]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/workqueue.c
memory_hotplug: drop spurious calls to flush_scheduled_work()
[net-next-2.6.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
db7bccf4 48 /* global_cwq flags */
e22bee78
TH
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
649027d7 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
db7bccf4 54
c8e55f36
TH
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 59 WORKER_PREP = 1 << 3, /* preparing to run works */
db7bccf4 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
e22bee78 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 64
fb0e7beb 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
f3421797 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
db7bccf4
TH
67
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36
TH
74
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 78
e22bee78
TH
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
81
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
83 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
84 CREATE_COOLDOWN = HZ, /* time to breath after fail */
db7bccf4 85 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
e22bee78
TH
86
87 /*
88 * Rescue workers are used only on emergencies and shared by
89 * all cpus. Give -20.
90 */
91 RESCUER_NICE_LEVEL = -20,
c8e55f36 92};
1da177e4
LT
93
94/*
4690c4ab
TH
95 * Structure fields follow one of the following exclusion rules.
96 *
e41e704b
TH
97 * I: Modifiable by initialization/destruction paths and read-only for
98 * everyone else.
4690c4ab 99 *
e22bee78
TH
100 * P: Preemption protected. Disabling preemption is enough and should
101 * only be modified and accessed from the local cpu.
102 *
8b03ae3c 103 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 104 *
e22bee78
TH
105 * X: During normal operation, modification requires gcwq->lock and
106 * should be done only from local cpu. Either disabling preemption
107 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 108 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 109 *
73f53c4a
TH
110 * F: wq->flush_mutex protected.
111 *
4690c4ab 112 * W: workqueue_lock protected.
1da177e4 113 */
1da177e4 114
8b03ae3c 115struct global_cwq;
1da177e4 116
e22bee78
TH
117/*
118 * The poor guys doing the actual heavy lifting. All on-duty workers
119 * are either serving the manager role, on idle list or on busy hash.
120 */
c34056a3 121struct worker {
c8e55f36
TH
122 /* on idle list while idle, on busy hash table while busy */
123 union {
124 struct list_head entry; /* L: while idle */
125 struct hlist_node hentry; /* L: while busy */
126 };
1da177e4 127
c34056a3 128 struct work_struct *current_work; /* L: work being processed */
8cca0eea 129 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 130 struct list_head scheduled; /* L: scheduled works */
c34056a3 131 struct task_struct *task; /* I: worker task */
8b03ae3c 132 struct global_cwq *gcwq; /* I: the associated gcwq */
e22bee78
TH
133 /* 64 bytes boundary on 64bit, 32 on 32bit */
134 unsigned long last_active; /* L: last active timestamp */
135 unsigned int flags; /* X: flags */
c34056a3 136 int id; /* I: worker id */
e22bee78 137 struct work_struct rebind_work; /* L: rebind worker to cpu */
c34056a3
TH
138};
139
8b03ae3c 140/*
e22bee78
TH
141 * Global per-cpu workqueue. There's one and only one for each cpu
142 * and all works are queued and processed here regardless of their
143 * target workqueues.
8b03ae3c
TH
144 */
145struct global_cwq {
146 spinlock_t lock; /* the gcwq lock */
7e11629d 147 struct list_head worklist; /* L: list of pending works */
8b03ae3c 148 unsigned int cpu; /* I: the associated cpu */
db7bccf4 149 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36
TH
150
151 int nr_workers; /* L: total number of workers */
152 int nr_idle; /* L: currently idle ones */
153
154 /* workers are chained either in the idle_list or busy_hash */
e22bee78 155 struct list_head idle_list; /* X: list of idle workers */
c8e55f36
TH
156 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
157 /* L: hash of busy workers */
158
e22bee78
TH
159 struct timer_list idle_timer; /* L: worker idle timeout */
160 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
161
8b03ae3c 162 struct ida worker_ida; /* L: for worker IDs */
db7bccf4
TH
163
164 struct task_struct *trustee; /* L: for gcwq shutdown */
165 unsigned int trustee_state; /* L: trustee state */
166 wait_queue_head_t trustee_wait; /* trustee wait */
e22bee78 167 struct worker *first_idle; /* L: first idle worker */
8b03ae3c
TH
168} ____cacheline_aligned_in_smp;
169
1da177e4 170/*
502ca9d8 171 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
172 * work_struct->data are used for flags and thus cwqs need to be
173 * aligned at two's power of the number of flag bits.
1da177e4
LT
174 */
175struct cpu_workqueue_struct {
8b03ae3c 176 struct global_cwq *gcwq; /* I: the associated gcwq */
4690c4ab 177 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
178 int work_color; /* L: current color */
179 int flush_color; /* L: flushing color */
180 int nr_in_flight[WORK_NR_COLORS];
181 /* L: nr of in_flight works */
1e19ffc6 182 int nr_active; /* L: nr of active works */
a0a1a5fd 183 int max_active; /* L: max active works */
1e19ffc6 184 struct list_head delayed_works; /* L: delayed works */
0f900049 185};
1da177e4 186
73f53c4a
TH
187/*
188 * Structure used to wait for workqueue flush.
189 */
190struct wq_flusher {
191 struct list_head list; /* F: list of flushers */
192 int flush_color; /* F: flush color waiting for */
193 struct completion done; /* flush completion */
194};
195
f2e005aa
TH
196/*
197 * All cpumasks are assumed to be always set on UP and thus can't be
198 * used to determine whether there's something to be done.
199 */
200#ifdef CONFIG_SMP
201typedef cpumask_var_t mayday_mask_t;
202#define mayday_test_and_set_cpu(cpu, mask) \
203 cpumask_test_and_set_cpu((cpu), (mask))
204#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
205#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 206#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
207#define free_mayday_mask(mask) free_cpumask_var((mask))
208#else
209typedef unsigned long mayday_mask_t;
210#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
211#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
212#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
213#define alloc_mayday_mask(maskp, gfp) true
214#define free_mayday_mask(mask) do { } while (0)
215#endif
1da177e4
LT
216
217/*
218 * The externally visible workqueue abstraction is an array of
219 * per-CPU workqueues:
220 */
221struct workqueue_struct {
97e37d7b 222 unsigned int flags; /* I: WQ_* flags */
bdbc5dd7
TH
223 union {
224 struct cpu_workqueue_struct __percpu *pcpu;
225 struct cpu_workqueue_struct *single;
226 unsigned long v;
227 } cpu_wq; /* I: cwq's */
4690c4ab 228 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
229
230 struct mutex flush_mutex; /* protects wq flushing */
231 int work_color; /* F: current work color */
232 int flush_color; /* F: current flush color */
233 atomic_t nr_cwqs_to_flush; /* flush in progress */
234 struct wq_flusher *first_flusher; /* F: first flusher */
235 struct list_head flusher_queue; /* F: flush waiters */
236 struct list_head flusher_overflow; /* F: flush overflow list */
237
f2e005aa 238 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
239 struct worker *rescuer; /* I: rescue worker */
240
dcd989cb 241 int saved_max_active; /* W: saved cwq max_active */
4690c4ab 242 const char *name; /* I: workqueue name */
4e6045f1 243#ifdef CONFIG_LOCKDEP
4690c4ab 244 struct lockdep_map lockdep_map;
4e6045f1 245#endif
1da177e4
LT
246};
247
d320c038
TH
248struct workqueue_struct *system_wq __read_mostly;
249struct workqueue_struct *system_long_wq __read_mostly;
250struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 251struct workqueue_struct *system_unbound_wq __read_mostly;
d320c038
TH
252EXPORT_SYMBOL_GPL(system_wq);
253EXPORT_SYMBOL_GPL(system_long_wq);
254EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 255EXPORT_SYMBOL_GPL(system_unbound_wq);
d320c038 256
97bd2347
TH
257#define CREATE_TRACE_POINTS
258#include <trace/events/workqueue.h>
259
db7bccf4
TH
260#define for_each_busy_worker(worker, i, pos, gcwq) \
261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
263
f3421797
TH
264static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 unsigned int sw)
266{
267 if (cpu < nr_cpu_ids) {
268 if (sw & 1) {
269 cpu = cpumask_next(cpu, mask);
270 if (cpu < nr_cpu_ids)
271 return cpu;
272 }
273 if (sw & 2)
274 return WORK_CPU_UNBOUND;
275 }
276 return WORK_CPU_NONE;
277}
278
279static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 struct workqueue_struct *wq)
281{
282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
283}
284
09884951
TH
285/*
286 * CPU iterators
287 *
288 * An extra gcwq is defined for an invalid cpu number
289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290 * specific CPU. The following iterators are similar to
291 * for_each_*_cpu() iterators but also considers the unbound gcwq.
292 *
293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
295 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
296 * WORK_CPU_UNBOUND for unbound workqueues
297 */
f3421797
TH
298#define for_each_gcwq_cpu(cpu) \
299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
300 (cpu) < WORK_CPU_NONE; \
301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
302
303#define for_each_online_gcwq_cpu(cpu) \
304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
305 (cpu) < WORK_CPU_NONE; \
306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
307
308#define for_each_cwq_cpu(cpu, wq) \
309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
310 (cpu) < WORK_CPU_NONE; \
311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
312
a25909a4
PM
313#ifdef CONFIG_LOCKDEP
314/**
315 * in_workqueue_context() - in context of specified workqueue?
316 * @wq: the workqueue of interest
317 *
318 * Checks lockdep state to see if the current task is executing from
319 * within a workqueue item. This function exists only if lockdep is
320 * enabled.
321 */
322int in_workqueue_context(struct workqueue_struct *wq)
323{
324 return lock_is_held(&wq->lockdep_map);
325}
326#endif
327
dc186ad7
TG
328#ifdef CONFIG_DEBUG_OBJECTS_WORK
329
330static struct debug_obj_descr work_debug_descr;
331
332/*
333 * fixup_init is called when:
334 * - an active object is initialized
335 */
336static int work_fixup_init(void *addr, enum debug_obj_state state)
337{
338 struct work_struct *work = addr;
339
340 switch (state) {
341 case ODEBUG_STATE_ACTIVE:
342 cancel_work_sync(work);
343 debug_object_init(work, &work_debug_descr);
344 return 1;
345 default:
346 return 0;
347 }
348}
349
350/*
351 * fixup_activate is called when:
352 * - an active object is activated
353 * - an unknown object is activated (might be a statically initialized object)
354 */
355static int work_fixup_activate(void *addr, enum debug_obj_state state)
356{
357 struct work_struct *work = addr;
358
359 switch (state) {
360
361 case ODEBUG_STATE_NOTAVAILABLE:
362 /*
363 * This is not really a fixup. The work struct was
364 * statically initialized. We just make sure that it
365 * is tracked in the object tracker.
366 */
22df02bb 367 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
368 debug_object_init(work, &work_debug_descr);
369 debug_object_activate(work, &work_debug_descr);
370 return 0;
371 }
372 WARN_ON_ONCE(1);
373 return 0;
374
375 case ODEBUG_STATE_ACTIVE:
376 WARN_ON(1);
377
378 default:
379 return 0;
380 }
381}
382
383/*
384 * fixup_free is called when:
385 * - an active object is freed
386 */
387static int work_fixup_free(void *addr, enum debug_obj_state state)
388{
389 struct work_struct *work = addr;
390
391 switch (state) {
392 case ODEBUG_STATE_ACTIVE:
393 cancel_work_sync(work);
394 debug_object_free(work, &work_debug_descr);
395 return 1;
396 default:
397 return 0;
398 }
399}
400
401static struct debug_obj_descr work_debug_descr = {
402 .name = "work_struct",
403 .fixup_init = work_fixup_init,
404 .fixup_activate = work_fixup_activate,
405 .fixup_free = work_fixup_free,
406};
407
408static inline void debug_work_activate(struct work_struct *work)
409{
410 debug_object_activate(work, &work_debug_descr);
411}
412
413static inline void debug_work_deactivate(struct work_struct *work)
414{
415 debug_object_deactivate(work, &work_debug_descr);
416}
417
418void __init_work(struct work_struct *work, int onstack)
419{
420 if (onstack)
421 debug_object_init_on_stack(work, &work_debug_descr);
422 else
423 debug_object_init(work, &work_debug_descr);
424}
425EXPORT_SYMBOL_GPL(__init_work);
426
427void destroy_work_on_stack(struct work_struct *work)
428{
429 debug_object_free(work, &work_debug_descr);
430}
431EXPORT_SYMBOL_GPL(destroy_work_on_stack);
432
433#else
434static inline void debug_work_activate(struct work_struct *work) { }
435static inline void debug_work_deactivate(struct work_struct *work) { }
436#endif
437
95402b38
GS
438/* Serializes the accesses to the list of workqueues. */
439static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 440static LIST_HEAD(workqueues);
a0a1a5fd 441static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 442
e22bee78
TH
443/*
444 * The almighty global cpu workqueues. nr_running is the only field
445 * which is expected to be used frequently by other cpus via
446 * try_to_wake_up(). Put it in a separate cacheline.
447 */
8b03ae3c 448static DEFINE_PER_CPU(struct global_cwq, global_cwq);
e22bee78 449static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
8b03ae3c 450
f3421797
TH
451/*
452 * Global cpu workqueue and nr_running counter for unbound gcwq. The
453 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
454 * workers have WORKER_UNBOUND set.
455 */
456static struct global_cwq unbound_global_cwq;
457static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
458
c34056a3 459static int worker_thread(void *__worker);
1da177e4 460
8b03ae3c
TH
461static struct global_cwq *get_gcwq(unsigned int cpu)
462{
f3421797
TH
463 if (cpu != WORK_CPU_UNBOUND)
464 return &per_cpu(global_cwq, cpu);
465 else
466 return &unbound_global_cwq;
8b03ae3c
TH
467}
468
e22bee78
TH
469static atomic_t *get_gcwq_nr_running(unsigned int cpu)
470{
f3421797
TH
471 if (cpu != WORK_CPU_UNBOUND)
472 return &per_cpu(gcwq_nr_running, cpu);
473 else
474 return &unbound_gcwq_nr_running;
e22bee78
TH
475}
476
1537663f
TH
477static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
478 struct workqueue_struct *wq)
b1f4ec17 479{
f3421797
TH
480 if (!(wq->flags & WQ_UNBOUND)) {
481 if (likely(cpu < nr_cpu_ids)) {
482#ifdef CONFIG_SMP
483 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
bdbc5dd7 484#else
f3421797 485 return wq->cpu_wq.single;
bdbc5dd7 486#endif
f3421797
TH
487 }
488 } else if (likely(cpu == WORK_CPU_UNBOUND))
489 return wq->cpu_wq.single;
490 return NULL;
b1f4ec17
ON
491}
492
73f53c4a
TH
493static unsigned int work_color_to_flags(int color)
494{
495 return color << WORK_STRUCT_COLOR_SHIFT;
496}
497
498static int get_work_color(struct work_struct *work)
499{
500 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
501 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
502}
503
504static int work_next_color(int color)
505{
506 return (color + 1) % WORK_NR_COLORS;
507}
1da177e4 508
14441960 509/*
e120153d
TH
510 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
511 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
512 * cleared and the work data contains the cpu number it was last on.
7a22ad75
TH
513 *
514 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
515 * cwq, cpu or clear work->data. These functions should only be
516 * called while the work is owned - ie. while the PENDING bit is set.
517 *
518 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
519 * corresponding to a work. gcwq is available once the work has been
520 * queued anywhere after initialization. cwq is available only from
521 * queueing until execution starts.
