]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/trace/ring_buffer.c
ring-buffer: Remove condition to add timestamp in fast path
[net-next-2.6.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
1744a21d 13#include <linux/kmemcheck.h>
7a8e76a3
SR
14#include <linux/module.h>
15#include <linux/percpu.h>
16#include <linux/mutex.h>
5a0e3ad6 17#include <linux/slab.h>
7a8e76a3
SR
18#include <linux/init.h>
19#include <linux/hash.h>
20#include <linux/list.h>
554f786e 21#include <linux/cpu.h>
7a8e76a3
SR
22#include <linux/fs.h>
23
79615760 24#include <asm/local.h>
182e9f5f
SR
25#include "trace.h"
26
d1b182a8
SR
27/*
28 * The ring buffer header is special. We must manually up keep it.
29 */
30int ring_buffer_print_entry_header(struct trace_seq *s)
31{
32 int ret;
33
334d4169
LJ
34 ret = trace_seq_printf(s, "# compressed entry header\n");
35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
37 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
38 ret = trace_seq_printf(s, "\n");
39 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING);
41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
45
46 return ret;
47}
48
5cc98548
SR
49/*
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
54 *
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
58 *
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
62 *
63 * Here's some silly ASCII art.
64 *
65 * +------+
66 * |reader| RING BUFFER
67 * |page |
68 * +------+ +---+ +---+ +---+
69 * | |-->| |-->| |
70 * +---+ +---+ +---+
71 * ^ |
72 * | |
73 * +---------------+
74 *
75 *
76 * +------+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
80 * | |-->| |-->| |
81 * +---+ +---+ +---+
82 * ^ |
83 * | |
84 * +---------------+
85 *
86 *
87 * +------+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
91 * ^ | |-->| |-->| |
92 * | +---+ +---+ +---+
93 * | |
94 * | |
95 * +------------------------------+
96 *
97 *
98 * +------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
102 * ^ | | | |-->| |
103 * | New +---+ +---+ +---+
104 * | Reader------^ |
105 * | page |
106 * +------------------------------+
107 *
108 *
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
112 *
113 * We will be using cmpxchg soon to make all this lockless.
114 *
115 */
116
033601a3
SR
117/*
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
123 *
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
126 *
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
130 *
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
133 */
134
135/*
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
138 *
139 * ON DISABLED
140 * ---- ----------
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
144 */
145
146enum {
147 RB_BUFFERS_ON_BIT = 0,
148 RB_BUFFERS_DISABLED_BIT = 1,
149};
150
151enum {
152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
154};
155
5e39841c 156static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 157
474d32b6
SR
158#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
a3583244
SR
160/**
161 * tracing_on - enable all tracing buffers
162 *
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
165 */
166void tracing_on(void)
167{
033601a3 168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 169}
c4f50183 170EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
171
172/**
173 * tracing_off - turn off all tracing buffers
174 *
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
179 */
180void tracing_off(void)
181{
033601a3
SR
182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183}
c4f50183 184EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
185
186/**
187 * tracing_off_permanent - permanently disable ring buffers
188 *
189 * This function, once called, will disable all ring buffers
c3706f00 190 * permanently.
033601a3
SR
191 */
192void tracing_off_permanent(void)
193{
194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
195}
196
988ae9d6
SR
197/**
198 * tracing_is_on - show state of ring buffers enabled
199 */
200int tracing_is_on(void)
201{
202 return ring_buffer_flags == RB_BUFFERS_ON;
203}
204EXPORT_SYMBOL_GPL(tracing_is_on);
205
e3d6bf0a 206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 207#define RB_ALIGNMENT 4U
334d4169 208#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 209#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 210
2271048d
SR
211#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212# define RB_FORCE_8BYTE_ALIGNMENT 0
213# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214#else
215# define RB_FORCE_8BYTE_ALIGNMENT 1
216# define RB_ARCH_ALIGNMENT 8U
217#endif
218
334d4169
LJ
219/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
221
222enum {
223 RB_LEN_TIME_EXTEND = 8,
224 RB_LEN_TIME_STAMP = 16,
225};
226
69d1b839
SR
227#define skip_time_extend(event) \
228 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229
2d622719
TZ
230static inline int rb_null_event(struct ring_buffer_event *event)
231{
a1863c21 232 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
233}
234
235static void rb_event_set_padding(struct ring_buffer_event *event)
236{
a1863c21 237 /* padding has a NULL time_delta */
334d4169 238 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
239 event->time_delta = 0;
240}
241
34a148bf 242static unsigned
2d622719 243rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
244{
245 unsigned length;
246
334d4169
LJ
247 if (event->type_len)
248 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
249 else
250 length = event->array[0];
251 return length + RB_EVNT_HDR_SIZE;
252}
253
69d1b839
SR
254/*
255 * Return the length of the given event. Will return
256 * the length of the time extend if the event is a
257 * time extend.
258 */
259static inline unsigned
2d622719
TZ
260rb_event_length(struct ring_buffer_event *event)
261{
334d4169 262 switch (event->type_len) {
7a8e76a3 263 case RINGBUF_TYPE_PADDING:
2d622719
TZ
264 if (rb_null_event(event))
265 /* undefined */
266 return -1;
334d4169 267 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
268
269 case RINGBUF_TYPE_TIME_EXTEND:
270 return RB_LEN_TIME_EXTEND;
271
272 case RINGBUF_TYPE_TIME_STAMP:
273 return RB_LEN_TIME_STAMP;
274
275 case RINGBUF_TYPE_DATA:
2d622719 276 return rb_event_data_length(event);
7a8e76a3
SR
277 default:
278 BUG();
279 }
280 /* not hit */
281 return 0;
282}
283
69d1b839
SR
284/*
285 * Return total length of time extend and data,
286 * or just the event length for all other events.
287 */
288static inline unsigned
289rb_event_ts_length(struct ring_buffer_event *event)
290{
291 unsigned len = 0;
292
293 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
294 /* time extends include the data event after it */
295 len = RB_LEN_TIME_EXTEND;
296 event = skip_time_extend(event);
297 }
298 return len + rb_event_length(event);
299}
300
7a8e76a3
SR
301/**
302 * ring_buffer_event_length - return the length of the event
303 * @event: the event to get the length of
69d1b839
SR
304 *
305 * Returns the size of the data load of a data event.
306 * If the event is something other than a data event, it
307 * returns the size of the event itself. With the exception
308 * of a TIME EXTEND, where it still returns the size of the
309 * data load of the data event after it.
7a8e76a3
SR
310 */
311unsigned ring_buffer_event_length(struct ring_buffer_event *event)
312{
69d1b839
SR
313 unsigned length;
314
315 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
316 event = skip_time_extend(event);
317
318 length = rb_event_length(event);
334d4169 319 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
320 return length;
321 length -= RB_EVNT_HDR_SIZE;
322 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
323 length -= sizeof(event->array[0]);
324 return length;
7a8e76a3 325}
c4f50183 326EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
327
328/* inline for ring buffer fast paths */
34a148bf 329static void *
7a8e76a3
SR
330rb_event_data(struct ring_buffer_event *event)
331{
69d1b839
SR
332 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
333 event = skip_time_extend(event);
334d4169 334 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 335 /* If length is in len field, then array[0] has the data */
334d4169 336 if (event->type_len)
7a8e76a3
SR
337 return (void *)&event->array[0];
338 /* Otherwise length is in array[0] and array[1] has the data */
339 return (void *)&event->array[1];
340}
341
342/**
343 * ring_buffer_event_data - return the data of the event
344 * @event: the event to get the data from
345 */
346void *ring_buffer_event_data(struct ring_buffer_event *event)
347{
348 return rb_event_data(event);
349}
c4f50183 350EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
351
352#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 353 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
354
355#define TS_SHIFT 27
356#define TS_MASK ((1ULL << TS_SHIFT) - 1)
357#define TS_DELTA_TEST (~TS_MASK)
358
66a8cb95
SR
359/* Flag when events were overwritten */
360#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
361/* Missed count stored at end */
362#define RB_MISSED_STORED (1 << 30)
66a8cb95 363
abc9b56d 364struct buffer_data_page {
e4c2ce82 365 u64 time_stamp; /* page time stamp */
c3706f00 366 local_t commit; /* write committed index */
abc9b56d
SR
367 unsigned char data[]; /* data of buffer page */
368};
369
77ae365e
SR
370/*
371 * Note, the buffer_page list must be first. The buffer pages
372 * are allocated in cache lines, which means that each buffer
373 * page will be at the beginning of a cache line, and thus
374 * the least significant bits will be zero. We use this to
375 * add flags in the list struct pointers, to make the ring buffer
376 * lockless.
377 */
abc9b56d 378struct buffer_page {
778c55d4 379 struct list_head list; /* list of buffer pages */
abc9b56d 380 local_t write; /* index for next write */
6f807acd 381 unsigned read; /* index for next read */
778c55d4 382 local_t entries; /* entries on this page */
ff0ff84a 383 unsigned long real_end; /* real end of data */
abc9b56d 384 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
385};
386
77ae365e
SR
387/*
388 * The buffer page counters, write and entries, must be reset
389 * atomically when crossing page boundaries. To synchronize this
390 * update, two counters are inserted into the number. One is
391 * the actual counter for the write position or count on the page.
392 *
393 * The other is a counter of updaters. Before an update happens
394 * the update partition of the counter is incremented. This will
395 * allow the updater to update the counter atomically.
396 *
397 * The counter is 20 bits, and the state data is 12.
398 */
399#define RB_WRITE_MASK 0xfffff
400#define RB_WRITE_INTCNT (1 << 20)
401
044fa782 402static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 403{
044fa782 404 local_set(&bpage->commit, 0);
abc9b56d
SR
405}
406
474d32b6
SR
407/**
408 * ring_buffer_page_len - the size of data on the page.
409 * @page: The page to read
410 *
411 * Returns the amount of data on the page, including buffer page header.
412 */
ef7a4a16
SR
413size_t ring_buffer_page_len(void *page)
414{
474d32b6
SR
415 return local_read(&((struct buffer_data_page *)page)->commit)
416 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
417}
418
ed56829c
SR
419/*
420 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
421 * this issue out.
422 */
34a148bf 423static void free_buffer_page(struct buffer_page *bpage)
ed56829c 424{
34a148bf 425 free_page((unsigned long)bpage->page);
e4c2ce82 426 kfree(bpage);
ed56829c
SR
427}
428
7a8e76a3
SR
429/*
430 * We need to fit the time_stamp delta into 27 bits.
431 */
432static inline int test_time_stamp(u64 delta)
433{
434 if (delta & TS_DELTA_TEST)
435 return 1;
436 return 0;
437}
438
474d32b6 439#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 440
be957c44
SR
441/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
442#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443
ea05b57c 444/* Max number of timestamps that can fit on a page */
d0134324 445#define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_EXTEND)
ea05b57c 446
d1b182a8
SR
447int ring_buffer_print_page_header(struct trace_seq *s)
448{
449 struct buffer_data_page field;
450 int ret;
451
452 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
453 "offset:0;\tsize:%u;\tsigned:%u;\n",
454 (unsigned int)sizeof(field.time_stamp),
455 (unsigned int)is_signed_type(u64));
d1b182a8
SR
456
457 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 458 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 459 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
460 (unsigned int)sizeof(field.commit),
461 (unsigned int)is_signed_type(long));
d1b182a8 462
66a8cb95
SR
463 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
464 "offset:%u;\tsize:%u;\tsigned:%u;\n",
465 (unsigned int)offsetof(typeof(field), commit),
466 1,
467 (unsigned int)is_signed_type(long));
468
d1b182a8 469 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 470 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 471 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
472 (unsigned int)BUF_PAGE_SIZE,
473 (unsigned int)is_signed_type(char));
d1b182a8
SR
474
475 return ret;
476}
477
7a8e76a3
SR
478/*
479 * head_page == tail_page && head == tail then buffer is empty.
480 */
481struct ring_buffer_per_cpu {
482 int cpu;
985023de 483 atomic_t record_disabled;
7a8e76a3 484 struct ring_buffer *buffer;
77ae365e 485 spinlock_t reader_lock; /* serialize readers */
445c8951 486 arch_spinlock_t lock;
7a8e76a3 487 struct lock_class_key lock_key;
3adc54fa 488 struct list_head *pages;
6f807acd
SR
489 struct buffer_page *head_page; /* read from head */
490 struct buffer_page *tail_page; /* write to tail */
c3706f00 491 struct buffer_page *commit_page; /* committed pages */
d769041f 492 struct buffer_page *reader_page;
66a8cb95
SR
493 unsigned long lost_events;
494 unsigned long last_overrun;
77ae365e
SR
495 local_t commit_overrun;
496 local_t overrun;
e4906eff 497 local_t entries;
fa743953
SR
498 local_t committing;
499 local_t commits;
77ae365e 500 unsigned long read;
7a8e76a3
SR
501 u64 write_stamp;
502 u64 read_stamp;
7a8e76a3
SR
503};
504
505struct ring_buffer {
7a8e76a3
SR
506 unsigned pages;
507 unsigned flags;
508 int cpus;
7a8e76a3 509 atomic_t record_disabled;
00f62f61 510 cpumask_var_t cpumask;
7a8e76a3 511
1f8a6a10
PZ
512 struct lock_class_key *reader_lock_key;
513
7a8e76a3
SR
514 struct mutex mutex;
515
516 struct ring_buffer_per_cpu **buffers;
554f786e 517
59222efe 518#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
519 struct notifier_block cpu_notify;
520#endif
37886f6a 521 u64 (*clock)(void);
7a8e76a3
SR
522};
523
524struct ring_buffer_iter {
525 struct ring_buffer_per_cpu *cpu_buffer;
526 unsigned long head;
527 struct buffer_page *head_page;
492a74f4
SR
528 struct buffer_page *cache_reader_page;
529 unsigned long cache_read;
7a8e76a3
SR
530 u64 read_stamp;
531};
532
f536aafc 533/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
534#define RB_WARN_ON(b, cond) \
535 ({ \
536 int _____ret = unlikely(cond); \
537 if (_____ret) { \
538 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
539 struct ring_buffer_per_cpu *__b = \
540 (void *)b; \
541 atomic_inc(&__b->buffer->record_disabled); \
542 } else \
543 atomic_inc(&b->record_disabled); \
544 WARN_ON(1); \
545 } \
546 _____ret; \
3e89c7bb 547 })
f536aafc 548
37886f6a
SR
549/* Up this if you want to test the TIME_EXTENTS and normalization */
550#define DEBUG_SHIFT 0
551
6d3f1e12 552static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
553{
554 /* shift to debug/test normalization and TIME_EXTENTS */
555 return buffer->clock() << DEBUG_SHIFT;
556}
557
37886f6a
SR
558u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
559{
560 u64 time;
561
562 preempt_disable_notrace();
6d3f1e12 563 time = rb_time_stamp(buffer);
37886f6a
SR
564 preempt_enable_no_resched_notrace();
565
566 return time;
567}
568EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
569
570void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
571 int cpu, u64 *ts)
572{
573 /* Just stupid testing the normalize function and deltas */
574 *ts >>= DEBUG_SHIFT;
575}
576EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
577
77ae365e
SR
578/*
579 * Making the ring buffer lockless makes things tricky.
