactivate(struct work_struct *work)
261{
262 debug_object_deactivate(work, &work_debug_descr);
263}
264
265void __init_work(struct work_struct *work, int onstack)
266{
267 if (onstack)
268 debug_object_init_on_stack(work, &work_debug_descr);
269 else
270 debug_object_init(work, &work_debug_descr);
271}
272EXPORT_SYMBOL_GPL(__init_work);
273
274void destroy_work_on_stack(struct work_struct *work)
275{
276 debug_object_free(work, &work_debug_descr);
277}
278EXPORT_SYMBOL_GPL(destroy_work_on_stack);
279
280#else
281static inline void debug_work_activate(struct work_struct *work) { }
282static inline void debug_work_deactivate(struct work_struct *work) { }
283#endif
284
95402b38
GS
285/* Serializes the accesses to the list of workqueues. */
286static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 287static LIST_HEAD(workqueues);
a0a1a5fd 288static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 289
8b03ae3c
TH
290static DEFINE_PER_CPU(struct global_cwq, global_cwq);
291
c34056a3 292static int worker_thread(void *__worker);
1da177e4 293
8b03ae3c
TH
294static struct global_cwq *get_gcwq(unsigned int cpu)
295{
296 return &per_cpu(global_cwq, cpu);
297}
298
1537663f
TH
299static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
300 struct workqueue_struct *wq)
b1f4ec17 301{
1537663f 302 return per_cpu_ptr(wq->cpu_wq, cpu);
b1f4ec17
ON
303}
304
73f53c4a
TH
305static unsigned int work_color_to_flags(int color)
306{
307 return color << WORK_STRUCT_COLOR_SHIFT;
308}
309
310static int get_work_color(struct work_struct *work)
311{
312 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
313 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
314}
315
316static int work_next_color(int color)
317{
318 return (color + 1) % WORK_NR_COLORS;
319}
320
4594bf15 321/*
7a22ad75
TH
322 * Work data points to the cwq while a work is on queue. Once
323 * execution starts, it points to the cpu the work was last on. This
324 * can be distinguished by comparing the data value against
325 * PAGE_OFFSET.
326 *
327 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
328 * cwq, cpu or clear work->data. These functions should only be
329 * called while the work is owned - ie. while the PENDING bit is set.
330 *
331 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
332 * corresponding to a work. gcwq is available once the work has been
333 * queued anywhere after initialization. cwq is available only from
334 * queueing until execution starts.
4594bf15 335 */
7a22ad75
TH
336static inline void set_work_data(struct work_struct *work, unsigned long data,
337 unsigned long flags)
365970a1 338{
4594bf15 339 BUG_ON(!work_pending(work));
7a22ad75
TH
340 atomic_long_set(&work->data, data | flags | work_static(work));
341}
365970a1 342
7a22ad75
TH
343static void set_work_cwq(struct work_struct *work,
344 struct cpu_workqueue_struct *cwq,
345 unsigned long extra_flags)
346{
347 set_work_data(work, (unsigned long)cwq,
348 WORK_STRUCT_PENDING | extra_flags);
365970a1
DH
349}
350
7a22ad75
TH
351static void set_work_cpu(struct work_struct *work, unsigned int cpu)
352{
353 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
354}
355
356static void clear_work_data(struct work_struct *work)
357{
358 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
359}
360
361static inline unsigned long get_work_data(struct work_struct *work)
362{
363 return atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK;
364}
365
366static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
4d707b9f 367{
7a22ad75
TH
368 unsigned long data = get_work_data(work);
369
370 return data >= PAGE_OFFSET ? (void *)data : NULL;
4d707b9f
ON
371}
372
7a22ad75 373static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 374{
7a22ad75
TH
375 unsigned long data = get_work_data(work);
376 unsigned int cpu;
377
378 if (data >= PAGE_OFFSET)
379 return ((struct cpu_workqueue_struct *)data)->gcwq;
380
381 cpu = data >> WORK_STRUCT_FLAG_BITS;
382 if (cpu == NR_CPUS)
383 return NULL;
384
385 BUG_ON(cpu >= num_possible_cpus());
386 return get_gcwq(cpu);
365970a1
DH
387}
388
c8e55f36
TH
389/**
390 * busy_worker_head - return the busy hash head for a work
391 * @gcwq: gcwq of interest
392 * @work: work to be hashed
393 *
394 * Return hash head of @gcwq for @work.
395 *
396 * CONTEXT:
397 * spin_lock_irq(gcwq->lock).
398 *
399 * RETURNS:
400 * Pointer to the hash head.
401 */
402static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
403 struct work_struct *work)
404{
405 const int base_shift = ilog2(sizeof(struct work_struct));
406 unsigned long v = (unsigned long)work;
407
408 /* simple shift and fold hash, do we need something better? */
409 v >>= base_shift;
410 v += v >> BUSY_WORKER_HASH_ORDER;
411 v &= BUSY_WORKER_HASH_MASK;
412
413 return &gcwq->busy_hash[v];
414}
415
8cca0eea
TH
416/**
417 * __find_worker_executing_work - find worker which is executing a work
418 * @gcwq: gcwq of interest
419 * @bwh: hash head as returned by busy_worker_head()
420 * @work: work to find worker for
421 *
422 * Find a worker which is executing @work on @gcwq. @bwh should be
423 * the hash head obtained by calling busy_worker_head() with the same
424 * work.
425 *
426 * CONTEXT:
427 * spin_lock_irq(gcwq->lock).
428 *
429 * RETURNS:
430 * Pointer to worker which is executing @work if found, NULL
431 * otherwise.
432 */
433static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
434 struct hlist_head *bwh,
435 struct work_struct *work)
436{
437 struct worker *worker;
438 struct hlist_node *tmp;
439
440 hlist_for_each_entry(worker, tmp, bwh, hentry)
441 if (worker->current_work == work)
442 return worker;
443 return NULL;
444}
445
446/**
447 * find_worker_executing_work - find worker which is executing a work
448 * @gcwq: gcwq of interest
449 * @work: work to find worker for
450 *
451 * Find a worker which is executing @work on @gcwq. This function is
452 * identical to __find_worker_executing_work() except that this
453 * function calculates @bwh itself.
454 *
455 * CONTEXT:
456 * spin_lock_irq(gcwq->lock).
457 *
458 * RETURNS:
459 * Pointer to worker which is executing @work if found, NULL
460 * otherwise.
461 */
462static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
463 struct work_struct *work)
464{
465 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
466 work);
467}
468
4690c4ab
TH
469/**
470 * insert_work - insert a work into cwq
471 * @cwq: cwq @work belongs to
472 * @work: work to insert
473 * @head: insertion point
474 * @extra_flags: extra WORK_STRUCT_* flags to set
475 *
476 * Insert @work into @cwq after @head.
477 *
478 * CONTEXT:
8b03ae3c 479 * spin_lock_irq(gcwq->lock).
4690c4ab 480 */
b89deed3 481static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
482 struct work_struct *work, struct list_head *head,
483 unsigned int extra_flags)
b89deed3 484{
4690c4ab 485 /* we own @work, set data and link */
7a22ad75 486 set_work_cwq(work, cwq, extra_flags);
4690c4ab 487
6e84d644
ON
488 /*
489 * Ensure that we get the right work->data if we see the
490 * result of list_add() below, see try_to_grab_pending().
491 */
492 smp_wmb();
4690c4ab 493
1a4d9b0a 494 list_add_tail(&work->entry, head);
c8e55f36 495 wake_up_process(cwq->worker->task);
b89deed3
ON
496}
497
502ca9d8
TH
498/**
499 * cwq_unbind_single_cpu - unbind cwq from single cpu workqueue processing
500 * @cwq: cwq to unbind
501 *
502 * Try to unbind @cwq from single cpu workqueue processing. If
503 * @cwq->wq is frozen, unbind is delayed till the workqueue is thawed.
504 *
505 * CONTEXT:
506 * spin_lock_irq(gcwq->lock).
507 */
508static void cwq_unbind_single_cpu(struct cpu_workqueue_struct *cwq)
509{
510 struct workqueue_struct *wq = cwq->wq;
511 struct global_cwq *gcwq = cwq->gcwq;
512
513 BUG_ON(wq->single_cpu != gcwq->cpu);
514 /*
515 * Unbind from workqueue if @cwq is not frozen. If frozen,
516 * thaw_workqueues() will either restart processing on this
517 * cpu or unbind if empty. This keeps works queued while
518 * frozen fully ordered and flushable.
519 */
520 if (likely(!(gcwq->flags & GCWQ_FREEZING))) {
521 smp_wmb(); /* paired with cmpxchg() in __queue_work() */
522 wq->single_cpu = NR_CPUS;
523 }
524}
525
4690c4ab 526static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
527 struct work_struct *work)
528{
502ca9d8
TH
529 struct global_cwq *gcwq;
530 struct cpu_workqueue_struct *cwq;
1e19ffc6 531 struct list_head *worklist;
1da177e4 532 unsigned long flags;
502ca9d8 533 bool arbitrate;
1da177e4 534
dc186ad7 535 debug_work_activate(work);
1e19ffc6 536
18aa9eff
TH
537 /*
538 * Determine gcwq to use. SINGLE_CPU is inherently
539 * NON_REENTRANT, so test it first.
540 */
502ca9d8 541 if (!(wq->flags & WQ_SINGLE_CPU)) {
18aa9eff
TH
542 struct global_cwq *last_gcwq;
543
544 /*
545 * It's multi cpu. If @wq is non-reentrant and @work
546 * was previously on a different cpu, it might still
547 * be running there, in which case the work needs to
548 * be queued on that cpu to guarantee non-reentrance.
