]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/trace/ring_buffer.c
ring-buffer: try to discard unneeded timestamps
[net-next-2.6.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
d1b182a8
SR
24/*
25 * The ring buffer header is special. We must manually up keep it.
26 */
27int ring_buffer_print_entry_header(struct trace_seq *s)
28{
29 int ret;
30
334d4169
LJ
31 ret = trace_seq_printf(s, "# compressed entry header\n");
32 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
33 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
34 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
35 ret = trace_seq_printf(s, "\n");
36 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
37 RINGBUF_TYPE_PADDING);
38 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
40 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
41 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
42
43 return ret;
44}
45
5cc98548
SR
46/*
47 * The ring buffer is made up of a list of pages. A separate list of pages is
48 * allocated for each CPU. A writer may only write to a buffer that is
49 * associated with the CPU it is currently executing on. A reader may read
50 * from any per cpu buffer.
51 *
52 * The reader is special. For each per cpu buffer, the reader has its own
53 * reader page. When a reader has read the entire reader page, this reader
54 * page is swapped with another page in the ring buffer.
55 *
56 * Now, as long as the writer is off the reader page, the reader can do what
57 * ever it wants with that page. The writer will never write to that page
58 * again (as long as it is out of the ring buffer).
59 *
60 * Here's some silly ASCII art.
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |
65 * +------+ +---+ +---+ +---+
66 * | |-->| |-->| |
67 * +---+ +---+ +---+
68 * ^ |
69 * | |
70 * +---------------+
71 *
72 *
73 * +------+
74 * |reader| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * | |-->| |-->| |
78 * +---+ +---+ +---+
79 * ^ |
80 * | |
81 * +---------------+
82 *
83 *
84 * +------+
85 * |reader| RING BUFFER
86 * |page |------------------v
87 * +------+ +---+ +---+ +---+
88 * ^ | |-->| |-->| |
89 * | +---+ +---+ +---+
90 * | |
91 * | |
92 * +------------------------------+
93 *
94 *
95 * +------+
96 * |buffer| RING BUFFER
97 * |page |------------------v
98 * +------+ +---+ +---+ +---+
99 * ^ | | | |-->| |
100 * | New +---+ +---+ +---+
101 * | Reader------^ |
102 * | page |
103 * +------------------------------+
104 *
105 *
106 * After we make this swap, the reader can hand this page off to the splice
107 * code and be done with it. It can even allocate a new page if it needs to
108 * and swap that into the ring buffer.
109 *
110 * We will be using cmpxchg soon to make all this lockless.
111 *
112 */
113
033601a3
SR
114/*
115 * A fast way to enable or disable all ring buffers is to
116 * call tracing_on or tracing_off. Turning off the ring buffers
117 * prevents all ring buffers from being recorded to.
118 * Turning this switch on, makes it OK to write to the
119 * ring buffer, if the ring buffer is enabled itself.
120 *
121 * There's three layers that must be on in order to write
122 * to the ring buffer.
123 *
124 * 1) This global flag must be set.
125 * 2) The ring buffer must be enabled for recording.
126 * 3) The per cpu buffer must be enabled for recording.
127 *
128 * In case of an anomaly, this global flag has a bit set that
129 * will permantly disable all ring buffers.
130 */
131
132/*
133 * Global flag to disable all recording to ring buffers
134 * This has two bits: ON, DISABLED
135 *
136 * ON DISABLED
137 * ---- ----------
138 * 0 0 : ring buffers are off
139 * 1 0 : ring buffers are on
140 * X 1 : ring buffers are permanently disabled
141 */
142
143enum {
144 RB_BUFFERS_ON_BIT = 0,
145 RB_BUFFERS_DISABLED_BIT = 1,
146};
147
148enum {
149 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
150 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
151};
152
5e39841c 153static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 154
474d32b6
SR
155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
a3583244
SR
157/**
158 * tracing_on - enable all tracing buffers
159 *
160 * This function enables all tracing buffers that may have been
161 * disabled with tracing_off.
162 */
163void tracing_on(void)
164{
033601a3 165 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 166}
c4f50183 167EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
168
169/**
170 * tracing_off - turn off all tracing buffers
171 *
172 * This function stops all tracing buffers from recording data.
173 * It does not disable any overhead the tracers themselves may
174 * be causing. This function simply causes all recording to
175 * the ring buffers to fail.
176 */
177void tracing_off(void)
178{
033601a3
SR
179 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180}
c4f50183 181EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
182
183/**
184 * tracing_off_permanent - permanently disable ring buffers
185 *
186 * This function, once called, will disable all ring buffers
c3706f00 187 * permanently.
033601a3
SR
188 */
189void tracing_off_permanent(void)
190{
191 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
192}
193
988ae9d6
SR
194/**
195 * tracing_is_on - show state of ring buffers enabled
196 */
197int tracing_is_on(void)
198{
199 return ring_buffer_flags == RB_BUFFERS_ON;
200}
201EXPORT_SYMBOL_GPL(tracing_is_on);
202
d06bbd66
IM
203#include "trace.h"
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169
LJ
207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
211
212enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
215};
216
2d622719
TZ
217static inline int rb_null_event(struct ring_buffer_event *event)
218{
334d4169
LJ
219 return event->type_len == RINGBUF_TYPE_PADDING
220 && event->time_delta == 0;
2d622719
TZ
221}
222
223static inline int rb_discarded_event(struct ring_buffer_event *event)
224{
334d4169 225 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
2d622719
TZ
226}
227
228static void rb_event_set_padding(struct ring_buffer_event *event)
229{
334d4169 230 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
231 event->time_delta = 0;
232}
233
34a148bf 234static unsigned
2d622719 235rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
236{
237 unsigned length;
238
334d4169
LJ
239 if (event->type_len)
240 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
241 else
242 length = event->array[0];
243 return length + RB_EVNT_HDR_SIZE;
244}
245
246/* inline for ring buffer fast paths */
247static unsigned
248rb_event_length(struct ring_buffer_event *event)
249{
334d4169 250 switch (event->type_len) {
7a8e76a3 251 case RINGBUF_TYPE_PADDING:
2d622719
TZ
252 if (rb_null_event(event))
253 /* undefined */
254 return -1;
334d4169 255 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
256
257 case RINGBUF_TYPE_TIME_EXTEND:
258 return RB_LEN_TIME_EXTEND;
259
260 case RINGBUF_TYPE_TIME_STAMP:
261 return RB_LEN_TIME_STAMP;
262
263 case RINGBUF_TYPE_DATA:
2d622719 264 return rb_event_data_length(event);
7a8e76a3
SR
265 default:
266 BUG();
267 }
268 /* not hit */
269 return 0;
270}
271
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 */
276unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277{
465634ad 278 unsigned length = rb_event_length(event);
334d4169 279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
280 return length;
281 length -= RB_EVNT_HDR_SIZE;
282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283 length -= sizeof(event->array[0]);
284 return length;
7a8e76a3 285}
c4f50183 286EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
287
288/* inline for ring buffer fast paths */
34a148bf 289static void *
7a8e76a3
SR
290rb_event_data(struct ring_buffer_event *event)
291{
334d4169 292 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 293 /* If length is in len field, then array[0] has the data */
334d4169 294 if (event->type_len)
7a8e76a3
SR
295 return (void *)&event->array[0];
296 /* Otherwise length is in array[0] and array[1] has the data */
297 return (void *)&event->array[1];
298}
299
300/**
301 * ring_buffer_event_data - return the data of the event
302 * @event: the event to get the data from
303 */
304void *ring_buffer_event_data(struct ring_buffer_event *event)
305{
306 return rb_event_data(event);
307}
c4f50183 308EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
309
310#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 311 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
312
313#define TS_SHIFT 27
314#define TS_MASK ((1ULL << TS_SHIFT) - 1)
315#define TS_DELTA_TEST (~TS_MASK)
316
abc9b56d 317struct buffer_data_page {
e4c2ce82 318 u64 time_stamp; /* page time stamp */
c3706f00 319 local_t commit; /* write committed index */
abc9b56d
SR
320 unsigned char data[]; /* data of buffer page */
321};
322
323struct buffer_page {
778c55d4 324 struct list_head list; /* list of buffer pages */
abc9b56d 325 local_t write; /* index for next write */
6f807acd 326 unsigned read; /* index for next read */
778c55d4 327 local_t entries; /* entries on this page */
abc9b56d 328 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
329};
330
044fa782 331static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 332{
044fa782 333 local_set(&bpage->commit, 0);
abc9b56d
SR
334}
335
474d32b6
SR
336/**
337 * ring_buffer_page_len - the size of data on the page.
338 * @page: The page to read
339 *
340 * Returns the amount of data on the page, including buffer page header.
341 */
ef7a4a16
SR
342size_t ring_buffer_page_len(void *page)
343{
474d32b6
SR
344 return local_read(&((struct buffer_data_page *)page)->commit)
345 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
346}
347
ed56829c
SR
348/*
349 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350 * this issue out.
351 */
34a148bf 352static void free_buffer_page(struct buffer_page *bpage)
ed56829c 353{
34a148bf 354 free_page((unsigned long)bpage->page);
e4c2ce82 355 kfree(bpage);
ed56829c
SR
356}
357
7a8e76a3
SR
358/*
359 * We need to fit the time_stamp delta into 27 bits.
360 */
361static inline int test_time_stamp(u64 delta)
362{
363 if (delta & TS_DELTA_TEST)
364 return 1;
365 return 0;
366}
367
474d32b6 368#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 369
be957c44
SR
370/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
371#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
372
d1b182a8
SR
373int ring_buffer_print_page_header(struct trace_seq *s)
374{
375 struct buffer_data_page field;
376 int ret;
377
378 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 "offset:0;\tsize:%u;\n",
380 (unsigned int)sizeof(field.time_stamp));
381
382 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
383 "offset:%u;\tsize:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 (unsigned int)sizeof(field.commit));
386
387 ret = trace_seq_printf(s, "\tfield: char data;\t"
388 "offset:%u;\tsize:%u;\n",
389 (unsigned int)offsetof(typeof(field), data),
390 (unsigned int)BUF_PAGE_SIZE);
391
392 return ret;
393}
394
7a8e76a3
SR
395/*
396 * head_page == tail_page && head == tail then buffer is empty.
397 */
398struct ring_buffer_per_cpu {
399 int cpu;
400 struct ring_buffer *buffer;
f83c9d0f 401 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 402 raw_spinlock_t lock;
7a8e76a3
SR
403 struct lock_class_key lock_key;
404 struct list_head pages;
6f807acd
SR
405 struct buffer_page *head_page; /* read from head */
406 struct buffer_page *tail_page; /* write to tail */
c3706f00 407 struct buffer_page *commit_page; /* committed pages */
d769041f 408 struct buffer_page *reader_page;
f0d2c681
SR
409 unsigned long nmi_dropped;
410 unsigned long commit_overrun;
7a8e76a3 411 unsigned long overrun;
e4906eff
SR
412 unsigned long read;
413 local_t entries;
7a8e76a3
SR
414 u64 write_stamp;
415 u64 read_stamp;
416 atomic_t record_disabled;
417};
418
419struct ring_buffer {
7a8e76a3
SR
420 unsigned pages;
421 unsigned flags;
422 int cpus;
7a8e76a3 423 atomic_t record_disabled;
00f62f61 424 cpumask_var_t cpumask;
7a8e76a3
SR
425
426 struct mutex mutex;
427
428 struct ring_buffer_per_cpu **buffers;
554f786e 429
59222efe 430#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
431 struct notifier_block cpu_notify;
432#endif
37886f6a 433 u64 (*clock)(void);
7a8e76a3
SR
434};
435
436struct ring_buffer_iter {
437 struct ring_buffer_per_cpu *cpu_buffer;
438 unsigned long head;
439 struct buffer_page *head_page;
440 u64 read_stamp;
441};
442
f536aafc 443/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 444#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
445 ({ \
446 int _____ret = unlikely(cond); \
447 if (_____ret) { \
bf41a158
SR
448 atomic_inc(&buffer->record_disabled); \
449 WARN_ON(1); \
450 } \
3e89c7bb
SR
451 _____ret; \
452 })
f536aafc 453
37886f6a
SR
454/* Up this if you want to test the TIME_EXTENTS and normalization */
455#define DEBUG_SHIFT 0
456
88eb0125
SR
457static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
458{
459 /* shift to debug/test normalization and TIME_EXTENTS */
460 return buffer->clock() << DEBUG_SHIFT;
461}
462
37886f6a
SR
463u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
464{
465 u64 time;
466
467 preempt_disable_notrace();
88eb0125 468 time = rb_time_stamp(buffer, cpu);
37886f6a
SR
469 preempt_enable_no_resched_notrace();
470
471 return time;
472}
473EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
474
475void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
476 int cpu, u64 *ts)
477{
478 /* Just stupid testing the normalize function and deltas */
479 *ts >>= DEBUG_SHIFT;
480}
481EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
482
7a8e76a3
SR
483/**
484 * check_pages - integrity check of buffer pages
485 * @cpu_buffer: CPU buffer with pages to test
486 *
c3706f00 487 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
488 * been corrupted.