580 * Although writes only happen on the CPU that they are on,
581 * and they only need to worry about interrupts. Reads can
582 * happen on any CPU.
583 *
584 * The reader page is always off the ring buffer, but when the
585 * reader finishes with a page, it needs to swap its page with
586 * a new one from the buffer. The reader needs to take from
587 * the head (writes go to the tail). But if a writer is in overwrite
588 * mode and wraps, it must push the head page forward.
589 *
590 * Here lies the problem.
591 *
592 * The reader must be careful to replace only the head page, and
593 * not another one. As described at the top of the file in the
594 * ASCII art, the reader sets its old page to point to the next
595 * page after head. It then sets the page after head to point to
596 * the old reader page. But if the writer moves the head page
597 * during this operation, the reader could end up with the tail.
598 *
599 * We use cmpxchg to help prevent this race. We also do something
600 * special with the page before head. We set the LSB to 1.
601 *
602 * When the writer must push the page forward, it will clear the
603 * bit that points to the head page, move the head, and then set
604 * the bit that points to the new head page.
605 *
606 * We also don't want an interrupt coming in and moving the head
607 * page on another writer. Thus we use the second LSB to catch
608 * that too. Thus:
609 *
610 * head->list->prev->next bit 1 bit 0
611 * ------- -------
612 * Normal page 0 0
613 * Points to head page 0 1
614 * New head page 1 0
615 *
616 * Note we can not trust the prev pointer of the head page, because:
617 *
618 * +----+ +-----+ +-----+
619 * | |------>| T |---X--->| N |
620 * | |<------| | | |
621 * +----+ +-----+ +-----+
622 * ^ ^ |
623 * | +-----+ | |
624 * +----------| R |----------+ |
625 * | |<-----------+
626 * +-----+
627 *
628 * Key: ---X--> HEAD flag set in pointer
629 * T Tail page
630 * R Reader page
631 * N Next page
632 *
633 * (see __rb_reserve_next() to see where this happens)
634 *
635 * What the above shows is that the reader just swapped out
636 * the reader page with a page in the buffer, but before it
637 * could make the new header point back to the new page added
638 * it was preempted by a writer. The writer moved forward onto
639 * the new page added by the reader and is about to move forward
640 * again.
641 *
642 * You can see, it is legitimate for the previous pointer of
643 * the head (or any page) not to point back to itself. But only
644 * temporarially.
645 */
646
647#define RB_PAGE_NORMAL 0UL
648#define RB_PAGE_HEAD 1UL
649#define RB_PAGE_UPDATE 2UL
650
651
652#define RB_FLAG_MASK 3UL
653
654/* PAGE_MOVED is not part of the mask */
655#define RB_PAGE_MOVED 4UL
656
657/*
658 * rb_list_head - remove any bit
659 */
660static struct list_head *rb_list_head(struct list_head *list)
661{
662 unsigned long val = (unsigned long)list;
663
664 return (struct list_head *)(val & ~RB_FLAG_MASK);
665}
666
667/*
6d3f1e12 668 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
669 *
670 * Because the reader may move the head_page pointer, we can
671 * not trust what the head page is (it may be pointing to
672 * the reader page). But if the next page is a header page,
673 * its flags will be non zero.
674 */
675static int inline
676rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
677 struct buffer_page *page, struct list_head *list)
678{
679 unsigned long val;
680
681 val = (unsigned long)list->next;
682
683 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
684 return RB_PAGE_MOVED;
685
686 return val & RB_FLAG_MASK;
687}
688
689/*
690 * rb_is_reader_page
691 *
692 * The unique thing about the reader page, is that, if the
693 * writer is ever on it, the previous pointer never points
694 * back to the reader page.
695 */
696static int rb_is_reader_page(struct buffer_page *page)
697{
698 struct list_head *list = page->list.prev;
699
700 return rb_list_head(list->next) != &page->list;
701}
702
703/*
704 * rb_set_list_to_head - set a list_head to be pointing to head.
705 */
706static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
707 struct list_head *list)
708{
709 unsigned long *ptr;
710
711 ptr = (unsigned long *)&list->next;
712 *ptr |= RB_PAGE_HEAD;
713 *ptr &= ~RB_PAGE_UPDATE;
714}
715
716/*
717 * rb_head_page_activate - sets up head page
718 */
719static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
720{
721 struct buffer_page *head;
722
723 head = cpu_buffer->head_page;
724 if (!head)
725 return;
726
727 /*
728 * Set the previous list pointer to have the HEAD flag.
729 */
730 rb_set_list_to_head(cpu_buffer, head->list.prev);
731}
732
733static void rb_list_head_clear(struct list_head *list)
734{
735 unsigned long *ptr = (unsigned long *)&list->next;
736
737 *ptr &= ~RB_FLAG_MASK;
738}
739
740/*
741 * rb_head_page_dactivate - clears head page ptr (for free list)
742 */
743static void
744rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
745{
746 struct list_head *hd;
747
748 /* Go through the whole list and clear any pointers found. */
749 rb_list_head_clear(cpu_buffer->pages);
750
751 list_for_each(hd, cpu_buffer->pages)
752 rb_list_head_clear(hd);
753}
754
755static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
756 struct buffer_page *head,
757 struct buffer_page *prev,
758 int old_flag, int new_flag)
759{
760 struct list_head *list;
761 unsigned long val = (unsigned long)&head->list;
762 unsigned long ret;
763
764 list = &prev->list;
765
766 val &= ~RB_FLAG_MASK;
767
08a40816
SR
768 ret = cmpxchg((unsigned long *)&list->next,
769 val | old_flag, val | new_flag);
77ae365e
SR
770
771 /* check if the reader took the page */
772 if ((ret & ~RB_FLAG_MASK) != val)
773 return RB_PAGE_MOVED;
774
775 return ret & RB_FLAG_MASK;
776}
777
778static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
779 struct buffer_page *head,
780 struct buffer_page *prev,
781 int old_flag)
782{
783 return rb_head_page_set(cpu_buffer, head, prev,
784 old_flag, RB_PAGE_UPDATE);
785}
786
787static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
788 struct buffer_page *head,
789 struct buffer_page *prev,
790 int old_flag)
791{
792 return rb_head_page_set(cpu_buffer, head, prev,
793 old_flag, RB_PAGE_HEAD);
794}
795
796static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
797 struct buffer_page *head,
798 struct buffer_page *prev,
799 int old_flag)
800{
801 return rb_head_page_set(cpu_buffer, head, prev,
802 old_flag, RB_PAGE_NORMAL);
803}
804
805static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
806 struct buffer_page **bpage)
807{
808 struct list_head *p = rb_list_head((*bpage)->list.next);
809
810 *bpage = list_entry(p, struct buffer_page, list);
811}
812
813static struct buffer_page *
814rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
815{
816 struct buffer_page *head;
817 struct buffer_page *page;
818 struct list_head *list;
819 int i;
820
821 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
822 return NULL;
823
824 /* sanity check */
825 list = cpu_buffer->pages;
826 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
827 return NULL;
828
829 page = head = cpu_buffer->head_page;
830 /*
831 * It is possible that the writer moves the header behind
832 * where we started, and we miss in one loop.
833 * A second loop should grab the header, but we'll do
834 * three loops just because I'm paranoid.
835 */
836 for (i = 0; i < 3; i++) {
837 do {
838 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
839 cpu_buffer->head_page = page;
840 return page;
841 }
842 rb_inc_page(cpu_buffer, &page);
843 } while (page != head);
844 }
845
846 RB_WARN_ON(cpu_buffer, 1);
847
848 return NULL;
849}
850
851static int rb_head_page_replace(struct buffer_page *old,
852 struct buffer_page *new)
853{
854 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
855 unsigned long val;
856 unsigned long ret;
857
858 val = *ptr & ~RB_FLAG_MASK;
859 val |= RB_PAGE_HEAD;
860
08a40816 861 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
862
863 return ret == val;
864}
865
866/*
867 * rb_tail_page_update - move the tail page forward
868 *
869 * Returns 1 if moved tail page, 0 if someone else did.
870 */
871static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
872 struct buffer_page *tail_page,
873 struct buffer_page *next_page)
874{
875 struct buffer_page *old_tail;
876 unsigned long old_entries;
877 unsigned long old_write;
878 int ret = 0;
879
880 /*
881 * The tail page now needs to be moved forward.
882 *
883 * We need to reset the tail page, but without messing
884 * with possible erasing of data brought in by interrupts
885 * that have moved the tail page and are currently on it.
886 *
887 * We add a counter to the write field to denote this.
888 */
889 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
890 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
891
892 /*
893 * Just make sure we have seen our old_write and synchronize
894 * with any interrupts that come in.
895 */
896 barrier();
897
898 /*
899 * If the tail page is still the same as what we think
900 * it is, then it is up to us to update the tail
901 * pointer.
902 */
903 if (tail_page == cpu_buffer->tail_page) {
904 /* Zero the write counter */
905 unsigned long val = old_write & ~RB_WRITE_MASK;
906 unsigned long eval = old_entries & ~RB_WRITE_MASK;
907
908 /*
909 * This will only succeed if an interrupt did
910 * not come in and change it. In which case, we
911 * do not want to modify it.
da706d8b
LJ
912 *
913 * We add (void) to let the compiler know that we do not care
914 * about the return value of these functions. We use the
915 * cmpxchg to only update if an interrupt did not already
916 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 917 */
da706d8b
LJ
918 (void)local_cmpxchg(&next_page->write, old_write, val);
919 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
920
921 /*
922 * No need to worry about races with clearing out the commit.
923 * it only can increment when a commit takes place. But that
924 * only happens in the outer most nested commit.
925 */
926 local_set(&next_page->page->commit, 0);
927
928 old_tail = cmpxchg(&cpu_buffer->tail_page,
929 tail_page, next_page);
930
931 if (old_tail == tail_page)
932 ret = 1;
933 }
934
935 return ret;
936}
937
938static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
939 struct buffer_page *bpage)
940{
941 unsigned long val = (unsigned long)bpage;
942
943 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
944 return 1;
945
946 return 0;
947}
948
949/**
950 * rb_check_list - make sure a pointer to a list has the last bits zero
951 */
952static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
953 struct list_head *list)
954{
955 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
956 return 1;
957 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
958 return 1;
959 return 0;
960}
961
7a8e76a3
SR
962/**
963 * check_pages - integrity check of buffer pages
964 * @cpu_buffer: CPU buffer with pages to test
965 *
c3706f00 966 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
967 * been corrupted.
968 */
969static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
970{
3adc54fa 971 struct list_head *head = cpu_buffer->pages;
044fa782 972 struct buffer_page *bpage, *tmp;
7a8e76a3 973
77ae365e
SR
974 rb_head_page_deactivate(cpu_buffer);
975
3e89c7bb
SR
976 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
977 return -1;
978 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
979 return -1;
7a8e76a3 980
77ae365e
SR
981 if (rb_check_list(cpu_buffer, head))
982 return -1;
983
044fa782 984 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 985 if (RB_WARN_ON(cpu_buffer,
044fa782 986 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
987 return -1;
988 if (RB_WARN_ON(cpu_buffer,
044fa782 989 bpage->list.prev->next != &bpage->list))
3e89c7bb 990 return -1;
77ae365e
SR
991 if (rb_check_list(cpu_buffer, &bpage->list))
992 return -1;
7a8e76a3
SR
993 }
994
77ae365e
SR
995 rb_head_page_activate(cpu_buffer);
996
7a8e76a3
SR
997 return 0;
998}
999
7a8e76a3
SR
1000static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1001 unsigned nr_pages)
1002{
044fa782 1003 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1004 unsigned long addr;
1005 LIST_HEAD(pages);
1006 unsigned i;
1007
3adc54fa
SR
1008 WARN_ON(!nr_pages);
1009
7a8e76a3 1010 for (i = 0; i < nr_pages; i++) {
044fa782 1011 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 1012 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 1013 if (!bpage)
e4c2ce82 1014 goto free_pages;
77ae365e
SR
1015
1016 rb_check_bpage(cpu_buffer, bpage);
1017
044fa782 1018 list_add(&bpage->list, &pages);
e4c2ce82 1019
7a8e76a3
SR
1020 addr = __get_free_page(GFP_KERNEL);
1021 if (!addr)
1022 goto free_pages;
044fa782
SR
1023 bpage->page = (void *)addr;
1024 rb_init_page(bpage->page);
7a8e76a3
SR
1025 }
1026
3adc54fa
SR
1027 /*
1028 * The ring buffer page list is a circular list that does not
1029 * start and end with a list head. All page list items point to
1030 * other pages.
1031 */
1032 cpu_buffer->pages = pages.next;
1033 list_del(&pages);
7a8e76a3
SR
1034
1035 rb_check_pages(cpu_buffer);
1036
1037 return 0;
1038
1039 free_pages:
044fa782
SR
1040 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1041 list_del_init(&bpage->list);
1042 free_buffer_page(bpage);
7a8e76a3
SR
1043 }
1044 return -ENOMEM;
1045}
1046
1047static struct ring_buffer_per_cpu *
1048rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1049{
1050 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1051 struct buffer_page *bpage;
d769041f 1052 unsigned long addr;
7a8e76a3
SR
1053 int ret;
1054
1055 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1056 GFP_KERNEL, cpu_to_node(cpu));
1057 if (!cpu_buffer)
1058 return NULL;
1059
1060 cpu_buffer->cpu = cpu;
1061 cpu_buffer->buffer = buffer;
f83c9d0f 1062 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1063 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1064 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
7a8e76a3 1065
044fa782 1066 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1067 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1068 if (!bpage)
e4c2ce82
SR
1069 goto fail_free_buffer;
1070
77ae365e
SR
1071 rb_check_bpage(cpu_buffer, bpage);
1072
044fa782 1073 cpu_buffer->reader_page = bpage;
d769041f
SR
1074 addr = __get_free_page(GFP_KERNEL);
1075 if (!addr)
e4c2ce82 1076 goto fail_free_reader;
044fa782
SR
1077 bpage->page = (void *)addr;
1078 rb_init_page(bpage->page);
e4c2ce82 1079
d769041f 1080 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1081
7a8e76a3
SR
1082 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1083 if (ret < 0)
d769041f 1084 goto fail_free_reader;
7a8e76a3
SR
1085
1086 cpu_buffer->head_page
3adc54fa 1087 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1088 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1089
77ae365e
SR
1090 rb_head_page_activate(cpu_buffer);
1091
7a8e76a3
SR
1092 return cpu_buffer;
1093
d769041f
SR
1094 fail_free_reader:
1095 free_buffer_page(cpu_buffer->reader_page);
1096
7a8e76a3
SR
1097 fail_free_buffer:
1098 kfree(cpu_buffer);
1099 return NULL;
1100}
1101
1102static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1103{
3adc54fa 1104 struct list_head *head = cpu_buffer->pages;
044fa782 1105 struct buffer_page *bpage, *tmp;
7a8e76a3 1106
d769041f
SR
1107 free_buffer_page(cpu_buffer->reader_page);
1108
77ae365e
SR
1109 rb_head_page_deactivate(cpu_buffer);
1110
3adc54fa
SR
1111 if (head) {
1112 list_for_each_entry_safe(bpage, tmp, head, list) {
1113 list_del_init(&bpage->list);
1114 free_buffer_page(bpage);
1115 }
1116 bpage = list_entry(head, struct buffer_page, list);
044fa782 1117 free_buffer_page(bpage);
7a8e76a3 1118 }
3adc54fa 1119
7a8e76a3
SR
1120 kfree(cpu_buffer);
1121}
1122
59222efe 1123#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1124static int rb_cpu_notify(struct notifier_block *self,
1125 unsigned long action, void *hcpu);
554f786e
SR
1126#endif
1127
7a8e76a3
SR
1128/**
1129 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1130 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1131 * @flags: attributes to set for the ring buffer.