549 */
502ca9d8 550 gcwq = get_gcwq(cpu);
18aa9eff
TH
551 if (wq->flags & WQ_NON_REENTRANT &&
552 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
553 struct worker *worker;
554
555 spin_lock_irqsave(&last_gcwq->lock, flags);
556
557 worker = find_worker_executing_work(last_gcwq, work);
558
559 if (worker && worker->current_cwq->wq == wq)
560 gcwq = last_gcwq;
561 else {
562 /* meh... not running there, queue here */
563 spin_unlock_irqrestore(&last_gcwq->lock, flags);
564 spin_lock_irqsave(&gcwq->lock, flags);
565 }
566 } else
567 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
568 } else {
569 unsigned int req_cpu = cpu;
570
571 /*
572 * It's a bit more complex for single cpu workqueues.
573 * We first need to determine which cpu is going to be
574 * used. If no cpu is currently serving this
575 * workqueue, arbitrate using atomic accesses to
576 * wq->single_cpu; otherwise, use the current one.
577 */
578 retry:
579 cpu = wq->single_cpu;
580 arbitrate = cpu == NR_CPUS;
581 if (arbitrate)
582 cpu = req_cpu;
583
584 gcwq = get_gcwq(cpu);
585 spin_lock_irqsave(&gcwq->lock, flags);
586
587 /*
588 * The following cmpxchg() is a full barrier paired
589 * with smp_wmb() in cwq_unbind_single_cpu() and
590 * guarantees that all changes to wq->st_* fields are
591 * visible on the new cpu after this point.
592 */
593 if (arbitrate)
594 cmpxchg(&wq->single_cpu, NR_CPUS, cpu);
595
596 if (unlikely(wq->single_cpu != cpu)) {
597 spin_unlock_irqrestore(&gcwq->lock, flags);
598 goto retry;
599 }
600 }
601
602 /* gcwq determined, get cwq and queue */
603 cwq = get_cwq(gcwq->cpu, wq);
604
4690c4ab 605 BUG_ON(!list_empty(&work->entry));
1e19ffc6 606
73f53c4a 607 cwq->nr_in_flight[cwq->work_color]++;
1e19ffc6
TH
608
609 if (likely(cwq->nr_active < cwq->max_active)) {
610 cwq->nr_active++;
611 worklist = &cwq->worklist;
612 } else
613 worklist = &cwq->delayed_works;
614
615 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
616
8b03ae3c 617 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
618}
619
0fcb78c2
REB
620/**
621 * queue_work - queue work on a workqueue
622 * @wq: workqueue to use
623 * @work: work to queue
624 *
057647fc 625 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 626 *
00dfcaf7
ON
627 * We queue the work to the CPU on which it was submitted, but if the CPU dies
628 * it can be processed by another CPU.
1da177e4 629 */
7ad5b3a5 630int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 631{
ef1ca236
ON
632 int ret;
633
634 ret = queue_work_on(get_cpu(), wq, work);
635 put_cpu();
636
1da177e4
LT
637 return ret;
638}
ae90dd5d 639EXPORT_SYMBOL_GPL(queue_work);
1da177e4 640
c1a220e7
ZR
641/**
642 * queue_work_on - queue work on specific cpu
643 * @cpu: CPU number to execute work on
644 * @wq: workqueue to use
645 * @work: work to queue
646 *
647 * Returns 0 if @work was already on a queue, non-zero otherwise.
648 *
649 * We queue the work to a specific CPU, the caller must ensure it
650 * can't go away.
651 */
652int
653queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
654{
655 int ret = 0;
656
22df02bb 657 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 658 __queue_work(cpu, wq, work);
c1a220e7
ZR
659 ret = 1;
660 }
661 return ret;
662}
663EXPORT_SYMBOL_GPL(queue_work_on);
664
6d141c3f 665static void delayed_work_timer_fn(unsigned long __data)
1da177e4 666{
52bad64d 667 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 668 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 669
4690c4ab 670 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
671}
672
0fcb78c2
REB
673/**
674 * queue_delayed_work - queue work on a workqueue after delay
675 * @wq: workqueue to use
af9997e4 676 * @dwork: delayable work to queue
0fcb78c2
REB
677 * @delay: number of jiffies to wait before queueing
678 *
057647fc 679 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 680 */
7ad5b3a5 681int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 682 struct delayed_work *dwork, unsigned long delay)
1da177e4 683{
52bad64d 684 if (delay == 0)
63bc0362 685 return queue_work(wq, &dwork->work);
1da177e4 686
63bc0362 687 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 688}
ae90dd5d 689EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 690
0fcb78c2
REB
691/**
692 * queue_delayed_work_on - queue work on specific CPU after delay
693 * @cpu: CPU number to execute work on
694 * @wq: workqueue to use
af9997e4 695 * @dwork: work to queue
0fcb78c2
REB
696 * @delay: number of jiffies to wait before queueing
697 *
057647fc 698 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 699 */
7a6bc1cd 700int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 701 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
702{
703 int ret = 0;
52bad64d
DH
704 struct timer_list *timer = &dwork->timer;
705 struct work_struct *work = &dwork->work;
7a6bc1cd 706
22df02bb 707 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7a22ad75
TH
708 struct global_cwq *gcwq = get_work_gcwq(work);
709 unsigned int lcpu = gcwq ? gcwq->cpu : raw_smp_processor_id();
710
7a6bc1cd
VP
711 BUG_ON(timer_pending(timer));
712 BUG_ON(!list_empty(&work->entry));
713
8a3e77cc 714 timer_stats_timer_set_start_info(&dwork->timer);
7a22ad75
TH
715 /*
716 * This stores cwq for the moment, for the timer_fn.
717 * Note that the work's gcwq is preserved to allow
718 * reentrance detection for delayed works.
719 */
720 set_work_cwq(work, get_cwq(lcpu, wq), 0);
7a6bc1cd 721 timer->expires = jiffies + delay;
52bad64d 722 timer->data = (unsigned long)dwork;
7a6bc1cd 723 timer->function = delayed_work_timer_fn;
63bc0362
ON
724
725 if (unlikely(cpu >= 0))
726 add_timer_on(timer, cpu);
727 else
728 add_timer(timer);
7a6bc1cd
VP
729 ret = 1;
730 }
731 return ret;
732}
ae90dd5d 733EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 734
c8e55f36
TH
735/**
736 * worker_enter_idle - enter idle state
737 * @worker: worker which is entering idle state
738 *
739 * @worker is entering idle state. Update stats and idle timer if
740 * necessary.
741 *
742 * LOCKING:
743 * spin_lock_irq(gcwq->lock).
744 */
745static void worker_enter_idle(struct worker *worker)
746{
747 struct global_cwq *gcwq = worker->gcwq;
748
749 BUG_ON(worker->flags & WORKER_IDLE);
750 BUG_ON(!list_empty(&worker->entry) &&
751 (worker->hentry.next || worker->hentry.pprev));
752
753 worker->flags |= WORKER_IDLE;
754 gcwq->nr_idle++;
755
756 /* idle_list is LIFO */
757 list_add(&worker->entry, &gcwq->idle_list);
db7bccf4
TH
758
759 if (unlikely(worker->flags & WORKER_ROGUE))
760 wake_up_all(&gcwq->trustee_wait);
c8e55f36
TH
761}
762
763/**
764 * worker_leave_idle - leave idle state
765 * @worker: worker which is leaving idle state
766 *
767 * @worker is leaving idle state. Update stats.
768 *
769 * LOCKING:
770 * spin_lock_irq(gcwq->lock).
771 */
772static void worker_leave_idle(struct worker *worker)
773{
774 struct global_cwq *gcwq = worker->gcwq;
775
776 BUG_ON(!(worker->flags & WORKER_IDLE));
777 worker->flags &= ~WORKER_IDLE;
778 gcwq->nr_idle--;
779 list_del_init(&worker->entry);
780}
781
c34056a3
TH
782static struct worker *alloc_worker(void)
783{
784 struct worker *worker;
785
786 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
787 if (worker) {
788 INIT_LIST_HEAD(&worker->entry);
affee4b2 789 INIT_LIST_HEAD(&worker->scheduled);
c8e55f36 790 }
c34056a3
TH
791 return worker;
792}
793
794/**
795 * create_worker - create a new workqueue worker
796 * @cwq: cwq the new worker will belong to
797 * @bind: whether to set affinity to @cpu or not
798 *
799 * Create a new worker which is bound to @cwq. The returned worker
800 * can be started by calling start_worker() or destroyed using
801 * destroy_worker().
802 *
803 * CONTEXT:
804 * Might sleep. Does GFP_KERNEL allocations.
805 *
806 * RETURNS:
807 * Pointer to the newly created worker.
808 */
809static struct worker *create_worker(struct cpu_workqueue_struct *cwq, bool bind)
810{
8b03ae3c 811 struct global_cwq *gcwq = cwq->gcwq;
c34056a3
TH
812 int id = -1;
813 struct worker *worker = NULL;
814
8b03ae3c
TH
815 spin_lock_irq(&gcwq->lock);
816 while (ida_get_new(&gcwq->worker_ida, &id)) {
817 spin_unlock_irq(&gcwq->lock);
818 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
c34056a3 819 goto fail;
8b03ae3c 820 spin_lock_irq(&gcwq->lock);
c34056a3 821 }
8b03ae3c 822 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
823
824 worker = alloc_worker();
825 if (!worker)
826 goto fail;
827
8b03ae3c 828 worker->gcwq = gcwq;
c34056a3
TH
829 worker->cwq = cwq;
830 worker->id = id;
831
832 worker->task = kthread_create(worker_thread, worker, "kworker/%u:%d",
8b03ae3c 833 gcwq->cpu, id);
c34056a3
TH
834 if (IS_ERR(worker->task))
835 goto fail;
836
db7bccf4
TH
837 /*
838 * A rogue worker will become a regular one if CPU comes
839 * online later on. Make sure every worker has
840 * PF_THREAD_BOUND set.