14441960 522 */
7a22ad75
TH
523static inline void set_work_data(struct work_struct *work, unsigned long data,
524 unsigned long flags)
365970a1 525{
4594bf15 526 BUG_ON(!work_pending(work));
7a22ad75
TH
527 atomic_long_set(&work->data, data | flags | work_static(work));
528}
365970a1 529
7a22ad75
TH
530static void set_work_cwq(struct work_struct *work,
531 struct cpu_workqueue_struct *cwq,
532 unsigned long extra_flags)
533{
534 set_work_data(work, (unsigned long)cwq,
e120153d 535 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
536}
537
7a22ad75
TH
538static void set_work_cpu(struct work_struct *work, unsigned int cpu)
539{
540 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
541}
f756d5e2 542
7a22ad75 543static void clear_work_data(struct work_struct *work)
1da177e4 544{
7a22ad75 545 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
546}
547
7a22ad75 548static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 549{
e120153d 550 unsigned long data = atomic_long_read(&work->data);
7a22ad75 551
e120153d
TH
552 if (data & WORK_STRUCT_CWQ)
553 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
554 else
555 return NULL;
4d707b9f
ON
556}
557
7a22ad75 558static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 559{
e120153d 560 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
561 unsigned int cpu;
562
e120153d
TH
563 if (data & WORK_STRUCT_CWQ)
564 return ((struct cpu_workqueue_struct *)
565 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
7a22ad75
TH
566
567 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 568 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
569 return NULL;
570
f3421797 571 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 572 return get_gcwq(cpu);
b1f4ec17
ON
573}
574
e22bee78
TH
575/*
576 * Policy functions. These define the policies on how the global
577 * worker pool is managed. Unless noted otherwise, these functions
578 * assume that they're being called with gcwq->lock held.
579 */
580
649027d7 581static bool __need_more_worker(struct global_cwq *gcwq)
a848e3b6 582{
649027d7
TH
583 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
584 gcwq->flags & GCWQ_HIGHPRI_PENDING;
a848e3b6
ON
585}
586
4594bf15 587/*
e22bee78
TH
588 * Need to wake up a worker? Called from anything but currently
589 * running workers.
4594bf15 590 */
e22bee78 591static bool need_more_worker(struct global_cwq *gcwq)
365970a1 592{
649027d7 593 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
e22bee78 594}
4594bf15 595
e22bee78
TH
596/* Can I start working? Called from busy but !running workers. */
597static bool may_start_working(struct global_cwq *gcwq)
598{
599 return gcwq->nr_idle;
600}
601
602/* Do I need to keep working? Called from currently running workers. */
603static bool keep_working(struct global_cwq *gcwq)
604{
605 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
606
30310045
TH
607 return !list_empty(&gcwq->worklist) &&
608 (atomic_read(nr_running) <= 1 ||
609 gcwq->flags & GCWQ_HIGHPRI_PENDING);
e22bee78
TH
610}
611
612/* Do we need a new worker? Called from manager. */
613static bool need_to_create_worker(struct global_cwq *gcwq)
614{
615 return need_more_worker(gcwq) && !may_start_working(gcwq);
616}
365970a1 617
e22bee78
TH
618/* Do I need to be the manager? */
619static bool need_to_manage_workers(struct global_cwq *gcwq)
620{
621 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
622}
623
624/* Do we have too many workers and should some go away? */
625static bool too_many_workers(struct global_cwq *gcwq)
626{
627 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
628 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
629 int nr_busy = gcwq->nr_workers - nr_idle;
630
631 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
632}
633
4d707b9f 634/*
e22bee78
TH
635 * Wake up functions.
636 */
637
7e11629d
TH
638/* Return the first worker. Safe with preemption disabled */
639static struct worker *first_worker(struct global_cwq *gcwq)
640{
641 if (unlikely(list_empty(&gcwq->idle_list)))
642 return NULL;
643
644 return list_first_entry(&gcwq->idle_list, struct worker, entry);
645}
646
647/**
648 * wake_up_worker - wake up an idle worker
649 * @gcwq: gcwq to wake worker for
650 *
651 * Wake up the first idle worker of @gcwq.
652 *
653 * CONTEXT:
654 * spin_lock_irq(gcwq->lock).
655 */
656static void wake_up_worker(struct global_cwq *gcwq)
657{
658 struct worker *worker = first_worker(gcwq);
659
660 if (likely(worker))
661 wake_up_process(worker->task);
662}
663
d302f017 664/**
e22bee78
TH
665 * wq_worker_waking_up - a worker is waking up
666 * @task: task waking up
667 * @cpu: CPU @task is waking up to
668 *
669 * This function is called during try_to_wake_up() when a worker is
670 * being awoken.
671 *
672 * CONTEXT:
673 * spin_lock_irq(rq->lock)
674 */
675void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
676{
677 struct worker *worker = kthread_data(task);
678
679 if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
680 atomic_inc(get_gcwq_nr_running(cpu));
681}
682
683/**
684 * wq_worker_sleeping - a worker is going to sleep
685 * @task: task going to sleep
686 * @cpu: CPU in question, must be the current CPU number
687 *
688 * This function is called during schedule() when a busy worker is
689 * going to sleep. Worker on the same cpu can be woken up by
690 * returning pointer to its task.
691 *
692 * CONTEXT:
693 * spin_lock_irq(rq->lock)
694 *
695 * RETURNS:
696 * Worker task on @cpu to wake up, %NULL if none.
697 */
698struct task_struct *wq_worker_sleeping(struct task_struct *task,
699 unsigned int cpu)
700{
701 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
702 struct global_cwq *gcwq = get_gcwq(cpu);
703 atomic_t *nr_running = get_gcwq_nr_running(cpu);
704
705 if (unlikely(worker->flags & WORKER_NOT_RUNNING))
706 return NULL;
707
708 /* this can only happen on the local cpu */
709 BUG_ON(cpu != raw_smp_processor_id());
710
711 /*
712 * The counterpart of the following dec_and_test, implied mb,
713 * worklist not empty test sequence is in insert_work().
714 * Please read comment there.
715 *
716 * NOT_RUNNING is clear. This means that trustee is not in
717 * charge and we're running on the local cpu w/ rq lock held
718 * and preemption disabled, which in turn means that none else
719 * could be manipulating idle_list, so dereferencing idle_list
720 * without gcwq lock is safe.
721 */
722 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
723 to_wakeup = first_worker(gcwq);
724 return to_wakeup ? to_wakeup->task : NULL;
725}
726
727/**
728 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 729 * @worker: self
d302f017
TH
730 * @flags: flags to set
731 * @wakeup: wakeup an idle worker if necessary
732 *
e22bee78
TH
733 * Set @flags in @worker->flags and adjust nr_running accordingly. If
734 * nr_running becomes zero and @wakeup is %true, an idle worker is
735 * woken up.
d302f017 736 *
cb444766
TH
737 * CONTEXT:
738 * spin_lock_irq(gcwq->lock)
d302f017
TH
739 */
740static inline void worker_set_flags(struct worker *worker, unsigned int flags,
741 bool wakeup)
742{
e22bee78
TH
743 struct global_cwq *gcwq = worker->gcwq;
744
cb444766
TH
745 WARN_ON_ONCE(worker->task != current);
746
e22bee78
TH
747 /*
748 * If transitioning into NOT_RUNNING, adjust nr_running and
749 * wake up an idle worker as necessary if requested by
750 * @wakeup.
751 */
752 if ((flags & WORKER_NOT_RUNNING) &&
753 !(worker->flags & WORKER_NOT_RUNNING)) {
754 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
755
756 if (wakeup) {
757 if (atomic_dec_and_test(nr_running) &&
758 !list_empty(&gcwq->worklist))
759 wake_up_worker(gcwq);
760 } else
761 atomic_dec(nr_running);
762 }
763
d302f017
TH
764 worker->flags |= flags;
765}
766
767/**
e22bee78 768 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 769 * @worker: self
d302f017
TH
770 * @flags: flags to clear
771 *
e22bee78 772 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 773 *
cb444766
TH
774 * CONTEXT:
775 * spin_lock_irq(gcwq->lock)
d302f017
TH
776 */
777static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
778{
e22bee78
TH
779 struct global_cwq *gcwq = worker->gcwq;
780 unsigned int oflags = worker->flags;
781
cb444766
TH
782 WARN_ON_ONCE(worker->task != current);
783
d302f017 784 worker->flags &= ~flags;
e22bee78
TH
785
786 /* if transitioning out of NOT_RUNNING, increment nr_running */
787 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
788 if (!(worker->flags & WORKER_NOT_RUNNING))
789 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
d302f017
TH
790}
791
c8e55f36
TH
792/**
793 * busy_worker_head - return the busy hash head for a work
794 * @gcwq: gcwq of interest
795 * @work: work to be hashed
796 *
797 * Return hash head of @gcwq for @work.
798 *
799 * CONTEXT:
800 * spin_lock_irq(gcwq->lock).
801 *
802 * RETURNS:
803 * Pointer to the hash head.
804 */
805static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
806 struct work_struct *work)
807{
808 const int base_shift = ilog2(sizeof(struct work_struct));
809 unsigned long v = (unsigned long)work;
810
811 /* simple shift and fold hash, do we need something better? */
812 v >>= base_shift;
813 v += v >> BUSY_WORKER_HASH_ORDER;
814 v &= BUSY_WORKER_HASH_MASK;
815
816 return &gcwq->busy_hash[v];
817}
818
8cca0eea
TH
819/**
820 * __find_worker_executing_work - find worker which is executing a work
821 * @gcwq: gcwq of interest
822 * @bwh: hash head as returned by busy_worker_head()
823 * @work: work to find worker for
824 *
825 * Find a worker which is executing @work on @gcwq. @bwh should be
826 * the hash head obtained by calling busy_worker_head() with the same
827 * work.
828 *
829 * CONTEXT:
830 * spin_lock_irq(gcwq->lock).
831 *
832 * RETURNS:
833 * Pointer to worker which is executing @work if found, NULL
834 * otherwise.
835 */
836static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
837 struct hlist_head *bwh,
838 struct work_struct *work)
839{
840 struct worker *worker;
841 struct hlist_node *tmp;
842
843 hlist_for_each_entry(worker, tmp, bwh, hentry)
844 if (worker->current_work == work)
845 return worker;
846 return NULL;
847}
848
849/**
850 * find_worker_executing_work - find worker which is executing a work
851 * @gcwq: gcwq of interest
852 * @work: work to find worker for
853 *
854 * Find a worker which is executing @work on @gcwq. This function is
855 * identical to __find_worker_executing_work() except that this
856 * function calculates @bwh itself.
857 *
858 * CONTEXT:
859 * spin_lock_irq(gcwq->lock).
860 *
861 * RETURNS:
862 * Pointer to worker which is executing @work if found, NULL
863 * otherwise.
4d707b9f 864 */
8cca0eea
TH
865static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
866 struct work_struct *work)
4d707b9f 867{
8cca0eea
TH
868 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
869 work);
4d707b9f
ON
870}
871
649027d7
TH
872/**
873 * gcwq_determine_ins_pos - find insertion position
874 * @gcwq: gcwq of interest
875 * @cwq: cwq a work is being queued for
876 *
877 * A work for @cwq is about to be queued on @gcwq, determine insertion
878 * position for the work. If @cwq is for HIGHPRI wq, the work is
879 * queued at the head of the queue but in FIFO order with respect to
880 * other HIGHPRI works; otherwise, at the end of the queue. This
881 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
882 * there are HIGHPRI works pending.
883 *
884 * CONTEXT:
885 * spin_lock_irq(gcwq->lock).
886 *
887 * RETURNS:
888 * Pointer to inserstion position.
889 */
890static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
891 struct cpu_workqueue_struct *cwq)
365970a1 892{
649027d7
TH
893 struct work_struct *twork;
894
895 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
896 return &gcwq->worklist;
897
898 list_for_each_entry(twork, &gcwq->worklist, entry) {
899 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
900
901 if (!(tcwq->wq->flags & WQ_HIGHPRI))
902 break;
903 }
904
905 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
906 return &twork->entry;
365970a1
DH
907}
908
4690c4ab 909/**
7e11629d 910 * insert_work - insert a work into gcwq
4690c4ab
TH
911 * @cwq: cwq @work belongs to
912 * @work: work to insert
913 * @head: insertion point
914 * @extra_flags: extra WORK_STRUCT_* flags to set
915 *
7e11629d
TH
916 * Insert @work which belongs to @cwq into @gcwq after @head.
917 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
918 *
919 * CONTEXT:
8b03ae3c 920 * spin_lock_irq(gcwq->lock).
4690c4ab 921 */
b89deed3 922static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
923 struct work_struct *work, struct list_head *head,
924 unsigned int extra_flags)
b89deed3 925{
e22bee78
TH
926 struct global_cwq *gcwq = cwq->gcwq;
927
4690c4ab 928 /* we own @work, set data and link */
7a22ad75 929 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 930
6e84d644
ON
931 /*
932 * Ensure that we get the right work->data if we see the
933 * result of list_add() below, see try_to_grab_pending().
934 */
935 smp_wmb();
4690c4ab 936
1a4d9b0a 937 list_add_tail(&work->entry, head);
e22bee78
TH
938
939 /*
940 * Ensure either worker_sched_deactivated() sees the above
941 * list_add_tail() or we see zero nr_running to avoid workers
942 * lying around lazily while there are works to be processed.
943 */
944 smp_mb();
945
649027d7 946 if (__need_more_worker(gcwq))
e22bee78 947 wake_up_worker(gcwq);
b89deed3
ON
948}
949
4690c4ab 950static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
951 struct work_struct *work)
952{
502ca9d8
TH
953 struct global_cwq *gcwq;
954 struct cpu_workqueue_struct *cwq;
1e19ffc6 955 struct list_head *worklist;
8a2e8e5d 956 unsigned int work_flags;
1da177e4
LT
957 unsigned long flags;
958
dc186ad7 959 debug_work_activate(work);
1e19ffc6 960
e41e704b
TH
961 if (WARN_ON_ONCE(wq->flags & WQ_DYING))
962 return;
963
c7fc77f7
TH
964 /* determine gcwq to use */
965 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
966 struct global_cwq *last_gcwq;
967
c7fc77f7
TH
968 if (unlikely(cpu == WORK_CPU_UNBOUND))
969 cpu = raw_smp_processor_id();
970
18aa9eff
TH
971 /*
972 * It's multi cpu. If @wq is non-reentrant and @work
973 * was previously on a different cpu, it might still
974 * be running there, in which case the work needs to
975 * be queued on that cpu to guarantee non-reentrance.
976 */
502ca9d8 977 gcwq = get_gcwq(cpu);
18aa9eff
TH
978 if (wq->flags & WQ_NON_REENTRANT &&
979 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
980 struct worker *worker;
981
982 spin_lock_irqsave(&last_gcwq->lock, flags);
983
984 worker = find_worker_executing_work(last_gcwq, work);
985
986 if (worker && worker->current_cwq->wq == wq)
987 gcwq = last_gcwq;
988 else {
989 /* meh... not running there, queue here */
990 spin_unlock_irqrestore(&last_gcwq->lock, flags);
991 spin_lock_irqsave(&gcwq->lock, flags);
992 }
993 } else
994 spin_lock_irqsave(&gcwq->lock, flags);
f3421797
TH
995 } else {
996 gcwq = get_gcwq(WORK_CPU_UNBOUND);
997 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
998 }
999
1000 /* gcwq determined, get cwq and queue */
1001 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1002 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1003
4690c4ab 1004 BUG_ON(!list_empty(&work->entry));
1e19ffc6 1005
73f53c4a 1006 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1007 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1008
1009 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1010 trace_workqueue_activate_work(work);
1e19ffc6 1011 cwq->nr_active++;
649027d7 1012 worklist = gcwq_determine_ins_pos(gcwq, cwq);
8a2e8e5d
TH
1013 } else {
1014 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1015 worklist = &cwq->delayed_works;
8a2e8e5d 1016 }
1e19ffc6 1017
8a2e8e5d 1018 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1019
8b03ae3c 1020 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
1021}
1022
0fcb78c2
REB
1023/**
1024 * queue_work - queue work on a workqueue
1025 * @wq: workqueue to use
1026 * @work: work to queue
1027 *
057647fc 1028 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 1029 *
00dfcaf7
ON
1030 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1031 * it can be processed by another CPU.