1132 *
1133 * Currently the only flag that is available is the RB_FL_OVERWRITE
1134 * flag. This flag means that the buffer will overwrite old data
1135 * when the buffer wraps. If this flag is not set, the buffer will
1136 * drop data when the tail hits the head.
1137 */
1f8a6a10
PZ
1138struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1139 struct lock_class_key *key)
7a8e76a3
SR
1140{
1141 struct ring_buffer *buffer;
1142 int bsize;
1143 int cpu;
1144
1145 /* keep it in its own cache line */
1146 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1147 GFP_KERNEL);
1148 if (!buffer)
1149 return NULL;
1150
9e01c1b7
RR
1151 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1152 goto fail_free_buffer;
1153
7a8e76a3
SR
1154 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1155 buffer->flags = flags;
37886f6a 1156 buffer->clock = trace_clock_local;
1f8a6a10 1157 buffer->reader_lock_key = key;
7a8e76a3
SR
1158
1159 /* need at least two pages */
5f78abee
SR
1160 if (buffer->pages < 2)
1161 buffer->pages = 2;
7a8e76a3 1162
3bf832ce
FW
1163 /*
1164 * In case of non-hotplug cpu, if the ring-buffer is allocated
1165 * in early initcall, it will not be notified of secondary cpus.
1166 * In that off case, we need to allocate for all possible cpus.
1167 */
1168#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1169 get_online_cpus();
1170 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1171#else
1172 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1173#endif
7a8e76a3
SR
1174 buffer->cpus = nr_cpu_ids;
1175
1176 bsize = sizeof(void *) * nr_cpu_ids;
1177 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1178 GFP_KERNEL);
1179 if (!buffer->buffers)
9e01c1b7 1180 goto fail_free_cpumask;
7a8e76a3
SR
1181
1182 for_each_buffer_cpu(buffer, cpu) {
1183 buffer->buffers[cpu] =
1184 rb_allocate_cpu_buffer(buffer, cpu);
1185 if (!buffer->buffers[cpu])
1186 goto fail_free_buffers;
1187 }
1188
59222efe 1189#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1190 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1191 buffer->cpu_notify.priority = 0;
1192 register_cpu_notifier(&buffer->cpu_notify);
1193#endif
1194
1195 put_online_cpus();
7a8e76a3
SR
1196 mutex_init(&buffer->mutex);
1197
1198 return buffer;
1199
1200 fail_free_buffers:
1201 for_each_buffer_cpu(buffer, cpu) {
1202 if (buffer->buffers[cpu])
1203 rb_free_cpu_buffer(buffer->buffers[cpu]);
1204 }
1205 kfree(buffer->buffers);
1206
9e01c1b7
RR
1207 fail_free_cpumask:
1208 free_cpumask_var(buffer->cpumask);
554f786e 1209 put_online_cpus();
9e01c1b7 1210
7a8e76a3
SR
1211 fail_free_buffer:
1212 kfree(buffer);
1213 return NULL;
1214}
1f8a6a10 1215EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1216
1217/**
1218 * ring_buffer_free - free a ring buffer.
1219 * @buffer: the buffer to free.
1220 */
1221void
1222ring_buffer_free(struct ring_buffer *buffer)
1223{
1224 int cpu;
1225
554f786e
SR
1226 get_online_cpus();
1227
59222efe 1228#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1229 unregister_cpu_notifier(&buffer->cpu_notify);
1230#endif
1231
7a8e76a3
SR
1232 for_each_buffer_cpu(buffer, cpu)
1233 rb_free_cpu_buffer(buffer->buffers[cpu]);
1234
554f786e
SR
1235 put_online_cpus();
1236
bd3f0221 1237 kfree(buffer->buffers);
9e01c1b7
RR
1238 free_cpumask_var(buffer->cpumask);
1239
7a8e76a3
SR
1240 kfree(buffer);
1241}
c4f50183 1242EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1243
37886f6a
SR
1244void ring_buffer_set_clock(struct ring_buffer *buffer,
1245 u64 (*clock)(void))
1246{
1247 buffer->clock = clock;
1248}
1249
7a8e76a3
SR
1250static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1251
1252static void
1253rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1254{
044fa782 1255 struct buffer_page *bpage;
7a8e76a3
SR
1256 struct list_head *p;
1257 unsigned i;
1258
f7112949 1259 spin_lock_irq(&cpu_buffer->reader_lock);
77ae365e
SR
1260 rb_head_page_deactivate(cpu_buffer);
1261
7a8e76a3 1262 for (i = 0; i < nr_pages; i++) {
3adc54fa 1263 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1264 goto out;
3adc54fa 1265 p = cpu_buffer->pages->next;
044fa782
SR
1266 bpage = list_entry(p, struct buffer_page, list);
1267 list_del_init(&bpage->list);
1268 free_buffer_page(bpage);
7a8e76a3 1269 }
3adc54fa 1270 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
292f60c0 1271 goto out;
7a8e76a3
SR
1272
1273 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1274 rb_check_pages(cpu_buffer);
1275
292f60c0 1276out:
dd7f5943 1277 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1278}
1279
1280static void
1281rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1282 struct list_head *pages, unsigned nr_pages)
1283{
044fa782 1284 struct buffer_page *bpage;
7a8e76a3
SR
1285 struct list_head *p;
1286 unsigned i;
1287
77ae365e
SR
1288 spin_lock_irq(&cpu_buffer->reader_lock);
1289 rb_head_page_deactivate(cpu_buffer);
1290
7a8e76a3 1291 for (i = 0; i < nr_pages; i++) {
3e89c7bb 1292 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
292f60c0 1293 goto out;
7a8e76a3 1294 p = pages->next;
044fa782
SR
1295 bpage = list_entry(p, struct buffer_page, list);
1296 list_del_init(&bpage->list);
3adc54fa 1297 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1298 }
1299 rb_reset_cpu(cpu_buffer);
7a8e76a3
SR
1300 rb_check_pages(cpu_buffer);
1301
292f60c0 1302out:
dd7f5943 1303 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1304}
1305
1306/**
1307 * ring_buffer_resize - resize the ring buffer
1308 * @buffer: the buffer to resize.
1309 * @size: the new size.
1310 *
7a8e76a3
SR
1311 * Minimum size is 2 * BUF_PAGE_SIZE.
1312 *
1313 * Returns -1 on failure.
1314 */
1315int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1316{
1317 struct ring_buffer_per_cpu *cpu_buffer;
1318 unsigned nr_pages, rm_pages, new_pages;
044fa782 1319 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1320 unsigned long buffer_size;
1321 unsigned long addr;
1322 LIST_HEAD(pages);
1323 int i, cpu;
1324
ee51a1de
IM
1325 /*
1326 * Always succeed at resizing a non-existent buffer:
1327 */
1328 if (!buffer)
1329 return size;
1330
7a8e76a3
SR
1331 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1332 size *= BUF_PAGE_SIZE;
1333 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1334
1335 /* we need a minimum of two pages */
1336 if (size < BUF_PAGE_SIZE * 2)
1337 size = BUF_PAGE_SIZE * 2;
1338
1339 if (size == buffer_size)
1340 return size;
1341
18421015
SR
1342 atomic_inc(&buffer->record_disabled);
1343
1344 /* Make sure all writers are done with this buffer. */
1345 synchronize_sched();
1346
7a8e76a3 1347 mutex_lock(&buffer->mutex);
554f786e 1348 get_online_cpus();
7a8e76a3
SR
1349
1350 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1351
1352 if (size < buffer_size) {
1353
1354 /* easy case, just free pages */
554f786e
SR
1355 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1356 goto out_fail;
7a8e76a3
SR
1357
1358 rm_pages = buffer->pages - nr_pages;
1359
1360 for_each_buffer_cpu(buffer, cpu) {
1361 cpu_buffer = buffer->buffers[cpu];
1362 rb_remove_pages(cpu_buffer, rm_pages);
1363 }
1364 goto out;
1365 }
1366
1367 /*
1368 * This is a bit more difficult. We only want to add pages
1369 * when we can allocate enough for all CPUs. We do this
1370 * by allocating all the pages and storing them on a local
1371 * link list. If we succeed in our allocation, then we
1372 * add these pages to the cpu_buffers. Otherwise we just free
1373 * them all and return -ENOMEM;
1374 */
554f786e
SR
1375 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1376 goto out_fail;
f536aafc 1377
7a8e76a3
SR
1378 new_pages = nr_pages - buffer->pages;
1379
1380 for_each_buffer_cpu(buffer, cpu) {
1381 for (i = 0; i < new_pages; i++) {
044fa782 1382 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
1383 cache_line_size()),
1384 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1385 if (!bpage)
e4c2ce82 1386 goto free_pages;
044fa782 1387 list_add(&bpage->list, &pages);
7a8e76a3
SR
1388 addr = __get_free_page(GFP_KERNEL);
1389 if (!addr)
1390 goto free_pages;
044fa782
SR
1391 bpage->page = (void *)addr;
1392 rb_init_page(bpage->page);
7a8e76a3
SR
1393 }
1394 }
1395
1396 for_each_buffer_cpu(buffer, cpu) {
1397 cpu_buffer = buffer->buffers[cpu];
1398 rb_insert_pages(cpu_buffer, &pages, new_pages);
1399 }
1400
554f786e
SR
1401 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1402 goto out_fail;
7a8e76a3
SR
1403
1404 out:
1405 buffer->pages = nr_pages;
554f786e 1406 put_online_cpus();
7a8e76a3
SR
1407 mutex_unlock(&buffer->mutex);
1408
18421015
SR
1409 atomic_dec(&buffer->record_disabled);
1410
7a8e76a3
SR
1411 return size;
1412
1413 free_pages:
044fa782
SR
1414 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1415 list_del_init(&bpage->list);
1416 free_buffer_page(bpage);
7a8e76a3 1417 }
554f786e 1418 put_online_cpus();
641d2f63 1419 mutex_unlock(&buffer->mutex);
18421015 1420 atomic_dec(&buffer->record_disabled);
7a8e76a3 1421 return -ENOMEM;
554f786e
SR
1422
1423 /*
1424 * Something went totally wrong, and we are too paranoid
1425 * to even clean up the mess.
1426 */
1427 out_fail:
1428 put_online_cpus();
1429 mutex_unlock(&buffer->mutex);
18421015 1430 atomic_dec(&buffer->record_disabled);
554f786e 1431 return -1;
7a8e76a3 1432}
c4f50183 1433EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1434
8789a9e7 1435static inline void *
044fa782 1436__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1437{
044fa782 1438 return bpage->data + index;
8789a9e7
SR
1439}
1440
044fa782 1441static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1442{
044fa782 1443 return bpage->page->data + index;
7a8e76a3
SR
1444}
1445
1446static inline struct ring_buffer_event *
d769041f 1447rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1448{
6f807acd
SR
1449 return __rb_page_index(cpu_buffer->reader_page,
1450 cpu_buffer->reader_page->read);
1451}
1452
7a8e76a3
SR
1453static inline struct ring_buffer_event *
1454rb_iter_head_event(struct ring_buffer_iter *iter)
1455{
6f807acd 1456 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1457}
1458
77ae365e 1459static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1460{
77ae365e 1461 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1462}
1463
1464static inline unsigned rb_page_commit(struct buffer_page *bpage)
1465{
abc9b56d 1466 return local_read(&bpage->page->commit);
bf41a158
SR
1467}
1468
77ae365e
SR
1469static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1470{
1471 return local_read(&bpage->entries) & RB_WRITE_MASK;
1472}
1473
bf41a158
SR
1474/* Size is determined by what has been commited */
1475static inline unsigned rb_page_size(struct buffer_page *bpage)
1476{
1477 return rb_page_commit(bpage);
1478}
1479
1480static inline unsigned
1481rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1482{
1483 return rb_page_commit(cpu_buffer->commit_page);
1484}
1485
bf41a158
SR
1486static inline unsigned
1487rb_event_index(struct ring_buffer_event *event)
1488{
1489 unsigned long addr = (unsigned long)event;
1490
22f470f8 1491 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1492}
1493
0f0c85fc 1494static inline int
fa743953
SR
1495rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1496 struct ring_buffer_event *event)
bf41a158
SR
1497{
1498 unsigned long addr = (unsigned long)event;
1499 unsigned long index;
1500
1501 index = rb_event_index(event);
1502 addr &= PAGE_MASK;
1503
1504 return cpu_buffer->commit_page->page == (void *)addr &&
1505 rb_commit_index(cpu_buffer) == index;
1506}
1507
34a148bf 1508static void
bf41a158 1509rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1510{
77ae365e
SR
1511 unsigned long max_count;
1512
bf41a158
SR
1513 /*
1514 * We only race with interrupts and NMIs on this CPU.
1515 * If we own the commit event, then we can commit
1516 * all others that interrupted us, since the interruptions
1517 * are in stack format (they finish before they come
1518 * back to us). This allows us to do a simple loop to
1519 * assign the commit to the tail.
1520 */
a8ccf1d6 1521 again:
77ae365e
SR
1522 max_count = cpu_buffer->buffer->pages * 100;
1523
bf41a158 1524 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1525 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1526 return;
1527 if (RB_WARN_ON(cpu_buffer,
1528 rb_is_reader_page(cpu_buffer->tail_page)))
1529 return;
1530 local_set(&cpu_buffer->commit_page->page->commit,
1531 rb_page_write(cpu_buffer->commit_page));
bf41a158 1532 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1533 cpu_buffer->write_stamp =
1534 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1535 /* add barrier to keep gcc from optimizing too much */
1536 barrier();
1537 }
1538 while (rb_commit_index(cpu_buffer) !=
1539 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1540
1541 local_set(&cpu_buffer->commit_page->page->commit,
1542 rb_page_write(cpu_buffer->commit_page));
1543 RB_WARN_ON(cpu_buffer,
1544 local_read(&cpu_buffer->commit_page->page->commit) &
1545 ~RB_WRITE_MASK);
bf41a158
SR
1546 barrier();
1547 }
a8ccf1d6
SR
1548
1549 /* again, keep gcc from optimizing */
1550 barrier();
1551
1552 /*
1553 * If an interrupt came in just after the first while loop
1554 * and pushed the tail page forward, we will be left with
1555 * a dangling commit that will never go forward.