841 */
c34056a3 842 if (bind)
8b03ae3c 843 kthread_bind(worker->task, gcwq->cpu);
db7bccf4
TH
844 else
845 worker->task->flags |= PF_THREAD_BOUND;
c34056a3
TH
846
847 return worker;
848fail:
849 if (id >= 0) {
8b03ae3c
TH
850 spin_lock_irq(&gcwq->lock);
851 ida_remove(&gcwq->worker_ida, id);
852 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
853 }
854 kfree(worker);
855 return NULL;
856}
857
858/**
859 * start_worker - start a newly created worker
860 * @worker: worker to start
861 *
c8e55f36 862 * Make the gcwq aware of @worker and start it.
c34056a3
TH
863 *
864 * CONTEXT:
8b03ae3c 865 * spin_lock_irq(gcwq->lock).
c34056a3
TH
866 */
867static void start_worker(struct worker *worker)
868{
c8e55f36
TH
869 worker->flags |= WORKER_STARTED;
870 worker->gcwq->nr_workers++;
871 worker_enter_idle(worker);
c34056a3
TH
872 wake_up_process(worker->task);
873}
874
875/**
876 * destroy_worker - destroy a workqueue worker
877 * @worker: worker to be destroyed
878 *
c8e55f36
TH
879 * Destroy @worker and adjust @gcwq stats accordingly.
880 *
881 * CONTEXT:
882 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
883 */
884static void destroy_worker(struct worker *worker)
885{
8b03ae3c 886 struct global_cwq *gcwq = worker->gcwq;
c34056a3
TH
887 int id = worker->id;
888
889 /* sanity check frenzy */
890 BUG_ON(worker->current_work);
affee4b2 891 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 892
c8e55f36
TH
893 if (worker->flags & WORKER_STARTED)
894 gcwq->nr_workers--;
895 if (worker->flags & WORKER_IDLE)
896 gcwq->nr_idle--;
897
898 list_del_init(&worker->entry);
899 worker->flags |= WORKER_DIE;
900
901 spin_unlock_irq(&gcwq->lock);
902
c34056a3
TH
903 kthread_stop(worker->task);
904 kfree(worker);
905
8b03ae3c
TH
906 spin_lock_irq(&gcwq->lock);
907 ida_remove(&gcwq->worker_ida, id);
c34056a3
TH
908}
909
affee4b2
TH
910/**
911 * move_linked_works - move linked works to a list
912 * @work: start of series of works to be scheduled
913 * @head: target list to append @work to
914 * @nextp: out paramter for nested worklist walking
915 *
916 * Schedule linked works starting from @work to @head. Work series to
917 * be scheduled starts at @work and includes any consecutive work with
918 * WORK_STRUCT_LINKED set in its predecessor.
919 *
920 * If @nextp is not NULL, it's updated to point to the next work of
921 * the last scheduled work. This allows move_linked_works() to be
922 * nested inside outer list_for_each_entry_safe().
923 *
924 * CONTEXT:
8b03ae3c 925 * spin_lock_irq(gcwq->lock).
affee4b2
TH
926 */
927static void move_linked_works(struct work_struct *work, struct list_head *head,
928 struct work_struct **nextp)
929{
930 struct work_struct *n;
931
932 /*
933 * Linked worklist will always end before the end of the list,
934 * use NULL for list head.
935 */
936 list_for_each_entry_safe_from(work, n, NULL, entry) {
937 list_move_tail(&work->entry, head);
938 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
939 break;
940 }
941
942 /*
943 * If we're already inside safe list traversal and have moved
944 * multiple works to the scheduled queue, the next position
945 * needs to be updated.
946 */
947 if (nextp)
948 *nextp = n;
949}
950
1e19ffc6
TH
951static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
952{
953 struct work_struct *work = list_first_entry(&cwq->delayed_works,
954 struct work_struct, entry);
955
956 move_linked_works(work, &cwq->worklist, NULL);
957 cwq->nr_active++;
958}
959
73f53c4a
TH
960/**
961 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
962 * @cwq: cwq of interest
963 * @color: color of work which left the queue
964 *
965 * A work either has completed or is removed from pending queue,
966 * decrement nr_in_flight of its cwq and handle workqueue flushing.
967 *
968 * CONTEXT:
8b03ae3c 969 * spin_lock_irq(gcwq->lock).
73f53c4a
TH
970 */
971static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
972{
973 /* ignore uncolored works */
974 if (color == WORK_NO_COLOR)
975 return;
976
977 cwq->nr_in_flight[color]--;
1e19ffc6
TH
978 cwq->nr_active--;
979
502ca9d8
TH
980 if (!list_empty(&cwq->delayed_works)) {
981 /* one down, submit a delayed one */
982 if (cwq->nr_active < cwq->max_active)
983 cwq_activate_first_delayed(cwq);
984 } else if (!cwq->nr_active && cwq->wq->flags & WQ_SINGLE_CPU) {
985 /* this was the last work, unbind from single cpu */
986 cwq_unbind_single_cpu(cwq);
987 }
73f53c4a
TH
988
989 /* is flush in progress and are we at the flushing tip? */
990 if (likely(cwq->flush_color != color))
991 return;
992
993 /* are there still in-flight works? */
994 if (cwq->nr_in_flight[color])
995 return;
996
997 /* this cwq is done, clear flush_color */
998 cwq->flush_color = -1;
999
1000 /*
1001 * If this was the last cwq, wake up the first flusher. It
1002 * will handle the rest.
1003 */
1004 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1005 complete(&cwq->wq->first_flusher->done);
1006}
1007
a62428c0
TH
1008/**
1009 * process_one_work - process single work
c34056a3 1010 * @worker: self
a62428c0
TH
1011 * @work: work to process
1012 *
1013 * Process @work. This function contains all the logics necessary to
1014 * process a single work including synchronization against and
1015 * interaction with other workers on the same cpu, queueing and
1016 * flushing. As long as context requirement is met, any worker can
1017 * call this function to process a work.
1018 *
1019 * CONTEXT:
8b03ae3c 1020 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1021 */
c34056a3 1022static void process_one_work(struct worker *worker, struct work_struct *work)
a62428c0 1023{
c34056a3 1024 struct cpu_workqueue_struct *cwq = worker->cwq;
8b03ae3c 1025 struct global_cwq *gcwq = cwq->gcwq;
c8e55f36 1026 struct hlist_head *bwh = busy_worker_head(gcwq, work);
a62428c0 1027 work_func_t f = work->func;
73f53c4a 1028 int work_color;
a62428c0
TH
1029#ifdef CONFIG_LOCKDEP
1030 /*
1031 * It is permissible to free the struct work_struct from
1032 * inside the function that is called from it, this we need to
1033 * take into account for lockdep too. To avoid bogus "held
1034 * lock freed" warnings as well as problems when looking into
1035 * work->lockdep_map, make a copy and use that here.
1036 */
1037 struct lockdep_map lockdep_map = work->lockdep_map;
1038#endif
1039 /* claim and process */
a62428c0 1040 debug_work_deactivate(work);
c8e55f36 1041 hlist_add_head(&worker->hentry, bwh);
c34056a3 1042 worker->current_work = work;
8cca0eea 1043 worker->current_cwq = cwq;
73f53c4a 1044 work_color = get_work_color(work);
7a22ad75
TH
1045
1046 BUG_ON(get_work_cwq(work) != cwq);
1047 /* record the current cpu number in the work data and dequeue */
1048 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1049 list_del_init(&work->entry);
1050
8b03ae3c 1051 spin_unlock_irq(&gcwq->lock);
a62428c0 1052
a62428c0
TH
1053 work_clear_pending(work);
1054 lock_map_acquire(&cwq->wq->lockdep_map);
1055 lock_map_acquire(&lockdep_map);
1056 f(work);
1057 lock_map_release(&lockdep_map);
1058 lock_map_release(&cwq->wq->lockdep_map);
1059
1060 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1061 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1062 "%s/0x%08x/%d\n",
1063 current->comm, preempt_count(), task_pid_nr(current));
1064 printk(KERN_ERR " last function: ");
1065 print_symbol("%s\n", (unsigned long)f);
1066 debug_show_held_locks(current);
1067 dump_stack();
1068 }
1069
8b03ae3c 1070 spin_lock_irq(&gcwq->lock);
a62428c0
TH
1071
1072 /* we're done with it, release */
c8e55f36 1073 hlist_del_init(&worker->hentry);
c34056a3 1074 worker->current_work = NULL;
8cca0eea 1075 worker->current_cwq = NULL;
73f53c4a 1076 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
1077}
1078
affee4b2
TH
1079/**
1080 * process_scheduled_works - process scheduled works
1081 * @worker: self
1082 *
1083 * Process all scheduled works. Please note that the scheduled list
1084 * may change while processing a work, so this function repeatedly
1085 * fetches a work from the top and executes it.
1086 *
1087 * CONTEXT:
8b03ae3c 1088 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1089 * multiple times.
1090 */
1091static void process_scheduled_works(struct worker *worker)
1da177e4 1092{
affee4b2
TH
1093 while (!list_empty(&worker->scheduled)) {
1094 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1095 struct work_struct, entry);
c34056a3 1096 process_one_work(worker, work);
1da177e4 1097 }
1da177e4
LT
1098}
1099
4690c4ab
TH
1100/**
1101 * worker_thread - the worker thread function
c34056a3 1102 * @__worker: self
4690c4ab
TH
1103 *
1104 * The cwq worker thread function.
1105 */
c34056a3 1106static int worker_thread(void *__worker)
1da177e4 1107{
c34056a3 1108 struct worker *worker = __worker;
8b03ae3c 1109 struct global_cwq *gcwq = worker->gcwq;
c34056a3 1110 struct cpu_workqueue_struct *cwq = worker->cwq;
1da177e4 1111
c8e55f36 1112woke_up:
c8e55f36 1113 spin_lock_irq(&gcwq->lock);
1da177e4 1114
c8e55f36
TH
1115 /* DIE can be set only while we're idle, checking here is enough */
1116 if (worker->flags & WORKER_DIE) {
1117 spin_unlock_irq(&gcwq->lock);
1118 return 0;
1119 }
affee4b2 1120
c8e55f36 1121 worker_leave_idle(worker);
db7bccf4 1122recheck:
c8e55f36
TH
1123 /*
1124 * ->scheduled list can only be filled while a worker is
1125 * preparing to process a work or actually processing it.
1126 * Make sure nobody diddled with it while I was sleeping.