1da177e4 1032 */
7ad5b3a5 1033int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1034{
ef1ca236
ON
1035 int ret;
1036
1037 ret = queue_work_on(get_cpu(), wq, work);
1038 put_cpu();
1039
1da177e4
LT
1040 return ret;
1041}
ae90dd5d 1042EXPORT_SYMBOL_GPL(queue_work);
1da177e4 1043
c1a220e7
ZR
1044/**
1045 * queue_work_on - queue work on specific cpu
1046 * @cpu: CPU number to execute work on
1047 * @wq: workqueue to use
1048 * @work: work to queue
1049 *
1050 * Returns 0 if @work was already on a queue, non-zero otherwise.
1051 *
1052 * We queue the work to a specific CPU, the caller must ensure it
1053 * can't go away.
1054 */
1055int
1056queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1057{
1058 int ret = 0;
1059
22df02bb 1060 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1061 __queue_work(cpu, wq, work);
c1a220e7
ZR
1062 ret = 1;
1063 }
1064 return ret;
1065}
1066EXPORT_SYMBOL_GPL(queue_work_on);
1067
6d141c3f 1068static void delayed_work_timer_fn(unsigned long __data)
1da177e4 1069{
52bad64d 1070 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1071 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1072
4690c4ab 1073 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
1074}
1075
0fcb78c2
REB
1076/**
1077 * queue_delayed_work - queue work on a workqueue after delay
1078 * @wq: workqueue to use
af9997e4 1079 * @dwork: delayable work to queue
0fcb78c2
REB
1080 * @delay: number of jiffies to wait before queueing
1081 *
057647fc 1082 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1083 */
7ad5b3a5 1084int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 1085 struct delayed_work *dwork, unsigned long delay)
1da177e4 1086{
52bad64d 1087 if (delay == 0)
63bc0362 1088 return queue_work(wq, &dwork->work);
1da177e4 1089
63bc0362 1090 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 1091}
ae90dd5d 1092EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 1093
0fcb78c2
REB
1094/**
1095 * queue_delayed_work_on - queue work on specific CPU after delay
1096 * @cpu: CPU number to execute work on
1097 * @wq: workqueue to use
af9997e4 1098 * @dwork: work to queue
0fcb78c2
REB
1099 * @delay: number of jiffies to wait before queueing
1100 *
057647fc 1101 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1102 */
7a6bc1cd 1103int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 1104 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
1105{
1106 int ret = 0;
52bad64d
DH
1107 struct timer_list *timer = &dwork->timer;
1108 struct work_struct *work = &dwork->work;
7a6bc1cd 1109
22df02bb 1110 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1111 unsigned int lcpu;
7a22ad75 1112
7a6bc1cd
VP
1113 BUG_ON(timer_pending(timer));
1114 BUG_ON(!list_empty(&work->entry));
1115
8a3e77cc
AL
1116 timer_stats_timer_set_start_info(&dwork->timer);
1117
7a22ad75
TH
1118 /*
1119 * This stores cwq for the moment, for the timer_fn.
1120 * Note that the work's gcwq is preserved to allow
1121 * reentrance detection for delayed works.
1122 */
c7fc77f7
TH
1123 if (!(wq->flags & WQ_UNBOUND)) {
1124 struct global_cwq *gcwq = get_work_gcwq(work);
1125
1126 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1127 lcpu = gcwq->cpu;
1128 else
1129 lcpu = raw_smp_processor_id();
1130 } else
1131 lcpu = WORK_CPU_UNBOUND;
1132
7a22ad75 1133 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1134
7a6bc1cd 1135 timer->expires = jiffies + delay;
52bad64d 1136 timer->data = (unsigned long)dwork;
7a6bc1cd 1137 timer->function = delayed_work_timer_fn;
63bc0362
ON
1138
1139 if (unlikely(cpu >= 0))
1140 add_timer_on(timer, cpu);
1141 else
1142 add_timer(timer);
7a6bc1cd
VP
1143 ret = 1;
1144 }
1145 return ret;
1146}
ae90dd5d 1147EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1148
c8e55f36
TH
1149/**
1150 * worker_enter_idle - enter idle state
1151 * @worker: worker which is entering idle state
1152 *
1153 * @worker is entering idle state. Update stats and idle timer if
1154 * necessary.
1155 *
1156 * LOCKING:
1157 * spin_lock_irq(gcwq->lock).
1158 */
1159static void worker_enter_idle(struct worker *worker)
1da177e4 1160{
c8e55f36
TH
1161 struct global_cwq *gcwq = worker->gcwq;
1162
1163 BUG_ON(worker->flags & WORKER_IDLE);
1164 BUG_ON(!list_empty(&worker->entry) &&
1165 (worker->hentry.next || worker->hentry.pprev));
1166
cb444766
TH
1167 /* can't use worker_set_flags(), also called from start_worker() */
1168 worker->flags |= WORKER_IDLE;
c8e55f36 1169 gcwq->nr_idle++;
e22bee78 1170 worker->last_active = jiffies;
c8e55f36
TH
1171
1172 /* idle_list is LIFO */
1173 list_add(&worker->entry, &gcwq->idle_list);
db7bccf4 1174
e22bee78
TH
1175 if (likely(!(worker->flags & WORKER_ROGUE))) {
1176 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1177 mod_timer(&gcwq->idle_timer,
1178 jiffies + IDLE_WORKER_TIMEOUT);
1179 } else
db7bccf4 1180 wake_up_all(&gcwq->trustee_wait);
cb444766
TH
1181
1182 /* sanity check nr_running */
1183 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1184 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
c8e55f36
TH
1185}
1186
1187/**
1188 * worker_leave_idle - leave idle state
1189 * @worker: worker which is leaving idle state
1190 *
1191 * @worker is leaving idle state. Update stats.
1192 *
1193 * LOCKING:
1194 * spin_lock_irq(gcwq->lock).
1195 */
1196static void worker_leave_idle(struct worker *worker)
1197{
1198 struct global_cwq *gcwq = worker->gcwq;
1199
1200 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1201 worker_clr_flags(worker, WORKER_IDLE);
c8e55f36
TH
1202 gcwq->nr_idle--;
1203 list_del_init(&worker->entry);
1204}
1205
e22bee78
TH
1206/**
1207 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1208 * @worker: self
1209 *
1210 * Works which are scheduled while the cpu is online must at least be
1211 * scheduled to a worker which is bound to the cpu so that if they are
1212 * flushed from cpu callbacks while cpu is going down, they are
1213 * guaranteed to execute on the cpu.
1214 *
1215 * This function is to be used by rogue workers and rescuers to bind
1216 * themselves to the target cpu and may race with cpu going down or
1217 * coming online. kthread_bind() can't be used because it may put the
1218 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1219 * verbatim as it's best effort and blocking and gcwq may be
1220 * [dis]associated in the meantime.
1221 *
1222 * This function tries set_cpus_allowed() and locks gcwq and verifies
1223 * the binding against GCWQ_DISASSOCIATED which is set during
1224 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1225 * idle state or fetches works without dropping lock, it can guarantee
1226 * the scheduling requirement described in the first paragraph.
1227 *
1228 * CONTEXT:
1229 * Might sleep. Called without any lock but returns with gcwq->lock
1230 * held.
1231 *
1232 * RETURNS:
1233 * %true if the associated gcwq is online (@worker is successfully
1234 * bound), %false if offline.
1235 */
1236static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1237__acquires(&gcwq->lock)
e22bee78
TH
1238{
1239 struct global_cwq *gcwq = worker->gcwq;
1240 struct task_struct *task = worker->task;
1241
1242 while (true) {
4e6045f1 1243 /*
e22bee78
TH
1244 * The following call may fail, succeed or succeed
1245 * without actually migrating the task to the cpu if
1246 * it races with cpu hotunplug operation. Verify
1247 * against GCWQ_DISASSOCIATED.
4e6045f1 1248 */
f3421797
TH
1249 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1250 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1251
1252 spin_lock_irq(&gcwq->lock);
1253 if (gcwq->flags & GCWQ_DISASSOCIATED)
1254 return false;
1255 if (task_cpu(task) == gcwq->cpu &&
1256 cpumask_equal(&current->cpus_allowed,
1257 get_cpu_mask(gcwq->cpu)))
1258 return true;
1259 spin_unlock_irq(&gcwq->lock);
1260
1261 /* CPU has come up inbetween, retry migration */
1262 cpu_relax();
1263 }
1264}
1265
1266/*
1267 * Function for worker->rebind_work used to rebind rogue busy workers
1268 * to the associated cpu which is coming back online. This is
1269 * scheduled by cpu up but can race with other cpu hotplug operations
1270 * and may be executed twice without intervening cpu down.
1271 */
1272static void worker_rebind_fn(struct work_struct *work)
1273{
1274 struct worker *worker = container_of(work, struct worker, rebind_work);
1275 struct global_cwq *gcwq = worker->gcwq;
1276
1277 if (worker_maybe_bind_and_lock(worker))
1278 worker_clr_flags(worker, WORKER_REBIND);
1279
1280 spin_unlock_irq(&gcwq->lock);
1281}
1282
c34056a3
TH
1283static struct worker *alloc_worker(void)
1284{
1285 struct worker *worker;
1286
1287 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1288 if (worker) {
1289 INIT_LIST_HEAD(&worker->entry);
affee4b2 1290 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1291 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1292 /* on creation a worker is in !idle && prep state */
1293 worker->flags = WORKER_PREP;
c8e55f36 1294 }
c34056a3
TH
1295 return worker;
1296}
1297
1298/**
1299 * create_worker - create a new workqueue worker
7e11629d 1300 * @gcwq: gcwq the new worker will belong to
c34056a3
TH
1301 * @bind: whether to set affinity to @cpu or not
1302 *
7e11629d 1303 * Create a new worker which is bound to @gcwq. The returned worker
c34056a3
TH
1304 * can be started by calling start_worker() or destroyed using
1305 * destroy_worker().
1306 *
1307 * CONTEXT:
1308 * Might sleep. Does GFP_KERNEL allocations.
1309 *
1310 * RETURNS:
1311 * Pointer to the newly created worker.
1312 */
7e11629d 1313static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
c34056a3 1314{
f3421797 1315 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
c34056a3 1316 struct worker *worker = NULL;
f3421797 1317 int id = -1;
c34056a3 1318
8b03ae3c
TH
1319 spin_lock_irq(&gcwq->lock);
1320 while (ida_get_new(&gcwq->worker_ida, &id)) {
1321 spin_unlock_irq(&gcwq->lock);
1322 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
c34056a3 1323 goto fail;
8b03ae3c 1324 spin_lock_irq(&gcwq->lock);
c34056a3 1325 }
8b03ae3c 1326 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1327
1328 worker = alloc_worker();
1329 if (!worker)
1330 goto fail;
1331
8b03ae3c 1332 worker->gcwq = gcwq;
c34056a3
TH
1333 worker->id = id;
1334
f3421797
TH
1335 if (!on_unbound_cpu)
1336 worker->task = kthread_create(worker_thread, worker,
1337 "kworker/%u:%d", gcwq->cpu, id);
1338 else
1339 worker->task = kthread_create(worker_thread, worker,
1340 "kworker/u:%d", id);
c34056a3
TH
1341 if (IS_ERR(worker->task))
1342 goto fail;
1343
db7bccf4
TH
1344 /*
1345 * A rogue worker will become a regular one if CPU comes
1346 * online later on. Make sure every worker has
1347 * PF_THREAD_BOUND set.
1348 */
f3421797 1349 if (bind && !on_unbound_cpu)
8b03ae3c 1350 kthread_bind(worker->task, gcwq->cpu);
f3421797 1351 else {
db7bccf4 1352 worker->task->flags |= PF_THREAD_BOUND;
f3421797
TH
1353 if (on_unbound_cpu)
1354 worker->flags |= WORKER_UNBOUND;
1355 }
c34056a3
TH
1356
1357 return worker;
1358fail:
1359 if (id >= 0) {
8b03ae3c
TH
1360 spin_lock_irq(&gcwq->lock);
1361 ida_remove(&gcwq->worker_ida, id);
1362 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1363 }
1364 kfree(worker);
1365 return NULL;
1366}
1367
1368/**
1369 * start_worker - start a newly created worker
1370 * @worker: worker to start
1371 *
c8e55f36 1372 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1373 *
1374 * CONTEXT:
8b03ae3c 1375 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1376 */
1377static void start_worker(struct worker *worker)
1378{
cb444766 1379 worker->flags |= WORKER_STARTED;
c8e55f36
TH
1380 worker->gcwq->nr_workers++;
1381 worker_enter_idle(worker);
c34056a3
TH
1382 wake_up_process(worker->task);
1383}
1384
1385/**
1386 * destroy_worker - destroy a workqueue worker
1387 * @worker: worker to be destroyed
1388 *
c8e55f36
TH
1389 * Destroy @worker and adjust @gcwq stats accordingly.
1390 *
1391 * CONTEXT:
1392 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1393 */
1394static void destroy_worker(struct worker *worker)
1395{
8b03ae3c 1396 struct global_cwq *gcwq = worker->gcwq;
c34056a3
TH
1397 int id = worker->id;
1398
1399 /* sanity check frenzy */
1400 BUG_ON(worker->current_work);
affee4b2 1401 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1402
c8e55f36
TH
1403 if (worker->flags & WORKER_STARTED)
1404 gcwq->nr_workers--;
1405 if (worker->flags & WORKER_IDLE)
1406 gcwq->nr_idle--;
1407
1408 list_del_init(&worker->entry);
cb444766 1409 worker->flags |= WORKER_DIE;
c8e55f36
TH
1410
1411 spin_unlock_irq(&gcwq->lock);
1412
c34056a3
TH
1413 kthread_stop(worker->task);
1414 kfree(worker);
1415
8b03ae3c
TH
1416 spin_lock_irq(&gcwq->lock);
1417 ida_remove(&gcwq->worker_ida, id);
c34056a3
TH
1418}
1419
e22bee78
TH
1420static void idle_worker_timeout(unsigned long __gcwq)
1421{
1422 struct global_cwq *gcwq = (void *)__gcwq;
1423
1424 spin_lock_irq(&gcwq->lock);
1425
1426 if (too_many_workers(gcwq)) {
1427 struct worker *worker;
1428 unsigned long expires;
1429
1430 /* idle_list is kept in LIFO order, check the last one */
1431 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1432 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1433
1434 if (time_before(jiffies, expires))
1435 mod_timer(&gcwq->idle_timer, expires);
1436 else {
1437 /* it's been idle for too long, wake up manager */
1438 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1439 wake_up_worker(gcwq);
d5abe669 1440 }
e22bee78
TH
1441 }
1442
1443 spin_unlock_irq(&gcwq->lock);
1444}
d5abe669 1445
e22bee78
TH
1446static bool send_mayday(struct work_struct *work)
1447{
1448 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1449 struct workqueue_struct *wq = cwq->wq;
f3421797 1450 unsigned int cpu;
e22bee78
TH
1451
1452 if (!(wq->flags & WQ_RESCUER))
1453 return false;
1454
1455 /* mayday mayday mayday */
f3421797
TH
1456 cpu = cwq->gcwq->cpu;
1457 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1458 if (cpu == WORK_CPU_UNBOUND)
1459 cpu = 0;
f2e005aa 1460 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1461 wake_up_process(wq->rescuer->task);
1462 return true;
1463}
1464
1465static void gcwq_mayday_timeout(unsigned long __gcwq)
1466{
1467 struct global_cwq *gcwq = (void *)__gcwq;
1468 struct work_struct *work;
1469
1470 spin_lock_irq(&gcwq->lock);
1471
1472 if (need_to_create_worker(gcwq)) {
1473 /*
1474 * We've been trying to create a new worker but
1475 * haven't been successful. We might be hitting an
1476 * allocation deadlock. Send distress signals to
1477 * rescuers.