1556 */
1557 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1558 goto again;
7a8e76a3
SR
1559}
1560
d769041f 1561static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1562{
abc9b56d 1563 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1564 cpu_buffer->reader_page->read = 0;
d769041f
SR
1565}
1566
34a148bf 1567static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1568{
1569 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1570
1571 /*
1572 * The iterator could be on the reader page (it starts there).
1573 * But the head could have moved, since the reader was
1574 * found. Check for this case and assign the iterator
1575 * to the head page instead of next.
1576 */
1577 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1578 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1579 else
1580 rb_inc_page(cpu_buffer, &iter->head_page);
1581
abc9b56d 1582 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1583 iter->head = 0;
1584}
1585
69d1b839
SR
1586/* Slow path, do not inline */
1587static noinline struct ring_buffer_event *
1588rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1589{
1590 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1591
1592 /* Not the first event on the page? */
1593 if (rb_event_index(event)) {
1594 event->time_delta = delta & TS_MASK;
1595 event->array[0] = delta >> TS_SHIFT;
1596 } else {
1597 /* nope, just zero it */
1598 event->time_delta = 0;
1599 event->array[0] = 0;
1600 }
1601
1602 return skip_time_extend(event);
1603}
1604
7a8e76a3
SR
1605/**
1606 * ring_buffer_update_event - update event type and data
1607 * @event: the even to update
1608 * @type: the type of event
1609 * @length: the size of the event field in the ring buffer
1610 *
1611 * Update the type and data fields of the event. The length
1612 * is the actual size that is written to the ring buffer,
1613 * and with this, we can determine what to place into the
1614 * data field.
1615 */
34a148bf 1616static void
69d1b839
SR
1617rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1618 struct ring_buffer_event *event, unsigned length,
1619 int add_timestamp, u64 delta)
7a8e76a3 1620{
69d1b839
SR
1621 /* Only a commit updates the timestamp */
1622 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1623 delta = 0;
7a8e76a3 1624
69d1b839
SR
1625 /*
1626 * If we need to add a timestamp, then we
1627 * add it to the start of the resevered space.
1628 */
1629 if (unlikely(add_timestamp)) {
1630 event = rb_add_time_stamp(event, delta);
1631 length -= RB_LEN_TIME_EXTEND;
1632 delta = 0;
7a8e76a3 1633 }
69d1b839
SR
1634
1635 event->time_delta = delta;
1636 length -= RB_EVNT_HDR_SIZE;
1637 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1638 event->type_len = 0;
1639 event->array[0] = length;
1640 } else
1641 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1642}
1643
77ae365e
SR
1644/*
1645 * rb_handle_head_page - writer hit the head page
1646 *
1647 * Returns: +1 to retry page
1648 * 0 to continue
1649 * -1 on error
1650 */
1651static int
1652rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1653 struct buffer_page *tail_page,
1654 struct buffer_page *next_page)
1655{
1656 struct buffer_page *new_head;
1657 int entries;
1658 int type;
1659 int ret;
1660
1661 entries = rb_page_entries(next_page);
1662
1663 /*
1664 * The hard part is here. We need to move the head
1665 * forward, and protect against both readers on
1666 * other CPUs and writers coming in via interrupts.
1667 */
1668 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1669 RB_PAGE_HEAD);
1670
1671 /*
1672 * type can be one of four:
1673 * NORMAL - an interrupt already moved it for us
1674 * HEAD - we are the first to get here.
1675 * UPDATE - we are the interrupt interrupting
1676 * a current move.
1677 * MOVED - a reader on another CPU moved the next
1678 * pointer to its reader page. Give up
1679 * and try again.
1680 */
1681
1682 switch (type) {
1683 case RB_PAGE_HEAD:
1684 /*
1685 * We changed the head to UPDATE, thus
1686 * it is our responsibility to update
1687 * the counters.
1688 */
1689 local_add(entries, &cpu_buffer->overrun);
1690
1691 /*
1692 * The entries will be zeroed out when we move the
1693 * tail page.
1694 */
1695
1696 /* still more to do */
1697 break;
1698
1699 case RB_PAGE_UPDATE:
1700 /*
1701 * This is an interrupt that interrupt the
1702 * previous update. Still more to do.
1703 */
1704 break;
1705 case RB_PAGE_NORMAL:
1706 /*
1707 * An interrupt came in before the update
1708 * and processed this for us.
1709 * Nothing left to do.
1710 */
1711 return 1;
1712 case RB_PAGE_MOVED:
1713 /*
1714 * The reader is on another CPU and just did
1715 * a swap with our next_page.
1716 * Try again.
1717 */
1718 return 1;
1719 default:
1720 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1721 return -1;
1722 }
1723
1724 /*
1725 * Now that we are here, the old head pointer is
1726 * set to UPDATE. This will keep the reader from
1727 * swapping the head page with the reader page.
1728 * The reader (on another CPU) will spin till
1729 * we are finished.
1730 *
1731 * We just need to protect against interrupts
1732 * doing the job. We will set the next pointer
1733 * to HEAD. After that, we set the old pointer
1734 * to NORMAL, but only if it was HEAD before.
1735 * otherwise we are an interrupt, and only
1736 * want the outer most commit to reset it.
1737 */
1738 new_head = next_page;
1739 rb_inc_page(cpu_buffer, &new_head);
1740
1741 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1742 RB_PAGE_NORMAL);
1743
1744 /*
1745 * Valid returns are:
1746 * HEAD - an interrupt came in and already set it.
1747 * NORMAL - One of two things:
1748 * 1) We really set it.
1749 * 2) A bunch of interrupts came in and moved
1750 * the page forward again.
1751 */
1752 switch (ret) {
1753 case RB_PAGE_HEAD:
1754 case RB_PAGE_NORMAL:
1755 /* OK */
1756 break;
1757 default:
1758 RB_WARN_ON(cpu_buffer, 1);
1759 return -1;
1760 }
1761
1762 /*
1763 * It is possible that an interrupt came in,
1764 * set the head up, then more interrupts came in
1765 * and moved it again. When we get back here,
1766 * the page would have been set to NORMAL but we
1767 * just set it back to HEAD.
1768 *
1769 * How do you detect this? Well, if that happened
1770 * the tail page would have moved.
1771 */
1772 if (ret == RB_PAGE_NORMAL) {
1773 /*
1774 * If the tail had moved passed next, then we need
1775 * to reset the pointer.
1776 */
1777 if (cpu_buffer->tail_page != tail_page &&
1778 cpu_buffer->tail_page != next_page)
1779 rb_head_page_set_normal(cpu_buffer, new_head,
1780 next_page,
1781 RB_PAGE_HEAD);
1782 }
1783
1784 /*
1785 * If this was the outer most commit (the one that
1786 * changed the original pointer from HEAD to UPDATE),
1787 * then it is up to us to reset it to NORMAL.
1788 */
1789 if (type == RB_PAGE_HEAD) {
1790 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1791 tail_page,
1792 RB_PAGE_UPDATE);
1793 if (RB_WARN_ON(cpu_buffer,
1794 ret != RB_PAGE_UPDATE))
1795 return -1;
1796 }
1797
1798 return 0;
1799}
1800
34a148bf 1801static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1802{
1803 struct ring_buffer_event event; /* Used only for sizeof array */
1804
1805 /* zero length can cause confusions */
1806 if (!length)
1807 length = 1;
1808
2271048d 1809 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
1810 length += sizeof(event.array[0]);
1811
1812 length += RB_EVNT_HDR_SIZE;
2271048d 1813 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
1814
1815 return length;
1816}
1817
c7b09308
SR
1818static inline void
1819rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1820 struct buffer_page *tail_page,
1821 unsigned long tail, unsigned long length)
1822{
1823 struct ring_buffer_event *event;
1824
1825 /*
1826 * Only the event that crossed the page boundary
1827 * must fill the old tail_page with padding.
1828 */
1829 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
1830 /*
1831 * If the page was filled, then we still need
1832 * to update the real_end. Reset it to zero
1833 * and the reader will ignore it.
1834 */
1835 if (tail == BUF_PAGE_SIZE)
1836 tail_page->real_end = 0;
1837
c7b09308
SR
1838 local_sub(length, &tail_page->write);
1839 return;
1840 }
1841
1842 event = __rb_page_index(tail_page, tail);
b0b7065b 1843 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 1844
ff0ff84a
SR
1845 /*
1846 * Save the original length to the meta data.
1847 * This will be used by the reader to add lost event
1848 * counter.
1849 */
1850 tail_page->real_end = tail;
1851
c7b09308
SR
1852 /*
1853 * If this event is bigger than the minimum size, then
1854 * we need to be careful that we don't subtract the
1855 * write counter enough to allow another writer to slip
1856 * in on this page.
1857 * We put in a discarded commit instead, to make sure
1858 * that this space is not used again.
1859 *
1860 * If we are less than the minimum size, we don't need to
1861 * worry about it.
1862 */
1863 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1864 /* No room for any events */
1865
1866 /* Mark the rest of the page with padding */
1867 rb_event_set_padding(event);
1868
1869 /* Set the write back to the previous setting */
1870 local_sub(length, &tail_page->write);
1871 return;
1872 }
1873
1874 /* Put in a discarded event */
1875 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1876 event->type_len = RINGBUF_TYPE_PADDING;
1877 /* time delta must be non zero */
1878 event->time_delta = 1;
c7b09308
SR
1879
1880 /* Set write to end of buffer */
1881 length = (tail + length) - BUF_PAGE_SIZE;
1882 local_sub(length, &tail_page->write);
1883}
6634ff26 1884
747e94ae
SR
1885/*
1886 * This is the slow path, force gcc not to inline it.
1887 */
1888static noinline struct ring_buffer_event *
6634ff26
SR
1889rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1890 unsigned long length, unsigned long tail,
e8bc43e8 1891 struct buffer_page *tail_page, u64 ts)
7a8e76a3 1892{
5a50e33c 1893 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 1894 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1895 struct buffer_page *next_page;
1896 int ret;
aa20ae84
SR
1897
1898 next_page = tail_page;
1899
aa20ae84
SR
1900 rb_inc_page(cpu_buffer, &next_page);
1901
aa20ae84
SR
1902 /*
1903 * If for some reason, we had an interrupt storm that made
1904 * it all the way around the buffer, bail, and warn
1905 * about it.
1906 */
1907 if (unlikely(next_page == commit_page)) {
77ae365e 1908 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1909 goto out_reset;
1910 }
1911
77ae365e
SR
1912 /*
1913 * This is where the fun begins!
1914 *
1915 * We are fighting against races between a reader that
1916 * could be on another CPU trying to swap its reader
1917 * page with the buffer head.
1918 *
1919 * We are also fighting against interrupts coming in and
1920 * moving the head or tail on us as well.
1921 *
1922 * If the next page is the head page then we have filled
1923 * the buffer, unless the commit page is still on the
1924 * reader page.
1925 */
1926 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1927
77ae365e
SR
1928 /*
1929 * If the commit is not on the reader page, then
1930 * move the header page.
1931 */
1932 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1933 /*
1934 * If we are not in overwrite mode,
1935 * this is easy, just stop here.
1936 */
1937 if (!(buffer->flags & RB_FL_OVERWRITE))
1938 goto out_reset;
1939
1940 ret = rb_handle_head_page(cpu_buffer,
1941 tail_page,
1942 next_page);
1943 if (ret < 0)
1944 goto out_reset;
1945 if (ret)
1946 goto out_again;
1947 } else {
1948 /*
1949 * We need to be careful here too. The
1950 * commit page could still be on the reader
1951 * page. We could have a small buffer, and
1952 * have filled up the buffer with events
1953 * from interrupts and such, and wrapped.
1954 *
1955 * Note, if the tail page is also the on the
1956 * reader_page, we let it move out.
1957 */
1958 if (unlikely((cpu_buffer->commit_page !=
1959 cpu_buffer->tail_page) &&
1960 (cpu_buffer->commit_page ==
1961 cpu_buffer->reader_page))) {
1962 local_inc(&cpu_buffer->commit_overrun);
1963 goto out_reset;
1964 }
aa20ae84
SR
1965 }
1966 }
1967
77ae365e
SR
1968 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1969 if (ret) {
1970 /*
1971 * Nested commits always have zero deltas, so
1972 * just reread the time stamp
1973 */
e8bc43e8
SR
1974 ts = rb_time_stamp(buffer);
1975 next_page->page->time_stamp = ts;
aa20ae84
SR
1976 }
1977
77ae365e 1978 out_again:
aa20ae84 1979
77ae365e 1980 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1981
1982 /* fail and let the caller try again */
1983 return ERR_PTR(-EAGAIN);
1984
45141d46 1985 out_reset:
6f3b3440 1986 /* reset write */
c7b09308 1987 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1988
bf41a158 1989 return NULL;
7a8e76a3
SR
1990}
1991
6634ff26
SR
1992static struct ring_buffer_event *
1993__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
1994 unsigned long length, u64 ts,
1995 u64 delta, int add_timestamp)
6634ff26 1996{
5a50e33c 1997 struct buffer_page *tail_page;
6634ff26
SR
1998 struct ring_buffer_event *event;
1999 unsigned long tail, write;
2000
69d1b839
SR
2001 /*
2002 * If the time delta since the last event is too big to
2003 * hold in the time field of the event, then we append a
2004 * TIME EXTEND event ahead of the data event.
2005 */
2006 if (unlikely(add_timestamp))
2007 length += RB_LEN_TIME_EXTEND;
2008
6634ff26
SR
2009 tail_page = cpu_buffer->tail_page;
2010 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2011
2012 /* set write to only the index of the write */
2013 write &= RB_WRITE_MASK;
6634ff26
SR
2014 tail = write - length;
2015
2016 /* See if we shot pass the end of this buffer page */
747e94ae 2017 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2018 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2019 tail_page, ts);
6634ff26
SR
2020
2021 /* We reserved something on the buffer */
2022
6634ff26 2023 event = __rb_page_index(tail_page, tail);
1744a21d 2024 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2025 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2026
69d1b839 2027 local_inc(&tail_page->entries);
6634ff26
SR
2028
2029 /*
fa743953
SR
2030 * If this is the first commit on the page, then update
2031 * its timestamp.