1127 */
1128 BUG_ON(!list_empty(&worker->scheduled));
1129
1130 while (!list_empty(&cwq->worklist)) {
1131 struct work_struct *work =
1132 list_first_entry(&cwq->worklist,
1133 struct work_struct, entry);
1134
db7bccf4
TH
1135 /*
1136 * The following is a rather inefficient way to close
1137 * race window against cpu hotplug operations. Will
1138 * be replaced soon.
1139 */
1140 if (unlikely(!(worker->flags & WORKER_ROGUE) &&
1141 !cpumask_equal(&worker->task->cpus_allowed,
1142 get_cpu_mask(gcwq->cpu)))) {
1143 spin_unlock_irq(&gcwq->lock);
1144 set_cpus_allowed_ptr(worker->task,
1145 get_cpu_mask(gcwq->cpu));
1146 cpu_relax();
1147 spin_lock_irq(&gcwq->lock);
1148 goto recheck;
1149 }
1150
c8e55f36
TH
1151 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1152 /* optimization path, not strictly necessary */
1153 process_one_work(worker, work);
1154 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 1155 process_scheduled_works(worker);
c8e55f36
TH
1156 } else {
1157 move_linked_works(work, &worker->scheduled, NULL);
1158 process_scheduled_works(worker);
affee4b2 1159 }
1da177e4 1160 }
3af24433 1161
c8e55f36
TH
1162 /*
1163 * gcwq->lock is held and there's no work to process, sleep.
1164 * Workers are woken up only while holding gcwq->lock, so
1165 * setting the current state before releasing gcwq->lock is
1166 * enough to prevent losing any event.
1167 */
1168 worker_enter_idle(worker);
1169 __set_current_state(TASK_INTERRUPTIBLE);
1170 spin_unlock_irq(&gcwq->lock);
1171 schedule();
1172 goto woke_up;
1da177e4
LT
1173}
1174
fc2e4d70
ON
1175struct wq_barrier {
1176 struct work_struct work;
1177 struct completion done;
1178};
1179
1180static void wq_barrier_func(struct work_struct *work)
1181{
1182 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
1183 complete(&barr->done);
1184}
1185
4690c4ab
TH
1186/**
1187 * insert_wq_barrier - insert a barrier work
1188 * @cwq: cwq to insert barrier into
1189 * @barr: wq_barrier to insert
affee4b2
TH
1190 * @target: target work to attach @barr to
1191 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 1192 *
affee4b2
TH
1193 * @barr is linked to @target such that @barr is completed only after
1194 * @target finishes execution. Please note that the ordering
1195 * guarantee is observed only with respect to @target and on the local
1196 * cpu.
1197 *
1198 * Currently, a queued barrier can't be canceled. This is because
1199 * try_to_grab_pending() can't determine whether the work to be
1200 * grabbed is at the head of the queue and thus can't clear LINKED
1201 * flag of the previous work while there must be a valid next work
1202 * after a work with LINKED flag set.
1203 *
1204 * Note that when @worker is non-NULL, @target may be modified
1205 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
1206 *
1207 * CONTEXT:
8b03ae3c 1208 * spin_lock_irq(gcwq->lock).
4690c4ab 1209 */
83c22520 1210static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
1211 struct wq_barrier *barr,
1212 struct work_struct *target, struct worker *worker)
fc2e4d70 1213{
affee4b2
TH
1214 struct list_head *head;
1215 unsigned int linked = 0;
1216
dc186ad7 1217 /*
8b03ae3c 1218 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
1219 * as we know for sure that this will not trigger any of the
1220 * checks and call back into the fixup functions where we
1221 * might deadlock.
1222 */
1223 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
22df02bb 1224 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 1225 init_completion(&barr->done);
83c22520 1226
affee4b2
TH
1227 /*
1228 * If @target is currently being executed, schedule the
1229 * barrier to the worker; otherwise, put it after @target.
1230 */
1231 if (worker)
1232 head = worker->scheduled.next;
1233 else {
1234 unsigned long *bits = work_data_bits(target);
1235
1236 head = target->entry.next;
1237 /* there can already be other linked works, inherit and set */
1238 linked = *bits & WORK_STRUCT_LINKED;
1239 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
1240 }
1241
dc186ad7 1242 debug_work_activate(&barr->work);
affee4b2
TH
1243 insert_work(cwq, &barr->work, head,
1244 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
1245}
1246
73f53c4a
TH
1247/**
1248 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
1249 * @wq: workqueue being flushed
1250 * @flush_color: new flush color, < 0 for no-op
1251 * @work_color: new work color, < 0 for no-op
1252 *
1253 * Prepare cwqs for workqueue flushing.
1254 *
1255 * If @flush_color is non-negative, flush_color on all cwqs should be
1256 * -1. If no cwq has in-flight commands at the specified color, all
1257 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
1258 * has in flight commands, its cwq->flush_color is set to
1259 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
1260 * wakeup logic is armed and %true is returned.
1261 *
1262 * The caller should have initialized @wq->first_flusher prior to
1263 * calling this function with non-negative @flush_color. If
1264 * @flush_color is negative, no flush color update is done and %false
1265 * is returned.
1266 *
1267 * If @work_color is non-negative, all cwqs should have the same
1268 * work_color which is previous to @work_color and all will be
1269 * advanced to @work_color.
1270 *
1271 * CONTEXT:
1272 * mutex_lock(wq->flush_mutex).
1273 *
1274 * RETURNS:
1275 * %true if @flush_color >= 0 and there's something to flush. %false
1276 * otherwise.
1277 */
1278static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
1279 int flush_color, int work_color)
1da177e4 1280{
73f53c4a
TH
1281 bool wait = false;
1282 unsigned int cpu;
1da177e4 1283
73f53c4a
TH
1284 if (flush_color >= 0) {
1285 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
1286 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 1287 }
2355b70f 1288
73f53c4a
TH
1289 for_each_possible_cpu(cpu) {
1290 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 1291 struct global_cwq *gcwq = cwq->gcwq;
73f53c4a 1292
8b03ae3c 1293 spin_lock_irq(&gcwq->lock);
73f53c4a
TH
1294
1295 if (flush_color >= 0) {
1296 BUG_ON(cwq->flush_color != -1);
1297
1298 if (cwq->nr_in_flight[flush_color]) {
1299 cwq->flush_color = flush_color;
1300 atomic_inc(&wq->nr_cwqs_to_flush);
1301 wait = true;
1302 }
1303 }
1304
1305 if (work_color >= 0) {
1306 BUG_ON(work_color != work_next_color(cwq->work_color));
1307 cwq->work_color = work_color;
1308 }
1309
8b03ae3c 1310 spin_unlock_irq(&gcwq->lock);
dc186ad7 1311 }
14441960 1312
73f53c4a
TH
1313 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
1314 complete(&wq->first_flusher->done);
1315
1316 return wait;
1da177e4
LT
1317}
1318
0fcb78c2 1319/**
1da177e4 1320 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 1321 * @wq: workqueue to flush
1da177e4
LT
1322 *
1323 * Forces execution of the workqueue and blocks until its completion.
1324 * This is typically used in driver shutdown handlers.
1325 *
fc2e4d70
ON
1326 * We sleep until all works which were queued on entry have been handled,
1327 * but we are not livelocked by new incoming ones.
1da177e4 1328 */
7ad5b3a5 1329void flush_workqueue(struct workqueue_struct *wq)
1da177e4 1330{
73f53c4a
TH
1331 struct wq_flusher this_flusher = {
1332 .list = LIST_HEAD_INIT(this_flusher.list),
1333 .flush_color = -1,
1334 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
1335 };
1336 int next_color;
1da177e4 1337
3295f0ef
IM
1338 lock_map_acquire(&wq->lockdep_map);
1339 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
1340
1341 mutex_lock(&wq->flush_mutex);
1342
1343 /*
1344 * Start-to-wait phase
1345 */
1346 next_color = work_next_color(wq->work_color);
1347
1348 if (next_color != wq->flush_color) {
1349 /*
1350 * Color space is not full. The current work_color
1351 * becomes our flush_color and work_color is advanced
1352 * by one.
1353 */
1354 BUG_ON(!list_empty(&wq->flusher_overflow));
1355 this_flusher.flush_color = wq->work_color;
1356 wq->work_color = next_color;
1357
1358 if (!wq->first_flusher) {
1359 /* no flush in progress, become the first flusher */
1360 BUG_ON(wq->flush_color != this_flusher.flush_color);
1361
1362 wq->first_flusher = &this_flusher;
1363
1364 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
1365 wq->work_color)) {
1366 /* nothing to flush, done */
1367 wq->flush_color = next_color;
1368 wq->first_flusher = NULL;
1369 goto out_unlock;
1370 }
1371 } else {
1372 /* wait in queue */
1373 BUG_ON(wq->flush_color == this_flusher.flush_color);
1374 list_add_tail(&this_flusher.list, &wq->flusher_queue);
1375 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1376 }
1377 } else {
1378 /*
1379 * Oops, color space is full, wait on overflow queue.
1380 * The next flush completion will assign us
1381 * flush_color and transfer to flusher_queue.
1382 */
1383 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
1384 }
1385
1386 mutex_unlock(&wq->flush_mutex);
1387
1388 wait_for_completion(&this_flusher.done);
1389
1390 /*
1391 * Wake-up-and-cascade phase
1392 *
1393 * First flushers are responsible for cascading flushes and
1394 * handling overflow. Non-first flushers can simply return.
1395 */
1396 if (wq->first_flusher != &this_flusher)
1397 return;
1398
1399 mutex_lock(&wq->flush_mutex);
1400
1401 wq->first_flusher = NULL;
1402
1403 BUG_ON(!list_empty(&this_flusher.list));
1404 BUG_ON(wq->flush_color != this_flusher.flush_color);
1405
1406 while (true) {
1407 struct wq_flusher *next, *tmp;
1408
1409 /* complete all the flushers sharing the current flush color */
1410 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
1411 if (next->flush_color != wq->flush_color)
1412 break;
1413 list_del_init(&next->list);
1414 complete(&next->done);
1415 }
1416
1417 BUG_ON(!list_empty(&wq->flusher_overflow) &&
1418 wq->flush_color != work_next_color(wq->work_color));
1419
1420 /* this flush_color is finished, advance by one */
1421 wq->flush_color = work_next_color(wq->flush_color);
1422
1423 /* one color has been freed, handle overflow queue */
1424 if (!list_empty(&wq->flusher_overflow)) {
1425 /*
1426 * Assign the same color to all overflowed
1427 * flushers, advance work_color and append to
1428 * flusher_queue. This is the start-to-wait
1429 * phase for these overflowed flushers.