489 */
490static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
491{
492 struct list_head *head = &cpu_buffer->pages;
044fa782 493 struct buffer_page *bpage, *tmp;
7a8e76a3 494
3e89c7bb
SR
495 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
496 return -1;
497 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
498 return -1;
7a8e76a3 499
044fa782 500 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 501 if (RB_WARN_ON(cpu_buffer,
044fa782 502 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
503 return -1;
504 if (RB_WARN_ON(cpu_buffer,
044fa782 505 bpage->list.prev->next != &bpage->list))
3e89c7bb 506 return -1;
7a8e76a3
SR
507 }
508
509 return 0;
510}
511
7a8e76a3
SR
512static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
513 unsigned nr_pages)
514{
515 struct list_head *head = &cpu_buffer->pages;
044fa782 516 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
517 unsigned long addr;
518 LIST_HEAD(pages);
519 unsigned i;
520
521 for (i = 0; i < nr_pages; i++) {
044fa782 522 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 523 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 524 if (!bpage)
e4c2ce82 525 goto free_pages;
044fa782 526 list_add(&bpage->list, &pages);
e4c2ce82 527
7a8e76a3
SR
528 addr = __get_free_page(GFP_KERNEL);
529 if (!addr)
530 goto free_pages;
044fa782
SR
531 bpage->page = (void *)addr;
532 rb_init_page(bpage->page);
7a8e76a3
SR
533 }
534
535 list_splice(&pages, head);
536
537 rb_check_pages(cpu_buffer);
538
539 return 0;
540
541 free_pages:
044fa782
SR
542 list_for_each_entry_safe(bpage, tmp, &pages, list) {
543 list_del_init(&bpage->list);
544 free_buffer_page(bpage);
7a8e76a3
SR
545 }
546 return -ENOMEM;
547}
548
549static struct ring_buffer_per_cpu *
550rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
551{
552 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 553 struct buffer_page *bpage;
d769041f 554 unsigned long addr;
7a8e76a3
SR
555 int ret;
556
557 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
558 GFP_KERNEL, cpu_to_node(cpu));
559 if (!cpu_buffer)
560 return NULL;
561
562 cpu_buffer->cpu = cpu;
563 cpu_buffer->buffer = buffer;
f83c9d0f 564 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 565 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
566 INIT_LIST_HEAD(&cpu_buffer->pages);
567
044fa782 568 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 569 GFP_KERNEL, cpu_to_node(cpu));
044fa782 570 if (!bpage)
e4c2ce82
SR
571 goto fail_free_buffer;
572
044fa782 573 cpu_buffer->reader_page = bpage;
d769041f
SR
574 addr = __get_free_page(GFP_KERNEL);
575 if (!addr)
e4c2ce82 576 goto fail_free_reader;
044fa782
SR
577 bpage->page = (void *)addr;
578 rb_init_page(bpage->page);
e4c2ce82 579
d769041f 580 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 581
7a8e76a3
SR
582 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
583 if (ret < 0)
d769041f 584 goto fail_free_reader;
7a8e76a3
SR
585
586 cpu_buffer->head_page
587 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 588 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
589
590 return cpu_buffer;
591
d769041f
SR
592 fail_free_reader:
593 free_buffer_page(cpu_buffer->reader_page);
594
7a8e76a3
SR
595 fail_free_buffer:
596 kfree(cpu_buffer);
597 return NULL;
598}
599
600static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
601{
602 struct list_head *head = &cpu_buffer->pages;
044fa782 603 struct buffer_page *bpage, *tmp;
7a8e76a3 604
d769041f
SR
605 free_buffer_page(cpu_buffer->reader_page);
606
044fa782
SR
607 list_for_each_entry_safe(bpage, tmp, head, list) {
608 list_del_init(&bpage->list);
609 free_buffer_page(bpage);
7a8e76a3
SR
610 }
611 kfree(cpu_buffer);
612}
613
a7b13743
SR
614/*
615 * Causes compile errors if the struct buffer_page gets bigger
616 * than the struct page.
617 */
618extern int ring_buffer_page_too_big(void);
619
59222efe 620#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
621static int rb_cpu_notify(struct notifier_block *self,
622 unsigned long action, void *hcpu);
554f786e
SR
623#endif
624
7a8e76a3
SR
625/**
626 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 627 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
628 * @flags: attributes to set for the ring buffer.
629 *
630 * Currently the only flag that is available is the RB_FL_OVERWRITE
631 * flag. This flag means that the buffer will overwrite old data
632 * when the buffer wraps. If this flag is not set, the buffer will
633 * drop data when the tail hits the head.
634 */
635struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
636{
637 struct ring_buffer *buffer;
638 int bsize;
639 int cpu;
640
a7b13743
SR
641 /* Paranoid! Optimizes out when all is well */
642 if (sizeof(struct buffer_page) > sizeof(struct page))
643 ring_buffer_page_too_big();
644
645
7a8e76a3
SR
646 /* keep it in its own cache line */
647 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
648 GFP_KERNEL);
649 if (!buffer)
650 return NULL;
651
9e01c1b7
RR
652 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
653 goto fail_free_buffer;
654
7a8e76a3
SR
655 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
656 buffer->flags = flags;
37886f6a 657 buffer->clock = trace_clock_local;
7a8e76a3
SR
658
659 /* need at least two pages */
660 if (buffer->pages == 1)
661 buffer->pages++;
662
3bf832ce
FW
663 /*
664 * In case of non-hotplug cpu, if the ring-buffer is allocated
665 * in early initcall, it will not be notified of secondary cpus.
666 * In that off case, we need to allocate for all possible cpus.
667 */
668#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
669 get_online_cpus();
670 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
671#else
672 cpumask_copy(buffer->cpumask, cpu_possible_mask);
673#endif
7a8e76a3
SR
674 buffer->cpus = nr_cpu_ids;
675
676 bsize = sizeof(void *) * nr_cpu_ids;
677 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
678 GFP_KERNEL);
679 if (!buffer->buffers)
9e01c1b7 680 goto fail_free_cpumask;
7a8e76a3
SR
681
682 for_each_buffer_cpu(buffer, cpu) {
683 buffer->buffers[cpu] =
684 rb_allocate_cpu_buffer(buffer, cpu);
685 if (!buffer->buffers[cpu])
686 goto fail_free_buffers;
687 }
688
59222efe 689#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
690 buffer->cpu_notify.notifier_call = rb_cpu_notify;
691 buffer->cpu_notify.priority = 0;
692 register_cpu_notifier(&buffer->cpu_notify);
693#endif
694
695 put_online_cpus();
7a8e76a3
SR
696 mutex_init(&buffer->mutex);
697
698 return buffer;
699
700 fail_free_buffers:
701 for_each_buffer_cpu(buffer, cpu) {
702 if (buffer->buffers[cpu])
703 rb_free_cpu_buffer(buffer->buffers[cpu]);
704 }
705 kfree(buffer->buffers);
706
9e01c1b7
RR
707 fail_free_cpumask:
708 free_cpumask_var(buffer->cpumask);
554f786e 709 put_online_cpus();
9e01c1b7 710
7a8e76a3
SR
711 fail_free_buffer:
712 kfree(buffer);
713 return NULL;
714}
c4f50183 715EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
716
717/**
718 * ring_buffer_free - free a ring buffer.
719 * @buffer: the buffer to free.
720 */
721void
722ring_buffer_free(struct ring_buffer *buffer)
723{
724 int cpu;
725
554f786e
SR
726 get_online_cpus();
727
59222efe 728#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
729 unregister_cpu_notifier(&buffer->cpu_notify);
730#endif
731
7a8e76a3
SR
732 for_each_buffer_cpu(buffer, cpu)
733 rb_free_cpu_buffer(buffer->buffers[cpu]);
734
554f786e
SR
735 put_online_cpus();
736
9e01c1b7
RR
737 free_cpumask_var(buffer->cpumask);
738
7a8e76a3
SR
739 kfree(buffer);
740}
c4f50183 741EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 742
37886f6a
SR
743void ring_buffer_set_clock(struct ring_buffer *buffer,
744 u64 (*clock)(void))
745{
746 buffer->clock = clock;
747}
748
7a8e76a3
SR
749static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
750
751static void
752rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
753{
044fa782 754 struct buffer_page *bpage;
7a8e76a3
SR
755 struct list_head *p;
756 unsigned i;
757
758 atomic_inc(&cpu_buffer->record_disabled);
759 synchronize_sched();
760
761 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
762 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
763 return;
7a8e76a3 764 p = cpu_buffer->pages.next;
044fa782
SR
765 bpage = list_entry(p, struct buffer_page, list);
766 list_del_init(&bpage->list);
767 free_buffer_page(bpage);
7a8e76a3 768 }
3e89c7bb
SR
769 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
770 return;
7a8e76a3
SR
771
772 rb_reset_cpu(cpu_buffer);
773
774 rb_check_pages(cpu_buffer);
775
776 atomic_dec(&cpu_buffer->record_disabled);
777
778}
779
780static void
781rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
782 struct list_head *pages, unsigned nr_pages)
783{
044fa782 784 struct buffer_page *bpage;
7a8e76a3
SR
785 struct list_head *p;
786 unsigned i;
787
788 atomic_inc(&cpu_buffer->record_disabled);
789 synchronize_sched();
790
791 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
792 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
793 return;
7a8e76a3 794 p = pages->next;
044fa782
SR
795 bpage = list_entry(p, struct buffer_page, list);
796 list_del_init(&bpage->list);
797 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
798 }
799 rb_reset_cpu(cpu_buffer);
800
801 rb_check_pages(cpu_buffer);
802
803 atomic_dec(&cpu_buffer->record_disabled);
804}
805
806/**
807 * ring_buffer_resize - resize the ring buffer
808 * @buffer: the buffer to resize.
809 * @size: the new size.
810 *
811 * The tracer is responsible for making sure that the buffer is
812 * not being used while changing the size.
813 * Note: We may be able to change the above requirement by using
814 * RCU synchronizations.
815 *
816 * Minimum size is 2 * BUF_PAGE_SIZE.
817 *
818 * Returns -1 on failure.