6634ff26 2032 */
fa743953 2033 if (!tail)
e8bc43e8 2034 tail_page->page->time_stamp = ts;
6634ff26
SR
2035
2036 return event;
2037}
2038
edd813bf
SR
2039static inline int
2040rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2041 struct ring_buffer_event *event)
2042{
2043 unsigned long new_index, old_index;
2044 struct buffer_page *bpage;
2045 unsigned long index;
2046 unsigned long addr;
2047
2048 new_index = rb_event_index(event);
69d1b839 2049 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2050 addr = (unsigned long)event;
2051 addr &= PAGE_MASK;
2052
2053 bpage = cpu_buffer->tail_page;
2054
2055 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2056 unsigned long write_mask =
2057 local_read(&bpage->write) & ~RB_WRITE_MASK;
edd813bf
SR
2058 /*
2059 * This is on the tail page. It is possible that
2060 * a write could come in and move the tail page
2061 * and write to the next page. That is fine
2062 * because we just shorten what is on this page.
2063 */
77ae365e
SR
2064 old_index += write_mask;
2065 new_index += write_mask;
edd813bf
SR
2066 index = local_cmpxchg(&bpage->write, old_index, new_index);
2067 if (index == old_index)
2068 return 1;
2069 }
2070
2071 /* could not discard */
2072 return 0;
2073}
2074
fa743953
SR
2075static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2076{
2077 local_inc(&cpu_buffer->committing);
2078 local_inc(&cpu_buffer->commits);
2079}
2080
2081static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2082{
2083 unsigned long commits;
2084
2085 if (RB_WARN_ON(cpu_buffer,
2086 !local_read(&cpu_buffer->committing)))
2087 return;
2088
2089 again:
2090 commits = local_read(&cpu_buffer->commits);
2091 /* synchronize with interrupts */
2092 barrier();
2093 if (local_read(&cpu_buffer->committing) == 1)
2094 rb_set_commit_to_write(cpu_buffer);
2095
2096 local_dec(&cpu_buffer->committing);
2097
2098 /* synchronize with interrupts */
2099 barrier();
2100
2101 /*
2102 * Need to account for interrupts coming in between the
2103 * updating of the commit page and the clearing of the
2104 * committing counter.
2105 */
2106 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2107 !local_read(&cpu_buffer->committing)) {
2108 local_inc(&cpu_buffer->committing);
2109 goto again;
2110 }
2111}
2112
7a8e76a3 2113static struct ring_buffer_event *
62f0b3eb
SR
2114rb_reserve_next_event(struct ring_buffer *buffer,
2115 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2116 unsigned long length)
7a8e76a3
SR
2117{
2118 struct ring_buffer_event *event;
69d1b839 2119 u64 ts, delta;
818e3dd3 2120 int nr_loops = 0;
69d1b839 2121 int add_timestamp;
140ff891 2122 u64 diff;
7a8e76a3 2123
fa743953
SR
2124 rb_start_commit(cpu_buffer);
2125
85bac32c 2126#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2127 /*
2128 * Due to the ability to swap a cpu buffer from a buffer
2129 * it is possible it was swapped before we committed.
2130 * (committing stops a swap). We check for it here and
2131 * if it happened, we have to fail the write.
2132 */
2133 barrier();
2134 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2135 local_dec(&cpu_buffer->committing);
2136 local_dec(&cpu_buffer->commits);
2137 return NULL;
2138 }
85bac32c 2139#endif
62f0b3eb 2140
be957c44 2141 length = rb_calculate_event_length(length);
bf41a158 2142 again:
69d1b839
SR
2143 add_timestamp = 0;
2144 delta = 0;
2145
818e3dd3
SR
2146 /*
2147 * We allow for interrupts to reenter here and do a trace.
2148 * If one does, it will cause this original code to loop
2149 * back here. Even with heavy interrupts happening, this
2150 * should only happen a few times in a row. If this happens
2151 * 1000 times in a row, there must be either an interrupt
2152 * storm or we have something buggy.
2153 * Bail!
2154 */
3e89c7bb 2155 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2156 goto out_fail;
818e3dd3 2157
6d3f1e12 2158 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2159 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2160
140ff891
SR
2161 /* make sure this diff is calculated here */
2162 barrier();
bf41a158 2163
140ff891
SR
2164 /* Did the write stamp get updated already? */
2165 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2166 delta = diff;
2167 if (unlikely(test_time_stamp(delta))) {
69d1b839
SR
2168 WARN_ONCE(delta > (1ULL << 59),
2169 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2170 (unsigned long long)delta,
2171 (unsigned long long)ts,
2172 (unsigned long long)cpu_buffer->write_stamp);
2173 add_timestamp = 1;
7a8e76a3 2174 }
168b6b1d 2175 }
7a8e76a3 2176
69d1b839
SR
2177 event = __rb_reserve_next(cpu_buffer, length, ts,
2178 delta, add_timestamp);
168b6b1d 2179 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2180 goto again;
2181
fa743953
SR
2182 if (!event)
2183 goto out_fail;
7a8e76a3 2184
7a8e76a3 2185 return event;
fa743953
SR
2186
2187 out_fail:
2188 rb_end_commit(cpu_buffer);
2189 return NULL;
7a8e76a3
SR
2190}
2191
1155de47
PM
2192#ifdef CONFIG_TRACING
2193
aa18efb2 2194#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
2195
2196static int trace_recursive_lock(void)
2197{
aa18efb2 2198 current->trace_recursion++;
261842b7 2199
aa18efb2
SR
2200 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2201 return 0;
e057a5e5 2202
aa18efb2
SR
2203 /* Disable all tracing before we do anything else */
2204 tracing_off_permanent();
261842b7 2205
7d7d2b80 2206 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
2207 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2208 current->trace_recursion,
2209 hardirq_count() >> HARDIRQ_SHIFT,
2210 softirq_count() >> SOFTIRQ_SHIFT,
2211 in_nmi());
261842b7 2212
aa18efb2
SR
2213 WARN_ON_ONCE(1);
2214 return -1;
261842b7
SR
2215}
2216
2217static void trace_recursive_unlock(void)
2218{
aa18efb2 2219 WARN_ON_ONCE(!current->trace_recursion);
261842b7 2220
aa18efb2 2221 current->trace_recursion--;
261842b7
SR
2222}
2223
1155de47
PM
2224#else
2225
2226#define trace_recursive_lock() (0)
2227#define trace_recursive_unlock() do { } while (0)
2228
2229#endif
2230
7a8e76a3
SR
2231/**
2232 * ring_buffer_lock_reserve - reserve a part of the buffer
2233 * @buffer: the ring buffer to reserve from
2234 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2235 *
2236 * Returns a reseverd event on the ring buffer to copy directly to.
2237 * The user of this interface will need to get the body to write into
2238 * and can use the ring_buffer_event_data() interface.
2239 *
2240 * The length is the length of the data needed, not the event length
2241 * which also includes the event header.
2242 *
2243 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2244 * If NULL is returned, then nothing has been allocated or locked.
2245 */
2246struct ring_buffer_event *
0a987751 2247ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2248{
2249 struct ring_buffer_per_cpu *cpu_buffer;
2250 struct ring_buffer_event *event;
5168ae50 2251 int cpu;
7a8e76a3 2252
033601a3 2253 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2254 return NULL;
2255
bf41a158 2256 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2257 preempt_disable_notrace();
bf41a158 2258
52fbe9cd
LJ
2259 if (atomic_read(&buffer->record_disabled))
2260 goto out_nocheck;
2261
261842b7
SR
2262 if (trace_recursive_lock())
2263 goto out_nocheck;
2264
7a8e76a3
SR
2265 cpu = raw_smp_processor_id();
2266
9e01c1b7 2267 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2268 goto out;
7a8e76a3
SR
2269
2270 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2271
2272 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2273 goto out;
7a8e76a3 2274
be957c44 2275 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2276 goto out;
7a8e76a3 2277
62f0b3eb 2278 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2279 if (!event)
d769041f 2280 goto out;
7a8e76a3
SR
2281
2282 return event;
2283
d769041f 2284 out:
261842b7
SR
2285 trace_recursive_unlock();
2286
2287 out_nocheck:
5168ae50 2288 preempt_enable_notrace();
7a8e76a3
SR
2289 return NULL;
2290}
c4f50183 2291EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2292
a1863c21
SR
2293static void
2294rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2295 struct ring_buffer_event *event)
2296{
69d1b839
SR
2297 u64 delta;
2298
fa743953
SR
2299 /*
2300 * The event first in the commit queue updates the
2301 * time stamp.
2302 */
69d1b839
SR
2303 if (rb_event_is_commit(cpu_buffer, event)) {
2304 /*
2305 * A commit event that is first on a page
2306 * updates the write timestamp with the page stamp
2307 */
2308 if (!rb_event_index(event))
2309 cpu_buffer->write_stamp =
2310 cpu_buffer->commit_page->page->time_stamp;
2311 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2312 delta = event->array[0];
2313 delta <<= TS_SHIFT;
2314 delta += event->time_delta;
2315 cpu_buffer->write_stamp += delta;
2316 } else
2317 cpu_buffer->write_stamp += event->time_delta;
2318 }
a1863c21 2319}
bf41a158 2320
a1863c21
SR
2321static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2322 struct ring_buffer_event *event)
2323{
2324 local_inc(&cpu_buffer->entries);
2325 rb_update_write_stamp(cpu_buffer, event);
fa743953 2326 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2327}
2328
2329/**
2330 * ring_buffer_unlock_commit - commit a reserved
2331 * @buffer: The buffer to commit to
2332 * @event: The event pointer to commit.
7a8e76a3
SR
2333 *
2334 * This commits the data to the ring buffer, and releases any locks held.
2335 *
2336 * Must be paired with ring_buffer_lock_reserve.
2337 */
2338int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2339 struct ring_buffer_event *event)
7a8e76a3
SR
2340{
2341 struct ring_buffer_per_cpu *cpu_buffer;
2342 int cpu = raw_smp_processor_id();
2343
2344 cpu_buffer = buffer->buffers[cpu];
2345
7a8e76a3
SR
2346 rb_commit(cpu_buffer, event);
2347
261842b7
SR
2348 trace_recursive_unlock();
2349
5168ae50 2350 preempt_enable_notrace();
7a8e76a3
SR
2351
2352 return 0;
2353}
c4f50183 2354EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2355
f3b9aae1
FW
2356static inline void rb_event_discard(struct ring_buffer_event *event)
2357{
69d1b839
SR
2358 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2359 event = skip_time_extend(event);
2360
334d4169
LJ
2361 /* array[0] holds the actual length for the discarded event */
2362 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2363 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2364 /* time delta must be non zero */
2365 if (!event->time_delta)
2366 event->time_delta = 1;
2367}
2368
a1863c21
SR
2369/*
2370 * Decrement the entries to the page that an event is on.
2371 * The event does not even need to exist, only the pointer
2372 * to the page it is on. This may only be called before the commit
2373 * takes place.
2374 */
2375static inline void
2376rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2377 struct ring_buffer_event *event)
2378{
2379 unsigned long addr = (unsigned long)event;
2380 struct buffer_page *bpage = cpu_buffer->commit_page;
2381 struct buffer_page *start;
2382
2383 addr &= PAGE_MASK;
2384
2385 /* Do the likely case first */
2386 if (likely(bpage->page == (void *)addr)) {
2387 local_dec(&bpage->entries);
2388 return;
2389 }
2390
2391 /*
2392 * Because the commit page may be on the reader page we
2393 * start with the next page and check the end loop there.
2394 */
2395 rb_inc_page(cpu_buffer, &bpage);
2396 start = bpage;
2397 do {
2398 if (bpage->page == (void *)addr) {
2399 local_dec(&bpage->entries);
2400 return;
2401 }
2402 rb_inc_page(cpu_buffer, &bpage);
2403 } while (bpage != start);
2404
2405 /* commit not part of this buffer?? */
2406 RB_WARN_ON(cpu_buffer, 1);
2407}
2408
fa1b47dd
SR
2409/**
2410 * ring_buffer_commit_discard - discard an event that has not been committed
2411 * @buffer: the ring buffer
2412 * @event: non committed event to discard
2413 *
dc892f73
SR
2414 * Sometimes an event that is in the ring buffer needs to be ignored.
2415 * This function lets the user discard an event in the ring buffer
2416 * and then that event will not be read later.
2417 *
2418 * This function only works if it is called before the the item has been
2419 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2420 * if another event has not been added behind it.
2421 *
2422 * If another event has been added behind it, it will set the event
2423 * up as discarded, and perform the commit.
2424 *
2425 * If this function is called, do not call ring_buffer_unlock_commit on
2426 * the event.
2427 */
2428void ring_buffer_discard_commit(struct ring_buffer *buffer,
2429 struct ring_buffer_event *event)
2430{
2431 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2432 int cpu;
2433
2434 /* The event is discarded regardless */
f3b9aae1 2435 rb_event_discard(event);
fa1b47dd 2436
fa743953
SR
2437 cpu = smp_processor_id();
2438 cpu_buffer = buffer->buffers[cpu];
2439
fa1b47dd
SR
2440 /*
2441 * This must only be called if the event has not been
2442 * committed yet. Thus we can assume that preemption
2443 * is still disabled.
2444 */
fa743953 2445 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2446
a1863c21 2447 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2448 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2449 goto out;
fa1b47dd
SR
2450
2451 /*
2452 * The commit is still visible by the reader, so we
a1863c21 2453 * must still update the timestamp.
fa1b47dd 2454 */
a1863c21 2455 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2456 out:
fa743953 2457 rb_end_commit(cpu_buffer);
fa1b47dd 2458
f3b9aae1
FW
2459 trace_recursive_unlock();
2460
5168ae50 2461 preempt_enable_notrace();
fa1b47dd
SR
2462
2463}
2464EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2465
7a8e76a3
SR
2466/**
2467 * ring_buffer_write - write data to the buffer without reserving
2468 * @buffer: The ring buffer to write to.
2469 * @length: The length of the data being written (excluding the event header)
2470 * @data: The data to write to the buffer.
2471 *
2472 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2473 * one function. If you already have the data to write to the buffer, it
2474 * may be easier to simply call this function.
2475 *
2476 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2477 * and not the length of the event which would hold the header.
2478 */
2479int ring_buffer_write(struct ring_buffer *buffer,
2480 unsigned long length,
2481 void *data)
2482{
2483 struct ring_buffer_per_cpu *cpu_buffer;
2484 struct ring_buffer_event *event;
7a8e76a3
SR
2485 void *body;
2486 int ret = -EBUSY;
5168ae50 2487 int cpu;
7a8e76a3 2488
033601a3 2489 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2490 return -EBUSY;
2491
5168ae50 2492 preempt_disable_notrace();
bf41a158 2493
52fbe9cd
LJ
2494 if (atomic_read(&buffer->record_disabled))
2495 goto out;
2496
7a8e76a3
SR
2497 cpu = raw_smp_processor_id();
2498
9e01c1b7 2499 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2500 goto out;
7a8e76a3
SR
2501
2502 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2503
2504 if (atomic_read(&cpu_buffer->record_disabled))
2505 goto out;
2506
be957c44
SR
2507 if (length > BUF_MAX_DATA_SIZE)
2508 goto out;
2509
62f0b3eb 2510 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2511 if (!event)
2512 goto out;
2513
2514 body = rb_event_data(event);
2515
2516 memcpy(body, data, length);
2517
2518 rb_commit(cpu_buffer, event);
2519
2520 ret = 0;
2521 out:
5168ae50 2522 preempt_enable_notrace();
7a8e76a3
SR
2523
2524 return ret;
2525}
c4f50183 2526EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2527
34a148bf 2528static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2529{
2530 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2531 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2532 struct buffer_page *commit = cpu_buffer->commit_page;
2533
77ae365e
SR
2534 /* In case of error, head will be NULL */
2535 if (unlikely(!head))
2536 return 1;
2537
bf41a158
SR
2538 return reader->read == rb_page_commit(reader) &&
2539 (commit == reader ||
2540 (commit == head &&
2541 head->read == rb_page_commit(commit)));
2542}
2543
7a8e76a3
SR
2544/**
2545 * ring_buffer_record_disable - stop all writes into the buffer
2546 * @buffer: The ring buffer to stop writes to.