1478 */
1479 list_for_each_entry(work, &gcwq->worklist, entry)
1480 send_mayday(work);
1da177e4 1481 }
e22bee78
TH
1482
1483 spin_unlock_irq(&gcwq->lock);
1484
1485 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1486}
1487
e22bee78
TH
1488/**
1489 * maybe_create_worker - create a new worker if necessary
1490 * @gcwq: gcwq to create a new worker for
1491 *
1492 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1493 * have at least one idle worker on return from this function. If
1494 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1495 * sent to all rescuers with works scheduled on @gcwq to resolve
1496 * possible allocation deadlock.
1497 *
1498 * On return, need_to_create_worker() is guaranteed to be false and
1499 * may_start_working() true.
1500 *
1501 * LOCKING:
1502 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1503 * multiple times. Does GFP_KERNEL allocations. Called only from
1504 * manager.
1505 *
1506 * RETURNS:
1507 * false if no action was taken and gcwq->lock stayed locked, true
1508 * otherwise.
1509 */
1510static bool maybe_create_worker(struct global_cwq *gcwq)
06bd6ebf
NK
1511__releases(&gcwq->lock)
1512__acquires(&gcwq->lock)
1da177e4 1513{
e22bee78
TH
1514 if (!need_to_create_worker(gcwq))
1515 return false;
1516restart:
9f9c2364
TH
1517 spin_unlock_irq(&gcwq->lock);
1518
e22bee78
TH
1519 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1520 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1521
1522 while (true) {
1523 struct worker *worker;
1524
e22bee78
TH
1525 worker = create_worker(gcwq, true);
1526 if (worker) {
1527 del_timer_sync(&gcwq->mayday_timer);
1528 spin_lock_irq(&gcwq->lock);
1529 start_worker(worker);
1530 BUG_ON(need_to_create_worker(gcwq));
1531 return true;
1532 }
1533
1534 if (!need_to_create_worker(gcwq))
1535 break;
1da177e4 1536
e22bee78
TH
1537 __set_current_state(TASK_INTERRUPTIBLE);
1538 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1539
e22bee78
TH
1540 if (!need_to_create_worker(gcwq))
1541 break;
1542 }
1543
e22bee78
TH
1544 del_timer_sync(&gcwq->mayday_timer);
1545 spin_lock_irq(&gcwq->lock);
1546 if (need_to_create_worker(gcwq))
1547 goto restart;
1548 return true;
1549}
1550
1551/**
1552 * maybe_destroy_worker - destroy workers which have been idle for a while
1553 * @gcwq: gcwq to destroy workers for
1554 *
1555 * Destroy @gcwq workers which have been idle for longer than
1556 * IDLE_WORKER_TIMEOUT.
1557 *
1558 * LOCKING:
1559 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1560 * multiple times. Called only from manager.
1561 *
1562 * RETURNS:
1563 * false if no action was taken and gcwq->lock stayed locked, true
1564 * otherwise.
1565 */
1566static bool maybe_destroy_workers(struct global_cwq *gcwq)
1567{
1568 bool ret = false;
1da177e4 1569
e22bee78
TH
1570 while (too_many_workers(gcwq)) {
1571 struct worker *worker;
1572 unsigned long expires;
3af24433 1573
e22bee78
TH
1574 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1575 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1576
e22bee78
TH
1577 if (time_before(jiffies, expires)) {
1578 mod_timer(&gcwq->idle_timer, expires);
3af24433 1579 break;
e22bee78 1580 }
1da177e4 1581
e22bee78
TH
1582 destroy_worker(worker);
1583 ret = true;
1da177e4 1584 }
3af24433 1585
e22bee78
TH
1586 return ret;
1587}
1588
1589/**
1590 * manage_workers - manage worker pool
1591 * @worker: self
1592 *
1593 * Assume the manager role and manage gcwq worker pool @worker belongs
1594 * to. At any given time, there can be only zero or one manager per
1595 * gcwq. The exclusion is handled automatically by this function.
1596 *
1597 * The caller can safely start processing works on false return. On
1598 * true return, it's guaranteed that need_to_create_worker() is false
1599 * and may_start_working() is true.
1600 *
1601 * CONTEXT:
1602 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1603 * multiple times. Does GFP_KERNEL allocations.
1604 *
1605 * RETURNS:
1606 * false if no action was taken and gcwq->lock stayed locked, true if
1607 * some action was taken.
1608 */
1609static bool manage_workers(struct worker *worker)
1610{
1611 struct global_cwq *gcwq = worker->gcwq;
1612 bool ret = false;
1613
1614 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1615 return ret;
1616
1617 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1618 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1619
1620 /*
1621 * Destroy and then create so that may_start_working() is true
1622 * on return.
1623 */
1624 ret |= maybe_destroy_workers(gcwq);
1625 ret |= maybe_create_worker(gcwq);
1626
1627 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1628
1629 /*
1630 * The trustee might be waiting to take over the manager
1631 * position, tell it we're done.
1632 */
1633 if (unlikely(gcwq->trustee))
1634 wake_up_all(&gcwq->trustee_wait);
1635
1636 return ret;
1637}
1638
affee4b2
TH
1639/**
1640 * move_linked_works - move linked works to a list
1641 * @work: start of series of works to be scheduled
1642 * @head: target list to append @work to
1643 * @nextp: out paramter for nested worklist walking
1644 *
1645 * Schedule linked works starting from @work to @head. Work series to
1646 * be scheduled starts at @work and includes any consecutive work with
1647 * WORK_STRUCT_LINKED set in its predecessor.
1648 *
1649 * If @nextp is not NULL, it's updated to point to the next work of
1650 * the last scheduled work. This allows move_linked_works() to be
1651 * nested inside outer list_for_each_entry_safe().
1652 *
1653 * CONTEXT:
8b03ae3c 1654 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1655 */
1656static void move_linked_works(struct work_struct *work, struct list_head *head,
1657 struct work_struct **nextp)
1658{
1659 struct work_struct *n;
1660
1661 /*
1662 * Linked worklist will always end before the end of the list,
1663 * use NULL for list head.
1664 */
1665 list_for_each_entry_safe_from(work, n, NULL, entry) {
1666 list_move_tail(&work->entry, head);
1667 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1668 break;
1669 }
1670
1671 /*
1672 * If we're already inside safe list traversal and have moved
1673 * multiple works to the scheduled queue, the next position
1674 * needs to be updated.
1675 */
1676 if (nextp)
1677 *nextp = n;
1678}
1679
1e19ffc6
TH
1680static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1681{
1682 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1683 struct work_struct, entry);
649027d7 1684 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1e19ffc6 1685
cdadf009 1686 trace_workqueue_activate_work(work);
649027d7 1687 move_linked_works(work, pos, NULL);
8a2e8e5d 1688 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1689 cwq->nr_active++;
1690}
1691
73f53c4a
TH
1692/**
1693 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1694 * @cwq: cwq of interest
1695 * @color: color of work which left the queue
8a2e8e5d 1696 * @delayed: for a delayed work
73f53c4a
TH
1697 *
1698 * A work either has completed or is removed from pending queue,
1699 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1700 *
1701 * CONTEXT:
8b03ae3c 1702 * spin_lock_irq(gcwq->lock).
73f53c4a 1703 */
8a2e8e5d
TH
1704static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1705 bool delayed)
73f53c4a
TH
1706{
1707 /* ignore uncolored works */
1708 if (color == WORK_NO_COLOR)
1709 return;
1710
1711 cwq->nr_in_flight[color]--;
1e19ffc6 1712
8a2e8e5d
TH
1713 if (!delayed) {
1714 cwq->nr_active--;
1715 if (!list_empty(&cwq->delayed_works)) {
1716 /* one down, submit a delayed one */
1717 if (cwq->nr_active < cwq->max_active)
1718 cwq_activate_first_delayed(cwq);
1719 }
502ca9d8 1720 }
73f53c4a
TH
1721
1722 /* is flush in progress and are we at the flushing tip? */
1723 if (likely(cwq->flush_color != color))
1724 return;
1725
1726 /* are there still in-flight works? */
1727 if (cwq->nr_in_flight[color])
1728 return;
1729
1730 /* this cwq is done, clear flush_color */
1731 cwq->flush_color = -1;
1732
1733 /*
1734 * If this was the last cwq, wake up the first flusher. It
1735 * will handle the rest.
1736 */
1737 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1738 complete(&cwq->wq->first_flusher->done);
1739}
1740
a62428c0
TH
1741/**
1742 * process_one_work - process single work
c34056a3 1743 * @worker: self
a62428c0
TH
1744 * @work: work to process
1745 *
1746 * Process @work. This function contains all the logics necessary to
1747 * process a single work including synchronization against and
1748 * interaction with other workers on the same cpu, queueing and
1749 * flushing. As long as context requirement is met, any worker can
1750 * call this function to process a work.
1751 *
1752 * CONTEXT:
8b03ae3c 1753 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1754 */
c34056a3 1755static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1756__releases(&gcwq->lock)
1757__acquires(&gcwq->lock)
a62428c0 1758{
7e11629d 1759 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
8b03ae3c 1760 struct global_cwq *gcwq = cwq->gcwq;
c8e55f36 1761 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1762 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1763 work_func_t f = work->func;
73f53c4a 1764 int work_color;
7e11629d 1765 struct worker *collision;
a62428c0
TH
1766#ifdef CONFIG_LOCKDEP
1767 /*
1768 * It is permissible to free the struct work_struct from
1769 * inside the function that is called from it, this we need to
1770 * take into account for lockdep too. To avoid bogus "held
1771 * lock freed" warnings as well as problems when looking into
1772 * work->lockdep_map, make a copy and use that here.
1773 */
1774 struct lockdep_map lockdep_map = work->lockdep_map;
1775#endif
7e11629d
TH
1776 /*
1777 * A single work shouldn't be executed concurrently by
1778 * multiple workers on a single cpu. Check whether anyone is
1779 * already processing the work. If so, defer the work to the
1780 * currently executing one.
1781 */
1782 collision = __find_worker_executing_work(gcwq, bwh, work);
1783 if (unlikely(collision)) {
1784 move_linked_works(work, &collision->scheduled, NULL);
1785 return;
1786 }
1787
a62428c0 1788 /* claim and process */
a62428c0 1789 debug_work_deactivate(work);
c8e55f36 1790 hlist_add_head(&worker->hentry, bwh);
c34056a3 1791 worker->current_work = work;
8cca0eea 1792 worker->current_cwq = cwq;
73f53c4a 1793 work_color = get_work_color(work);
7a22ad75 1794
7a22ad75
TH
1795 /* record the current cpu number in the work data and dequeue */
1796 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1797 list_del_init(&work->entry);
1798
649027d7
TH
1799 /*
1800 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1801 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1802 */
1803 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1804 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1805 struct work_struct, entry);
1806
1807 if (!list_empty(&gcwq->worklist) &&
1808 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1809 wake_up_worker(gcwq);
1810 else
1811 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1812 }
1813
fb0e7beb
TH
1814 /*
1815 * CPU intensive works don't participate in concurrency
1816 * management. They're the scheduler's responsibility.
1817 */
1818 if (unlikely(cpu_intensive))
1819 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1820
8b03ae3c 1821 spin_unlock_irq(&gcwq->lock);
a62428c0 1822
a62428c0
TH
1823 work_clear_pending(work);
1824 lock_map_acquire(&cwq->wq->lockdep_map);
1825 lock_map_acquire(&lockdep_map);
e36c886a 1826 trace_workqueue_execute_start(work);
a62428c0 1827 f(work);
e36c886a
AV
1828 /*
1829 * While we must be careful to not use "work" after this, the trace
1830 * point will only record its address.
1831 */
1832 trace_workqueue_execute_end(work);
a62428c0
TH
1833 lock_map_release(&lockdep_map);
1834 lock_map_release(&cwq->wq->lockdep_map);
1835
1836 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1837 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1838 "%s/0x%08x/%d\n",
1839 current->comm, preempt_count(), task_pid_nr(current));
1840 printk(KERN_ERR " last function: ");
1841 print_symbol("%s\n", (unsigned long)f);
1842 debug_show_held_locks(current);
1843 dump_stack();
1844 }
1845
8b03ae3c 1846 spin_lock_irq(&gcwq->lock);
a62428c0 1847
fb0e7beb
TH
1848 /* clear cpu intensive status */
1849 if (unlikely(cpu_intensive))
1850 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1851
a62428c0 1852 /* we're done with it, release */
c8e55f36 1853 hlist_del_init(&worker->hentry);
c34056a3 1854 worker->current_work = NULL;
8cca0eea 1855 worker->current_cwq = NULL;
8a2e8e5d 1856 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
1857}
1858
affee4b2
TH
1859/**
1860 * process_scheduled_works - process scheduled works
1861 * @worker: self
1862 *
1863 * Process all scheduled works. Please note that the scheduled list
1864 * may change while processing a work, so this function repeatedly
1865 * fetches a work from the top and executes it.
1866 *
1867 * CONTEXT:
8b03ae3c 1868 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
1869 * multiple times.
1870 */
1871static void process_scheduled_works(struct worker *worker)
1da177e4 1872{
affee4b2
TH
1873 while (!list_empty(&worker->scheduled)) {
1874 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 1875 struct work_struct, entry);
c34056a3 1876 process_one_work(worker, work);
1da177e4 1877 }
1da177e4
LT
1878}
1879
4690c4ab
TH
1880/**
1881 * worker_thread - the worker thread function
c34056a3 1882 * @__worker: self
4690c4ab 1883 *
e22bee78
TH
1884 * The gcwq worker thread function. There's a single dynamic pool of
1885 * these per each cpu. These workers process all works regardless of
1886 * their specific target workqueue. The only exception is works which
1887 * belong to workqueues with a rescuer which will be explained in
1888 * rescuer_thread().
4690c4ab 1889 */
c34056a3 1890static int worker_thread(void *__worker)
1da177e4 1891{
c34056a3 1892 struct worker *worker = __worker;
8b03ae3c 1893 struct global_cwq *gcwq = worker->gcwq;
1da177e4 1894
e22bee78
TH
1895 /* tell the scheduler that this is a workqueue worker */
1896 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 1897woke_up:
c8e55f36 1898 spin_lock_irq(&gcwq->lock);
1da177e4 1899
c8e55f36
TH
1900 /* DIE can be set only while we're idle, checking here is enough */
1901 if (worker->flags & WORKER_DIE) {
1902 spin_unlock_irq(&gcwq->lock);
e22bee78 1903 worker->task->flags &= ~PF_WQ_WORKER;
c8e55f36
TH
1904 return 0;
1905 }
affee4b2 1906
c8e55f36 1907 worker_leave_idle(worker);
db7bccf4 1908recheck:
e22bee78
TH
1909 /* no more worker necessary? */
1910 if (!need_more_worker(gcwq))
1911 goto sleep;
1912
1913 /* do we need to manage? */
1914 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1915 goto recheck;
1916
c8e55f36
TH
1917 /*
1918 * ->scheduled list can only be filled while a worker is
1919 * preparing to process a work or actually processing it.
1920 * Make sure nobody diddled with it while I was sleeping.
1921 */
1922 BUG_ON(!list_empty(&worker->scheduled));
1923
e22bee78
TH
1924 /*
1925 * When control reaches this point, we're guaranteed to have
1926 * at least one idle worker or that someone else has already
1927 * assumed the manager role.