819 */
820int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
821{
822 struct ring_buffer_per_cpu *cpu_buffer;
823 unsigned nr_pages, rm_pages, new_pages;
044fa782 824 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
825 unsigned long buffer_size;
826 unsigned long addr;
827 LIST_HEAD(pages);
828 int i, cpu;
829
ee51a1de
IM
830 /*
831 * Always succeed at resizing a non-existent buffer:
832 */
833 if (!buffer)
834 return size;
835
7a8e76a3
SR
836 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
837 size *= BUF_PAGE_SIZE;
838 buffer_size = buffer->pages * BUF_PAGE_SIZE;
839
840 /* we need a minimum of two pages */
841 if (size < BUF_PAGE_SIZE * 2)
842 size = BUF_PAGE_SIZE * 2;
843
844 if (size == buffer_size)
845 return size;
846
847 mutex_lock(&buffer->mutex);
554f786e 848 get_online_cpus();
7a8e76a3
SR
849
850 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
851
852 if (size < buffer_size) {
853
854 /* easy case, just free pages */
554f786e
SR
855 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
856 goto out_fail;
7a8e76a3
SR
857
858 rm_pages = buffer->pages - nr_pages;
859
860 for_each_buffer_cpu(buffer, cpu) {
861 cpu_buffer = buffer->buffers[cpu];
862 rb_remove_pages(cpu_buffer, rm_pages);
863 }
864 goto out;
865 }
866
867 /*
868 * This is a bit more difficult. We only want to add pages
869 * when we can allocate enough for all CPUs. We do this
870 * by allocating all the pages and storing them on a local
871 * link list. If we succeed in our allocation, then we
872 * add these pages to the cpu_buffers. Otherwise we just free
873 * them all and return -ENOMEM;
874 */
554f786e
SR
875 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
876 goto out_fail;
f536aafc 877
7a8e76a3
SR
878 new_pages = nr_pages - buffer->pages;
879
880 for_each_buffer_cpu(buffer, cpu) {
881 for (i = 0; i < new_pages; i++) {
044fa782 882 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
883 cache_line_size()),
884 GFP_KERNEL, cpu_to_node(cpu));
044fa782 885 if (!bpage)
e4c2ce82 886 goto free_pages;
044fa782 887 list_add(&bpage->list, &pages);
7a8e76a3
SR
888 addr = __get_free_page(GFP_KERNEL);
889 if (!addr)
890 goto free_pages;
044fa782
SR
891 bpage->page = (void *)addr;
892 rb_init_page(bpage->page);
7a8e76a3
SR
893 }
894 }
895
896 for_each_buffer_cpu(buffer, cpu) {
897 cpu_buffer = buffer->buffers[cpu];
898 rb_insert_pages(cpu_buffer, &pages, new_pages);
899 }
900
554f786e
SR
901 if (RB_WARN_ON(buffer, !list_empty(&pages)))
902 goto out_fail;
7a8e76a3
SR
903
904 out:
905 buffer->pages = nr_pages;
554f786e 906 put_online_cpus();
7a8e76a3
SR
907 mutex_unlock(&buffer->mutex);
908
909 return size;
910
911 free_pages:
044fa782
SR
912 list_for_each_entry_safe(bpage, tmp, &pages, list) {
913 list_del_init(&bpage->list);
914 free_buffer_page(bpage);
7a8e76a3 915 }
554f786e 916 put_online_cpus();
641d2f63 917 mutex_unlock(&buffer->mutex);
7a8e76a3 918 return -ENOMEM;
554f786e
SR
919
920 /*
921 * Something went totally wrong, and we are too paranoid
922 * to even clean up the mess.
923 */
924 out_fail:
925 put_online_cpus();
926 mutex_unlock(&buffer->mutex);
927 return -1;
7a8e76a3 928}
c4f50183 929EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 930
8789a9e7 931static inline void *
044fa782 932__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 933{
044fa782 934 return bpage->data + index;
8789a9e7
SR
935}
936
044fa782 937static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 938{
044fa782 939 return bpage->page->data + index;
7a8e76a3
SR
940}
941
942static inline struct ring_buffer_event *
d769041f 943rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 944{
6f807acd
SR
945 return __rb_page_index(cpu_buffer->reader_page,
946 cpu_buffer->reader_page->read);
947}
948
949static inline struct ring_buffer_event *
950rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
951{
952 return __rb_page_index(cpu_buffer->head_page,
953 cpu_buffer->head_page->read);
7a8e76a3
SR
954}
955
956static inline struct ring_buffer_event *
957rb_iter_head_event(struct ring_buffer_iter *iter)
958{
6f807acd 959 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
960}
961
bf41a158
SR
962static inline unsigned rb_page_write(struct buffer_page *bpage)
963{
964 return local_read(&bpage->write);
965}
966
967static inline unsigned rb_page_commit(struct buffer_page *bpage)
968{
abc9b56d 969 return local_read(&bpage->page->commit);
bf41a158
SR
970}
971
972/* Size is determined by what has been commited */
973static inline unsigned rb_page_size(struct buffer_page *bpage)
974{
975 return rb_page_commit(bpage);
976}
977
978static inline unsigned
979rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
980{
981 return rb_page_commit(cpu_buffer->commit_page);
982}
983
984static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
985{
986 return rb_page_commit(cpu_buffer->head_page);
987}
988
7a8e76a3 989static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 990 struct buffer_page **bpage)
7a8e76a3 991{
044fa782 992 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
993
994 if (p == &cpu_buffer->pages)
995 p = p->next;
996
044fa782 997 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
998}
999
bf41a158
SR
1000static inline unsigned
1001rb_event_index(struct ring_buffer_event *event)
1002{
1003 unsigned long addr = (unsigned long)event;
1004
1005 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1006}
1007
0f0c85fc 1008static inline int
bf41a158
SR
1009rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1010 struct ring_buffer_event *event)
1011{
1012 unsigned long addr = (unsigned long)event;
1013 unsigned long index;
1014
1015 index = rb_event_index(event);
1016 addr &= PAGE_MASK;
1017
1018 return cpu_buffer->commit_page->page == (void *)addr &&
1019 rb_commit_index(cpu_buffer) == index;
1020}
1021
34a148bf 1022static void
bf41a158
SR
1023rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1024 struct ring_buffer_event *event)
7a8e76a3 1025{
bf41a158
SR
1026 unsigned long addr = (unsigned long)event;
1027 unsigned long index;
1028
1029 index = rb_event_index(event);
1030 addr &= PAGE_MASK;
1031
1032 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
1033 if (RB_WARN_ON(cpu_buffer,
1034 cpu_buffer->commit_page == cpu_buffer->tail_page))
1035 return;
abc9b56d 1036 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1037 cpu_buffer->commit_page->write;
1038 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1039 cpu_buffer->write_stamp =
1040 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1041 }
1042
1043 /* Now set the commit to the event's index */
abc9b56d 1044 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
1045}
1046
34a148bf 1047static void
bf41a158 1048rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1049{
bf41a158
SR
1050 /*
1051 * We only race with interrupts and NMIs on this CPU.
1052 * If we own the commit event, then we can commit
1053 * all others that interrupted us, since the interruptions
1054 * are in stack format (they finish before they come
1055 * back to us). This allows us to do a simple loop to
1056 * assign the commit to the tail.
1057 */
a8ccf1d6 1058 again:
bf41a158 1059 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 1060 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1061 cpu_buffer->commit_page->write;
1062 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1063 cpu_buffer->write_stamp =
1064 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1065 /* add barrier to keep gcc from optimizing too much */
1066 barrier();
1067 }
1068 while (rb_commit_index(cpu_buffer) !=
1069 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1070 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1071 cpu_buffer->commit_page->write;
1072 barrier();
1073 }
a8ccf1d6
SR
1074
1075 /* again, keep gcc from optimizing */
1076 barrier();
1077
1078 /*
1079 * If an interrupt came in just after the first while loop
1080 * and pushed the tail page forward, we will be left with
1081 * a dangling commit that will never go forward.
1082 */
1083 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1084 goto again;
7a8e76a3
SR
1085}
1086
d769041f 1087static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1088{
abc9b56d 1089 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1090 cpu_buffer->reader_page->read = 0;
d769041f
SR
1091}
1092
34a148bf 1093static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1094{
1095 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1096
1097 /*
1098 * The iterator could be on the reader page (it starts there).
1099 * But the head could have moved, since the reader was
1100 * found. Check for this case and assign the iterator
1101 * to the head page instead of next.
1102 */
1103 if (iter->head_page == cpu_buffer->reader_page)
1104 iter->head_page = cpu_buffer->head_page;
1105 else
1106 rb_inc_page(cpu_buffer, &iter->head_page);
1107
abc9b56d 1108 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1109 iter->head = 0;
1110}
1111
1112/**
1113 * ring_buffer_update_event - update event type and data
1114 * @event: the even to update
1115 * @type: the type of event
1116 * @length: the size of the event field in the ring buffer
1117 *
1118 * Update the type and data fields of the event. The length
1119 * is the actual size that is written to the ring buffer,
1120 * and with this, we can determine what to place into the
1121 * data field.
1122 */
34a148bf 1123static void
7a8e76a3
SR
1124rb_update_event(struct ring_buffer_event *event,
1125 unsigned type, unsigned length)
1126{
334d4169 1127 event->type_len = type;
7a8e76a3
SR
1128
1129 switch (type) {
1130
1131 case RINGBUF_TYPE_PADDING:
7a8e76a3 1132 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1133 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1134 break;
1135
334d4169 1136 case 0:
7a8e76a3 1137 length -= RB_EVNT_HDR_SIZE;
334d4169 1138 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1139 event->array[0] = length;
334d4169
LJ
1140 else
1141 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1142 break;
1143 default:
1144 BUG();
1145 }
1146}
1147
34a148bf 1148static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1149{
1150 struct ring_buffer_event event; /* Used only for sizeof array */
1151
1152 /* zero length can cause confusions */
1153 if (!length)
1154 length = 1;
1155
1156 if (length > RB_MAX_SMALL_DATA)
1157 length += sizeof(event.array[0]);
1158
1159 length += RB_EVNT_HDR_SIZE;
1160 length = ALIGN(length, RB_ALIGNMENT);
1161
1162 return length;
1163}
1164
6634ff26 1165
7a8e76a3 1166static struct ring_buffer_event *
6634ff26
SR
1167rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1168 unsigned long length, unsigned long tail,
1169 struct buffer_page *commit_page,
1170 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1171{
6634ff26 1172 struct buffer_page *next_page, *head_page, *reader_page;
7a8e76a3
SR
1173 struct ring_buffer *buffer = cpu_buffer->buffer;
1174 struct ring_buffer_event *event;
78d904b4 1175 bool lock_taken = false;
6634ff26 1176 unsigned long flags;
aa20ae84
SR
1177
1178 next_page = tail_page;
1179
1180 local_irq_save(flags);
1181 /*
1182 * Since the write to the buffer is still not
1183 * fully lockless, we must be careful with NMIs.
1184 * The locks in the writers are taken when a write
1185 * crosses to a new page. The locks protect against
1186 * races with the readers (this will soon be fixed
1187 * with a lockless solution).
1188 *
1189 * Because we can not protect against NMIs, and we
1190 * want to keep traces reentrant, we need to manage
1191 * what happens when we are in an NMI.
1192 *
1193 * NMIs can happen after we take the lock.
1194 * If we are in an NMI, only take the lock
1195 * if it is not already taken. Otherwise
1196 * simply fail.
1197 */
1198 if (unlikely(in_nmi())) {
1199 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1200 cpu_buffer->nmi_dropped++;
1201 goto out_reset;
1202 }
1203 } else
1204 __raw_spin_lock(&cpu_buffer->lock);
1205
1206 lock_taken = true;
1207
1208 rb_inc_page(cpu_buffer, &next_page);
1209
1210 head_page = cpu_buffer->head_page;
1211 reader_page = cpu_buffer->reader_page;
1212
1213 /* we grabbed the lock before incrementing */
1214 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1215 goto out_reset;
1216
1217 /*
1218 * If for some reason, we had an interrupt storm that made
1219 * it all the way around the buffer, bail, and warn
1220 * about it.