1430 */
1431 list_for_each_entry(tmp, &wq->flusher_overflow, list)
1432 tmp->flush_color = wq->work_color;
1433
1434 wq->work_color = work_next_color(wq->work_color);
1435
1436 list_splice_tail_init(&wq->flusher_overflow,
1437 &wq->flusher_queue);
1438 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
1439 }
1440
1441 if (list_empty(&wq->flusher_queue)) {
1442 BUG_ON(wq->flush_color != wq->work_color);
1443 break;
1444 }
1445
1446 /*
1447 * Need to flush more colors. Make the next flusher
1448 * the new first flusher and arm cwqs.
1449 */
1450 BUG_ON(wq->flush_color == wq->work_color);
1451 BUG_ON(wq->flush_color != next->flush_color);
1452
1453 list_del_init(&next->list);
1454 wq->first_flusher = next;
1455
1456 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
1457 break;
1458
1459 /*
1460 * Meh... this color is already done, clear first
1461 * flusher and repeat cascading.
1462 */
1463 wq->first_flusher = NULL;
1464 }
1465
1466out_unlock:
1467 mutex_unlock(&wq->flush_mutex);
1da177e4 1468}
ae90dd5d 1469EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 1470
db700897
ON
1471/**
1472 * flush_work - block until a work_struct's callback has terminated
1473 * @work: the work which is to be flushed
1474 *
a67da70d
ON
1475 * Returns false if @work has already terminated.
1476 *
db700897
ON
1477 * It is expected that, prior to calling flush_work(), the caller has
1478 * arranged for the work to not be requeued, otherwise it doesn't make
1479 * sense to use this function.
1480 */
1481int flush_work(struct work_struct *work)
1482{
affee4b2 1483 struct worker *worker = NULL;
8b03ae3c 1484 struct global_cwq *gcwq;
7a22ad75 1485 struct cpu_workqueue_struct *cwq;
db700897
ON
1486 struct wq_barrier barr;
1487
1488 might_sleep();
7a22ad75
TH
1489 gcwq = get_work_gcwq(work);
1490 if (!gcwq)
db700897 1491 return 0;
a67da70d 1492
8b03ae3c 1493 spin_lock_irq(&gcwq->lock);
db700897
ON
1494 if (!list_empty(&work->entry)) {
1495 /*
1496 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
1497 * If it was re-queued to a different gcwq under us, we
1498 * are not going to wait.
db700897
ON
1499 */
1500 smp_rmb();
7a22ad75
TH
1501 cwq = get_work_cwq(work);
1502 if (unlikely(!cwq || gcwq != cwq->gcwq))
4690c4ab 1503 goto already_gone;
db700897 1504 } else {
7a22ad75 1505 worker = find_worker_executing_work(gcwq, work);
affee4b2 1506 if (!worker)
4690c4ab 1507 goto already_gone;
7a22ad75 1508 cwq = worker->current_cwq;
db700897 1509 }
db700897 1510
affee4b2 1511 insert_wq_barrier(cwq, &barr, work, worker);
8b03ae3c 1512 spin_unlock_irq(&gcwq->lock);
7a22ad75
TH
1513
1514 lock_map_acquire(&cwq->wq->lockdep_map);
1515 lock_map_release(&cwq->wq->lockdep_map);
1516
db700897 1517 wait_for_completion(&barr.done);
dc186ad7 1518 destroy_work_on_stack(&barr.work);
db700897 1519 return 1;
4690c4ab 1520already_gone:
8b03ae3c 1521 spin_unlock_irq(&gcwq->lock);
4690c4ab 1522 return 0;
db700897
ON
1523}
1524EXPORT_SYMBOL_GPL(flush_work);
1525
6e84d644 1526/*
1f1f642e 1527 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
1528 * so this work can't be re-armed in any way.
1529 */
1530static int try_to_grab_pending(struct work_struct *work)
1531{
8b03ae3c 1532 struct global_cwq *gcwq;
1f1f642e 1533 int ret = -1;
6e84d644 1534
22df02bb 1535 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 1536 return 0;
6e84d644
ON
1537
1538 /*
1539 * The queueing is in progress, or it is already queued. Try to
1540 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1541 */
7a22ad75
TH
1542 gcwq = get_work_gcwq(work);
1543 if (!gcwq)
6e84d644
ON
1544 return ret;
1545
8b03ae3c 1546 spin_lock_irq(&gcwq->lock);
6e84d644
ON
1547 if (!list_empty(&work->entry)) {
1548 /*
7a22ad75 1549 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
1550 * In that case we must see the new value after rmb(), see
1551 * insert_work()->wmb().
1552 */
1553 smp_rmb();
7a22ad75 1554 if (gcwq == get_work_gcwq(work)) {
dc186ad7 1555 debug_work_deactivate(work);
6e84d644 1556 list_del_init(&work->entry);
7a22ad75
TH
1557 cwq_dec_nr_in_flight(get_work_cwq(work),
1558 get_work_color(work));
6e84d644
ON
1559 ret = 1;
1560 }
1561 }
8b03ae3c 1562 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
1563
1564 return ret;
1565}
1566
7a22ad75 1567static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
b89deed3
ON
1568{
1569 struct wq_barrier barr;
affee4b2 1570 struct worker *worker;
b89deed3 1571
8b03ae3c 1572 spin_lock_irq(&gcwq->lock);
affee4b2 1573
7a22ad75
TH
1574 worker = find_worker_executing_work(gcwq, work);
1575 if (unlikely(worker))
1576 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
affee4b2 1577
8b03ae3c 1578 spin_unlock_irq(&gcwq->lock);
b89deed3 1579
affee4b2 1580 if (unlikely(worker)) {
b89deed3 1581 wait_for_completion(&barr.done);
dc186ad7
TG
1582 destroy_work_on_stack(&barr.work);
1583 }
b89deed3
ON
1584}
1585
6e84d644 1586static void wait_on_work(struct work_struct *work)
b89deed3 1587{
b1f4ec17 1588 int cpu;
b89deed3 1589
f293ea92
ON
1590 might_sleep();
1591
3295f0ef
IM
1592 lock_map_acquire(&work->lockdep_map);
1593 lock_map_release(&work->lockdep_map);
4e6045f1 1594
1537663f 1595 for_each_possible_cpu(cpu)
7a22ad75 1596 wait_on_cpu_work(get_gcwq(cpu), work);
6e84d644
ON
1597}
1598
1f1f642e
ON
1599static int __cancel_work_timer(struct work_struct *work,
1600 struct timer_list* timer)
1601{
1602 int ret;
1603
1604 do {
1605 ret = (timer && likely(del_timer(timer)));
1606 if (!ret)
1607 ret = try_to_grab_pending(work);
1608 wait_on_work(work);
1609 } while (unlikely(ret < 0));
1610
7a22ad75 1611 clear_work_data(work);
1f1f642e
ON
1612 return ret;
1613}
1614
6e84d644
ON
1615/**
1616 * cancel_work_sync - block until a work_struct's callback has terminated
1617 * @work: the work which is to be flushed
1618 *
1f1f642e
ON
1619 * Returns true if @work was pending.
1620 *
6e84d644
ON
1621 * cancel_work_sync() will cancel the work if it is queued. If the work's
1622 * callback appears to be running, cancel_work_sync() will block until it
1623 * has completed.
1624 *
1625 * It is possible to use this function if the work re-queues itself. It can
1626 * cancel the work even if it migrates to another workqueue, however in that
1627 * case it only guarantees that work->func() has completed on the last queued
1628 * workqueue.
1629 *
1630 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
1631 * pending, otherwise it goes into a busy-wait loop until the timer expires.
1632 *
1633 * The caller must ensure that workqueue_struct on which this work was last
1634 * queued can't be destroyed before this function returns.
1635 */
1f1f642e 1636int cancel_work_sync(struct work_struct *work)
6e84d644 1637{
1f1f642e 1638 return __cancel_work_timer(work, NULL);
b89deed3 1639}
28e53bdd 1640EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 1641
6e84d644 1642/**
f5a421a4 1643 * cancel_delayed_work_sync - reliably kill off a delayed work.
6e84d644
ON
1644 * @dwork: the delayed work struct
1645 *
1f1f642e
ON
1646 * Returns true if @dwork was pending.
1647 *
6e84d644
ON
1648 * It is possible to use this function if @dwork rearms itself via queue_work()
1649 * or queue_delayed_work(). See also the comment for cancel_work_sync().
1650 */
1f1f642e 1651int cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 1652{
1f1f642e 1653 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 1654}
f5a421a4 1655EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 1656
6e84d644 1657static struct workqueue_struct *keventd_wq __read_mostly;
1da177e4 1658
0fcb78c2
REB
1659/**
1660 * schedule_work - put work task in global workqueue
1661 * @work: job to be done
1662 *
5b0f437d
BVA
1663 * Returns zero if @work was already on the kernel-global workqueue and
1664 * non-zero otherwise.
1665 *
1666 * This puts a job in the kernel-global workqueue if it was not already
1667 * queued and leaves it in the same position on the kernel-global
1668 * workqueue otherwise.