1928 */
1929 worker_clr_flags(worker, WORKER_PREP);
1930
1931 do {
c8e55f36 1932 struct work_struct *work =
7e11629d 1933 list_first_entry(&gcwq->worklist,
c8e55f36
TH
1934 struct work_struct, entry);
1935
1936 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1937 /* optimization path, not strictly necessary */
1938 process_one_work(worker, work);
1939 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 1940 process_scheduled_works(worker);
c8e55f36
TH
1941 } else {
1942 move_linked_works(work, &worker->scheduled, NULL);
1943 process_scheduled_works(worker);
affee4b2 1944 }
e22bee78
TH
1945 } while (keep_working(gcwq));
1946
1947 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 1948sleep:
e22bee78
TH
1949 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1950 goto recheck;
d313dd85 1951
c8e55f36 1952 /*
e22bee78
TH
1953 * gcwq->lock is held and there's no work to process and no
1954 * need to manage, sleep. Workers are woken up only while
1955 * holding gcwq->lock or from local cpu, so setting the
1956 * current state before releasing gcwq->lock is enough to
1957 * prevent losing any event.
c8e55f36
TH
1958 */
1959 worker_enter_idle(worker);
1960 __set_current_state(TASK_INTERRUPTIBLE);
1961 spin_unlock_irq(&gcwq->lock);
1962 schedule();
1963 goto woke_up;
1da177e4
LT
1964}
1965
e22bee78
TH
1966/**
1967 * rescuer_thread - the rescuer thread function
1968 * @__wq: the associated workqueue
1969 *
1970 * Workqueue rescuer thread function. There's one rescuer for each
1971 * workqueue which has WQ_RESCUER set.
1972 *
1973 * Regular work processing on a gcwq may block trying to create a new
1974 * worker which uses GFP_KERNEL allocation which has slight chance of
1975 * developing into deadlock if some works currently on the same queue
1976 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1977 * the problem rescuer solves.
1978 *
1979 * When such condition is possible, the gcwq summons rescuers of all
1980 * workqueues which have works queued on the gcwq and let them process
1981 * those works so that forward progress can be guaranteed.
1982 *
1983 * This should happen rarely.
1984 */
1985static int rescuer_thread(void *__wq)
1986{
1987 struct workqueue_struct *wq = __wq;
1988 struct worker *rescuer = wq->rescuer;
1989 struct list_head *scheduled = &rescuer->scheduled;
f3421797 1990 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
1991 unsigned int cpu;
1992
1993 set_user_nice(current, RESCUER_NICE_LEVEL);
1994repeat:
1995 set_current_state(TASK_INTERRUPTIBLE);
1996
1997 if (kthread_should_stop())
1998 return 0;
1999
f3421797
TH
2000 /*
2001 * See whether any cpu is asking for help. Unbounded
2002 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2003 */
f2e005aa 2004 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2005 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2006 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
e22bee78
TH
2007 struct global_cwq *gcwq = cwq->gcwq;
2008 struct work_struct *work, *n;
2009
2010 __set_current_state(TASK_RUNNING);
f2e005aa 2011 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2012
2013 /* migrate to the target cpu if possible */
2014 rescuer->gcwq = gcwq;
2015 worker_maybe_bind_and_lock(rescuer);
2016
2017 /*
2018 * Slurp in all works issued via this workqueue and
2019 * process'em.
2020 */
2021 BUG_ON(!list_empty(&rescuer->scheduled));
2022 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2023 if (get_work_cwq(work) == cwq)
2024 move_linked_works(work, scheduled, &n);
2025
2026 process_scheduled_works(rescuer);
2027 spin_unlock_irq(&gcwq->lock);
2028 }
2029
2030 schedule();
2031 goto repeat;
1da177e4
LT
2032}
2033
fc2e4d70
ON
2034struct wq_barrier {
2035 struct work_struct work;
2036 struct completion done;
2037};
2038
2039static void wq_barrier_func(struct work_struct *work)
2040{
2041 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2042 complete(&barr->done);
2043}
2044
4690c4ab
TH
2045/**
2046 * insert_wq_barrier - insert a barrier work
2047 * @cwq: cwq to insert barrier into
2048 * @barr: wq_barrier to insert
affee4b2
TH
2049 * @target: target work to attach @barr to
2050 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2051 *
affee4b2
TH
2052 * @barr is linked to @target such that @barr is completed only after
2053 * @target finishes execution. Please note that the ordering
2054 * guarantee is observed only with respect to @target and on the local
2055 * cpu.
2056 *
2057 * Currently, a queued barrier can't be canceled. This is because
2058 * try_to_grab_pending() can't determine whether the work to be
2059 * grabbed is at the head of the queue and thus can't clear LINKED
2060 * flag of the previous work while there must be a valid next work
2061 * after a work with LINKED flag set.
2062 *
2063 * Note that when @worker is non-NULL, @target may be modified
2064 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2065 *
2066 * CONTEXT:
8b03ae3c 2067 * spin_lock_irq(gcwq->lock).
4690c4ab 2068 */
83c22520 2069static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2070 struct wq_barrier *barr,
2071 struct work_struct *target, struct worker *worker)
fc2e4d70 2072{
affee4b2
TH
2073 struct list_head *head;
2074 unsigned int linked = 0;
2075
dc186ad7 2076 /*
8b03ae3c 2077 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2078 * as we know for sure that this will not trigger any of the
2079 * checks and call back into the fixup functions where we
2080 * might deadlock.
2081 */
2082 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
22df02bb 2083 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2084 init_completion(&barr->done);
83c22520 2085
affee4b2
TH
2086 /*
2087 * If @target is currently being executed, schedule the
2088 * barrier to the worker; otherwise, put it after @target.
2089 */
2090 if (worker)
2091 head = worker->scheduled.next;
2092 else {
2093 unsigned long *bits = work_data_bits(target);
2094
2095 head = target->entry.next;
2096 /* there can already be other linked works, inherit and set */
2097 linked = *bits & WORK_STRUCT_LINKED;
2098 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2099 }
2100
dc186ad7 2101 debug_work_activate(&barr->work);
affee4b2
TH
2102 insert_work(cwq, &barr->work, head,
2103 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2104}
2105
73f53c4a
TH
2106/**
2107 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2108 * @wq: workqueue being flushed
2109 * @flush_color: new flush color, < 0 for no-op
2110 * @work_color: new work color, < 0 for no-op
2111 *
2112 * Prepare cwqs for workqueue flushing.
2113 *
2114 * If @flush_color is non-negative, flush_color on all cwqs should be
2115 * -1. If no cwq has in-flight commands at the specified color, all
2116 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2117 * has in flight commands, its cwq->flush_color is set to
2118 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2119 * wakeup logic is armed and %true is returned.
2120 *
2121 * The caller should have initialized @wq->first_flusher prior to
2122 * calling this function with non-negative @flush_color. If
2123 * @flush_color is negative, no flush color update is done and %false
2124 * is returned.
2125 *
2126 * If @work_color is non-negative, all cwqs should have the same
2127 * work_color which is previous to @work_color and all will be
2128 * advanced to @work_color.
2129 *
2130 * CONTEXT:
2131 * mutex_lock(wq->flush_mutex).
2132 *
2133 * RETURNS:
2134 * %true if @flush_color >= 0 and there's something to flush. %false
2135 * otherwise.
2136 */
2137static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2138 int flush_color, int work_color)
1da177e4 2139{
73f53c4a
TH
2140 bool wait = false;
2141 unsigned int cpu;
1da177e4 2142
73f53c4a
TH
2143 if (flush_color >= 0) {
2144 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2145 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2146 }
2355b70f 2147
f3421797 2148 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2149 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2150 struct global_cwq *gcwq = cwq->gcwq;
fc2e4d70 2151
8b03ae3c 2152 spin_lock_irq(&gcwq->lock);
83c22520 2153
73f53c4a
TH
2154 if (flush_color >= 0) {
2155 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2156
73f53c4a
TH
2157 if (cwq->nr_in_flight[flush_color]) {
2158 cwq->flush_color = flush_color;
2159 atomic_inc(&wq->nr_cwqs_to_flush);
2160 wait = true;
2161 }
2162 }
1da177e4 2163
73f53c4a
TH
2164 if (work_color >= 0) {
2165 BUG_ON(work_color != work_next_color(cwq->work_color));
2166 cwq->work_color = work_color;
2167 }
1da177e4 2168
8b03ae3c 2169 spin_unlock_irq(&gcwq->lock);
1da177e4 2170 }
2355b70f 2171
73f53c4a
TH
2172 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2173 complete(&wq->first_flusher->done);
14441960 2174
73f53c4a 2175 return wait;
1da177e4
LT
2176}
2177
0fcb78c2 2178/**
1da177e4 2179 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2180 * @wq: workqueue to flush
1da177e4
LT
2181 *
2182 * Forces execution of the workqueue and blocks until its completion.
2183 * This is typically used in driver shutdown handlers.
2184 *
fc2e4d70
ON
2185 * We sleep until all works which were queued on entry have been handled,
2186 * but we are not livelocked by new incoming ones.
1da177e4 2187 */
7ad5b3a5 2188void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2189{
73f53c4a
TH
2190 struct wq_flusher this_flusher = {
2191 .list = LIST_HEAD_INIT(this_flusher.list),
2192 .flush_color = -1,
2193 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2194 };
2195 int next_color;
1da177e4 2196
3295f0ef
IM
2197 lock_map_acquire(&wq->lockdep_map);
2198 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2199
2200 mutex_lock(&wq->flush_mutex);
2201
2202 /*
2203 * Start-to-wait phase
2204 */
2205 next_color = work_next_color(wq->work_color);
2206
2207 if (next_color != wq->flush_color) {
2208 /*
2209 * Color space is not full. The current work_color
2210 * becomes our flush_color and work_color is advanced
2211 * by one.
2212 */
2213 BUG_ON(!list_empty(&wq->flusher_overflow));
2214 this_flusher.flush_color = wq->work_color;
2215 wq->work_color = next_color;
2216
2217 if (!wq->first_flusher) {
2218 /* no flush in progress, become the first flusher */
2219 BUG_ON(wq->flush_color != this_flusher.flush_color);
2220
2221 wq->first_flusher = &this_flusher;
2222
2223 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2224 wq->work_color)) {
2225 /* nothing to flush, done */
2226 wq->flush_color = next_color;
2227 wq->first_flusher = NULL;
2228 goto out_unlock;
2229 }
2230 } else {
2231 /* wait in queue */
2232 BUG_ON(wq->flush_color == this_flusher.flush_color);
2233 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2234 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2235 }
2236 } else {
2237 /*
2238 * Oops, color space is full, wait on overflow queue.
2239 * The next flush completion will assign us
2240 * flush_color and transfer to flusher_queue.
2241 */
2242 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2243 }
2244
2245 mutex_unlock(&wq->flush_mutex);
2246
2247 wait_for_completion(&this_flusher.done);
2248
2249 /*
2250 * Wake-up-and-cascade phase
2251 *
2252 * First flushers are responsible for cascading flushes and
2253 * handling overflow. Non-first flushers can simply return.
2254 */
2255 if (wq->first_flusher != &this_flusher)
2256 return;
2257
2258 mutex_lock(&wq->flush_mutex);
2259
4ce48b37
TH
2260 /* we might have raced, check again with mutex held */
2261 if (wq->first_flusher != &this_flusher)
2262 goto out_unlock;
2263
73f53c4a
TH
2264 wq->first_flusher = NULL;
2265
2266 BUG_ON(!list_empty(&this_flusher.list));
2267 BUG_ON(wq->flush_color != this_flusher.flush_color);
2268
2269 while (true) {
2270 struct wq_flusher *next, *tmp;
2271
2272 /* complete all the flushers sharing the current flush color */
2273 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2274 if (next->flush_color != wq->flush_color)
2275 break;
2276 list_del_init(&next->list);
2277 complete(&next->done);
2278 }
2279
2280 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2281 wq->flush_color != work_next_color(wq->work_color));
2282
2283 /* this flush_color is finished, advance by one */
2284 wq->flush_color = work_next_color(wq->flush_color);
2285
2286 /* one color has been freed, handle overflow queue */
2287 if (!list_empty(&wq->flusher_overflow)) {
2288 /*
2289 * Assign the same color to all overflowed
2290 * flushers, advance work_color and append to
2291 * flusher_queue. This is the start-to-wait
2292 * phase for these overflowed flushers.
2293 */
2294 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2295 tmp->flush_color = wq->work_color;
2296
2297 wq->work_color = work_next_color(wq->work_color);
2298
2299 list_splice_tail_init(&wq->flusher_overflow,
2300 &wq->flusher_queue);
2301 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2302 }
2303
2304 if (list_empty(&wq->flusher_queue)) {
2305 BUG_ON(wq->flush_color != wq->work_color);
2306 break;
2307 }
2308
2309 /*
2310 * Need to flush more colors. Make the next flusher
2311 * the new first flusher and arm cwqs.
2312 */
2313 BUG_ON(wq->flush_color == wq->work_color);
2314 BUG_ON(wq->flush_color != next->flush_color);
2315
2316 list_del_init(&next->list);
2317 wq->first_flusher = next;
2318
2319 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2320 break;
2321
2322 /*
2323 * Meh... this color is already done, clear first
2324 * flusher and repeat cascading.
2325 */
2326 wq->first_flusher = NULL;
2327 }
2328
2329out_unlock:
2330 mutex_unlock(&wq->flush_mutex);
1da177e4 2331}
ae90dd5d 2332EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2333
baf59022
TH
2334static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2335 bool wait_executing)
db700897 2336{
affee4b2 2337 struct worker *worker = NULL;
8b03ae3c 2338 struct global_cwq *gcwq;
db700897 2339 struct cpu_workqueue_struct *cwq;
db700897
ON
2340
2341 might_sleep();
7a22ad75
TH
2342 gcwq = get_work_gcwq(work);
2343 if (!gcwq)
baf59022 2344 return false;
db700897 2345
8b03ae3c 2346 spin_lock_irq(&gcwq->lock);
db700897
ON
2347 if (!list_empty(&work->entry)) {
2348 /*
2349 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2350 * If it was re-queued to a different gcwq under us, we
2351 * are not going to wait.
db700897
ON
2352 */
2353 smp_rmb();
7a22ad75
TH
2354 cwq = get_work_cwq(work);
2355 if (unlikely(!cwq || gcwq != cwq->gcwq))
4690c4ab 2356 goto already_gone;
baf59022 2357 } else if (wait_executing) {
7a22ad75 2358 worker = find_worker_executing_work(gcwq, work);
affee4b2 2359 if (!worker)
4690c4ab 2360 goto already_gone;
7a22ad75 2361 cwq = worker->current_cwq;
baf59022
TH
2362 } else
2363 goto already_gone;
db700897 2364
baf59022 2365 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2366 spin_unlock_irq(&gcwq->lock);
7a22ad75
TH
2367
2368 lock_map_acquire(&cwq->wq->lockdep_map);
2369 lock_map_release(&cwq->wq->lockdep_map);
401a8d04 2370 return true;
4690c4ab 2371already_gone:
8b03ae3c 2372 spin_unlock_irq(&gcwq->lock);
401a8d04 2373 return false;
db700897 2374}
baf59022
TH
2375
2376/**
2377 * flush_work - wait for a work to finish executing the last queueing instance
2378 * @work: the work to flush
2379 *
2380 * Wait until @work has finished execution. This function considers
2381 * only the last queueing instance of @work. If @work has been
2382 * enqueued across different CPUs on a non-reentrant workqueue or on
2383 * multiple workqueues, @work might still be executing on return on
2384 * some of the CPUs from earlier queueing.
2385 *
2386 * If @work was queued only on a non-reentrant, ordered or unbound
2387 * workqueue, @work is guaranteed to be idle on return if it hasn't
2388 * been requeued since flush started.