1221 */
1222 if (unlikely(next_page == commit_page)) {
1223 cpu_buffer->commit_overrun++;
1224 goto out_reset;
1225 }
1226
1227 if (next_page == head_page) {
1228 if (!(buffer->flags & RB_FL_OVERWRITE))
1229 goto out_reset;
1230
1231 /* tail_page has not moved yet? */
1232 if (tail_page == cpu_buffer->tail_page) {
1233 /* count overflows */
1234 cpu_buffer->overrun +=
1235 local_read(&head_page->entries);
1236
1237 rb_inc_page(cpu_buffer, &head_page);
1238 cpu_buffer->head_page = head_page;
1239 cpu_buffer->head_page->read = 0;
1240 }
1241 }
1242
1243 /*
1244 * If the tail page is still the same as what we think
1245 * it is, then it is up to us to update the tail
1246 * pointer.
1247 */
1248 if (tail_page == cpu_buffer->tail_page) {
1249 local_set(&next_page->write, 0);
1250 local_set(&next_page->entries, 0);
1251 local_set(&next_page->page->commit, 0);
1252 cpu_buffer->tail_page = next_page;
1253
1254 /* reread the time stamp */
88eb0125 1255 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
aa20ae84
SR
1256 cpu_buffer->tail_page->page->time_stamp = *ts;
1257 }
1258
1259 /*
1260 * The actual tail page has moved forward.
1261 */
1262 if (tail < BUF_PAGE_SIZE) {
1263 /* Mark the rest of the page with padding */
1264 event = __rb_page_index(tail_page, tail);
1265 rb_event_set_padding(event);
1266 }
1267
8e7abf1c
SR
1268 /* Set the write back to the previous setting */
1269 local_sub(length, &tail_page->write);
aa20ae84
SR
1270
1271 /*
1272 * If this was a commit entry that failed,
1273 * increment that too
1274 */
1275 if (tail_page == cpu_buffer->commit_page &&
1276 tail == rb_commit_index(cpu_buffer)) {
1277 rb_set_commit_to_write(cpu_buffer);
1278 }
1279
1280 __raw_spin_unlock(&cpu_buffer->lock);
1281 local_irq_restore(flags);
1282
1283 /* fail and let the caller try again */
1284 return ERR_PTR(-EAGAIN);
1285
45141d46 1286 out_reset:
6f3b3440 1287 /* reset write */
8e7abf1c 1288 local_sub(length, &tail_page->write);
6f3b3440 1289
78d904b4
SR
1290 if (likely(lock_taken))
1291 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1292 local_irq_restore(flags);
bf41a158 1293 return NULL;
7a8e76a3
SR
1294}
1295
6634ff26
SR
1296static struct ring_buffer_event *
1297__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1298 unsigned type, unsigned long length, u64 *ts)
1299{
1300 struct buffer_page *tail_page, *commit_page;
1301 struct ring_buffer_event *event;
1302 unsigned long tail, write;
1303
1304 commit_page = cpu_buffer->commit_page;
1305 /* we just need to protect against interrupts */
1306 barrier();
1307 tail_page = cpu_buffer->tail_page;
1308 write = local_add_return(length, &tail_page->write);
1309 tail = write - length;
1310
1311 /* See if we shot pass the end of this buffer page */
1312 if (write > BUF_PAGE_SIZE)
1313 return rb_move_tail(cpu_buffer, length, tail,
1314 commit_page, tail_page, ts);
1315
1316 /* We reserved something on the buffer */
1317
1318 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1319 return NULL;
1320
1321 event = __rb_page_index(tail_page, tail);
1322 rb_update_event(event, type, length);
1323
1324 /* The passed in type is zero for DATA */
1325 if (likely(!type))
1326 local_inc(&tail_page->entries);
1327
1328 /*
1329 * If this is a commit and the tail is zero, then update
1330 * this page's time stamp.
1331 */
1332 if (!tail && rb_is_commit(cpu_buffer, event))
1333 cpu_buffer->commit_page->page->time_stamp = *ts;
1334
1335 return event;
1336}
1337
edd813bf
SR
1338static inline int
1339rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1340 struct ring_buffer_event *event)
1341{
1342 unsigned long new_index, old_index;
1343 struct buffer_page *bpage;
1344 unsigned long index;
1345 unsigned long addr;
1346
1347 new_index = rb_event_index(event);
1348 old_index = new_index + rb_event_length(event);
1349 addr = (unsigned long)event;
1350 addr &= PAGE_MASK;
1351
1352 bpage = cpu_buffer->tail_page;
1353
1354 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1355 /*
1356 * This is on the tail page. It is possible that
1357 * a write could come in and move the tail page
1358 * and write to the next page. That is fine
1359 * because we just shorten what is on this page.
1360 */
1361 index = local_cmpxchg(&bpage->write, old_index, new_index);
1362 if (index == old_index)
1363 return 1;
1364 }
1365
1366 /* could not discard */
1367 return 0;
1368}
1369
7a8e76a3
SR
1370static int
1371rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1372 u64 *ts, u64 *delta)
1373{
1374 struct ring_buffer_event *event;
1375 static int once;
bf41a158 1376 int ret;
7a8e76a3
SR
1377
1378 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1379 printk(KERN_WARNING "Delta way too big! %llu"
1380 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1381 (unsigned long long)*delta,
1382 (unsigned long long)*ts,
1383 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1384 WARN_ON(1);
1385 }
1386
1387 /*
1388 * The delta is too big, we to add a
1389 * new timestamp.
1390 */
1391 event = __rb_reserve_next(cpu_buffer,
1392 RINGBUF_TYPE_TIME_EXTEND,
1393 RB_LEN_TIME_EXTEND,
1394 ts);
1395 if (!event)
bf41a158 1396 return -EBUSY;
7a8e76a3 1397
bf41a158
SR
1398 if (PTR_ERR(event) == -EAGAIN)
1399 return -EAGAIN;
1400
1401 /* Only a commited time event can update the write stamp */
1402 if (rb_is_commit(cpu_buffer, event)) {
1403 /*
1404 * If this is the first on the page, then we need to
1405 * update the page itself, and just put in a zero.
1406 */
1407 if (rb_event_index(event)) {
1408 event->time_delta = *delta & TS_MASK;
1409 event->array[0] = *delta >> TS_SHIFT;
1410 } else {
abc9b56d 1411 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1412 event->time_delta = 0;
1413 event->array[0] = 0;
1414 }
7a8e76a3 1415 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1416 /* let the caller know this was the commit */
1417 ret = 1;
1418 } else {
edd813bf
SR
1419 /* Try to discard the event */
1420 if (!rb_try_to_discard(cpu_buffer, event)) {
1421 /* Darn, this is just wasted space */
1422 event->time_delta = 0;
1423 event->array[0] = 0;
1424 ret = 0;
1425 }
7a8e76a3
SR
1426 }
1427
bf41a158
SR
1428 *delta = 0;
1429
1430 return ret;
7a8e76a3
SR
1431}
1432
1433static struct ring_buffer_event *
1434rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 1435 unsigned long length)
7a8e76a3
SR
1436{
1437 struct ring_buffer_event *event;
168b6b1d 1438 u64 ts, delta = 0;
bf41a158 1439 int commit = 0;
818e3dd3 1440 int nr_loops = 0;
7a8e76a3 1441
be957c44 1442 length = rb_calculate_event_length(length);
bf41a158 1443 again:
818e3dd3
SR
1444 /*
1445 * We allow for interrupts to reenter here and do a trace.
1446 * If one does, it will cause this original code to loop
1447 * back here. Even with heavy interrupts happening, this
1448 * should only happen a few times in a row. If this happens
1449 * 1000 times in a row, there must be either an interrupt
1450 * storm or we have something buggy.
1451 * Bail!
1452 */
3e89c7bb 1453 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1454 return NULL;
818e3dd3 1455
88eb0125 1456 ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1457
bf41a158
SR
1458 /*
1459 * Only the first commit can update the timestamp.
1460 * Yes there is a race here. If an interrupt comes in
1461 * just after the conditional and it traces too, then it
1462 * will also check the deltas. More than one timestamp may
1463 * also be made. But only the entry that did the actual
1464 * commit will be something other than zero.
1465 */
0f0c85fc
SR
1466 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
1467 rb_page_write(cpu_buffer->tail_page) ==
1468 rb_commit_index(cpu_buffer))) {
168b6b1d 1469 u64 diff;
bf41a158 1470
168b6b1d 1471 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 1472
168b6b1d 1473 /* make sure this diff is calculated here */
bf41a158
SR
1474 barrier();
1475
1476 /* Did the write stamp get updated already? */
1477 if (unlikely(ts < cpu_buffer->write_stamp))
168b6b1d 1478 goto get_event;
bf41a158 1479
168b6b1d
SR
1480 delta = diff;
1481 if (unlikely(test_time_stamp(delta))) {
7a8e76a3 1482
bf41a158 1483 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
bf41a158 1484 if (commit == -EBUSY)
7a8e76a3 1485 return NULL;
bf41a158
SR
1486
1487 if (commit == -EAGAIN)
1488 goto again;
1489
1490 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1491 }
168b6b1d 1492 }
7a8e76a3 1493
168b6b1d 1494 get_event:
1cd8d735 1495 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
168b6b1d 1496 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
1497 goto again;
1498
1499 if (!event) {
1500 if (unlikely(commit))
1501 /*
1502 * Ouch! We needed a timestamp and it was commited. But
1503 * we didn't get our event reserved.
1504 */
1505 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1506 return NULL;
bf41a158 1507 }
7a8e76a3 1508
bf41a158
SR
1509 /*
1510 * If the timestamp was commited, make the commit our entry
1511 * now so that we will update it when needed.
1512 */
0f0c85fc 1513 if (unlikely(commit))
bf41a158
SR
1514 rb_set_commit_event(cpu_buffer, event);
1515 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1516 delta = 0;
1517
1518 event->time_delta = delta;
1519
1520 return event;
1521}
1522
aa18efb2 1523#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
1524
1525static int trace_recursive_lock(void)
1526{
aa18efb2 1527 current->trace_recursion++;
261842b7 1528
aa18efb2
SR
1529 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1530 return 0;
e057a5e5 1531
aa18efb2
SR
1532 /* Disable all tracing before we do anything else */
1533 tracing_off_permanent();
261842b7 1534
7d7d2b80 1535 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
1536 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1537 current->trace_recursion,
1538 hardirq_count() >> HARDIRQ_SHIFT,
1539 softirq_count() >> SOFTIRQ_SHIFT,
1540 in_nmi());
261842b7 1541
aa18efb2
SR
1542 WARN_ON_ONCE(1);
1543 return -1;
261842b7
SR
1544}
1545
1546static void trace_recursive_unlock(void)
1547{
aa18efb2 1548 WARN_ON_ONCE(!current->trace_recursion);
261842b7 1549
aa18efb2 1550 current->trace_recursion--;
261842b7
SR
1551}
1552
bf41a158
SR
1553static DEFINE_PER_CPU(int, rb_need_resched);
1554
7a8e76a3
SR
1555/**
1556 * ring_buffer_lock_reserve - reserve a part of the buffer
1557 * @buffer: the ring buffer to reserve from
1558 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1559 *
1560 * Returns a reseverd event on the ring buffer to copy directly to.
1561 * The user of this interface will need to get the body to write into
1562 * and can use the ring_buffer_event_data() interface.
1563 *
1564 * The length is the length of the data needed, not the event length
1565 * which also includes the event header.
1566 *
1567 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1568 * If NULL is returned, then nothing has been allocated or locked.
1569 */
1570struct ring_buffer_event *
0a987751 1571ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1572{
1573 struct ring_buffer_per_cpu *cpu_buffer;
1574 struct ring_buffer_event *event;
bf41a158 1575 int cpu, resched;
7a8e76a3 1576
033601a3 1577 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1578 return NULL;
1579
7a8e76a3
SR
1580 if (atomic_read(&buffer->record_disabled))
1581 return NULL;
1582
bf41a158 1583 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1584 resched = ftrace_preempt_disable();
bf41a158 1585
261842b7
SR
1586 if (trace_recursive_lock())
1587 goto out_nocheck;
1588
7a8e76a3
SR
1589 cpu = raw_smp_processor_id();
1590
9e01c1b7 1591 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1592 goto out;
7a8e76a3
SR
1593
1594 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1595
1596 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1597 goto out;
7a8e76a3 1598
be957c44 1599 if (length > BUF_MAX_DATA_SIZE)
bf41a158 1600 goto out;
7a8e76a3 1601
1cd8d735 1602 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3 1603 if (!event)
d769041f 1604 goto out;
7a8e76a3 1605
bf41a158
SR
1606 /*
1607 * Need to store resched state on this cpu.