0fcb78c2 1669 */
7ad5b3a5 1670int schedule_work(struct work_struct *work)
1da177e4
LT
1671{
1672 return queue_work(keventd_wq, work);
1673}
ae90dd5d 1674EXPORT_SYMBOL(schedule_work);
1da177e4 1675
c1a220e7
ZR
1676/*
1677 * schedule_work_on - put work task on a specific cpu
1678 * @cpu: cpu to put the work task on
1679 * @work: job to be done
1680 *
1681 * This puts a job on a specific cpu
1682 */
1683int schedule_work_on(int cpu, struct work_struct *work)
1684{
1685 return queue_work_on(cpu, keventd_wq, work);
1686}
1687EXPORT_SYMBOL(schedule_work_on);
1688
0fcb78c2
REB
1689/**
1690 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
1691 * @dwork: job to be done
1692 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
1693 *
1694 * After waiting for a given time this puts a job in the kernel-global
1695 * workqueue.
1696 */
7ad5b3a5 1697int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 1698 unsigned long delay)
1da177e4 1699{
52bad64d 1700 return queue_delayed_work(keventd_wq, dwork, delay);
1da177e4 1701}
ae90dd5d 1702EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 1703
8c53e463
LT
1704/**
1705 * flush_delayed_work - block until a dwork_struct's callback has terminated
1706 * @dwork: the delayed work which is to be flushed
1707 *
1708 * Any timeout is cancelled, and any pending work is run immediately.
1709 */
1710void flush_delayed_work(struct delayed_work *dwork)
1711{
1712 if (del_timer_sync(&dwork->timer)) {
7a22ad75 1713 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
4690c4ab 1714 &dwork->work);
8c53e463
LT
1715 put_cpu();
1716 }
1717 flush_work(&dwork->work);
1718}
1719EXPORT_SYMBOL(flush_delayed_work);
1720
0fcb78c2
REB
1721/**
1722 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
1723 * @cpu: cpu to use
52bad64d 1724 * @dwork: job to be done
0fcb78c2
REB
1725 * @delay: number of jiffies to wait
1726 *
1727 * After waiting for a given time this puts a job in the kernel-global
1728 * workqueue on the specified CPU.
1729 */
1da177e4 1730int schedule_delayed_work_on(int cpu,
52bad64d 1731 struct delayed_work *dwork, unsigned long delay)
1da177e4 1732{
52bad64d 1733 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
1da177e4 1734}
ae90dd5d 1735EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 1736
b6136773
AM
1737/**
1738 * schedule_on_each_cpu - call a function on each online CPU from keventd
1739 * @func: the function to call
b6136773
AM
1740 *
1741 * Returns zero on success.
1742 * Returns -ve errno on failure.
1743 *
b6136773
AM
1744 * schedule_on_each_cpu() is very slow.
1745 */
65f27f38 1746int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
1747{
1748 int cpu;
65a64464 1749 int orig = -1;
b6136773 1750 struct work_struct *works;
15316ba8 1751
b6136773
AM
1752 works = alloc_percpu(struct work_struct);
1753 if (!works)
15316ba8 1754 return -ENOMEM;
b6136773 1755
93981800
TH
1756 get_online_cpus();
1757
65a64464 1758 /*
93981800
TH
1759 * When running in keventd don't schedule a work item on
1760 * itself. Can just call directly because the work queue is
1761 * already bound. This also is faster.
65a64464 1762 */
93981800 1763 if (current_is_keventd())
65a64464 1764 orig = raw_smp_processor_id();
65a64464 1765
15316ba8 1766 for_each_online_cpu(cpu) {
9bfb1839
IM
1767 struct work_struct *work = per_cpu_ptr(works, cpu);
1768
1769 INIT_WORK(work, func);
65a64464 1770 if (cpu != orig)
93981800 1771 schedule_work_on(cpu, work);
65a64464 1772 }
93981800
TH
1773 if (orig >= 0)
1774 func(per_cpu_ptr(works, orig));
1775
1776 for_each_online_cpu(cpu)
1777 flush_work(per_cpu_ptr(works, cpu));
1778
95402b38 1779 put_online_cpus();
b6136773 1780 free_percpu(works);
15316ba8
CL
1781 return 0;
1782}
1783
eef6a7d5
AS
1784/**
1785 * flush_scheduled_work - ensure that any scheduled work has run to completion.
1786 *
1787 * Forces execution of the kernel-global workqueue and blocks until its
1788 * completion.
1789 *
1790 * Think twice before calling this function! It's very easy to get into
1791 * trouble if you don't take great care. Either of the following situations
1792 * will lead to deadlock:
1793 *
1794 * One of the work items currently on the workqueue needs to acquire
1795 * a lock held by your code or its caller.
1796 *
1797 * Your code is running in the context of a work routine.
1798 *
1799 * They will be detected by lockdep when they occur, but the first might not
1800 * occur very often. It depends on what work items are on the workqueue and
1801 * what locks they need, which you have no control over.
1802 *
1803 * In most situations flushing the entire workqueue is overkill; you merely
1804 * need to know that a particular work item isn't queued and isn't running.
1805 * In such cases you should use cancel_delayed_work_sync() or
1806 * cancel_work_sync() instead.
1807 */
1da177e4
LT
1808void flush_scheduled_work(void)
1809{
1810 flush_workqueue(keventd_wq);
1811}
ae90dd5d 1812EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 1813
1fa44eca
JB
1814/**
1815 * execute_in_process_context - reliably execute the routine with user context
1816 * @fn: the function to execute
1fa44eca
JB
1817 * @ew: guaranteed storage for the execute work structure (must
1818 * be available when the work executes)
1819 *
1820 * Executes the function immediately if process context is available,
1821 * otherwise schedules the function for delayed execution.
1822 *
1823 * Returns: 0 - function was executed
1824 * 1 - function was scheduled for execution
1825 */
65f27f38 1826int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
1827{
1828 if (!in_interrupt()) {
65f27f38 1829 fn(&ew->work);
1fa44eca
JB
1830 return 0;
1831 }
1832
65f27f38 1833 INIT_WORK(&ew->work, fn);
1fa44eca
JB
1834 schedule_work(&ew->work);
1835
1836 return 1;
1837}
1838EXPORT_SYMBOL_GPL(execute_in_process_context);
1839
1da177e4
LT
1840int keventd_up(void)
1841{
1842 return keventd_wq != NULL;
1843}
1844
1845int current_is_keventd(void)
1846{
1847 struct cpu_workqueue_struct *cwq;
d243769d 1848 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
1da177e4
LT
1849 int ret = 0;
1850
1851 BUG_ON(!keventd_wq);
1852
1537663f 1853 cwq = get_cwq(cpu, keventd_wq);
c34056a3 1854 if (current == cwq->worker->task)
1da177e4
LT
1855 ret = 1;
1856
1857 return ret;
1858
1859}
1860
0f900049
TH
1861static struct cpu_workqueue_struct *alloc_cwqs(void)
1862{
1863 /*
1864 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
1865 * Make sure that the alignment isn't lower than that of
1866 * unsigned long long.
1867 */
1868 const size_t size = sizeof(struct cpu_workqueue_struct);
1869 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
1870 __alignof__(unsigned long long));
1871 struct cpu_workqueue_struct *cwqs;
1872#ifndef CONFIG_SMP
1873 void *ptr;
1874
1875 /*
1876 * On UP, percpu allocator doesn't honor alignment parameter
1877 * and simply uses arch-dependent default. Allocate enough
1878 * room to align cwq and put an extra pointer at the end
1879 * pointing back to the originally allocated pointer which
1880 * will be used for free.
1881 *
1882 * FIXME: This really belongs to UP percpu code. Update UP
1883 * percpu code to honor alignment and remove this ugliness.
1884 */
1885 ptr = __alloc_percpu(size + align + sizeof(void *), 1);
1886 cwqs = PTR_ALIGN(ptr, align);
1887 *(void **)per_cpu_ptr(cwqs + 1, 0) = ptr;
1888#else
1889 /* On SMP, percpu allocator can do it itself */
1890 cwqs = __alloc_percpu(size, align);
1891#endif
1892 /* just in case, make sure it's actually aligned */
1893 BUG_ON(!IS_ALIGNED((unsigned long)cwqs, align));
1894 return cwqs;
1895}
1896
1897static void free_cwqs(struct cpu_workqueue_struct *cwqs)
1898{
1899#ifndef CONFIG_SMP
1900 /* on UP, the pointer to free is stored right after the cwq */
1901 if (cwqs)
1902 free_percpu(*(void **)per_cpu_ptr(cwqs + 1, 0));
1903#else
1904 free_percpu(cwqs);
1905#endif
1906}
1907
4e6045f1 1908struct workqueue_struct *__create_workqueue_key(const char *name,
97e37d7b 1909 unsigned int flags,
1e19ffc6 1910 int max_active,
eb13ba87
JB
1911 struct lock_class_key *key,
1912 const char *lock_name)
1da177e4 1913{
1da177e4 1914 struct workqueue_struct *wq;
c34056a3
TH
1915 bool failed = false;
1916 unsigned int cpu;
1da177e4 1917
1e19ffc6
TH
1918 max_active = clamp_val(max_active, 1, INT_MAX);
1919
3af24433
ON
1920 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
1921 if (!wq)
4690c4ab 1922 goto err;
3af24433 1923
0f900049 1924 wq->cpu_wq = alloc_cwqs();
4690c4ab
TH
1925 if (!wq->cpu_wq)
1926 goto err;
3af24433 1927
97e37d7b 1928 wq->flags = flags;
a0a1a5fd 1929 wq->saved_max_active = max_active;
73f53c4a
TH
1930 mutex_init(&wq->flush_mutex);
1931 atomic_set(&wq->nr_cwqs_to_flush, 0);
1932 INIT_LIST_HEAD(&wq->flusher_queue);
1933 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8
TH
1934 wq->single_cpu = NR_CPUS;
1935
3af24433 1936 wq->name = name;
eb13ba87 1937 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 1938 INIT_LIST_HEAD(&wq->list);
3af24433 1939
1537663f
TH
1940 cpu_maps_update_begin();
1941 /*
1942 * We must initialize cwqs for each possible cpu even if we
1943 * are going to call destroy_workqueue() finally. Otherwise
1944 * cpu_up() can hit the uninitialized cwq once we drop the
1945 * lock.