2389 *
2390 * RETURNS:
2391 * %true if flush_work() waited for the work to finish execution,
2392 * %false if it was already idle.
2393 */
2394bool flush_work(struct work_struct *work)
2395{
2396 struct wq_barrier barr;
2397
2398 if (start_flush_work(work, &barr, true)) {
2399 wait_for_completion(&barr.done);
2400 destroy_work_on_stack(&barr.work);
2401 return true;
2402 } else
2403 return false;
2404}
db700897
ON
2405EXPORT_SYMBOL_GPL(flush_work);
2406
401a8d04
TH
2407static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2408{
2409 struct wq_barrier barr;
2410 struct worker *worker;
2411
2412 spin_lock_irq(&gcwq->lock);
2413
2414 worker = find_worker_executing_work(gcwq, work);
2415 if (unlikely(worker))
2416 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2417
2418 spin_unlock_irq(&gcwq->lock);
2419
2420 if (unlikely(worker)) {
2421 wait_for_completion(&barr.done);
2422 destroy_work_on_stack(&barr.work);
2423 return true;
2424 } else
2425 return false;
2426}
2427
2428static bool wait_on_work(struct work_struct *work)
2429{
2430 bool ret = false;
2431 int cpu;
2432
2433 might_sleep();
2434
2435 lock_map_acquire(&work->lockdep_map);
2436 lock_map_release(&work->lockdep_map);
2437
2438 for_each_gcwq_cpu(cpu)
2439 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2440 return ret;
2441}
2442
09383498
TH
2443/**
2444 * flush_work_sync - wait until a work has finished execution
2445 * @work: the work to flush
2446 *
2447 * Wait until @work has finished execution. On return, it's
2448 * guaranteed that all queueing instances of @work which happened
2449 * before this function is called are finished. In other words, if
2450 * @work hasn't been requeued since this function was called, @work is
2451 * guaranteed to be idle on return.
2452 *
2453 * RETURNS:
2454 * %true if flush_work_sync() waited for the work to finish execution,
2455 * %false if it was already idle.
2456 */
2457bool flush_work_sync(struct work_struct *work)
2458{
2459 struct wq_barrier barr;
2460 bool pending, waited;
2461
2462 /* we'll wait for executions separately, queue barr only if pending */
2463 pending = start_flush_work(work, &barr, false);
2464
2465 /* wait for executions to finish */
2466 waited = wait_on_work(work);
2467
2468 /* wait for the pending one */
2469 if (pending) {
2470 wait_for_completion(&barr.done);
2471 destroy_work_on_stack(&barr.work);
2472 }
2473
2474 return pending || waited;
2475}
2476EXPORT_SYMBOL_GPL(flush_work_sync);
2477
6e84d644 2478/*
1f1f642e 2479 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2480 * so this work can't be re-armed in any way.
2481 */
2482static int try_to_grab_pending(struct work_struct *work)
2483{
8b03ae3c 2484 struct global_cwq *gcwq;
1f1f642e 2485 int ret = -1;
6e84d644 2486
22df02bb 2487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2488 return 0;
6e84d644
ON
2489
2490 /*
2491 * The queueing is in progress, or it is already queued. Try to
2492 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2493 */
7a22ad75
TH
2494 gcwq = get_work_gcwq(work);
2495 if (!gcwq)
6e84d644
ON
2496 return ret;
2497
8b03ae3c 2498 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2499 if (!list_empty(&work->entry)) {
2500 /*
7a22ad75 2501 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2502 * In that case we must see the new value after rmb(), see
2503 * insert_work()->wmb().
2504 */
2505 smp_rmb();
7a22ad75 2506 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2507 debug_work_deactivate(work);
6e84d644 2508 list_del_init(&work->entry);
7a22ad75 2509 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2510 get_work_color(work),
2511 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2512 ret = 1;
2513 }
2514 }
8b03ae3c 2515 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2516
2517 return ret;
2518}
2519
401a8d04 2520static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2521 struct timer_list* timer)
2522{
2523 int ret;
2524
2525 do {
2526 ret = (timer && likely(del_timer(timer)));
2527 if (!ret)
2528 ret = try_to_grab_pending(work);
2529 wait_on_work(work);
2530 } while (unlikely(ret < 0));
2531
7a22ad75 2532 clear_work_data(work);
1f1f642e
ON
2533 return ret;
2534}
2535
6e84d644 2536/**
401a8d04
TH
2537 * cancel_work_sync - cancel a work and wait for it to finish
2538 * @work: the work to cancel
6e84d644 2539 *
401a8d04
TH
2540 * Cancel @work and wait for its execution to finish. This function
2541 * can be used even if the work re-queues itself or migrates to
2542 * another workqueue. On return from this function, @work is
2543 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2544 *
401a8d04
TH
2545 * cancel_work_sync(&delayed_work->work) must not be used for
2546 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2547 *
401a8d04 2548 * The caller must ensure that the workqueue on which @work was last
6e84d644 2549 * queued can't be destroyed before this function returns.
401a8d04
TH
2550 *
2551 * RETURNS:
2552 * %true if @work was pending, %false otherwise.
6e84d644 2553 */
401a8d04 2554bool cancel_work_sync(struct work_struct *work)
6e84d644 2555{
1f1f642e 2556 return __cancel_work_timer(work, NULL);
b89deed3 2557}
28e53bdd 2558EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2559
6e84d644 2560/**
401a8d04
TH
2561 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2562 * @dwork: the delayed work to flush
6e84d644 2563 *
401a8d04
TH
2564 * Delayed timer is cancelled and the pending work is queued for
2565 * immediate execution. Like flush_work(), this function only
2566 * considers the last queueing instance of @dwork.
1f1f642e 2567 *
401a8d04
TH
2568 * RETURNS:
2569 * %true if flush_work() waited for the work to finish execution,
2570 * %false if it was already idle.
6e84d644 2571 */
401a8d04
TH
2572bool flush_delayed_work(struct delayed_work *dwork)
2573{
2574 if (del_timer_sync(&dwork->timer))
2575 __queue_work(raw_smp_processor_id(),
2576 get_work_cwq(&dwork->work)->wq, &dwork->work);
2577 return flush_work(&dwork->work);
2578}
2579EXPORT_SYMBOL(flush_delayed_work);
2580
09383498
TH
2581/**
2582 * flush_delayed_work_sync - wait for a dwork to finish
2583 * @dwork: the delayed work to flush
2584 *
2585 * Delayed timer is cancelled and the pending work is queued for
2586 * execution immediately. Other than timer handling, its behavior
2587 * is identical to flush_work_sync().
2588 *
2589 * RETURNS:
2590 * %true if flush_work_sync() waited for the work to finish execution,
2591 * %false if it was already idle.
2592 */
2593bool flush_delayed_work_sync(struct delayed_work *dwork)
2594{
2595 if (del_timer_sync(&dwork->timer))
2596 __queue_work(raw_smp_processor_id(),
2597 get_work_cwq(&dwork->work)->wq, &dwork->work);
2598 return flush_work_sync(&dwork->work);
2599}
2600EXPORT_SYMBOL(flush_delayed_work_sync);
2601
401a8d04
TH
2602/**
2603 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2604 * @dwork: the delayed work cancel
2605 *
2606 * This is cancel_work_sync() for delayed works.
2607 *
2608 * RETURNS:
2609 * %true if @dwork was pending, %false otherwise.
2610 */
2611bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2612{
1f1f642e 2613 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2614}
f5a421a4 2615EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2616
0fcb78c2
REB
2617/**
2618 * schedule_work - put work task in global workqueue
2619 * @work: job to be done
2620 *
5b0f437d
BVA
2621 * Returns zero if @work was already on the kernel-global workqueue and
2622 * non-zero otherwise.
2623 *
2624 * This puts a job in the kernel-global workqueue if it was not already
2625 * queued and leaves it in the same position on the kernel-global
2626 * workqueue otherwise.
0fcb78c2 2627 */
7ad5b3a5 2628int schedule_work(struct work_struct *work)
1da177e4 2629{
d320c038 2630 return queue_work(system_wq, work);
1da177e4 2631}
ae90dd5d 2632EXPORT_SYMBOL(schedule_work);
1da177e4 2633
c1a220e7
ZR
2634/*
2635 * schedule_work_on - put work task on a specific cpu
2636 * @cpu: cpu to put the work task on
2637 * @work: job to be done
2638 *
2639 * This puts a job on a specific cpu
2640 */
2641int schedule_work_on(int cpu, struct work_struct *work)
2642{
d320c038 2643 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2644}
2645EXPORT_SYMBOL(schedule_work_on);
2646
0fcb78c2
REB
2647/**
2648 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2649 * @dwork: job to be done
2650 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2651 *
2652 * After waiting for a given time this puts a job in the kernel-global
2653 * workqueue.
2654 */
7ad5b3a5 2655int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 2656 unsigned long delay)
1da177e4 2657{
d320c038 2658 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2659}
ae90dd5d 2660EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2661
0fcb78c2
REB
2662/**
2663 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2664 * @cpu: cpu to use
52bad64d 2665 * @dwork: job to be done
0fcb78c2
REB
2666 * @delay: number of jiffies to wait
2667 *
2668 * After waiting for a given time this puts a job in the kernel-global
2669 * workqueue on the specified CPU.
2670 */
1da177e4 2671int schedule_delayed_work_on(int cpu,
52bad64d 2672 struct delayed_work *dwork, unsigned long delay)
1da177e4 2673{
d320c038 2674 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2675}
ae90dd5d 2676EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2677
b6136773
AM
2678/**
2679 * schedule_on_each_cpu - call a function on each online CPU from keventd
2680 * @func: the function to call
b6136773
AM
2681 *
2682 * Returns zero on success.
2683 * Returns -ve errno on failure.
2684 *
b6136773
AM
2685 * schedule_on_each_cpu() is very slow.
2686 */
65f27f38 2687int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2688{
2689 int cpu;
38f51568 2690 struct work_struct __percpu *works;
15316ba8 2691
b6136773
AM
2692 works = alloc_percpu(struct work_struct);
2693 if (!works)
15316ba8 2694 return -ENOMEM;
b6136773 2695
93981800
TH
2696 get_online_cpus();
2697
15316ba8 2698 for_each_online_cpu(cpu) {
9bfb1839
IM
2699 struct work_struct *work = per_cpu_ptr(works, cpu);
2700
2701 INIT_WORK(work, func);
b71ab8c2 2702 schedule_work_on(cpu, work);
65a64464 2703 }
93981800
TH
2704
2705 for_each_online_cpu(cpu)
2706 flush_work(per_cpu_ptr(works, cpu));
2707
95402b38 2708 put_online_cpus();
b6136773 2709 free_percpu(works);
15316ba8
CL
2710 return 0;
2711}
2712
eef6a7d5
AS
2713/**
2714 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2715 *
2716 * Forces execution of the kernel-global workqueue and blocks until its
2717 * completion.
2718 *
2719 * Think twice before calling this function! It's very easy to get into
2720 * trouble if you don't take great care. Either of the following situations
2721 * will lead to deadlock:
2722 *
2723 * One of the work items currently on the workqueue needs to acquire
2724 * a lock held by your code or its caller.
2725 *
2726 * Your code is running in the context of a work routine.
2727 *
2728 * They will be detected by lockdep when they occur, but the first might not
2729 * occur very often. It depends on what work items are on the workqueue and
2730 * what locks they need, which you have no control over.
2731 *
2732 * In most situations flushing the entire workqueue is overkill; you merely
2733 * need to know that a particular work item isn't queued and isn't running.
2734 * In such cases you should use cancel_delayed_work_sync() or
2735 * cancel_work_sync() instead.
2736 */
1da177e4
LT
2737void flush_scheduled_work(void)
2738{
d320c038 2739 flush_workqueue(system_wq);
1da177e4 2740}
ae90dd5d 2741EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2742
1fa44eca
JB
2743/**
2744 * execute_in_process_context - reliably execute the routine with user context
2745 * @fn: the function to execute
1fa44eca
JB
2746 * @ew: guaranteed storage for the execute work structure (must
2747 * be available when the work executes)
2748 *
2749 * Executes the function immediately if process context is available,
2750 * otherwise schedules the function for delayed execution.
2751 *
2752 * Returns: 0 - function was executed
2753 * 1 - function was scheduled for execution
2754 */
65f27f38 2755int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2756{
2757 if (!in_interrupt()) {
65f27f38 2758 fn(&ew->work);
1fa44eca
JB
2759 return 0;
2760 }
2761
65f27f38 2762 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2763 schedule_work(&ew->work);
2764
2765 return 1;
2766}
2767EXPORT_SYMBOL_GPL(execute_in_process_context);
2768
1da177e4
LT
2769int keventd_up(void)
2770{
d320c038 2771 return system_wq != NULL;
1da177e4
LT
2772}
2773
bdbc5dd7 2774static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 2775{
65a64464 2776 /*
0f900049
TH
2777 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2778 * Make sure that the alignment isn't lower than that of
2779 * unsigned long long.
65a64464 2780 */
0f900049
TH
2781 const size_t size = sizeof(struct cpu_workqueue_struct);
2782 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2783 __alignof__(unsigned long long));
931ac77e
TH
2784#ifdef CONFIG_SMP
2785 bool percpu = !(wq->flags & WQ_UNBOUND);
2786#else
2787 bool percpu = false;
2788#endif
65a64464 2789
931ac77e 2790 if (percpu)
f3421797 2791 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 2792 else {
f3421797
TH
2793 void *ptr;
2794
2795 /*
2796 * Allocate enough room to align cwq and put an extra
2797 * pointer at the end pointing back to the originally
2798 * allocated pointer which will be used for free.
2799 */
2800 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2801 if (ptr) {
2802 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2803 *(void **)(wq->cpu_wq.single + 1) = ptr;
2804 }
bdbc5dd7 2805 }
f3421797 2806
0f900049 2807 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
2808 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2809 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
2810}
2811
bdbc5dd7 2812static void free_cwqs(struct workqueue_struct *wq)
0f900049 2813{
931ac77e
TH
2814#ifdef CONFIG_SMP
2815 bool percpu = !(wq->flags & WQ_UNBOUND);
2816#else
2817 bool percpu = false;
2818#endif
2819
2820 if (percpu)
f3421797
TH
2821 free_percpu(wq->cpu_wq.pcpu);
2822 else if (wq->cpu_wq.single) {
2823 /* the pointer to free is stored right after the cwq */
bdbc5dd7 2824 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 2825 }
0f900049
TH
2826}
2827
f3421797
TH
2828static int wq_clamp_max_active(int max_active, unsigned int flags,
2829 const char *name)
b71ab8c2 2830{
f3421797
TH
2831 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2832
2833 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
2834 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2835 "is out of range, clamping between %d and %d\n",
f3421797 2836 max_active, name, 1, lim);
b71ab8c2 2837
f3421797 2838 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
2839}
2840
d320c038
TH
2841struct workqueue_struct *__alloc_workqueue_key(const char *name,
2842 unsigned int flags,
2843 int max_active,
2844 struct lock_class_key *key,
2845 const char *lock_name)
1da177e4 2846{
1da177e4 2847 struct workqueue_struct *wq;
c34056a3 2848 unsigned int cpu;
1da177e4 2849
6370a6ad
TH
2850 /*
2851 * Workqueues which may be used during memory reclaim should
2852 * have a rescuer to guarantee forward progress.
2853 */
2854 if (flags & WQ_MEM_RECLAIM)
2855 flags |= WQ_RESCUER;
2856
f3421797
TH
2857 /*
2858 * Unbound workqueues aren't concurrency managed and should be
2859 * dispatched to workers immediately.