1608 * Only the first needs to.
1609 */
1610
1611 if (preempt_count() == 1)
1612 per_cpu(rb_need_resched, cpu) = resched;
1613
7a8e76a3
SR
1614 return event;
1615
d769041f 1616 out:
261842b7
SR
1617 trace_recursive_unlock();
1618
1619 out_nocheck:
182e9f5f 1620 ftrace_preempt_enable(resched);
7a8e76a3
SR
1621 return NULL;
1622}
c4f50183 1623EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1624
1625static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1626 struct ring_buffer_event *event)
1627{
e4906eff 1628 local_inc(&cpu_buffer->entries);
bf41a158
SR
1629
1630 /* Only process further if we own the commit */
1631 if (!rb_is_commit(cpu_buffer, event))
1632 return;
1633
1634 cpu_buffer->write_stamp += event->time_delta;
1635
1636 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1637}
1638
1639/**
1640 * ring_buffer_unlock_commit - commit a reserved
1641 * @buffer: The buffer to commit to
1642 * @event: The event pointer to commit.
7a8e76a3
SR
1643 *
1644 * This commits the data to the ring buffer, and releases any locks held.
1645 *
1646 * Must be paired with ring_buffer_lock_reserve.
1647 */
1648int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1649 struct ring_buffer_event *event)
7a8e76a3
SR
1650{
1651 struct ring_buffer_per_cpu *cpu_buffer;
1652 int cpu = raw_smp_processor_id();
1653
1654 cpu_buffer = buffer->buffers[cpu];
1655
7a8e76a3
SR
1656 rb_commit(cpu_buffer, event);
1657
261842b7
SR
1658 trace_recursive_unlock();
1659
bf41a158
SR
1660 /*
1661 * Only the last preempt count needs to restore preemption.
1662 */
182e9f5f
SR
1663 if (preempt_count() == 1)
1664 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1665 else
bf41a158 1666 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1667
1668 return 0;
1669}
c4f50183 1670EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 1671
f3b9aae1
FW
1672static inline void rb_event_discard(struct ring_buffer_event *event)
1673{
334d4169
LJ
1674 /* array[0] holds the actual length for the discarded event */
1675 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1676 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
1677 /* time delta must be non zero */
1678 if (!event->time_delta)
1679 event->time_delta = 1;
1680}
1681
fa1b47dd
SR
1682/**
1683 * ring_buffer_event_discard - discard any event in the ring buffer
1684 * @event: the event to discard
1685 *
1686 * Sometimes a event that is in the ring buffer needs to be ignored.
1687 * This function lets the user discard an event in the ring buffer
1688 * and then that event will not be read later.
1689 *
1690 * Note, it is up to the user to be careful with this, and protect
1691 * against races. If the user discards an event that has been consumed
1692 * it is possible that it could corrupt the ring buffer.
1693 */
1694void ring_buffer_event_discard(struct ring_buffer_event *event)
1695{
f3b9aae1 1696 rb_event_discard(event);
fa1b47dd
SR
1697}
1698EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1699
1700/**
1701 * ring_buffer_commit_discard - discard an event that has not been committed
1702 * @buffer: the ring buffer
1703 * @event: non committed event to discard
1704 *
1705 * This is similar to ring_buffer_event_discard but must only be
1706 * performed on an event that has not been committed yet. The difference
1707 * is that this will also try to free the event from the ring buffer
1708 * if another event has not been added behind it.
1709 *
1710 * If another event has been added behind it, it will set the event
1711 * up as discarded, and perform the commit.
1712 *
1713 * If this function is called, do not call ring_buffer_unlock_commit on
1714 * the event.
1715 */
1716void ring_buffer_discard_commit(struct ring_buffer *buffer,
1717 struct ring_buffer_event *event)
1718{
1719 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
1720 int cpu;
1721
1722 /* The event is discarded regardless */
f3b9aae1 1723 rb_event_discard(event);
fa1b47dd
SR
1724
1725 /*
1726 * This must only be called if the event has not been
1727 * committed yet. Thus we can assume that preemption
1728 * is still disabled.
1729 */
74f4fd21 1730 RB_WARN_ON(buffer, preemptible());
fa1b47dd
SR
1731
1732 cpu = smp_processor_id();
1733 cpu_buffer = buffer->buffers[cpu];
1734
edd813bf
SR
1735 if (!rb_try_to_discard(cpu_buffer, event))
1736 goto out;
fa1b47dd
SR
1737
1738 /*
1739 * The commit is still visible by the reader, so we
1740 * must increment entries.
1741 */
e4906eff 1742 local_inc(&cpu_buffer->entries);
fa1b47dd
SR
1743 out:
1744 /*
1745 * If a write came in and pushed the tail page
1746 * we still need to update the commit pointer
1747 * if we were the commit.
1748 */
1749 if (rb_is_commit(cpu_buffer, event))
1750 rb_set_commit_to_write(cpu_buffer);
1751
f3b9aae1
FW
1752 trace_recursive_unlock();
1753
fa1b47dd
SR
1754 /*
1755 * Only the last preempt count needs to restore preemption.
1756 */
1757 if (preempt_count() == 1)
1758 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1759 else
1760 preempt_enable_no_resched_notrace();
1761
1762}
1763EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1764
7a8e76a3
SR
1765/**
1766 * ring_buffer_write - write data to the buffer without reserving
1767 * @buffer: The ring buffer to write to.
1768 * @length: The length of the data being written (excluding the event header)
1769 * @data: The data to write to the buffer.
1770 *
1771 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1772 * one function. If you already have the data to write to the buffer, it
1773 * may be easier to simply call this function.
1774 *
1775 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1776 * and not the length of the event which would hold the header.
1777 */
1778int ring_buffer_write(struct ring_buffer *buffer,
1779 unsigned long length,
1780 void *data)
1781{
1782 struct ring_buffer_per_cpu *cpu_buffer;
1783 struct ring_buffer_event *event;
7a8e76a3
SR
1784 void *body;
1785 int ret = -EBUSY;
bf41a158 1786 int cpu, resched;
7a8e76a3 1787
033601a3 1788 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1789 return -EBUSY;
1790
7a8e76a3
SR
1791 if (atomic_read(&buffer->record_disabled))
1792 return -EBUSY;
1793
182e9f5f 1794 resched = ftrace_preempt_disable();
bf41a158 1795
7a8e76a3
SR
1796 cpu = raw_smp_processor_id();
1797
9e01c1b7 1798 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1799 goto out;
7a8e76a3
SR
1800
1801 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1802
1803 if (atomic_read(&cpu_buffer->record_disabled))
1804 goto out;
1805
be957c44
SR
1806 if (length > BUF_MAX_DATA_SIZE)
1807 goto out;
1808
1809 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3
SR
1810 if (!event)
1811 goto out;
1812
1813 body = rb_event_data(event);
1814
1815 memcpy(body, data, length);
1816
1817 rb_commit(cpu_buffer, event);
1818
1819 ret = 0;
1820 out:
182e9f5f 1821 ftrace_preempt_enable(resched);
7a8e76a3
SR
1822
1823 return ret;
1824}
c4f50183 1825EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1826
34a148bf 1827static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1828{
1829 struct buffer_page *reader = cpu_buffer->reader_page;
1830 struct buffer_page *head = cpu_buffer->head_page;
1831 struct buffer_page *commit = cpu_buffer->commit_page;
1832
1833 return reader->read == rb_page_commit(reader) &&
1834 (commit == reader ||
1835 (commit == head &&
1836 head->read == rb_page_commit(commit)));
1837}
1838
7a8e76a3
SR
1839/**
1840 * ring_buffer_record_disable - stop all writes into the buffer
1841 * @buffer: The ring buffer to stop writes to.
1842 *
1843 * This prevents all writes to the buffer. Any attempt to write
1844 * to the buffer after this will fail and return NULL.
1845 *
1846 * The caller should call synchronize_sched() after this.
1847 */
1848void ring_buffer_record_disable(struct ring_buffer *buffer)
1849{
1850 atomic_inc(&buffer->record_disabled);
1851}
c4f50183 1852EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1853
1854/**
1855 * ring_buffer_record_enable - enable writes to the buffer
1856 * @buffer: The ring buffer to enable writes
1857 *
1858 * Note, multiple disables will need the same number of enables
1859 * to truely enable the writing (much like preempt_disable).
1860 */
1861void ring_buffer_record_enable(struct ring_buffer *buffer)
1862{
1863 atomic_dec(&buffer->record_disabled);
1864}
c4f50183 1865EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1866
1867/**
1868 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1869 * @buffer: The ring buffer to stop writes to.
1870 * @cpu: The CPU buffer to stop
1871 *
1872 * This prevents all writes to the buffer. Any attempt to write
1873 * to the buffer after this will fail and return NULL.
1874 *
1875 * The caller should call synchronize_sched() after this.
1876 */
1877void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1878{
1879 struct ring_buffer_per_cpu *cpu_buffer;
1880
9e01c1b7 1881 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1882 return;
7a8e76a3
SR
1883
1884 cpu_buffer = buffer->buffers[cpu];
1885 atomic_inc(&cpu_buffer->record_disabled);
1886}
c4f50183 1887EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1888
1889/**
1890 * ring_buffer_record_enable_cpu - enable writes to the buffer
1891 * @buffer: The ring buffer to enable writes
1892 * @cpu: The CPU to enable.
1893 *
1894 * Note, multiple disables will need the same number of enables
1895 * to truely enable the writing (much like preempt_disable).
1896 */
1897void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1898{
1899 struct ring_buffer_per_cpu *cpu_buffer;
1900
9e01c1b7 1901 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1902 return;
7a8e76a3
SR
1903
1904 cpu_buffer = buffer->buffers[cpu];
1905 atomic_dec(&cpu_buffer->record_disabled);
1906}
c4f50183 1907EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1908
1909/**
1910 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1911 * @buffer: The ring buffer
1912 * @cpu: The per CPU buffer to get the entries from.