1946 */
1947 for_each_possible_cpu(cpu) {
1948 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 1949 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 1950
0f900049 1951 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
8b03ae3c 1952 cwq->gcwq = gcwq;
c34056a3 1953 cwq->wq = wq;
73f53c4a 1954 cwq->flush_color = -1;
1e19ffc6 1955 cwq->max_active = max_active;
1537663f 1956 INIT_LIST_HEAD(&cwq->worklist);
1e19ffc6 1957 INIT_LIST_HEAD(&cwq->delayed_works);
1537663f 1958
c34056a3 1959 if (failed)
1537663f 1960 continue;
502ca9d8 1961 cwq->worker = create_worker(cwq, cpu_online(cpu));
c34056a3
TH
1962 if (cwq->worker)
1963 start_worker(cwq->worker);
1537663f 1964 else
c34056a3 1965 failed = true;
3af24433
ON
1966 }
1967
a0a1a5fd
TH
1968 /*
1969 * workqueue_lock protects global freeze state and workqueues
1970 * list. Grab it, set max_active accordingly and add the new
1971 * workqueue to workqueues list.
1972 */
1537663f 1973 spin_lock(&workqueue_lock);
a0a1a5fd
TH
1974
1975 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
1976 for_each_possible_cpu(cpu)
1977 get_cwq(cpu, wq)->max_active = 0;
1978
1537663f 1979 list_add(&wq->list, &workqueues);
a0a1a5fd 1980
1537663f
TH
1981 spin_unlock(&workqueue_lock);
1982
1983 cpu_maps_update_done();
1984
c34056a3 1985 if (failed) {
3af24433
ON
1986 destroy_workqueue(wq);
1987 wq = NULL;
1988 }
1989 return wq;
4690c4ab
TH
1990err:
1991 if (wq) {
0f900049 1992 free_cwqs(wq->cpu_wq);
4690c4ab
TH
1993 kfree(wq);
1994 }
1995 return NULL;
3af24433 1996}
4e6045f1 1997EXPORT_SYMBOL_GPL(__create_workqueue_key);
1da177e4 1998
3af24433
ON
1999/**
2000 * destroy_workqueue - safely terminate a workqueue
2001 * @wq: target workqueue
2002 *
2003 * Safely destroy a workqueue. All work currently pending will be done first.
2004 */
2005void destroy_workqueue(struct workqueue_struct *wq)
2006{
c8e55f36 2007 unsigned int cpu;
3af24433 2008
a0a1a5fd
TH
2009 flush_workqueue(wq);
2010
2011 /*
2012 * wq list is used to freeze wq, remove from list after
2013 * flushing is complete in case freeze races us.
2014 */
3da1c84c 2015 cpu_maps_update_begin();
95402b38 2016 spin_lock(&workqueue_lock);
b1f4ec17 2017 list_del(&wq->list);
95402b38 2018 spin_unlock(&workqueue_lock);
1537663f 2019 cpu_maps_update_done();
3af24433 2020
73f53c4a
TH
2021 for_each_possible_cpu(cpu) {
2022 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2023 int i;
2024
c34056a3 2025 if (cwq->worker) {
c8e55f36 2026 spin_lock_irq(&cwq->gcwq->lock);
c34056a3
TH
2027 destroy_worker(cwq->worker);
2028 cwq->worker = NULL;
c8e55f36 2029 spin_unlock_irq(&cwq->gcwq->lock);
73f53c4a
TH
2030 }
2031
2032 for (i = 0; i < WORK_NR_COLORS; i++)
2033 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
2034 BUG_ON(cwq->nr_active);
2035 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 2036 }
9b41ea72 2037
0f900049 2038 free_cwqs(wq->cpu_wq);
3af24433
ON
2039 kfree(wq);
2040}
2041EXPORT_SYMBOL_GPL(destroy_workqueue);
2042
db7bccf4
TH
2043/*
2044 * CPU hotplug.
2045 *
2046 * CPU hotplug is implemented by allowing cwqs to be detached from
2047 * CPU, running with unbound workers and allowing them to be
2048 * reattached later if the cpu comes back online. A separate thread
2049 * is created to govern cwqs in such state and is called the trustee.
2050 *
2051 * Trustee states and their descriptions.
2052 *
2053 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2054 * new trustee is started with this state.
2055 *
2056 * IN_CHARGE Once started, trustee will enter this state after
2057 * making all existing workers rogue. DOWN_PREPARE waits
2058 * for trustee to enter this state. After reaching
2059 * IN_CHARGE, trustee tries to execute the pending
2060 * worklist until it's empty and the state is set to
2061 * BUTCHER, or the state is set to RELEASE.
2062 *
2063 * BUTCHER Command state which is set by the cpu callback after
2064 * the cpu has went down. Once this state is set trustee
2065 * knows that there will be no new works on the worklist
2066 * and once the worklist is empty it can proceed to
2067 * killing idle workers.
2068 *
2069 * RELEASE Command state which is set by the cpu callback if the
2070 * cpu down has been canceled or it has come online
2071 * again. After recognizing this state, trustee stops
2072 * trying to drain or butcher and transits to DONE.
2073 *
2074 * DONE Trustee will enter this state after BUTCHER or RELEASE
2075 * is complete.
2076 *
2077 * trustee CPU draining
2078 * took over down complete
2079 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
2080 * | | ^
2081 * | CPU is back online v return workers |
2082 * ----------------> RELEASE --------------
2083 */
2084
2085/**
2086 * trustee_wait_event_timeout - timed event wait for trustee
2087 * @cond: condition to wait for
2088 * @timeout: timeout in jiffies
2089 *
2090 * wait_event_timeout() for trustee to use. Handles locking and
2091 * checks for RELEASE request.
2092 *
2093 * CONTEXT:
2094 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2095 * multiple times. To be used by trustee.
2096 *
2097 * RETURNS:
2098 * Positive indicating left time if @cond is satisfied, 0 if timed
2099 * out, -1 if canceled.
2100 */
2101#define trustee_wait_event_timeout(cond, timeout) ({ \
2102 long __ret = (timeout); \
2103 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
2104 __ret) { \
2105 spin_unlock_irq(&gcwq->lock); \
2106 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
2107 (gcwq->trustee_state == TRUSTEE_RELEASE), \
2108 __ret); \
2109 spin_lock_irq(&gcwq->lock); \
2110 } \
2111 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
2112})
2113
2114/**
2115 * trustee_wait_event - event wait for trustee
2116 * @cond: condition to wait for
2117 *
2118 * wait_event() for trustee to use. Automatically handles locking and
2119 * checks for CANCEL request.
2120 *
2121 * CONTEXT:
2122 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2123 * multiple times. To be used by trustee.
2124 *
2125 * RETURNS:
2126 * 0 if @cond is satisfied, -1 if canceled.
2127 */
2128#define trustee_wait_event(cond) ({ \
2129 long __ret1; \
2130 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
2131 __ret1 < 0 ? -1 : 0; \
2132})
2133
2134static int __cpuinit trustee_thread(void *__gcwq)
2135{
2136 struct global_cwq *gcwq = __gcwq;
2137 struct worker *worker;
2138 struct hlist_node *pos;
2139 int i;
2140
2141 BUG_ON(gcwq->cpu != smp_processor_id());
2142
2143 spin_lock_irq(&gcwq->lock);
2144 /*
502ca9d8
TH
2145 * Make all workers rogue. Trustee must be bound to the
2146 * target cpu and can't be cancelled.
db7bccf4
TH
2147 */
2148 BUG_ON(gcwq->cpu != smp_processor_id());
2149
2150 list_for_each_entry(worker, &gcwq->idle_list, entry)
502ca9d8 2151 worker->flags |= WORKER_ROGUE;
db7bccf4
TH
2152
2153 for_each_busy_worker(worker, i, pos, gcwq)
502ca9d8 2154 worker->flags |= WORKER_ROGUE;
db7bccf4
TH
2155
2156 /*
2157 * We're now in charge. Notify and proceed to drain. We need
2158 * to keep the gcwq running during the whole CPU down
2159 * procedure as other cpu hotunplug callbacks may need to
2160 * flush currently running tasks.
2161 */
2162 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
2163 wake_up_all(&gcwq->trustee_wait);
2164
2165 /*
2166 * The original cpu is in the process of dying and may go away
2167 * anytime now. When that happens, we and all workers would
2168 * be migrated to other cpus. Try draining any left work.
2169 * Note that if the gcwq is frozen, there may be frozen works
2170 * in freezeable cwqs. Don't declare completion while frozen.
2171 */
2172 while (gcwq->nr_workers != gcwq->nr_idle ||
2173 gcwq->flags & GCWQ_FREEZING ||
2174 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
2175 /* give a breather */
2176 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
2177 break;
2178 }
2179
2180 /* notify completion */
2181 gcwq->trustee = NULL;
2182 gcwq->trustee_state = TRUSTEE_DONE;
2183 wake_up_all(&gcwq->trustee_wait);
2184 spin_unlock_irq(&gcwq->lock);
2185 return 0;
2186}
2187
2188/**
2189 * wait_trustee_state - wait for trustee to enter the specified state
2190 * @gcwq: gcwq the trustee of interest belongs to
2191 * @state: target state to wait for
2192 *
2193 * Wait for the trustee to reach @state. DONE is already matched.
2194 *
2195 * CONTEXT:
2196 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2197 * multiple times. To be used by cpu_callback.