2860 */
2861 if (flags & WQ_UNBOUND)
2862 flags |= WQ_HIGHPRI;
2863
d320c038 2864 max_active = max_active ?: WQ_DFL_ACTIVE;
f3421797 2865 max_active = wq_clamp_max_active(max_active, flags, name);
1e19ffc6 2866
3af24433
ON
2867 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2868 if (!wq)
4690c4ab 2869 goto err;
3af24433 2870
97e37d7b 2871 wq->flags = flags;
a0a1a5fd 2872 wq->saved_max_active = max_active;
73f53c4a
TH
2873 mutex_init(&wq->flush_mutex);
2874 atomic_set(&wq->nr_cwqs_to_flush, 0);
2875 INIT_LIST_HEAD(&wq->flusher_queue);
2876 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 2877
3af24433 2878 wq->name = name;
eb13ba87 2879 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 2880 INIT_LIST_HEAD(&wq->list);
3af24433 2881
bdbc5dd7
TH
2882 if (alloc_cwqs(wq) < 0)
2883 goto err;
2884
f3421797 2885 for_each_cwq_cpu(cpu, wq) {
1537663f 2886 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 2887 struct global_cwq *gcwq = get_gcwq(cpu);
1537663f 2888
0f900049 2889 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
8b03ae3c 2890 cwq->gcwq = gcwq;
c34056a3 2891 cwq->wq = wq;
73f53c4a 2892 cwq->flush_color = -1;
1e19ffc6 2893 cwq->max_active = max_active;
1e19ffc6 2894 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 2895 }
1537663f 2896
e22bee78
TH
2897 if (flags & WQ_RESCUER) {
2898 struct worker *rescuer;
2899
f2e005aa 2900 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
2901 goto err;
2902
2903 wq->rescuer = rescuer = alloc_worker();
2904 if (!rescuer)
2905 goto err;
2906
2907 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2908 if (IS_ERR(rescuer->task))
2909 goto err;
2910
e22bee78
TH
2911 rescuer->task->flags |= PF_THREAD_BOUND;
2912 wake_up_process(rescuer->task);
3af24433
ON
2913 }
2914
a0a1a5fd
TH
2915 /*
2916 * workqueue_lock protects global freeze state and workqueues
2917 * list. Grab it, set max_active accordingly and add the new
2918 * workqueue to workqueues list.
2919 */
1537663f 2920 spin_lock(&workqueue_lock);
a0a1a5fd
TH
2921
2922 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
f3421797 2923 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
2924 get_cwq(cpu, wq)->max_active = 0;
2925
1537663f 2926 list_add(&wq->list, &workqueues);
a0a1a5fd 2927
1537663f
TH
2928 spin_unlock(&workqueue_lock);
2929
3af24433 2930 return wq;
4690c4ab
TH
2931err:
2932 if (wq) {
bdbc5dd7 2933 free_cwqs(wq);
f2e005aa 2934 free_mayday_mask(wq->mayday_mask);
e22bee78 2935 kfree(wq->rescuer);
4690c4ab
TH
2936 kfree(wq);
2937 }
2938 return NULL;
3af24433 2939}
d320c038 2940EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 2941
3af24433
ON
2942/**
2943 * destroy_workqueue - safely terminate a workqueue
2944 * @wq: target workqueue
2945 *
2946 * Safely destroy a workqueue. All work currently pending will be done first.
2947 */
2948void destroy_workqueue(struct workqueue_struct *wq)
2949{
c8e55f36 2950 unsigned int cpu;
3af24433 2951
e41e704b 2952 wq->flags |= WQ_DYING;
a0a1a5fd
TH
2953 flush_workqueue(wq);
2954
2955 /*
2956 * wq list is used to freeze wq, remove from list after
2957 * flushing is complete in case freeze races us.
2958 */
95402b38 2959 spin_lock(&workqueue_lock);
b1f4ec17 2960 list_del(&wq->list);
95402b38 2961 spin_unlock(&workqueue_lock);
3af24433 2962
e22bee78 2963 /* sanity check */
f3421797 2964 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
2965 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2966 int i;
2967
73f53c4a
TH
2968 for (i = 0; i < WORK_NR_COLORS; i++)
2969 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
2970 BUG_ON(cwq->nr_active);
2971 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 2972 }
9b41ea72 2973
e22bee78
TH
2974 if (wq->flags & WQ_RESCUER) {
2975 kthread_stop(wq->rescuer->task);
f2e005aa 2976 free_mayday_mask(wq->mayday_mask);
8d9df9f0 2977 kfree(wq->rescuer);
e22bee78
TH
2978 }
2979
bdbc5dd7 2980 free_cwqs(wq);
3af24433
ON
2981 kfree(wq);
2982}
2983EXPORT_SYMBOL_GPL(destroy_workqueue);
2984
dcd989cb
TH
2985/**
2986 * workqueue_set_max_active - adjust max_active of a workqueue
2987 * @wq: target workqueue
2988 * @max_active: new max_active value.
2989 *
2990 * Set max_active of @wq to @max_active.
2991 *
2992 * CONTEXT:
2993 * Don't call from IRQ context.
2994 */
2995void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2996{
2997 unsigned int cpu;
2998
f3421797 2999 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3000
3001 spin_lock(&workqueue_lock);
3002
3003 wq->saved_max_active = max_active;
3004
f3421797 3005 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3006 struct global_cwq *gcwq = get_gcwq(cpu);
3007
3008 spin_lock_irq(&gcwq->lock);
3009
3010 if (!(wq->flags & WQ_FREEZEABLE) ||
3011 !(gcwq->flags & GCWQ_FREEZING))
3012 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3013
dcd989cb 3014 spin_unlock_irq(&gcwq->lock);
65a64464 3015 }
93981800 3016
dcd989cb 3017 spin_unlock(&workqueue_lock);
15316ba8 3018}
dcd989cb 3019EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3020
eef6a7d5 3021/**
dcd989cb
TH
3022 * workqueue_congested - test whether a workqueue is congested
3023 * @cpu: CPU in question
3024 * @wq: target workqueue
eef6a7d5 3025 *
dcd989cb
TH
3026 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3027 * no synchronization around this function and the test result is
3028 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3029 *
dcd989cb
TH
3030 * RETURNS:
3031 * %true if congested, %false otherwise.
eef6a7d5 3032 */
dcd989cb 3033bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3034{
dcd989cb
TH
3035 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3036
3037 return !list_empty(&cwq->delayed_works);
1da177e4 3038}
dcd989cb 3039EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3040
1fa44eca 3041/**
dcd989cb
TH
3042 * work_cpu - return the last known associated cpu for @work
3043 * @work: the work of interest
1fa44eca 3044 *
dcd989cb 3045 * RETURNS:
bdbc5dd7 3046 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3047 */
dcd989cb 3048unsigned int work_cpu(struct work_struct *work)
1fa44eca 3049{
dcd989cb 3050 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3051
bdbc5dd7 3052 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3053}
dcd989cb 3054EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3055
dcd989cb
TH
3056/**
3057 * work_busy - test whether a work is currently pending or running
3058 * @work: the work to be tested
3059 *
3060 * Test whether @work is currently pending or running. There is no
3061 * synchronization around this function and the test result is
3062 * unreliable and only useful as advisory hints or for debugging.
3063 * Especially for reentrant wqs, the pending state might hide the
3064 * running state.
3065 *
3066 * RETURNS:
3067 * OR'd bitmask of WORK_BUSY_* bits.
3068 */
3069unsigned int work_busy(struct work_struct *work)
1da177e4 3070{
dcd989cb
TH
3071 struct global_cwq *gcwq = get_work_gcwq(work);
3072 unsigned long flags;
3073 unsigned int ret = 0;
1da177e4 3074
dcd989cb
TH
3075 if (!gcwq)
3076 return false;
1da177e4 3077
dcd989cb 3078 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3079
dcd989cb
TH
3080 if (work_pending(work))
3081 ret |= WORK_BUSY_PENDING;
3082 if (find_worker_executing_work(gcwq, work))
3083 ret |= WORK_BUSY_RUNNING;
1da177e4 3084
dcd989cb 3085 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3086
dcd989cb 3087 return ret;
1da177e4 3088}
dcd989cb 3089EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3090
db7bccf4
TH
3091/*
3092 * CPU hotplug.
3093 *
e22bee78
TH
3094 * There are two challenges in supporting CPU hotplug. Firstly, there
3095 * are a lot of assumptions on strong associations among work, cwq and
3096 * gcwq which make migrating pending and scheduled works very
3097 * difficult to implement without impacting hot paths. Secondly,
3098 * gcwqs serve mix of short, long and very long running works making
3099 * blocked draining impractical.
3100 *
3101 * This is solved by allowing a gcwq to be detached from CPU, running
3102 * it with unbound (rogue) workers and allowing it to be reattached
3103 * later if the cpu comes back online. A separate thread is created
3104 * to govern a gcwq in such state and is called the trustee of the
3105 * gcwq.
db7bccf4
TH
3106 *
3107 * Trustee states and their descriptions.
3108 *
3109 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3110 * new trustee is started with this state.
3111 *
3112 * IN_CHARGE Once started, trustee will enter this state after
e22bee78
TH
3113 * assuming the manager role and making all existing
3114 * workers rogue. DOWN_PREPARE waits for trustee to
3115 * enter this state. After reaching IN_CHARGE, trustee
3116 * tries to execute the pending worklist until it's empty
3117 * and the state is set to BUTCHER, or the state is set
3118 * to RELEASE.
db7bccf4
TH
3119 *
3120 * BUTCHER Command state which is set by the cpu callback after
3121 * the cpu has went down. Once this state is set trustee
3122 * knows that there will be no new works on the worklist
3123 * and once the worklist is empty it can proceed to
3124 * killing idle workers.
3125 *
3126 * RELEASE Command state which is set by the cpu callback if the
3127 * cpu down has been canceled or it has come online
3128 * again. After recognizing this state, trustee stops
e22bee78
TH
3129 * trying to drain or butcher and clears ROGUE, rebinds
3130 * all remaining workers back to the cpu and releases
3131 * manager role.
db7bccf4
TH
3132 *
3133 * DONE Trustee will enter this state after BUTCHER or RELEASE
3134 * is complete.
3135 *
3136 * trustee CPU draining
3137 * took over down complete
3138 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3139 * | | ^
3140 * | CPU is back online v return workers |
3141 * ----------------> RELEASE --------------
3142 */
1da177e4 3143
db7bccf4
TH
3144/**
3145 * trustee_wait_event_timeout - timed event wait for trustee
3146 * @cond: condition to wait for
3147 * @timeout: timeout in jiffies
3148 *
3149 * wait_event_timeout() for trustee to use. Handles locking and
3150 * checks for RELEASE request.
3151 *
3152 * CONTEXT:
3153 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3154 * multiple times. To be used by trustee.
3155 *
3156 * RETURNS:
3157 * Positive indicating left time if @cond is satisfied, 0 if timed
3158 * out, -1 if canceled.
3159 */
3160#define trustee_wait_event_timeout(cond, timeout) ({ \
3161 long __ret = (timeout); \
3162 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3163 __ret) { \
3164 spin_unlock_irq(&gcwq->lock); \
3165 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3166 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3167 __ret); \
3168 spin_lock_irq(&gcwq->lock); \
3169 } \
3170 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3171})
3af24433 3172
db7bccf4
TH
3173/**
3174 * trustee_wait_event - event wait for trustee
3175 * @cond: condition to wait for
3176 *
3177 * wait_event() for trustee to use. Automatically handles locking and
3178 * checks for CANCEL request.
3179 *
3180 * CONTEXT:
3181 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3182 * multiple times. To be used by trustee.
3183 *
3184 * RETURNS:
3185 * 0 if @cond is satisfied, -1 if canceled.
3186 */
3187#define trustee_wait_event(cond) ({ \
3188 long __ret1; \
3189 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3190 __ret1 < 0 ? -1 : 0; \
3191})
1da177e4 3192
db7bccf4 3193static int __cpuinit trustee_thread(void *__gcwq)
3af24433 3194{
db7bccf4
TH
3195 struct global_cwq *gcwq = __gcwq;
3196 struct worker *worker;
e22bee78 3197 struct work_struct *work;
db7bccf4 3198 struct hlist_node *pos;
e22bee78 3199 long rc;
db7bccf4 3200 int i;
3af24433 3201
db7bccf4
TH
3202 BUG_ON(gcwq->cpu != smp_processor_id());
3203
3204 spin_lock_irq(&gcwq->lock);
3af24433 3205 /*
e22bee78
TH
3206 * Claim the manager position and make all workers rogue.
3207 * Trustee must be bound to the target cpu and can't be
3208 * cancelled.
3af24433 3209 */
db7bccf4 3210 BUG_ON(gcwq->cpu != smp_processor_id());
e22bee78
TH
3211 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3212 BUG_ON(rc < 0);
3af24433 3213
e22bee78 3214 gcwq->flags |= GCWQ_MANAGING_WORKERS;
e1d8aa9f 3215
db7bccf4 3216 list_for_each_entry(worker, &gcwq->idle_list, entry)
cb444766 3217 worker->flags |= WORKER_ROGUE;
3af24433 3218
db7bccf4 3219 for_each_busy_worker(worker, i, pos, gcwq)
cb444766 3220 worker->flags |= WORKER_ROGUE;
06ba38a9 3221
e22bee78
TH
3222 /*
3223 * Call schedule() so that we cross rq->lock and thus can
3224 * guarantee sched callbacks see the rogue flag. This is
3225 * necessary as scheduler callbacks may be invoked from other
3226 * cpus.
3227 */
3228 spin_unlock_irq(&gcwq->lock);
3229 schedule();
3230 spin_lock_irq(&gcwq->lock);
06ba38a9 3231
e22bee78 3232 /*
cb444766
TH
3233 * Sched callbacks are disabled now. Zap nr_running. After
3234 * this, nr_running stays zero and need_more_worker() and
3235 * keep_working() are always true as long as the worklist is
3236 * not empty.
e22bee78 3237 */
cb444766 3238 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
1da177e4 3239
e22bee78
TH
3240 spin_unlock_irq(&gcwq->lock);
3241 del_timer_sync(&gcwq->idle_timer);
3242 spin_lock_irq(&gcwq->lock);
3af24433 3243
db7bccf4
TH
3244 /*
3245 * We're now in charge. Notify and proceed to drain. We need
3246 * to keep the gcwq running during the whole CPU down
3247 * procedure as other cpu hotunplug callbacks may need to
3248 * flush currently running tasks.
3249 */
3250 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3251 wake_up_all(&gcwq->trustee_wait);
3af24433 3252
db7bccf4
TH
3253 /*
3254 * The original cpu is in the process of dying and may go away
3255 * anytime now. When that happens, we and all workers would
e22bee78
TH
3256 * be migrated to other cpus. Try draining any left work. We
3257 * want to get it over with ASAP - spam rescuers, wake up as
3258 * many idlers as necessary and create new ones till the
3259 * worklist is empty. Note that if the gcwq is frozen, there
3260 * may be frozen works in freezeable cwqs. Don't declare
3261 * completion while frozen.
db7bccf4
TH
3262 */
3263 while (gcwq->nr_workers != gcwq->nr_idle ||
3264 gcwq->flags & GCWQ_FREEZING ||
3265 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
e22bee78
TH
3266 int nr_works = 0;
3267
3268 list_for_each_entry(work, &gcwq->worklist, entry) {
3269 send_mayday(work);
3270 nr_works++;
3271 }
3af24433 3272
e22bee78
TH
3273 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3274 if (!nr_works--)
3275 break;
3276 wake_up_process(worker->task);
3277 }
3278
3279 if (need_to_create_worker(gcwq)) {
3280 spin_unlock_irq(&gcwq->lock);
3281 worker = create_worker(gcwq, false);
3282 spin_lock_irq(&gcwq->lock);
3283 if (worker) {
cb444766 3284 worker->flags |= WORKER_ROGUE;
e22bee78
TH
3285 start_worker(worker);
3286 }
1da177e4 3287 }
3af24433 3288
db7bccf4
TH
3289 /* give a breather */
3290 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3291 break;
3af24433 3292 }
1da177e4 3293
14441960 3294 /*
e22bee78
TH
3295 * Either all works have been scheduled and cpu is down, or
3296 * cpu down has already been canceled. Wait for and butcher
3297 * all workers till we're canceled.