1913 */
1914unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1915{
1916 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1917 unsigned long ret;
7a8e76a3 1918
9e01c1b7 1919 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1920 return 0;
7a8e76a3
SR
1921
1922 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
1923 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1924 - cpu_buffer->read;
554f786e
SR
1925
1926 return ret;
7a8e76a3 1927}
c4f50183 1928EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1929
1930/**
1931 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1932 * @buffer: The ring buffer
1933 * @cpu: The per CPU buffer to get the number of overruns from
1934 */
1935unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1936{
1937 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1938 unsigned long ret;
7a8e76a3 1939
9e01c1b7 1940 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1941 return 0;
7a8e76a3
SR
1942
1943 cpu_buffer = buffer->buffers[cpu];
554f786e 1944 ret = cpu_buffer->overrun;
554f786e
SR
1945
1946 return ret;
7a8e76a3 1947}
c4f50183 1948EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 1949
f0d2c681
SR
1950/**
1951 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1952 * @buffer: The ring buffer
1953 * @cpu: The per CPU buffer to get the number of overruns from
1954 */
1955unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1956{
1957 struct ring_buffer_per_cpu *cpu_buffer;
1958 unsigned long ret;
1959
1960 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1961 return 0;
1962
1963 cpu_buffer = buffer->buffers[cpu];
1964 ret = cpu_buffer->nmi_dropped;
1965
1966 return ret;
1967}
1968EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1969
1970/**
1971 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1972 * @buffer: The ring buffer
1973 * @cpu: The per CPU buffer to get the number of overruns from
1974 */
1975unsigned long
1976ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1977{
1978 struct ring_buffer_per_cpu *cpu_buffer;
1979 unsigned long ret;
1980
1981 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1982 return 0;
1983
1984 cpu_buffer = buffer->buffers[cpu];
1985 ret = cpu_buffer->commit_overrun;
1986
1987 return ret;
1988}
1989EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1990
7a8e76a3
SR
1991/**
1992 * ring_buffer_entries - get the number of entries in a buffer
1993 * @buffer: The ring buffer
1994 *
1995 * Returns the total number of entries in the ring buffer
1996 * (all CPU entries)
1997 */
1998unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1999{
2000 struct ring_buffer_per_cpu *cpu_buffer;
2001 unsigned long entries = 0;
2002 int cpu;
2003
2004 /* if you care about this being correct, lock the buffer */
2005 for_each_buffer_cpu(buffer, cpu) {
2006 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
2007 entries += (local_read(&cpu_buffer->entries) -
2008 cpu_buffer->overrun) - cpu_buffer->read;
7a8e76a3
SR
2009 }
2010
2011 return entries;
2012}
c4f50183 2013EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2014
2015/**
2016 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2017 * @buffer: The ring buffer
2018 *
2019 * Returns the total number of overruns in the ring buffer
2020 * (all CPU entries)
2021 */
2022unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2023{
2024 struct ring_buffer_per_cpu *cpu_buffer;
2025 unsigned long overruns = 0;
2026 int cpu;
2027
2028 /* if you care about this being correct, lock the buffer */
2029 for_each_buffer_cpu(buffer, cpu) {
2030 cpu_buffer = buffer->buffers[cpu];
2031 overruns += cpu_buffer->overrun;
2032 }
2033
2034 return overruns;
2035}
c4f50183 2036EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2037
642edba5 2038static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2039{
2040 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2041
d769041f
SR
2042 /* Iterator usage is expected to have record disabled */
2043 if (list_empty(&cpu_buffer->reader_page->list)) {
2044 iter->head_page = cpu_buffer->head_page;
6f807acd 2045 iter->head = cpu_buffer->head_page->read;
d769041f
SR
2046 } else {
2047 iter->head_page = cpu_buffer->reader_page;
6f807acd 2048 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2049 }
2050 if (iter->head)
2051 iter->read_stamp = cpu_buffer->read_stamp;
2052 else
abc9b56d 2053 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2054}
f83c9d0f 2055
642edba5
SR
2056/**
2057 * ring_buffer_iter_reset - reset an iterator
2058 * @iter: The iterator to reset
2059 *
2060 * Resets the iterator, so that it will start from the beginning
2061 * again.
2062 */
2063void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2064{
554f786e 2065 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2066 unsigned long flags;
2067
554f786e
SR
2068 if (!iter)
2069 return;
2070
2071 cpu_buffer = iter->cpu_buffer;
2072
642edba5
SR
2073 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2074 rb_iter_reset(iter);
f83c9d0f 2075 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2076}
c4f50183 2077EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2078
2079/**
2080 * ring_buffer_iter_empty - check if an iterator has no more to read
2081 * @iter: The iterator to check
2082 */
2083int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2084{
2085 struct ring_buffer_per_cpu *cpu_buffer;
2086
2087 cpu_buffer = iter->cpu_buffer;
2088
bf41a158
SR
2089 return iter->head_page == cpu_buffer->commit_page &&
2090 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2091}
c4f50183 2092EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2093
2094static void
2095rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2096 struct ring_buffer_event *event)
2097{
2098 u64 delta;
2099
334d4169 2100 switch (event->type_len) {
7a8e76a3
SR
2101 case RINGBUF_TYPE_PADDING:
2102 return;
2103
2104 case RINGBUF_TYPE_TIME_EXTEND:
2105 delta = event->array[0];
2106 delta <<= TS_SHIFT;
2107 delta += event->time_delta;
2108 cpu_buffer->read_stamp += delta;
2109 return;
2110
2111 case RINGBUF_TYPE_TIME_STAMP:
2112 /* FIXME: not implemented */
2113 return;
2114
2115 case RINGBUF_TYPE_DATA:
2116 cpu_buffer->read_stamp += event->time_delta;
2117 return;
2118
2119 default:
2120 BUG();
2121 }
2122 return;
2123}
2124
2125static void
2126rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2127 struct ring_buffer_event *event)
2128{
2129 u64 delta;
2130
334d4169 2131 switch (event->type_len) {
7a8e76a3
SR
2132 case RINGBUF_TYPE_PADDING:
2133 return;
2134
2135 case RINGBUF_TYPE_TIME_EXTEND:
2136 delta = event->array[0];
2137 delta <<= TS_SHIFT;
2138 delta += event->time_delta;
2139 iter->read_stamp += delta;
2140 return;
2141
2142 case RINGBUF_TYPE_TIME_STAMP:
2143 /* FIXME: not implemented */
2144 return;
2145
2146 case RINGBUF_TYPE_DATA:
2147 iter->read_stamp += event->time_delta;
2148 return;
2149
2150 default:
2151 BUG();
2152 }
2153 return;
2154}
2155
d769041f
SR
2156static struct buffer_page *
2157rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2158{
d769041f
SR
2159 struct buffer_page *reader = NULL;
2160 unsigned long flags;
818e3dd3 2161 int nr_loops = 0;
d769041f 2162
3e03fb7f
SR
2163 local_irq_save(flags);
2164 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2165
2166 again:
818e3dd3
SR
2167 /*
2168 * This should normally only loop twice. But because the
2169 * start of the reader inserts an empty page, it causes
2170 * a case where we will loop three times. There should be no
2171 * reason to loop four times (that I know of).
2172 */
3e89c7bb 2173 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2174 reader = NULL;
2175 goto out;
2176 }
2177
d769041f
SR
2178 reader = cpu_buffer->reader_page;
2179
2180 /* If there's more to read, return this page */
bf41a158 2181 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2182 goto out;
2183
2184 /* Never should we have an index greater than the size */
3e89c7bb
SR
2185 if (RB_WARN_ON(cpu_buffer,
2186 cpu_buffer->reader_page->read > rb_page_size(reader)))
2187 goto out;
d769041f
SR
2188
2189 /* check if we caught up to the tail */
2190 reader = NULL;
bf41a158 2191 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2192 goto out;
7a8e76a3
SR
2193
2194 /*
d769041f
SR
2195 * Splice the empty reader page into the list around the head.
2196 * Reset the reader page to size zero.
7a8e76a3 2197 */
7a8e76a3 2198
d769041f
SR
2199 reader = cpu_buffer->head_page;
2200 cpu_buffer->reader_page->list.next = reader->list.next;
2201 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
2202
2203 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2204 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2205 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2206
d769041f
SR
2207 /* Make the reader page now replace the head */
2208 reader->list.prev->next = &cpu_buffer->reader_page->list;
2209 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
2210
2211 /*
d769041f
SR
2212 * If the tail is on the reader, then we must set the head
2213 * to the inserted page, otherwise we set it one before.
7a8e76a3 2214 */
d769041f 2215 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 2216
bf41a158 2217 if (cpu_buffer->commit_page != reader)
d769041f
SR
2218 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2219
2220 /* Finally update the reader page to the new head */
2221 cpu_buffer->reader_page = reader;
2222 rb_reset_reader_page(cpu_buffer);
2223
2224 goto again;
2225
2226 out:
3e03fb7f
SR
2227 __raw_spin_unlock(&cpu_buffer->lock);
2228 local_irq_restore(flags);
d769041f
SR
2229
2230 return reader;
2231}
2232
2233static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2234{
2235 struct ring_buffer_event *event;
2236 struct buffer_page *reader;
2237 unsigned length;
2238
2239 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2240
d769041f 2241 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2242 if (RB_WARN_ON(cpu_buffer, !reader))
2243 return;
7a8e76a3 2244
d769041f
SR
2245 event = rb_reader_event(cpu_buffer);
2246
334d4169
LJ
2247 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2248 || rb_discarded_event(event))
e4906eff 2249 cpu_buffer->read++;
d769041f
SR
2250
2251 rb_update_read_stamp(cpu_buffer, event);
2252
2253 length = rb_event_length(event);
6f807acd 2254 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2255}
2256
2257static void rb_advance_iter(struct ring_buffer_iter *iter)
2258{
2259 struct ring_buffer *buffer;
2260 struct ring_buffer_per_cpu *cpu_buffer;
2261 struct ring_buffer_event *event;
2262 unsigned length;
2263
2264 cpu_buffer = iter->cpu_buffer;
2265 buffer = cpu_buffer->buffer;
2266
2267 /*
2268 * Check if we are at the end of the buffer.
2269 */
bf41a158 2270 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
2271 if (RB_WARN_ON(buffer,
2272 iter->head_page == cpu_buffer->commit_page))
2273 return;
d769041f 2274 rb_inc_iter(iter);
7a8e76a3
SR
2275 return;
2276 }
2277
2278 event = rb_iter_head_event(iter);
2279
2280 length = rb_event_length(event);
2281
2282 /*
2283 * This should not be called to advance the header if we are
2284 * at the tail of the buffer.
2285 */
3e89c7bb 2286 if (RB_WARN_ON(cpu_buffer,
f536aafc 2287 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2288 (iter->head + length > rb_commit_index(cpu_buffer))))
2289 return;
7a8e76a3
SR
2290
2291 rb_update_iter_read_stamp(iter, event);
2292
2293 iter->head += length;
2294
2295 /* check for end of page padding */
bf41a158
SR
2296 if ((iter->head >= rb_page_size(iter->head_page)) &&
2297 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2298 rb_advance_iter(iter);
2299}
2300
f83c9d0f
SR
2301static struct ring_buffer_event *
2302rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2303{
2304 struct ring_buffer_per_cpu *cpu_buffer;
2305 struct ring_buffer_event *event;
d769041f 2306 struct buffer_page *reader;
818e3dd3 2307 int nr_loops = 0;
7a8e76a3 2308
7a8e76a3
SR
2309 cpu_buffer = buffer->buffers[cpu];
2310
2311 again:
818e3dd3
SR
2312 /*
2313 * We repeat when a timestamp is encountered. It is possible
2314 * to get multiple timestamps from an interrupt entering just
2315 * as one timestamp is about to be written. The max times
2316 * that this can happen is the number of nested interrupts we
2317 * can have. Nesting 10 deep of interrupts is clearly
2318 * an anomaly.
2319 */
3e89c7bb 2320 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2321 return NULL;
818e3dd3 2322
d769041f
SR
2323 reader = rb_get_reader_page(cpu_buffer);
2324 if (!reader)
7a8e76a3
SR
2325 return NULL;
2326
d769041f 2327 event = rb_reader_event(cpu_buffer);
7a8e76a3 2328
334d4169 2329 switch (event->type_len) {
7a8e76a3 2330 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2331 if (rb_null_event(event))
2332 RB_WARN_ON(cpu_buffer, 1);
2333 /*
2334 * Because the writer could be discarding every
2335 * event it creates (which would probably be bad)
2336 * if we were to go back to "again" then we may never
2337 * catch up, and will trigger the warn on, or lock
2338 * the box. Return the padding, and we will release
2339 * the current locks, and try again.