2547 *
2548 * This prevents all writes to the buffer. Any attempt to write
2549 * to the buffer after this will fail and return NULL.
2550 *
2551 * The caller should call synchronize_sched() after this.
2552 */
2553void ring_buffer_record_disable(struct ring_buffer *buffer)
2554{
2555 atomic_inc(&buffer->record_disabled);
2556}
c4f50183 2557EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2558
2559/**
2560 * ring_buffer_record_enable - enable writes to the buffer
2561 * @buffer: The ring buffer to enable writes
2562 *
2563 * Note, multiple disables will need the same number of enables
c41b20e7 2564 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2565 */
2566void ring_buffer_record_enable(struct ring_buffer *buffer)
2567{
2568 atomic_dec(&buffer->record_disabled);
2569}
c4f50183 2570EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2571
2572/**
2573 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2574 * @buffer: The ring buffer to stop writes to.
2575 * @cpu: The CPU buffer to stop
2576 *
2577 * This prevents all writes to the buffer. Any attempt to write
2578 * to the buffer after this will fail and return NULL.
2579 *
2580 * The caller should call synchronize_sched() after this.
2581 */
2582void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2583{
2584 struct ring_buffer_per_cpu *cpu_buffer;
2585
9e01c1b7 2586 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2587 return;
7a8e76a3
SR
2588
2589 cpu_buffer = buffer->buffers[cpu];
2590 atomic_inc(&cpu_buffer->record_disabled);
2591}
c4f50183 2592EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2593
2594/**
2595 * ring_buffer_record_enable_cpu - enable writes to the buffer
2596 * @buffer: The ring buffer to enable writes
2597 * @cpu: The CPU to enable.
2598 *
2599 * Note, multiple disables will need the same number of enables
c41b20e7 2600 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
2601 */
2602void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2603{
2604 struct ring_buffer_per_cpu *cpu_buffer;
2605
9e01c1b7 2606 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2607 return;
7a8e76a3
SR
2608
2609 cpu_buffer = buffer->buffers[cpu];
2610 atomic_dec(&cpu_buffer->record_disabled);
2611}
c4f50183 2612EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
2613
2614/**
2615 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2616 * @buffer: The ring buffer
2617 * @cpu: The per CPU buffer to get the entries from.
2618 */
2619unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2620{
2621 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2622 unsigned long ret;
7a8e76a3 2623
9e01c1b7 2624 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2625 return 0;
7a8e76a3
SR
2626
2627 cpu_buffer = buffer->buffers[cpu];
77ae365e 2628 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
e4906eff 2629 - cpu_buffer->read;
554f786e
SR
2630
2631 return ret;
7a8e76a3 2632}
c4f50183 2633EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2634
2635/**
2636 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2637 * @buffer: The ring buffer
2638 * @cpu: The per CPU buffer to get the number of overruns from
2639 */
2640unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2641{
2642 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2643 unsigned long ret;
7a8e76a3 2644
9e01c1b7 2645 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2646 return 0;
7a8e76a3
SR
2647
2648 cpu_buffer = buffer->buffers[cpu];
77ae365e 2649 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2650
2651 return ret;
7a8e76a3 2652}
c4f50183 2653EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2654
f0d2c681
SR
2655/**
2656 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2657 * @buffer: The ring buffer
2658 * @cpu: The per CPU buffer to get the number of overruns from
2659 */
2660unsigned long
2661ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2662{
2663 struct ring_buffer_per_cpu *cpu_buffer;
2664 unsigned long ret;
2665
2666 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2667 return 0;
2668
2669 cpu_buffer = buffer->buffers[cpu];
77ae365e 2670 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2671
2672 return ret;
2673}
2674EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2675
7a8e76a3
SR
2676/**
2677 * ring_buffer_entries - get the number of entries in a buffer
2678 * @buffer: The ring buffer
2679 *
2680 * Returns the total number of entries in the ring buffer
2681 * (all CPU entries)
2682 */
2683unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2684{
2685 struct ring_buffer_per_cpu *cpu_buffer;
2686 unsigned long entries = 0;
2687 int cpu;
2688
2689 /* if you care about this being correct, lock the buffer */
2690 for_each_buffer_cpu(buffer, cpu) {
2691 cpu_buffer = buffer->buffers[cpu];
e4906eff 2692 entries += (local_read(&cpu_buffer->entries) -
77ae365e 2693 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
7a8e76a3
SR
2694 }
2695
2696 return entries;
2697}
c4f50183 2698EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2699
2700/**
67b394f7 2701 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
2702 * @buffer: The ring buffer
2703 *
2704 * Returns the total number of overruns in the ring buffer
2705 * (all CPU entries)
2706 */
2707unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2708{
2709 struct ring_buffer_per_cpu *cpu_buffer;
2710 unsigned long overruns = 0;
2711 int cpu;
2712
2713 /* if you care about this being correct, lock the buffer */
2714 for_each_buffer_cpu(buffer, cpu) {
2715 cpu_buffer = buffer->buffers[cpu];
77ae365e 2716 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2717 }
2718
2719 return overruns;
2720}
c4f50183 2721EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2722
642edba5 2723static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2724{
2725 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2726
d769041f
SR
2727 /* Iterator usage is expected to have record disabled */
2728 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2729 iter->head_page = rb_set_head_page(cpu_buffer);
2730 if (unlikely(!iter->head_page))
2731 return;
2732 iter->head = iter->head_page->read;
d769041f
SR
2733 } else {
2734 iter->head_page = cpu_buffer->reader_page;
6f807acd 2735 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2736 }
2737 if (iter->head)
2738 iter->read_stamp = cpu_buffer->read_stamp;
2739 else
abc9b56d 2740 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
2741 iter->cache_reader_page = cpu_buffer->reader_page;
2742 iter->cache_read = cpu_buffer->read;
642edba5 2743}
f83c9d0f 2744
642edba5
SR
2745/**
2746 * ring_buffer_iter_reset - reset an iterator
2747 * @iter: The iterator to reset
2748 *
2749 * Resets the iterator, so that it will start from the beginning
2750 * again.
2751 */
2752void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2753{
554f786e 2754 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2755 unsigned long flags;
2756
554f786e
SR
2757 if (!iter)
2758 return;
2759
2760 cpu_buffer = iter->cpu_buffer;
2761
642edba5
SR
2762 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2763 rb_iter_reset(iter);
f83c9d0f 2764 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2765}
c4f50183 2766EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2767
2768/**
2769 * ring_buffer_iter_empty - check if an iterator has no more to read
2770 * @iter: The iterator to check
2771 */
2772int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2773{
2774 struct ring_buffer_per_cpu *cpu_buffer;
2775
2776 cpu_buffer = iter->cpu_buffer;
2777
bf41a158
SR
2778 return iter->head_page == cpu_buffer->commit_page &&
2779 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2780}
c4f50183 2781EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2782
2783static void
2784rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2785 struct ring_buffer_event *event)
2786{
2787 u64 delta;
2788
334d4169 2789 switch (event->type_len) {
7a8e76a3
SR
2790 case RINGBUF_TYPE_PADDING:
2791 return;
2792
2793 case RINGBUF_TYPE_TIME_EXTEND:
2794 delta = event->array[0];
2795 delta <<= TS_SHIFT;
2796 delta += event->time_delta;
2797 cpu_buffer->read_stamp += delta;
2798 return;
2799
2800 case RINGBUF_TYPE_TIME_STAMP:
2801 /* FIXME: not implemented */
2802 return;
2803
2804 case RINGBUF_TYPE_DATA:
2805 cpu_buffer->read_stamp += event->time_delta;
2806 return;
2807
2808 default:
2809 BUG();
2810 }
2811 return;
2812}
2813
2814static void
2815rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2816 struct ring_buffer_event *event)
2817{
2818 u64 delta;
2819
334d4169 2820 switch (event->type_len) {
7a8e76a3
SR
2821 case RINGBUF_TYPE_PADDING:
2822 return;
2823
2824 case RINGBUF_TYPE_TIME_EXTEND:
2825 delta = event->array[0];
2826 delta <<= TS_SHIFT;
2827 delta += event->time_delta;
2828 iter->read_stamp += delta;
2829 return;
2830
2831 case RINGBUF_TYPE_TIME_STAMP:
2832 /* FIXME: not implemented */
2833 return;
2834
2835 case RINGBUF_TYPE_DATA:
2836 iter->read_stamp += event->time_delta;
2837 return;
2838
2839 default:
2840 BUG();
2841 }
2842 return;
2843}
2844
d769041f
SR
2845static struct buffer_page *
2846rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2847{
d769041f 2848 struct buffer_page *reader = NULL;
66a8cb95 2849 unsigned long overwrite;
d769041f 2850 unsigned long flags;
818e3dd3 2851 int nr_loops = 0;
77ae365e 2852 int ret;
d769041f 2853
3e03fb7f 2854 local_irq_save(flags);
0199c4e6 2855 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
2856
2857 again:
818e3dd3
SR
2858 /*
2859 * This should normally only loop twice. But because the
2860 * start of the reader inserts an empty page, it causes
2861 * a case where we will loop three times. There should be no
2862 * reason to loop four times (that I know of).
2863 */
3e89c7bb 2864 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2865 reader = NULL;
2866 goto out;
2867 }
2868
d769041f
SR
2869 reader = cpu_buffer->reader_page;
2870
2871 /* If there's more to read, return this page */
bf41a158 2872 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2873 goto out;
2874
2875 /* Never should we have an index greater than the size */
3e89c7bb
SR
2876 if (RB_WARN_ON(cpu_buffer,
2877 cpu_buffer->reader_page->read > rb_page_size(reader)))
2878 goto out;
d769041f
SR
2879
2880 /* check if we caught up to the tail */
2881 reader = NULL;
bf41a158 2882 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2883 goto out;
7a8e76a3
SR
2884
2885 /*
d769041f 2886 * Reset the reader page to size zero.
7a8e76a3 2887 */
77ae365e
SR
2888 local_set(&cpu_buffer->reader_page->write, 0);
2889 local_set(&cpu_buffer->reader_page->entries, 0);
2890 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 2891 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 2892
77ae365e
SR
2893 spin:
2894 /*
2895 * Splice the empty reader page into the list around the head.
2896 */
2897 reader = rb_set_head_page(cpu_buffer);
0e1ff5d7 2898 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 2899 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 2900
3adc54fa
SR
2901 /*
2902 * cpu_buffer->pages just needs to point to the buffer, it
2903 * has no specific buffer page to point to. Lets move it out
2904 * of our way so we don't accidently swap it.
2905 */
2906 cpu_buffer->pages = reader->list.prev;
2907
77ae365e
SR
2908 /* The reader page will be pointing to the new head */
2909 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 2910
66a8cb95
SR
2911 /*
2912 * We want to make sure we read the overruns after we set up our
2913 * pointers to the next object. The writer side does a
2914 * cmpxchg to cross pages which acts as the mb on the writer
2915 * side. Note, the reader will constantly fail the swap
2916 * while the writer is updating the pointers, so this
2917 * guarantees that the overwrite recorded here is the one we
2918 * want to compare with the last_overrun.
2919 */
2920 smp_mb();
2921 overwrite = local_read(&(cpu_buffer->overrun));
2922
77ae365e
SR
2923 /*
2924 * Here's the tricky part.
2925 *
2926 * We need to move the pointer past the header page.
2927 * But we can only do that if a writer is not currently
2928 * moving it. The page before the header page has the
2929 * flag bit '1' set if it is pointing to the page we want.
2930 * but if the writer is in the process of moving it
2931 * than it will be '2' or already moved '0'.
2932 */
2933
2934 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
2935
2936 /*
77ae365e 2937 * If we did not convert it, then we must try again.
7a8e76a3 2938 */
77ae365e
SR
2939 if (!ret)
2940 goto spin;
7a8e76a3 2941
77ae365e
SR
2942 /*
2943 * Yeah! We succeeded in replacing the page.
2944 *
2945 * Now make the new head point back to the reader page.
2946 */
5ded3dc6 2947 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 2948 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
2949
2950 /* Finally update the reader page to the new head */
2951 cpu_buffer->reader_page = reader;
2952 rb_reset_reader_page(cpu_buffer);
2953
66a8cb95
SR
2954 if (overwrite != cpu_buffer->last_overrun) {
2955 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2956 cpu_buffer->last_overrun = overwrite;
2957 }
2958
d769041f
SR
2959 goto again;
2960
2961 out:
0199c4e6 2962 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 2963 local_irq_restore(flags);
d769041f
SR
2964
2965 return reader;
2966}
2967
2968static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2969{
2970 struct ring_buffer_event *event;
2971 struct buffer_page *reader;
2972 unsigned length;
2973
2974 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2975
d769041f 2976 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2977 if (RB_WARN_ON(cpu_buffer, !reader))
2978 return;
7a8e76a3 2979
d769041f
SR
2980 event = rb_reader_event(cpu_buffer);
2981
a1863c21 2982 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 2983 cpu_buffer->read++;
d769041f
SR
2984
2985 rb_update_read_stamp(cpu_buffer, event);
2986
2987 length = rb_event_length(event);
6f807acd 2988 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2989}
2990
2991static void rb_advance_iter(struct ring_buffer_iter *iter)
2992{
7a8e76a3
SR
2993 struct ring_buffer_per_cpu *cpu_buffer;
2994 struct ring_buffer_event *event;
2995 unsigned length;
2996
2997 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
2998
2999 /*
3000 * Check if we are at the end of the buffer.
3001 */
bf41a158 3002 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3003 /* discarded commits can make the page empty */
3004 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3005 return;
d769041f 3006 rb_inc_iter(iter);
7a8e76a3
SR
3007 return;
3008 }
3009
3010 event = rb_iter_head_event(iter);
3011
3012 length = rb_event_length(event);
3013
3014 /*
3015 * This should not be called to advance the header if we are
3016 * at the tail of the buffer.