14441960 3298 */
e22bee78
TH
3299 do {
3300 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3301 while (!list_empty(&gcwq->idle_list))
3302 destroy_worker(list_first_entry(&gcwq->idle_list,
3303 struct worker, entry));
3304 } while (gcwq->nr_workers && rc >= 0);
4e6045f1 3305
14441960 3306 /*
e22bee78
TH
3307 * At this point, either draining has completed and no worker
3308 * is left, or cpu down has been canceled or the cpu is being
3309 * brought back up. There shouldn't be any idle one left.
3310 * Tell the remaining busy ones to rebind once it finishes the
3311 * currently scheduled works by scheduling the rebind_work.
14441960 3312 */
e22bee78
TH
3313 WARN_ON(!list_empty(&gcwq->idle_list));
3314
3315 for_each_busy_worker(worker, i, pos, gcwq) {
3316 struct work_struct *rebind_work = &worker->rebind_work;
3317
3318 /*
3319 * Rebind_work may race with future cpu hotplug
3320 * operations. Use a separate flag to mark that
3321 * rebinding is scheduled.
3322 */
cb444766
TH
3323 worker->flags |= WORKER_REBIND;
3324 worker->flags &= ~WORKER_ROGUE;
e22bee78
TH
3325
3326 /* queue rebind_work, wq doesn't matter, use the default one */
3327 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3328 work_data_bits(rebind_work)))
3329 continue;
3330
3331 debug_work_activate(rebind_work);
d320c038 3332 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
e22bee78
TH
3333 worker->scheduled.next,
3334 work_color_to_flags(WORK_NO_COLOR));
3335 }
3336
3337 /* relinquish manager role */
3338 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3339
db7bccf4
TH
3340 /* notify completion */
3341 gcwq->trustee = NULL;
3342 gcwq->trustee_state = TRUSTEE_DONE;
3343 wake_up_all(&gcwq->trustee_wait);
3344 spin_unlock_irq(&gcwq->lock);
3345 return 0;
3af24433
ON
3346}
3347
3348/**
db7bccf4
TH
3349 * wait_trustee_state - wait for trustee to enter the specified state
3350 * @gcwq: gcwq the trustee of interest belongs to
3351 * @state: target state to wait for
3af24433 3352 *
db7bccf4
TH
3353 * Wait for the trustee to reach @state. DONE is already matched.
3354 *
3355 * CONTEXT:
3356 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3357 * multiple times. To be used by cpu_callback.
3af24433 3358 */
db7bccf4 3359static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
06bd6ebf
NK
3360__releases(&gcwq->lock)
3361__acquires(&gcwq->lock)
3af24433 3362{
db7bccf4
TH
3363 if (!(gcwq->trustee_state == state ||
3364 gcwq->trustee_state == TRUSTEE_DONE)) {
3365 spin_unlock_irq(&gcwq->lock);
3366 __wait_event(gcwq->trustee_wait,
3367 gcwq->trustee_state == state ||
3368 gcwq->trustee_state == TRUSTEE_DONE);
3369 spin_lock_irq(&gcwq->lock);
3370 }
3af24433 3371}
3af24433
ON
3372
3373static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3374 unsigned long action,
3375 void *hcpu)
3376{
3377 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
3378 struct global_cwq *gcwq = get_gcwq(cpu);
3379 struct task_struct *new_trustee = NULL;
e22bee78 3380 struct worker *uninitialized_var(new_worker);
db7bccf4 3381 unsigned long flags;
3af24433 3382
8bb78442
RW
3383 action &= ~CPU_TASKS_FROZEN;
3384
3af24433 3385 switch (action) {
db7bccf4
TH
3386 case CPU_DOWN_PREPARE:
3387 new_trustee = kthread_create(trustee_thread, gcwq,
3388 "workqueue_trustee/%d\n", cpu);
3389 if (IS_ERR(new_trustee))
3390 return notifier_from_errno(PTR_ERR(new_trustee));
3391 kthread_bind(new_trustee, cpu);
e22bee78 3392 /* fall through */
3af24433 3393 case CPU_UP_PREPARE:
e22bee78
TH
3394 BUG_ON(gcwq->first_idle);
3395 new_worker = create_worker(gcwq, false);
3396 if (!new_worker) {
3397 if (new_trustee)
3398 kthread_stop(new_trustee);
3399 return NOTIFY_BAD;
3af24433 3400 }
1da177e4
LT
3401 }
3402
db7bccf4
TH
3403 /* some are called w/ irq disabled, don't disturb irq status */
3404 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 3405
00dfcaf7 3406 switch (action) {
db7bccf4
TH
3407 case CPU_DOWN_PREPARE:
3408 /* initialize trustee and tell it to acquire the gcwq */
3409 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3410 gcwq->trustee = new_trustee;
3411 gcwq->trustee_state = TRUSTEE_START;
3412 wake_up_process(gcwq->trustee);
3413 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
e22bee78
TH
3414 /* fall through */
3415 case CPU_UP_PREPARE:
3416 BUG_ON(gcwq->first_idle);
3417 gcwq->first_idle = new_worker;
3418 break;
3419
3420 case CPU_DYING:
3421 /*
3422 * Before this, the trustee and all workers except for
3423 * the ones which are still executing works from
3424 * before the last CPU down must be on the cpu. After
3425 * this, they'll all be diasporas.
3426 */
3427 gcwq->flags |= GCWQ_DISASSOCIATED;
db7bccf4
TH
3428 break;
3429
3da1c84c 3430 case CPU_POST_DEAD:
db7bccf4 3431 gcwq->trustee_state = TRUSTEE_BUTCHER;
e22bee78
TH
3432 /* fall through */
3433 case CPU_UP_CANCELED:
3434 destroy_worker(gcwq->first_idle);
3435 gcwq->first_idle = NULL;
db7bccf4
TH
3436 break;
3437
3438 case CPU_DOWN_FAILED:
3439 case CPU_ONLINE:
e22bee78 3440 gcwq->flags &= ~GCWQ_DISASSOCIATED;
db7bccf4
TH
3441 if (gcwq->trustee_state != TRUSTEE_DONE) {
3442 gcwq->trustee_state = TRUSTEE_RELEASE;
3443 wake_up_process(gcwq->trustee);
3444 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 3445 }
db7bccf4 3446
e22bee78
TH
3447 /*
3448 * Trustee is done and there might be no worker left.
3449 * Put the first_idle in and request a real manager to
3450 * take a look.
3451 */
3452 spin_unlock_irq(&gcwq->lock);
3453 kthread_bind(gcwq->first_idle->task, cpu);
3454 spin_lock_irq(&gcwq->lock);
3455 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3456 start_worker(gcwq->first_idle);
3457 gcwq->first_idle = NULL;
db7bccf4 3458 break;
00dfcaf7
ON
3459 }
3460
db7bccf4
TH
3461 spin_unlock_irqrestore(&gcwq->lock, flags);
3462
1537663f 3463 return notifier_from_errno(0);
1da177e4 3464}
1da177e4 3465
2d3854a3 3466#ifdef CONFIG_SMP
8ccad40d 3467
2d3854a3 3468struct work_for_cpu {
6b44003e 3469 struct completion completion;
2d3854a3
RR
3470 long (*fn)(void *);
3471 void *arg;
3472 long ret;
3473};
3474
6b44003e 3475static int do_work_for_cpu(void *_wfc)
2d3854a3 3476{
6b44003e 3477 struct work_for_cpu *wfc = _wfc;
2d3854a3 3478 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3479 complete(&wfc->completion);
3480 return 0;
2d3854a3
RR
3481}
3482
3483/**
3484 * work_on_cpu - run a function in user context on a particular cpu
3485 * @cpu: the cpu to run on
3486 * @fn: the function to run
3487 * @arg: the function arg
3488 *
31ad9081
RR
3489 * This will return the value @fn returns.
3490 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3491 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3492 */
3493long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3494{
6b44003e
AM
3495 struct task_struct *sub_thread;
3496 struct work_for_cpu wfc = {
3497 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3498 .fn = fn,
3499 .arg = arg,
3500 };
3501
3502 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3503 if (IS_ERR(sub_thread))
3504 return PTR_ERR(sub_thread);
3505 kthread_bind(sub_thread, cpu);
3506 wake_up_process(sub_thread);
3507 wait_for_completion(&wfc.completion);
2d3854a3
RR
3508 return wfc.ret;
3509}
3510EXPORT_SYMBOL_GPL(work_on_cpu);
3511#endif /* CONFIG_SMP */
3512
a0a1a5fd
TH
3513#ifdef CONFIG_FREEZER
3514
3515/**
3516 * freeze_workqueues_begin - begin freezing workqueues
3517 *
3518 * Start freezing workqueues. After this function returns, all
3519 * freezeable workqueues will queue new works to their frozen_works
7e11629d 3520 * list instead of gcwq->worklist.
a0a1a5fd
TH
3521 *
3522 * CONTEXT:
8b03ae3c 3523 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3524 */
3525void freeze_workqueues_begin(void)
3526{
a0a1a5fd
TH
3527 unsigned int cpu;
3528
3529 spin_lock(&workqueue_lock);
3530
3531 BUG_ON(workqueue_freezing);
3532 workqueue_freezing = true;
3533
f3421797 3534 for_each_gcwq_cpu(cpu) {
8b03ae3c 3535 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3536 struct workqueue_struct *wq;
8b03ae3c
TH
3537
3538 spin_lock_irq(&gcwq->lock);
3539
db7bccf4
TH
3540 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3541 gcwq->flags |= GCWQ_FREEZING;
3542
a0a1a5fd
TH
3543 list_for_each_entry(wq, &workqueues, list) {
3544 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3545
f3421797 3546 if (cwq && wq->flags & WQ_FREEZEABLE)
a0a1a5fd 3547 cwq->max_active = 0;
a0a1a5fd 3548 }
8b03ae3c
TH
3549
3550 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3551 }
3552
3553 spin_unlock(&workqueue_lock);
3554}
3555
3556/**
3557 * freeze_workqueues_busy - are freezeable workqueues still busy?
3558 *
3559 * Check whether freezing is complete. This function must be called
3560 * between freeze_workqueues_begin() and thaw_workqueues().
3561 *
3562 * CONTEXT:
3563 * Grabs and releases workqueue_lock.
3564 *
3565 * RETURNS:
3566 * %true if some freezeable workqueues are still busy. %false if
3567 * freezing is complete.
3568 */
3569bool freeze_workqueues_busy(void)
3570{
a0a1a5fd
TH
3571 unsigned int cpu;
3572 bool busy = false;
3573
3574 spin_lock(&workqueue_lock);
3575
3576 BUG_ON(!workqueue_freezing);
3577
f3421797 3578 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3579 struct workqueue_struct *wq;
a0a1a5fd
TH
3580 /*
3581 * nr_active is monotonically decreasing. It's safe
3582 * to peek without lock.
3583 */
3584 list_for_each_entry(wq, &workqueues, list) {
3585 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3586
f3421797 3587 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
a0a1a5fd
TH
3588 continue;
3589
3590 BUG_ON(cwq->nr_active < 0);
3591 if (cwq->nr_active) {
3592 busy = true;
3593 goto out_unlock;
3594 }
3595 }
3596 }
3597out_unlock:
3598 spin_unlock(&workqueue_lock);
3599 return busy;
3600}
3601
3602/**
3603 * thaw_workqueues - thaw workqueues
3604 *
3605 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3606 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3607 *
3608 * CONTEXT:
8b03ae3c 3609 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3610 */
3611void thaw_workqueues(void)
3612{
a0a1a5fd
TH
3613 unsigned int cpu;
3614
3615 spin_lock(&workqueue_lock);
3616
3617 if (!workqueue_freezing)
3618 goto out_unlock;
3619
f3421797 3620 for_each_gcwq_cpu(cpu) {
8b03ae3c 3621 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3622 struct workqueue_struct *wq;
8b03ae3c
TH
3623
3624 spin_lock_irq(&gcwq->lock);
3625
db7bccf4
TH
3626 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3627 gcwq->flags &= ~GCWQ_FREEZING;
3628
a0a1a5fd
TH
3629 list_for_each_entry(wq, &workqueues, list) {
3630 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3631
f3421797 3632 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
a0a1a5fd
TH
3633 continue;
3634
a0a1a5fd
TH
3635 /* restore max_active and repopulate worklist */
3636 cwq->max_active = wq->saved_max_active;
3637
3638 while (!list_empty(&cwq->delayed_works) &&
3639 cwq->nr_active < cwq->max_active)
3640 cwq_activate_first_delayed(cwq);
a0a1a5fd 3641 }
8b03ae3c 3642
e22bee78
TH
3643 wake_up_worker(gcwq);
3644
8b03ae3c 3645 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3646 }
3647
3648 workqueue_freezing = false;
3649out_unlock:
3650 spin_unlock(&workqueue_lock);
3651}
3652#endif /* CONFIG_FREEZER */
3653
6ee0578b 3654static int __init init_workqueues(void)
1da177e4 3655{
c34056a3 3656 unsigned int cpu;
c8e55f36 3657 int i;
c34056a3 3658
f6500947 3659 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
8b03ae3c
TH
3660
3661 /* initialize gcwqs */
f3421797 3662 for_each_gcwq_cpu(cpu) {
8b03ae3c
TH
3663 struct global_cwq *gcwq = get_gcwq(cpu);
3664
3665 spin_lock_init(&gcwq->lock);
7e11629d 3666 INIT_LIST_HEAD(&gcwq->worklist);
8b03ae3c 3667 gcwq->cpu = cpu;
477a3c33 3668 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3669
c8e55f36
TH
3670 INIT_LIST_HEAD(&gcwq->idle_list);
3671 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3672 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3673
e22bee78
TH
3674 init_timer_deferrable(&gcwq->idle_timer);
3675 gcwq->idle_timer.function = idle_worker_timeout;
3676 gcwq->idle_timer.data = (unsigned long)gcwq;
e7577c50 3677
e22bee78
TH
3678 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3679 (unsigned long)gcwq);
3680
8b03ae3c 3681 ida_init(&gcwq->worker_ida);
db7bccf4
TH
3682
3683 gcwq->trustee_state = TRUSTEE_DONE;
3684 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
3685 }
3686
e22bee78 3687 /* create the initial worker */
f3421797 3688 for_each_online_gcwq_cpu(cpu) {
e22bee78
TH
3689 struct global_cwq *gcwq = get_gcwq(cpu);
3690 struct worker *worker;
3691
477a3c33
TH
3692 if (cpu != WORK_CPU_UNBOUND)
3693 gcwq->flags &= ~GCWQ_DISASSOCIATED;
e22bee78
TH
3694 worker = create_worker(gcwq, true);
3695 BUG_ON(!worker);
3696 spin_lock_irq(&gcwq->lock);
3697 start_worker(worker);
3698 spin_unlock_irq(&gcwq->lock);
3699 }
3700
d320c038
TH
3701 system_wq = alloc_workqueue("events", 0, 0);
3702 system_long_wq = alloc_workqueue("events_long", 0, 0);
3703 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3704 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3705 WQ_UNBOUND_MAX_ACTIVE);
d320c038 3706 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
6ee0578b 3707 return 0;
1da177e4 3708}
6ee0578b 3709early_initcall(init_workqueues);