2340 */
d769041f 2341 rb_advance_reader(cpu_buffer);
2d622719 2342 return event;
7a8e76a3
SR
2343
2344 case RINGBUF_TYPE_TIME_EXTEND:
2345 /* Internal data, OK to advance */
d769041f 2346 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2347 goto again;
2348
2349 case RINGBUF_TYPE_TIME_STAMP:
2350 /* FIXME: not implemented */
d769041f 2351 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2352 goto again;
2353
2354 case RINGBUF_TYPE_DATA:
2355 if (ts) {
2356 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2357 ring_buffer_normalize_time_stamp(buffer,
2358 cpu_buffer->cpu, ts);
7a8e76a3
SR
2359 }
2360 return event;
2361
2362 default:
2363 BUG();
2364 }
2365
2366 return NULL;
2367}
c4f50183 2368EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2369
f83c9d0f
SR
2370static struct ring_buffer_event *
2371rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2372{
2373 struct ring_buffer *buffer;
2374 struct ring_buffer_per_cpu *cpu_buffer;
2375 struct ring_buffer_event *event;
818e3dd3 2376 int nr_loops = 0;
7a8e76a3
SR
2377
2378 if (ring_buffer_iter_empty(iter))
2379 return NULL;
2380
2381 cpu_buffer = iter->cpu_buffer;
2382 buffer = cpu_buffer->buffer;
2383
2384 again:
818e3dd3
SR
2385 /*
2386 * We repeat when a timestamp is encountered. It is possible
2387 * to get multiple timestamps from an interrupt entering just
2388 * as one timestamp is about to be written. The max times
2389 * that this can happen is the number of nested interrupts we
2390 * can have. Nesting 10 deep of interrupts is clearly
2391 * an anomaly.
2392 */
3e89c7bb 2393 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2394 return NULL;
818e3dd3 2395
7a8e76a3
SR
2396 if (rb_per_cpu_empty(cpu_buffer))
2397 return NULL;
2398
2399 event = rb_iter_head_event(iter);
2400
334d4169 2401 switch (event->type_len) {
7a8e76a3 2402 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2403 if (rb_null_event(event)) {
2404 rb_inc_iter(iter);
2405 goto again;
2406 }
2407 rb_advance_iter(iter);
2408 return event;
7a8e76a3
SR
2409
2410 case RINGBUF_TYPE_TIME_EXTEND:
2411 /* Internal data, OK to advance */
2412 rb_advance_iter(iter);
2413 goto again;
2414
2415 case RINGBUF_TYPE_TIME_STAMP:
2416 /* FIXME: not implemented */
2417 rb_advance_iter(iter);
2418 goto again;
2419
2420 case RINGBUF_TYPE_DATA:
2421 if (ts) {
2422 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2423 ring_buffer_normalize_time_stamp(buffer,
2424 cpu_buffer->cpu, ts);
7a8e76a3
SR
2425 }
2426 return event;
2427
2428 default:
2429 BUG();
2430 }
2431
2432 return NULL;
2433}
c4f50183 2434EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2435
f83c9d0f
SR
2436/**
2437 * ring_buffer_peek - peek at the next event to be read
2438 * @buffer: The ring buffer to read
2439 * @cpu: The cpu to peak at
2440 * @ts: The timestamp counter of this event.
2441 *
2442 * This will return the event that will be read next, but does
2443 * not consume the data.
2444 */
2445struct ring_buffer_event *
2446ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2447{
2448 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2449 struct ring_buffer_event *event;
f83c9d0f
SR
2450 unsigned long flags;
2451
554f786e 2452 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2453 return NULL;
554f786e 2454
2d622719 2455 again:
f83c9d0f
SR
2456 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2457 event = rb_buffer_peek(buffer, cpu, ts);
2458 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2459
334d4169 2460 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2461 cpu_relax();
2462 goto again;
2463 }
2464
f83c9d0f
SR
2465 return event;
2466}
2467
2468/**
2469 * ring_buffer_iter_peek - peek at the next event to be read
2470 * @iter: The ring buffer iterator
2471 * @ts: The timestamp counter of this event.
2472 *
2473 * This will return the event that will be read next, but does
2474 * not increment the iterator.
2475 */
2476struct ring_buffer_event *
2477ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2478{
2479 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2480 struct ring_buffer_event *event;
2481 unsigned long flags;
2482
2d622719 2483 again:
f83c9d0f
SR
2484 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2485 event = rb_iter_peek(iter, ts);
2486 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2487
334d4169 2488 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2489 cpu_relax();
2490 goto again;
2491 }
2492
f83c9d0f
SR
2493 return event;
2494}
2495
7a8e76a3
SR
2496/**
2497 * ring_buffer_consume - return an event and consume it
2498 * @buffer: The ring buffer to get the next event from
2499 *
2500 * Returns the next event in the ring buffer, and that event is consumed.
2501 * Meaning, that sequential reads will keep returning a different event,
2502 * and eventually empty the ring buffer if the producer is slower.
2503 */
2504struct ring_buffer_event *
2505ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2506{
554f786e
SR
2507 struct ring_buffer_per_cpu *cpu_buffer;
2508 struct ring_buffer_event *event = NULL;
f83c9d0f 2509 unsigned long flags;
7a8e76a3 2510
2d622719 2511 again:
554f786e
SR
2512 /* might be called in atomic */
2513 preempt_disable();
2514
9e01c1b7 2515 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2516 goto out;
7a8e76a3 2517
554f786e 2518 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2519 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2520
2521 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2522 if (!event)
554f786e 2523 goto out_unlock;
7a8e76a3 2524
d769041f 2525 rb_advance_reader(cpu_buffer);
7a8e76a3 2526
554f786e 2527 out_unlock:
f83c9d0f
SR
2528 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2529
554f786e
SR
2530 out:
2531 preempt_enable();
2532
334d4169 2533 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2534 cpu_relax();
2535 goto again;
2536 }
2537
7a8e76a3
SR
2538 return event;
2539}
c4f50183 2540EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2541
2542/**
2543 * ring_buffer_read_start - start a non consuming read of the buffer
2544 * @buffer: The ring buffer to read from
2545 * @cpu: The cpu buffer to iterate over
2546 *
2547 * This starts up an iteration through the buffer. It also disables
2548 * the recording to the buffer until the reading is finished.
2549 * This prevents the reading from being corrupted. This is not
2550 * a consuming read, so a producer is not expected.
2551 *
2552 * Must be paired with ring_buffer_finish.
2553 */
2554struct ring_buffer_iter *
2555ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2556{
2557 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2558 struct ring_buffer_iter *iter;
d769041f 2559 unsigned long flags;
7a8e76a3 2560
9e01c1b7 2561 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2562 return NULL;
7a8e76a3
SR
2563
2564 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2565 if (!iter)
8aabee57 2566 return NULL;
7a8e76a3
SR
2567
2568 cpu_buffer = buffer->buffers[cpu];
2569
2570 iter->cpu_buffer = cpu_buffer;
2571
2572 atomic_inc(&cpu_buffer->record_disabled);
2573 synchronize_sched();
2574
f83c9d0f 2575 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2576 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2577 rb_iter_reset(iter);
3e03fb7f 2578 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2579 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2580
2581 return iter;
2582}
c4f50183 2583EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2584
2585/**
2586 * ring_buffer_finish - finish reading the iterator of the buffer
2587 * @iter: The iterator retrieved by ring_buffer_start
2588 *
2589 * This re-enables the recording to the buffer, and frees the
2590 * iterator.
2591 */
2592void
2593ring_buffer_read_finish(struct ring_buffer_iter *iter)
2594{
2595 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2596
2597 atomic_dec(&cpu_buffer->record_disabled);
2598 kfree(iter);
2599}
c4f50183 2600EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2601
2602/**
2603 * ring_buffer_read - read the next item in the ring buffer by the iterator
2604 * @iter: The ring buffer iterator
2605 * @ts: The time stamp of the event read.
2606 *
2607 * This reads the next event in the ring buffer and increments the iterator.
2608 */
2609struct ring_buffer_event *
2610ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2611{
2612 struct ring_buffer_event *event;
f83c9d0f
SR
2613 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2614 unsigned long flags;
7a8e76a3 2615
2d622719 2616 again:
f83c9d0f
SR
2617 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2618 event = rb_iter_peek(iter, ts);
7a8e76a3 2619 if (!event)
f83c9d0f 2620 goto out;
7a8e76a3
SR
2621
2622 rb_advance_iter(iter);
f83c9d0f
SR
2623 out:
2624 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2625
334d4169 2626 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2627 cpu_relax();
2628 goto again;
2629 }
2630
7a8e76a3
SR
2631 return event;
2632}
c4f50183 2633EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2634
2635/**
2636 * ring_buffer_size - return the size of the ring buffer (in bytes)
2637 * @buffer: The ring buffer.
2638 */
2639unsigned long ring_buffer_size(struct ring_buffer *buffer)
2640{
2641 return BUF_PAGE_SIZE * buffer->pages;
2642}
c4f50183 2643EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2644
2645static void
2646rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2647{
2648 cpu_buffer->head_page
2649 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2650 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 2651 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 2652 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2653
6f807acd 2654 cpu_buffer->head_page->read = 0;
bf41a158
SR
2655
2656 cpu_buffer->tail_page = cpu_buffer->head_page;
2657 cpu_buffer->commit_page = cpu_buffer->head_page;
2658
2659 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2660 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2661 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2662 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2663 cpu_buffer->reader_page->read = 0;
7a8e76a3 2664
f0d2c681
SR
2665 cpu_buffer->nmi_dropped = 0;
2666 cpu_buffer->commit_overrun = 0;
7a8e76a3 2667 cpu_buffer->overrun = 0;
e4906eff
SR
2668 cpu_buffer->read = 0;
2669 local_set(&cpu_buffer->entries, 0);
69507c06
SR
2670
2671 cpu_buffer->write_stamp = 0;
2672 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2673}
2674
2675/**
2676 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2677 * @buffer: The ring buffer to reset a per cpu buffer of
2678 * @cpu: The CPU buffer to be reset
2679 */
2680void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2681{
2682 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2683 unsigned long flags;
2684
9e01c1b7 2685 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2686 return;
7a8e76a3 2687
41ede23e
SR
2688 atomic_inc(&cpu_buffer->record_disabled);
2689
f83c9d0f
SR
2690 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2691
3e03fb7f 2692 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2693
2694 rb_reset_cpu(cpu_buffer);
2695
3e03fb7f 2696 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2697
2698 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
2699
2700 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 2701}
c4f50183 2702EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2703
2704/**
2705 * ring_buffer_reset - reset a ring buffer
2706 * @buffer: The ring buffer to reset all cpu buffers
2707 */
2708void ring_buffer_reset(struct ring_buffer *buffer)
2709{
7a8e76a3
SR
2710 int cpu;
2711
7a8e76a3 2712 for_each_buffer_cpu(buffer, cpu)
d769041f 2713 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2714}
c4f50183 2715EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2716
2717/**
2718 * rind_buffer_empty - is the ring buffer empty?
2719 * @buffer: The ring buffer to test
2720 */
2721int ring_buffer_empty(struct ring_buffer *buffer)
2722{
2723 struct ring_buffer_per_cpu *cpu_buffer;
2724 int cpu;
2725
2726 /* yes this is racy, but if you don't like the race, lock the buffer */
2727 for_each_buffer_cpu(buffer, cpu) {
2728 cpu_buffer = buffer->buffers[cpu];
2729 if (!rb_per_cpu_empty(cpu_buffer))
2730 return 0;
2731 }
554f786e 2732
7a8e76a3
SR
2733 return 1;
2734}
c4f50183 2735EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2736
2737/**
2738 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2739 * @buffer: The ring buffer
2740 * @cpu: The CPU buffer to test
2741 */
2742int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2743{
2744 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2745 int ret;
7a8e76a3 2746
9e01c1b7 2747 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2748 return 1;
7a8e76a3
SR
2749
2750 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2751 ret = rb_per_cpu_empty(cpu_buffer);
2752
554f786e
SR
2753
2754 return ret;
7a8e76a3 2755}
c4f50183 2756EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2757
2758/**
2759 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2760 * @buffer_a: One buffer to swap with
2761 * @buffer_b: The other buffer to swap with
2762 *
2763 * This function is useful for tracers that want to take a "snapshot"
2764 * of a CPU buffer and has another back up buffer lying around.
2765 * it is expected that the tracer handles the cpu buffer not being
2766 * used at the moment.