3017 */
3e89c7bb 3018 if (RB_WARN_ON(cpu_buffer,
f536aafc 3019 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3020 (iter->head + length > rb_commit_index(cpu_buffer))))
3021 return;
7a8e76a3
SR
3022
3023 rb_update_iter_read_stamp(iter, event);
3024
3025 iter->head += length;
3026
3027 /* check for end of page padding */
bf41a158
SR
3028 if ((iter->head >= rb_page_size(iter->head_page)) &&
3029 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
3030 rb_advance_iter(iter);
3031}
3032
66a8cb95
SR
3033static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3034{
3035 return cpu_buffer->lost_events;
3036}
3037
f83c9d0f 3038static struct ring_buffer_event *
66a8cb95
SR
3039rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3040 unsigned long *lost_events)
7a8e76a3 3041{
7a8e76a3 3042 struct ring_buffer_event *event;
d769041f 3043 struct buffer_page *reader;
818e3dd3 3044 int nr_loops = 0;
7a8e76a3 3045
7a8e76a3 3046 again:
818e3dd3 3047 /*
69d1b839
SR
3048 * We repeat when a time extend is encountered.
3049 * Since the time extend is always attached to a data event,
3050 * we should never loop more than once.
3051 * (We never hit the following condition more than twice).
818e3dd3 3052 */
69d1b839 3053 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3054 return NULL;
818e3dd3 3055
d769041f
SR
3056 reader = rb_get_reader_page(cpu_buffer);
3057 if (!reader)
7a8e76a3
SR
3058 return NULL;
3059
d769041f 3060 event = rb_reader_event(cpu_buffer);
7a8e76a3 3061
334d4169 3062 switch (event->type_len) {
7a8e76a3 3063 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3064 if (rb_null_event(event))
3065 RB_WARN_ON(cpu_buffer, 1);
3066 /*
3067 * Because the writer could be discarding every
3068 * event it creates (which would probably be bad)
3069 * if we were to go back to "again" then we may never
3070 * catch up, and will trigger the warn on, or lock
3071 * the box. Return the padding, and we will release
3072 * the current locks, and try again.
3073 */
2d622719 3074 return event;
7a8e76a3
SR
3075
3076 case RINGBUF_TYPE_TIME_EXTEND:
3077 /* Internal data, OK to advance */
d769041f 3078 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3079 goto again;
3080
3081 case RINGBUF_TYPE_TIME_STAMP:
3082 /* FIXME: not implemented */
d769041f 3083 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3084 goto again;
3085
3086 case RINGBUF_TYPE_DATA:
3087 if (ts) {
3088 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3089 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3090 cpu_buffer->cpu, ts);
7a8e76a3 3091 }
66a8cb95
SR
3092 if (lost_events)
3093 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3094 return event;
3095
3096 default:
3097 BUG();
3098 }
3099
3100 return NULL;
3101}
c4f50183 3102EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3103
f83c9d0f
SR
3104static struct ring_buffer_event *
3105rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3106{
3107 struct ring_buffer *buffer;
3108 struct ring_buffer_per_cpu *cpu_buffer;
3109 struct ring_buffer_event *event;
818e3dd3 3110 int nr_loops = 0;
7a8e76a3 3111
7a8e76a3
SR
3112 cpu_buffer = iter->cpu_buffer;
3113 buffer = cpu_buffer->buffer;
3114
492a74f4
SR
3115 /*
3116 * Check if someone performed a consuming read to
3117 * the buffer. A consuming read invalidates the iterator
3118 * and we need to reset the iterator in this case.
3119 */
3120 if (unlikely(iter->cache_read != cpu_buffer->read ||
3121 iter->cache_reader_page != cpu_buffer->reader_page))
3122 rb_iter_reset(iter);
3123
7a8e76a3 3124 again:
3c05d748
SR
3125 if (ring_buffer_iter_empty(iter))
3126 return NULL;
3127
818e3dd3 3128 /*
69d1b839
SR
3129 * We repeat when a time extend is encountered.
3130 * Since the time extend is always attached to a data event,
3131 * we should never loop more than once.
3132 * (We never hit the following condition more than twice).
818e3dd3 3133 */
69d1b839 3134 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3135 return NULL;
818e3dd3 3136
7a8e76a3
SR
3137 if (rb_per_cpu_empty(cpu_buffer))
3138 return NULL;
3139
3c05d748
SR
3140 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3141 rb_inc_iter(iter);
3142 goto again;
3143 }
3144
7a8e76a3
SR
3145 event = rb_iter_head_event(iter);
3146
334d4169 3147 switch (event->type_len) {
7a8e76a3 3148 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3149 if (rb_null_event(event)) {
3150 rb_inc_iter(iter);
3151 goto again;
3152 }
3153 rb_advance_iter(iter);
3154 return event;
7a8e76a3
SR
3155
3156 case RINGBUF_TYPE_TIME_EXTEND:
3157 /* Internal data, OK to advance */
3158 rb_advance_iter(iter);
3159 goto again;
3160
3161 case RINGBUF_TYPE_TIME_STAMP:
3162 /* FIXME: not implemented */
3163 rb_advance_iter(iter);
3164 goto again;
3165
3166 case RINGBUF_TYPE_DATA:
3167 if (ts) {
3168 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3169 ring_buffer_normalize_time_stamp(buffer,
3170 cpu_buffer->cpu, ts);
7a8e76a3
SR
3171 }
3172 return event;
3173
3174 default:
3175 BUG();
3176 }
3177
3178 return NULL;
3179}
c4f50183 3180EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3181
8d707e8e
SR
3182static inline int rb_ok_to_lock(void)
3183{
3184 /*
3185 * If an NMI die dumps out the content of the ring buffer
3186 * do not grab locks. We also permanently disable the ring
3187 * buffer too. A one time deal is all you get from reading
3188 * the ring buffer from an NMI.
3189 */
464e85eb 3190 if (likely(!in_nmi()))
8d707e8e
SR
3191 return 1;
3192
3193 tracing_off_permanent();
3194 return 0;
3195}
3196
f83c9d0f
SR
3197/**
3198 * ring_buffer_peek - peek at the next event to be read
3199 * @buffer: The ring buffer to read
3200 * @cpu: The cpu to peak at
3201 * @ts: The timestamp counter of this event.
66a8cb95 3202 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3203 *
3204 * This will return the event that will be read next, but does
3205 * not consume the data.
3206 */
3207struct ring_buffer_event *
66a8cb95
SR
3208ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3209 unsigned long *lost_events)
f83c9d0f
SR
3210{
3211 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3212 struct ring_buffer_event *event;
f83c9d0f 3213 unsigned long flags;
8d707e8e 3214 int dolock;
f83c9d0f 3215
554f786e 3216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3217 return NULL;
554f786e 3218
8d707e8e 3219 dolock = rb_ok_to_lock();
2d622719 3220 again:
8d707e8e
SR
3221 local_irq_save(flags);
3222 if (dolock)
3223 spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3224 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3225 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3226 rb_advance_reader(cpu_buffer);
8d707e8e
SR
3227 if (dolock)
3228 spin_unlock(&cpu_buffer->reader_lock);
3229 local_irq_restore(flags);
f83c9d0f 3230
1b959e18 3231 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3232 goto again;
2d622719 3233
f83c9d0f
SR
3234 return event;
3235}
3236
3237/**
3238 * ring_buffer_iter_peek - peek at the next event to be read
3239 * @iter: The ring buffer iterator
3240 * @ts: The timestamp counter of this event.
3241 *
3242 * This will return the event that will be read next, but does
3243 * not increment the iterator.
3244 */
3245struct ring_buffer_event *
3246ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3247{
3248 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3249 struct ring_buffer_event *event;
3250 unsigned long flags;
3251
2d622719 3252 again:
f83c9d0f
SR
3253 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3254 event = rb_iter_peek(iter, ts);
3255 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3256
1b959e18 3257 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3258 goto again;
2d622719 3259
f83c9d0f
SR
3260 return event;
3261}
3262
7a8e76a3
SR
3263/**
3264 * ring_buffer_consume - return an event and consume it
3265 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3266 * @cpu: the cpu to read the buffer from
3267 * @ts: a variable to store the timestamp (may be NULL)
3268 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3269 *
3270 * Returns the next event in the ring buffer, and that event is consumed.
3271 * Meaning, that sequential reads will keep returning a different event,
3272 * and eventually empty the ring buffer if the producer is slower.
3273 */
3274struct ring_buffer_event *
66a8cb95
SR
3275ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3276 unsigned long *lost_events)
7a8e76a3 3277{
554f786e
SR
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 struct ring_buffer_event *event = NULL;
f83c9d0f 3280 unsigned long flags;
8d707e8e
SR
3281 int dolock;
3282
3283 dolock = rb_ok_to_lock();
7a8e76a3 3284
2d622719 3285 again:
554f786e
SR
3286 /* might be called in atomic */
3287 preempt_disable();
3288
9e01c1b7 3289 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3290 goto out;
7a8e76a3 3291
554f786e 3292 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3293 local_irq_save(flags);
3294 if (dolock)
3295 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3296
66a8cb95
SR
3297 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3298 if (event) {
3299 cpu_buffer->lost_events = 0;
469535a5 3300 rb_advance_reader(cpu_buffer);
66a8cb95 3301 }
7a8e76a3 3302
8d707e8e
SR
3303 if (dolock)
3304 spin_unlock(&cpu_buffer->reader_lock);
3305 local_irq_restore(flags);
f83c9d0f 3306
554f786e
SR
3307 out:
3308 preempt_enable();
3309
1b959e18 3310 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3311 goto again;
2d622719 3312
7a8e76a3
SR
3313 return event;
3314}
c4f50183 3315EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3316
3317/**
72c9ddfd 3318 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3319 * @buffer: The ring buffer to read from
3320 * @cpu: The cpu buffer to iterate over
3321 *
72c9ddfd
DM
3322 * This performs the initial preparations necessary to iterate
3323 * through the buffer. Memory is allocated, buffer recording
3324 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3325 *
72c9ddfd
DM
3326 * Disabling buffer recordng prevents the reading from being
3327 * corrupted. This is not a consuming read, so a producer is not
3328 * expected.
3329 *
3330 * After a sequence of ring_buffer_read_prepare calls, the user is
3331 * expected to make at least one call to ring_buffer_prepare_sync.
3332 * Afterwards, ring_buffer_read_start is invoked to get things going
3333 * for real.
3334 *
3335 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3336 */
3337struct ring_buffer_iter *
72c9ddfd 3338ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3339{
3340 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3341 struct ring_buffer_iter *iter;
7a8e76a3 3342
9e01c1b7 3343 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3344 return NULL;
7a8e76a3
SR
3345
3346 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3347 if (!iter)
8aabee57 3348 return NULL;
7a8e76a3
SR
3349
3350 cpu_buffer = buffer->buffers[cpu];
3351
3352 iter->cpu_buffer = cpu_buffer;
3353
3354 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3355
3356 return iter;
3357}
3358EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3359
3360/**
3361 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3362 *
3363 * All previously invoked ring_buffer_read_prepare calls to prepare
3364 * iterators will be synchronized. Afterwards, read_buffer_read_start
3365 * calls on those iterators are allowed.
3366 */
3367void
3368ring_buffer_read_prepare_sync(void)
3369{
7a8e76a3 3370 synchronize_sched();
72c9ddfd
DM
3371}
3372EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3373
3374/**
3375 * ring_buffer_read_start - start a non consuming read of the buffer
3376 * @iter: The iterator returned by ring_buffer_read_prepare
3377 *
3378 * This finalizes the startup of an iteration through the buffer.
3379 * The iterator comes from a call to ring_buffer_read_prepare and
3380 * an intervening ring_buffer_read_prepare_sync must have been
3381 * performed.
3382 *
3383 * Must be paired with ring_buffer_finish.
3384 */
3385void
3386ring_buffer_read_start(struct ring_buffer_iter *iter)
3387{
3388 struct ring_buffer_per_cpu *cpu_buffer;
3389 unsigned long flags;
3390
3391 if (!iter)
3392 return;
3393
3394 cpu_buffer = iter->cpu_buffer;
7a8e76a3 3395
f83c9d0f 3396 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 3397 arch_spin_lock(&cpu_buffer->lock);
642edba5 3398 rb_iter_reset(iter);
0199c4e6 3399 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3400 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3401}
c4f50183 3402EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3403
3404/**
3405 * ring_buffer_finish - finish reading the iterator of the buffer
3406 * @iter: The iterator retrieved by ring_buffer_start
3407 *
3408 * This re-enables the recording to the buffer, and frees the
3409 * iterator.
3410 */
3411void
3412ring_buffer_read_finish(struct ring_buffer_iter *iter)
3413{
3414 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3415
3416 atomic_dec(&cpu_buffer->record_disabled);
3417 kfree(iter);
3418}
c4f50183 3419EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3420
3421/**
3422 * ring_buffer_read - read the next item in the ring buffer by the iterator
3423 * @iter: The ring buffer iterator
3424 * @ts: The time stamp of the event read.
3425 *
3426 * This reads the next event in the ring buffer and increments the iterator.
3427 */
3428struct ring_buffer_event *
3429ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3430{
3431 struct ring_buffer_event *event;
f83c9d0f
SR
3432 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3433 unsigned long flags;
7a8e76a3 3434
f83c9d0f 3435 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 3436 again:
f83c9d0f 3437 event = rb_iter_peek(iter, ts);
7a8e76a3 3438 if (!event)
f83c9d0f 3439 goto out;
7a8e76a3 3440
7e9391cf
SR
3441 if (event->type_len == RINGBUF_TYPE_PADDING)
3442 goto again;
3443
7a8e76a3 3444 rb_advance_iter(iter);
f83c9d0f
SR
3445 out:
3446 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3447
3448 return event;
3449}
c4f50183 3450EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3451
3452/**
3453 * ring_buffer_size - return the size of the ring buffer (in bytes)
3454 * @buffer: The ring buffer.