2198 */
2199static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
2200{
2201 if (!(gcwq->trustee_state == state ||
2202 gcwq->trustee_state == TRUSTEE_DONE)) {
2203 spin_unlock_irq(&gcwq->lock);
2204 __wait_event(gcwq->trustee_wait,
2205 gcwq->trustee_state == state ||
2206 gcwq->trustee_state == TRUSTEE_DONE);
2207 spin_lock_irq(&gcwq->lock);
2208 }
2209}
2210
3af24433
ON
2211static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
2212 unsigned long action,
2213 void *hcpu)
2214{
2215 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
2216 struct global_cwq *gcwq = get_gcwq(cpu);
2217 struct task_struct *new_trustee = NULL;
2218 struct worker *worker;
2219 struct hlist_node *pos;
2220 unsigned long flags;
2221 int i;
3af24433 2222
8bb78442
RW
2223 action &= ~CPU_TASKS_FROZEN;
2224
db7bccf4
TH
2225 switch (action) {
2226 case CPU_DOWN_PREPARE:
2227 new_trustee = kthread_create(trustee_thread, gcwq,
2228 "workqueue_trustee/%d\n", cpu);
2229 if (IS_ERR(new_trustee))
2230 return notifier_from_errno(PTR_ERR(new_trustee));
2231 kthread_bind(new_trustee, cpu);
2232 }
3af24433 2233
db7bccf4
TH
2234 /* some are called w/ irq disabled, don't disturb irq status */
2235 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 2236
db7bccf4
TH
2237 switch (action) {
2238 case CPU_DOWN_PREPARE:
2239 /* initialize trustee and tell it to acquire the gcwq */
2240 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
2241 gcwq->trustee = new_trustee;
2242 gcwq->trustee_state = TRUSTEE_START;
2243 wake_up_process(gcwq->trustee);
2244 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
2245 break;
2246
2247 case CPU_POST_DEAD:
2248 gcwq->trustee_state = TRUSTEE_BUTCHER;
2249 break;
2250
2251 case CPU_DOWN_FAILED:
2252 case CPU_ONLINE:
2253 if (gcwq->trustee_state != TRUSTEE_DONE) {
2254 gcwq->trustee_state = TRUSTEE_RELEASE;
2255 wake_up_process(gcwq->trustee);
2256 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 2257 }
db7bccf4 2258
502ca9d8 2259 /* clear ROGUE from all workers */
db7bccf4 2260 list_for_each_entry(worker, &gcwq->idle_list, entry)
502ca9d8 2261 worker->flags &= ~WORKER_ROGUE;
db7bccf4
TH
2262
2263 for_each_busy_worker(worker, i, pos, gcwq)
502ca9d8 2264 worker->flags &= ~WORKER_ROGUE;
db7bccf4 2265 break;
1da177e4
LT
2266 }
2267
db7bccf4
TH
2268 spin_unlock_irqrestore(&gcwq->lock, flags);
2269
1537663f 2270 return notifier_from_errno(0);
1da177e4 2271}
1da177e4 2272
2d3854a3 2273#ifdef CONFIG_SMP
8ccad40d 2274
2d3854a3 2275struct work_for_cpu {
6b44003e 2276 struct completion completion;
2d3854a3
RR
2277 long (*fn)(void *);
2278 void *arg;
2279 long ret;
2280};
2281
6b44003e 2282static int do_work_for_cpu(void *_wfc)
2d3854a3 2283{
6b44003e 2284 struct work_for_cpu *wfc = _wfc;
2d3854a3 2285 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
2286 complete(&wfc->completion);
2287 return 0;
2d3854a3
RR
2288}
2289
2290/**
2291 * work_on_cpu - run a function in user context on a particular cpu
2292 * @cpu: the cpu to run on
2293 * @fn: the function to run
2294 * @arg: the function arg
2295 *
31ad9081
RR
2296 * This will return the value @fn returns.
2297 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 2298 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
2299 */
2300long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
2301{
6b44003e
AM
2302 struct task_struct *sub_thread;
2303 struct work_for_cpu wfc = {
2304 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
2305 .fn = fn,
2306 .arg = arg,
2307 };
2308
2309 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
2310 if (IS_ERR(sub_thread))
2311 return PTR_ERR(sub_thread);
2312 kthread_bind(sub_thread, cpu);
2313 wake_up_process(sub_thread);
2314 wait_for_completion(&wfc.completion);
2d3854a3
RR
2315 return wfc.ret;
2316}
2317EXPORT_SYMBOL_GPL(work_on_cpu);
2318#endif /* CONFIG_SMP */
2319
a0a1a5fd
TH
2320#ifdef CONFIG_FREEZER
2321
2322/**
2323 * freeze_workqueues_begin - begin freezing workqueues
2324 *
2325 * Start freezing workqueues. After this function returns, all
2326 * freezeable workqueues will queue new works to their frozen_works
2327 * list instead of the cwq ones.
2328 *
2329 * CONTEXT:
8b03ae3c 2330 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
2331 */
2332void freeze_workqueues_begin(void)
2333{
2334 struct workqueue_struct *wq;
2335 unsigned int cpu;
2336
2337 spin_lock(&workqueue_lock);
2338
2339 BUG_ON(workqueue_freezing);
2340 workqueue_freezing = true;
2341
2342 for_each_possible_cpu(cpu) {
8b03ae3c
TH
2343 struct global_cwq *gcwq = get_gcwq(cpu);
2344
2345 spin_lock_irq(&gcwq->lock);
2346
db7bccf4
TH
2347 BUG_ON(gcwq->flags & GCWQ_FREEZING);
2348 gcwq->flags |= GCWQ_FREEZING;
2349
a0a1a5fd
TH
2350 list_for_each_entry(wq, &workqueues, list) {
2351 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2352
a0a1a5fd
TH
2353 if (wq->flags & WQ_FREEZEABLE)
2354 cwq->max_active = 0;
a0a1a5fd 2355 }
8b03ae3c
TH
2356
2357 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
2358 }
2359
2360 spin_unlock(&workqueue_lock);
2361}
2362
2363/**
2364 * freeze_workqueues_busy - are freezeable workqueues still busy?
2365 *
2366 * Check whether freezing is complete. This function must be called
2367 * between freeze_workqueues_begin() and thaw_workqueues().
2368 *
2369 * CONTEXT:
2370 * Grabs and releases workqueue_lock.
2371 *
2372 * RETURNS:
2373 * %true if some freezeable workqueues are still busy. %false if
2374 * freezing is complete.
2375 */
2376bool freeze_workqueues_busy(void)
2377{
2378 struct workqueue_struct *wq;
2379 unsigned int cpu;
2380 bool busy = false;
2381
2382 spin_lock(&workqueue_lock);
2383
2384 BUG_ON(!workqueue_freezing);
2385
2386 for_each_possible_cpu(cpu) {
2387 /*
2388 * nr_active is monotonically decreasing. It's safe
2389 * to peek without lock.
2390 */
2391 list_for_each_entry(wq, &workqueues, list) {
2392 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2393
2394 if (!(wq->flags & WQ_FREEZEABLE))
2395 continue;
2396
2397 BUG_ON(cwq->nr_active < 0);
2398 if (cwq->nr_active) {
2399 busy = true;
2400 goto out_unlock;
2401 }
2402 }
2403 }
2404out_unlock:
2405 spin_unlock(&workqueue_lock);
2406 return busy;
2407}
2408
2409/**
2410 * thaw_workqueues - thaw workqueues
2411 *
2412 * Thaw workqueues. Normal queueing is restored and all collected
2413 * frozen works are transferred to their respective cwq worklists.
2414 *
2415 * CONTEXT:
8b03ae3c 2416 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
2417 */
2418void thaw_workqueues(void)
2419{
2420 struct workqueue_struct *wq;
2421 unsigned int cpu;
2422
2423 spin_lock(&workqueue_lock);
2424
2425 if (!workqueue_freezing)
2426 goto out_unlock;
2427
2428 for_each_possible_cpu(cpu) {
8b03ae3c
TH
2429 struct global_cwq *gcwq = get_gcwq(cpu);
2430
2431 spin_lock_irq(&gcwq->lock);
2432
db7bccf4
TH
2433 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
2434 gcwq->flags &= ~GCWQ_FREEZING;
2435
a0a1a5fd
TH
2436 list_for_each_entry(wq, &workqueues, list) {
2437 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2438
2439 if (!(wq->flags & WQ_FREEZEABLE))
2440 continue;
2441
a0a1a5fd
TH
2442 /* restore max_active and repopulate worklist */
2443 cwq->max_active = wq->saved_max_active;
2444
2445 while (!list_empty(&cwq->delayed_works) &&
2446 cwq->nr_active < cwq->max_active)
2447 cwq_activate_first_delayed(cwq);
2448
502ca9d8
TH
2449 /* perform delayed unbind from single cpu if empty */
2450 if (wq->single_cpu == gcwq->cpu &&
2451 !cwq->nr_active && list_empty(&cwq->delayed_works))
2452 cwq_unbind_single_cpu(cwq);
2453
c8e55f36 2454 wake_up_process(cwq->worker->task);
a0a1a5fd 2455 }
8b03ae3c
TH
2456
2457 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
2458 }
2459
2460 workqueue_freezing = false;
2461out_unlock:
2462 spin_unlock(&workqueue_lock);
2463}
2464#endif /* CONFIG_FREEZER */
2465
c12920d1 2466void __init init_workqueues(void)
1da177e4 2467{
c34056a3 2468 unsigned int cpu;
c8e55f36 2469 int i;
c34056a3 2470
7a22ad75
TH
2471 /*
2472 * The pointer part of work->data is either pointing to the
2473 * cwq or contains the cpu number the work ran last on. Make
2474 * sure cpu number won't overflow into kernel pointer area so
2475 * that they can be distinguished.
2476 */
2477 BUILD_BUG_ON(NR_CPUS << WORK_STRUCT_FLAG_BITS >= PAGE_OFFSET);
2478
db7bccf4 2479 hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
2480
2481 /* initialize gcwqs */
2482 for_each_possible_cpu(cpu) {
2483 struct global_cwq *gcwq = get_gcwq(cpu);
2484
2485 spin_lock_init(&gcwq->lock);
2486 gcwq->cpu = cpu;
2487
c8e55f36
TH
2488 INIT_LIST_HEAD(&gcwq->idle_list);
2489 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
2490 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
2491
8b03ae3c 2492 ida_init(&gcwq->worker_ida);
db7bccf4
TH
2493
2494 gcwq->trustee_state = TRUSTEE_DONE;
2495 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
2496 }
2497
1da177e4
LT
2498 keventd_wq = create_workqueue("events");
2499 BUG_ON(!keventd_wq);
2500}