2767 */
2768int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2769 struct ring_buffer *buffer_b, int cpu)
2770{
2771 struct ring_buffer_per_cpu *cpu_buffer_a;
2772 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2773 int ret = -EINVAL;
2774
9e01c1b7
RR
2775 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2776 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2777 goto out;
7a8e76a3
SR
2778
2779 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2780 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2781 goto out;
2782
2783 ret = -EAGAIN;
7a8e76a3 2784
97b17efe 2785 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2786 goto out;
97b17efe
SR
2787
2788 if (atomic_read(&buffer_a->record_disabled))
554f786e 2789 goto out;
97b17efe
SR
2790
2791 if (atomic_read(&buffer_b->record_disabled))
554f786e 2792 goto out;
97b17efe 2793
7a8e76a3
SR
2794 cpu_buffer_a = buffer_a->buffers[cpu];
2795 cpu_buffer_b = buffer_b->buffers[cpu];
2796
97b17efe 2797 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2798 goto out;
97b17efe
SR
2799
2800 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2801 goto out;
97b17efe 2802
7a8e76a3
SR
2803 /*
2804 * We can't do a synchronize_sched here because this
2805 * function can be called in atomic context.
2806 * Normally this will be called from the same CPU as cpu.
2807 * If not it's up to the caller to protect this.
2808 */
2809 atomic_inc(&cpu_buffer_a->record_disabled);
2810 atomic_inc(&cpu_buffer_b->record_disabled);
2811
2812 buffer_a->buffers[cpu] = cpu_buffer_b;
2813 buffer_b->buffers[cpu] = cpu_buffer_a;
2814
2815 cpu_buffer_b->buffer = buffer_a;
2816 cpu_buffer_a->buffer = buffer_b;
2817
2818 atomic_dec(&cpu_buffer_a->record_disabled);
2819 atomic_dec(&cpu_buffer_b->record_disabled);
2820
554f786e
SR
2821 ret = 0;
2822out:
554f786e 2823 return ret;
7a8e76a3 2824}
c4f50183 2825EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2826
8789a9e7
SR
2827/**
2828 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2829 * @buffer: the buffer to allocate for.
2830 *
2831 * This function is used in conjunction with ring_buffer_read_page.
2832 * When reading a full page from the ring buffer, these functions
2833 * can be used to speed up the process. The calling function should
2834 * allocate a few pages first with this function. Then when it
2835 * needs to get pages from the ring buffer, it passes the result
2836 * of this function into ring_buffer_read_page, which will swap
2837 * the page that was allocated, with the read page of the buffer.
2838 *
2839 * Returns:
2840 * The page allocated, or NULL on error.
2841 */
2842void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2843{
044fa782 2844 struct buffer_data_page *bpage;
ef7a4a16 2845 unsigned long addr;
8789a9e7
SR
2846
2847 addr = __get_free_page(GFP_KERNEL);
2848 if (!addr)
2849 return NULL;
2850
044fa782 2851 bpage = (void *)addr;
8789a9e7 2852
ef7a4a16
SR
2853 rb_init_page(bpage);
2854
044fa782 2855 return bpage;
8789a9e7 2856}
d6ce96da 2857EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
2858
2859/**
2860 * ring_buffer_free_read_page - free an allocated read page
2861 * @buffer: the buffer the page was allocate for
2862 * @data: the page to free
2863 *
2864 * Free a page allocated from ring_buffer_alloc_read_page.
2865 */
2866void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2867{
2868 free_page((unsigned long)data);
2869}
d6ce96da 2870EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
2871
2872/**
2873 * ring_buffer_read_page - extract a page from the ring buffer
2874 * @buffer: buffer to extract from
2875 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2876 * @len: amount to extract
8789a9e7
SR
2877 * @cpu: the cpu of the buffer to extract
2878 * @full: should the extraction only happen when the page is full.
2879 *
2880 * This function will pull out a page from the ring buffer and consume it.
2881 * @data_page must be the address of the variable that was returned
2882 * from ring_buffer_alloc_read_page. This is because the page might be used
2883 * to swap with a page in the ring buffer.
2884 *
2885 * for example:
b85fa01e 2886 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2887 * if (!rpage)
2888 * return error;
ef7a4a16 2889 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2890 * if (ret >= 0)
2891 * process_page(rpage, ret);
8789a9e7
SR
2892 *
2893 * When @full is set, the function will not return true unless
2894 * the writer is off the reader page.
2895 *
2896 * Note: it is up to the calling functions to handle sleeps and wakeups.
2897 * The ring buffer can be used anywhere in the kernel and can not
2898 * blindly call wake_up. The layer that uses the ring buffer must be
2899 * responsible for that.
2900 *
2901 * Returns:
667d2412
LJ
2902 * >=0 if data has been transferred, returns the offset of consumed data.
2903 * <0 if no data has been transferred.
8789a9e7
SR
2904 */
2905int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2906 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2907{
2908 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2909 struct ring_buffer_event *event;
044fa782 2910 struct buffer_data_page *bpage;
ef7a4a16 2911 struct buffer_page *reader;
8789a9e7 2912 unsigned long flags;
ef7a4a16 2913 unsigned int commit;
667d2412 2914 unsigned int read;
4f3640f8 2915 u64 save_timestamp;
667d2412 2916 int ret = -1;
8789a9e7 2917
554f786e
SR
2918 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2919 goto out;
2920
474d32b6
SR
2921 /*
2922 * If len is not big enough to hold the page header, then
2923 * we can not copy anything.
2924 */
2925 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2926 goto out;
474d32b6
SR
2927
2928 len -= BUF_PAGE_HDR_SIZE;
2929
8789a9e7 2930 if (!data_page)
554f786e 2931 goto out;
8789a9e7 2932
044fa782
SR
2933 bpage = *data_page;
2934 if (!bpage)
554f786e 2935 goto out;
8789a9e7
SR
2936
2937 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2938
ef7a4a16
SR
2939 reader = rb_get_reader_page(cpu_buffer);
2940 if (!reader)
554f786e 2941 goto out_unlock;
8789a9e7 2942
ef7a4a16
SR
2943 event = rb_reader_event(cpu_buffer);
2944
2945 read = reader->read;
2946 commit = rb_page_commit(reader);
667d2412 2947
8789a9e7 2948 /*
474d32b6
SR
2949 * If this page has been partially read or
2950 * if len is not big enough to read the rest of the page or
2951 * a writer is still on the page, then
2952 * we must copy the data from the page to the buffer.
2953 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2954 */
474d32b6 2955 if (read || (len < (commit - read)) ||
ef7a4a16 2956 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2957 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2958 unsigned int rpos = read;
2959 unsigned int pos = 0;
ef7a4a16 2960 unsigned int size;
8789a9e7
SR
2961
2962 if (full)
554f786e 2963 goto out_unlock;
8789a9e7 2964
ef7a4a16
SR
2965 if (len > (commit - read))
2966 len = (commit - read);
2967
2968 size = rb_event_length(event);
2969
2970 if (len < size)
554f786e 2971 goto out_unlock;
ef7a4a16 2972
4f3640f8
SR
2973 /* save the current timestamp, since the user will need it */
2974 save_timestamp = cpu_buffer->read_stamp;
2975
ef7a4a16
SR
2976 /* Need to copy one event at a time */
2977 do {
474d32b6 2978 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2979
2980 len -= size;
2981
2982 rb_advance_reader(cpu_buffer);
474d32b6
SR
2983 rpos = reader->read;
2984 pos += size;
ef7a4a16
SR
2985
2986 event = rb_reader_event(cpu_buffer);
2987 size = rb_event_length(event);
2988 } while (len > size);
667d2412
LJ
2989
2990 /* update bpage */
ef7a4a16 2991 local_set(&bpage->commit, pos);
4f3640f8 2992 bpage->time_stamp = save_timestamp;
ef7a4a16 2993
474d32b6
SR
2994 /* we copied everything to the beginning */
2995 read = 0;
8789a9e7 2996 } else {
afbab76a
SR
2997 /* update the entry counter */
2998 cpu_buffer->read += local_read(&reader->entries);
2999
8789a9e7 3000 /* swap the pages */
044fa782 3001 rb_init_page(bpage);
ef7a4a16
SR
3002 bpage = reader->page;
3003 reader->page = *data_page;
3004 local_set(&reader->write, 0);
778c55d4 3005 local_set(&reader->entries, 0);
ef7a4a16 3006 reader->read = 0;
044fa782 3007 *data_page = bpage;
8789a9e7 3008 }
667d2412 3009 ret = read;
8789a9e7 3010
554f786e 3011 out_unlock:
8789a9e7
SR
3012 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3013
554f786e 3014 out:
8789a9e7
SR
3015 return ret;
3016}
d6ce96da 3017EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3018
a3583244
SR
3019static ssize_t
3020rb_simple_read(struct file *filp, char __user *ubuf,
3021 size_t cnt, loff_t *ppos)
3022{
5e39841c 3023 unsigned long *p = filp->private_data;
a3583244
SR
3024 char buf[64];
3025 int r;
3026
033601a3
SR
3027 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3028 r = sprintf(buf, "permanently disabled\n");
3029 else
3030 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3031
3032 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3033}
3034
3035static ssize_t
3036rb_simple_write(struct file *filp, const char __user *ubuf,
3037 size_t cnt, loff_t *ppos)
3038{
5e39841c 3039 unsigned long *p = filp->private_data;
a3583244 3040 char buf[64];
5e39841c 3041 unsigned long val;
a3583244
SR
3042 int ret;
3043
3044 if (cnt >= sizeof(buf))
3045 return -EINVAL;
3046
3047 if (copy_from_user(&buf, ubuf, cnt))
3048 return -EFAULT;
3049
3050 buf[cnt] = 0;
3051
3052 ret = strict_strtoul(buf, 10, &val);
3053 if (ret < 0)
3054 return ret;
3055
033601a3
SR
3056 if (val)
3057 set_bit(RB_BUFFERS_ON_BIT, p);
3058 else
3059 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3060
3061 (*ppos)++;
3062
3063 return cnt;
3064}
3065
5e2336a0 3066static const struct file_operations rb_simple_fops = {
a3583244
SR
3067 .open = tracing_open_generic,
3068 .read = rb_simple_read,
3069 .write = rb_simple_write,
3070};
3071
3072
3073static __init int rb_init_debugfs(void)
3074{
3075 struct dentry *d_tracer;
a3583244
SR
3076
3077 d_tracer = tracing_init_dentry();
3078
5452af66
FW
3079 trace_create_file("tracing_on", 0644, d_tracer,
3080 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3081
3082 return 0;
3083}
3084
3085fs_initcall(rb_init_debugfs);
554f786e 3086
59222efe 3087#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3088static int rb_cpu_notify(struct notifier_block *self,
3089 unsigned long action, void *hcpu)
554f786e
SR
3090{
3091 struct ring_buffer *buffer =
3092 container_of(self, struct ring_buffer, cpu_notify);
3093 long cpu = (long)hcpu;
3094
3095 switch (action) {
3096 case CPU_UP_PREPARE:
3097 case CPU_UP_PREPARE_FROZEN:
3098 if (cpu_isset(cpu, *buffer->cpumask))
3099 return NOTIFY_OK;
3100
3101 buffer->buffers[cpu] =
3102 rb_allocate_cpu_buffer(buffer, cpu);
3103 if (!buffer->buffers[cpu]) {
3104 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3105 cpu);
3106 return NOTIFY_OK;
3107 }
3108 smp_wmb();
3109 cpu_set(cpu, *buffer->cpumask);
3110 break;
3111 case CPU_DOWN_PREPARE:
3112 case CPU_DOWN_PREPARE_FROZEN:
3113 /*
3114 * Do nothing.
3115 * If we were to free the buffer, then the user would
3116 * lose any trace that was in the buffer.
3117 */
3118 break;
3119 default:
3120 break;
3121 }
3122 return NOTIFY_OK;
3123}
3124#endif