3455 */
3456unsigned long ring_buffer_size(struct ring_buffer *buffer)
3457{
3458 return BUF_PAGE_SIZE * buffer->pages;
3459}
c4f50183 3460EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3461
3462static void
3463rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3464{
77ae365e
SR
3465 rb_head_page_deactivate(cpu_buffer);
3466
7a8e76a3 3467 cpu_buffer->head_page
3adc54fa 3468 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3469 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3470 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3471 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3472
6f807acd 3473 cpu_buffer->head_page->read = 0;
bf41a158
SR
3474
3475 cpu_buffer->tail_page = cpu_buffer->head_page;
3476 cpu_buffer->commit_page = cpu_buffer->head_page;
3477
3478 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3479 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3480 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3481 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3482 cpu_buffer->reader_page->read = 0;
7a8e76a3 3483
77ae365e
SR
3484 local_set(&cpu_buffer->commit_overrun, 0);
3485 local_set(&cpu_buffer->overrun, 0);
e4906eff 3486 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3487 local_set(&cpu_buffer->committing, 0);
3488 local_set(&cpu_buffer->commits, 0);
77ae365e 3489 cpu_buffer->read = 0;
69507c06
SR
3490
3491 cpu_buffer->write_stamp = 0;
3492 cpu_buffer->read_stamp = 0;
77ae365e 3493
66a8cb95
SR
3494 cpu_buffer->lost_events = 0;
3495 cpu_buffer->last_overrun = 0;
3496
77ae365e 3497 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3498}
3499
3500/**
3501 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3502 * @buffer: The ring buffer to reset a per cpu buffer of
3503 * @cpu: The CPU buffer to be reset
3504 */
3505void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3506{
3507 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3508 unsigned long flags;
3509
9e01c1b7 3510 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3511 return;
7a8e76a3 3512
41ede23e
SR
3513 atomic_inc(&cpu_buffer->record_disabled);
3514
f83c9d0f
SR
3515 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3516
41b6a95d
SR
3517 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3518 goto out;
3519
0199c4e6 3520 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3521
3522 rb_reset_cpu(cpu_buffer);
3523
0199c4e6 3524 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3525
41b6a95d 3526 out:
f83c9d0f 3527 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3528
3529 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3530}
c4f50183 3531EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3532
3533/**
3534 * ring_buffer_reset - reset a ring buffer
3535 * @buffer: The ring buffer to reset all cpu buffers
3536 */
3537void ring_buffer_reset(struct ring_buffer *buffer)
3538{
7a8e76a3
SR
3539 int cpu;
3540
7a8e76a3 3541 for_each_buffer_cpu(buffer, cpu)
d769041f 3542 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3543}
c4f50183 3544EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3545
3546/**
3547 * rind_buffer_empty - is the ring buffer empty?
3548 * @buffer: The ring buffer to test
3549 */
3550int ring_buffer_empty(struct ring_buffer *buffer)
3551{
3552 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3553 unsigned long flags;
8d707e8e 3554 int dolock;
7a8e76a3 3555 int cpu;
d4788207 3556 int ret;
7a8e76a3 3557
8d707e8e 3558 dolock = rb_ok_to_lock();
7a8e76a3
SR
3559
3560 /* yes this is racy, but if you don't like the race, lock the buffer */
3561 for_each_buffer_cpu(buffer, cpu) {
3562 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3563 local_irq_save(flags);
3564 if (dolock)
3565 spin_lock(&cpu_buffer->reader_lock);
d4788207 3566 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3567 if (dolock)
3568 spin_unlock(&cpu_buffer->reader_lock);
3569 local_irq_restore(flags);
3570
d4788207 3571 if (!ret)
7a8e76a3
SR
3572 return 0;
3573 }
554f786e 3574
7a8e76a3
SR
3575 return 1;
3576}
c4f50183 3577EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3578
3579/**
3580 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3581 * @buffer: The ring buffer
3582 * @cpu: The CPU buffer to test
3583 */
3584int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3585{
3586 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3587 unsigned long flags;
8d707e8e 3588 int dolock;
8aabee57 3589 int ret;
7a8e76a3 3590
9e01c1b7 3591 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3592 return 1;
7a8e76a3 3593
8d707e8e
SR
3594 dolock = rb_ok_to_lock();
3595
7a8e76a3 3596 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3597 local_irq_save(flags);
3598 if (dolock)
3599 spin_lock(&cpu_buffer->reader_lock);
554f786e 3600 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3601 if (dolock)
3602 spin_unlock(&cpu_buffer->reader_lock);
3603 local_irq_restore(flags);
554f786e
SR
3604
3605 return ret;
7a8e76a3 3606}
c4f50183 3607EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 3608
85bac32c 3609#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
3610/**
3611 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3612 * @buffer_a: One buffer to swap with
3613 * @buffer_b: The other buffer to swap with
3614 *
3615 * This function is useful for tracers that want to take a "snapshot"
3616 * of a CPU buffer and has another back up buffer lying around.
3617 * it is expected that the tracer handles the cpu buffer not being
3618 * used at the moment.
3619 */
3620int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3621 struct ring_buffer *buffer_b, int cpu)
3622{
3623 struct ring_buffer_per_cpu *cpu_buffer_a;
3624 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3625 int ret = -EINVAL;
3626
9e01c1b7
RR
3627 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3628 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3629 goto out;
7a8e76a3
SR
3630
3631 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3632 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3633 goto out;
3634
3635 ret = -EAGAIN;
7a8e76a3 3636
97b17efe 3637 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3638 goto out;
97b17efe
SR
3639
3640 if (atomic_read(&buffer_a->record_disabled))
554f786e 3641 goto out;
97b17efe
SR
3642
3643 if (atomic_read(&buffer_b->record_disabled))
554f786e 3644 goto out;
97b17efe 3645
7a8e76a3
SR
3646 cpu_buffer_a = buffer_a->buffers[cpu];
3647 cpu_buffer_b = buffer_b->buffers[cpu];
3648
97b17efe 3649 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3650 goto out;
97b17efe
SR
3651
3652 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3653 goto out;
97b17efe 3654
7a8e76a3
SR
3655 /*
3656 * We can't do a synchronize_sched here because this
3657 * function can be called in atomic context.
3658 * Normally this will be called from the same CPU as cpu.
3659 * If not it's up to the caller to protect this.
3660 */
3661 atomic_inc(&cpu_buffer_a->record_disabled);
3662 atomic_inc(&cpu_buffer_b->record_disabled);
3663
98277991
SR
3664 ret = -EBUSY;
3665 if (local_read(&cpu_buffer_a->committing))
3666 goto out_dec;
3667 if (local_read(&cpu_buffer_b->committing))
3668 goto out_dec;
3669
7a8e76a3
SR
3670 buffer_a->buffers[cpu] = cpu_buffer_b;
3671 buffer_b->buffers[cpu] = cpu_buffer_a;
3672
3673 cpu_buffer_b->buffer = buffer_a;
3674 cpu_buffer_a->buffer = buffer_b;
3675
98277991
SR
3676 ret = 0;
3677
3678out_dec:
7a8e76a3
SR
3679 atomic_dec(&cpu_buffer_a->record_disabled);
3680 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3681out:
554f786e 3682 return ret;
7a8e76a3 3683}
c4f50183 3684EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 3685#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 3686
8789a9e7
SR
3687/**
3688 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3689 * @buffer: the buffer to allocate for.
3690 *
3691 * This function is used in conjunction with ring_buffer_read_page.
3692 * When reading a full page from the ring buffer, these functions
3693 * can be used to speed up the process. The calling function should
3694 * allocate a few pages first with this function. Then when it
3695 * needs to get pages from the ring buffer, it passes the result
3696 * of this function into ring_buffer_read_page, which will swap
3697 * the page that was allocated, with the read page of the buffer.
3698 *
3699 * Returns:
3700 * The page allocated, or NULL on error.
3701 */
3702void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3703{
044fa782 3704 struct buffer_data_page *bpage;
ef7a4a16 3705 unsigned long addr;
8789a9e7
SR
3706
3707 addr = __get_free_page(GFP_KERNEL);
3708 if (!addr)
3709 return NULL;
3710
044fa782 3711 bpage = (void *)addr;
8789a9e7 3712
ef7a4a16
SR
3713 rb_init_page(bpage);
3714
044fa782 3715 return bpage;
8789a9e7 3716}
d6ce96da 3717EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3718
3719/**
3720 * ring_buffer_free_read_page - free an allocated read page
3721 * @buffer: the buffer the page was allocate for
3722 * @data: the page to free
3723 *
3724 * Free a page allocated from ring_buffer_alloc_read_page.
3725 */
3726void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3727{
3728 free_page((unsigned long)data);
3729}
d6ce96da 3730EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3731
3732/**
3733 * ring_buffer_read_page - extract a page from the ring buffer
3734 * @buffer: buffer to extract from
3735 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3736 * @len: amount to extract
8789a9e7
SR
3737 * @cpu: the cpu of the buffer to extract
3738 * @full: should the extraction only happen when the page is full.
3739 *
3740 * This function will pull out a page from the ring buffer and consume it.
3741 * @data_page must be the address of the variable that was returned
3742 * from ring_buffer_alloc_read_page. This is because the page might be used
3743 * to swap with a page in the ring buffer.
3744 *
3745 * for example:
b85fa01e 3746 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3747 * if (!rpage)
3748 * return error;
ef7a4a16 3749 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3750 * if (ret >= 0)
3751 * process_page(rpage, ret);
8789a9e7
SR
3752 *
3753 * When @full is set, the function will not return true unless
3754 * the writer is off the reader page.
3755 *
3756 * Note: it is up to the calling functions to handle sleeps and wakeups.
3757 * The ring buffer can be used anywhere in the kernel and can not
3758 * blindly call wake_up. The layer that uses the ring buffer must be
3759 * responsible for that.
3760 *
3761 * Returns:
667d2412
LJ
3762 * >=0 if data has been transferred, returns the offset of consumed data.
3763 * <0 if no data has been transferred.
8789a9e7
SR
3764 */
3765int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3766 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3767{
3768 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3769 struct ring_buffer_event *event;
044fa782 3770 struct buffer_data_page *bpage;
ef7a4a16 3771 struct buffer_page *reader;
ff0ff84a 3772 unsigned long missed_events;
8789a9e7 3773 unsigned long flags;
ef7a4a16 3774 unsigned int commit;
667d2412 3775 unsigned int read;
4f3640f8 3776 u64 save_timestamp;
667d2412 3777 int ret = -1;
8789a9e7 3778
554f786e
SR
3779 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3780 goto out;
3781
474d32b6
SR
3782 /*
3783 * If len is not big enough to hold the page header, then
3784 * we can not copy anything.
3785 */
3786 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3787 goto out;
474d32b6
SR
3788
3789 len -= BUF_PAGE_HDR_SIZE;
3790
8789a9e7 3791 if (!data_page)
554f786e 3792 goto out;
8789a9e7 3793
044fa782
SR
3794 bpage = *data_page;
3795 if (!bpage)
554f786e 3796 goto out;
8789a9e7
SR
3797
3798 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3799
ef7a4a16
SR
3800 reader = rb_get_reader_page(cpu_buffer);
3801 if (!reader)
554f786e 3802 goto out_unlock;
8789a9e7 3803
ef7a4a16
SR
3804 event = rb_reader_event(cpu_buffer);
3805
3806 read = reader->read;
3807 commit = rb_page_commit(reader);
667d2412 3808
66a8cb95 3809 /* Check if any events were dropped */
ff0ff84a 3810 missed_events = cpu_buffer->lost_events;
66a8cb95 3811
8789a9e7 3812 /*
474d32b6
SR
3813 * If this page has been partially read or
3814 * if len is not big enough to read the rest of the page or
3815 * a writer is still on the page, then
3816 * we must copy the data from the page to the buffer.
3817 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3818 */
474d32b6 3819 if (read || (len < (commit - read)) ||
ef7a4a16 3820 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3821 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3822 unsigned int rpos = read;
3823 unsigned int pos = 0;
ef7a4a16 3824 unsigned int size;
8789a9e7
SR
3825
3826 if (full)
554f786e 3827 goto out_unlock;
8789a9e7 3828
ef7a4a16
SR
3829 if (len > (commit - read))
3830 len = (commit - read);
3831
69d1b839
SR
3832 /* Always keep the time extend and data together */
3833 size = rb_event_ts_length(event);
ef7a4a16
SR
3834
3835 if (len < size)
554f786e 3836 goto out_unlock;
ef7a4a16 3837
4f3640f8
SR
3838 /* save the current timestamp, since the user will need it */
3839 save_timestamp = cpu_buffer->read_stamp;
3840
ef7a4a16
SR
3841 /* Need to copy one event at a time */
3842 do {
474d32b6 3843 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3844
3845 len -= size;
3846
3847 rb_advance_reader(cpu_buffer);
474d32b6
SR
3848 rpos = reader->read;
3849 pos += size;
ef7a4a16 3850
18fab912
HY
3851 if (rpos >= commit)
3852 break;
3853
ef7a4a16 3854 event = rb_reader_event(cpu_buffer);
69d1b839
SR
3855 /* Always keep the time extend and data together */
3856 size = rb_event_ts_length(event);
ef7a4a16 3857 } while (len > size);
667d2412
LJ
3858
3859 /* update bpage */
ef7a4a16 3860 local_set(&bpage->commit, pos);
4f3640f8 3861 bpage->time_stamp = save_timestamp;
ef7a4a16 3862
474d32b6
SR
3863 /* we copied everything to the beginning */
3864 read = 0;
8789a9e7 3865 } else {
afbab76a 3866 /* update the entry counter */
77ae365e 3867 cpu_buffer->read += rb_page_entries(reader);
afbab76a 3868
8789a9e7 3869 /* swap the pages */
044fa782 3870 rb_init_page(bpage);
ef7a4a16
SR
3871 bpage = reader->page;
3872 reader->page = *data_page;
3873 local_set(&reader->write, 0);
778c55d4 3874 local_set(&reader->entries, 0);
ef7a4a16 3875 reader->read = 0;
044fa782 3876 *data_page = bpage;
ff0ff84a
SR
3877
3878 /*
3879 * Use the real_end for the data size,
3880 * This gives us a chance to store the lost events
3881 * on the page.
3882 */
3883 if (reader->real_end)
3884 local_set(&bpage->commit, reader->real_end);
8789a9e7 3885 }
667d2412 3886 ret = read;
8789a9e7 3887
66a8cb95 3888 cpu_buffer->lost_events = 0;
2711ca23
SR
3889
3890 commit = local_read(&bpage->commit);
66a8cb95
SR
3891 /*
3892 * Set a flag in the commit field if we lost events
3893 */
ff0ff84a 3894 if (missed_events) {
ff0ff84a
SR
3895 /* If there is room at the end of the page to save the
3896 * missed events, then record it there.
3897 */
3898 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3899 memcpy(&bpage->data[commit], &missed_events,
3900 sizeof(missed_events));
3901 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 3902 commit += sizeof(missed_events);
ff0ff84a 3903 }
66a8cb95 3904 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 3905 }
66a8cb95 3906
2711ca23
SR
3907 /*
3908 * This page may be off to user land. Zero it out here.
3909 */
3910 if (commit < BUF_PAGE_SIZE)
3911 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3912
554f786e 3913 out_unlock:
8789a9e7
SR
3914 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3915
554f786e 3916 out:
8789a9e7
SR
3917 return ret;
3918}
d6ce96da 3919EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3920
1155de47 3921#ifdef CONFIG_TRACING
a3583244
SR
3922static ssize_t
3923rb_simple_read(struct file *filp, char __user *ubuf,
3924 size_t cnt, loff_t *ppos)
3925{
5e39841c 3926 unsigned long *p = filp->private_data;
a3583244
SR
3927 char buf[64];
3928 int r;
3929
033601a3
SR
3930 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3931 r = sprintf(buf, "permanently disabled\n");
3932 else
3933 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3934
3935 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3936}
3937
3938static ssize_t
3939rb_simple_write(struct file *filp, const char __user *ubuf,
3940 size_t cnt, loff_t *ppos)
3941{
5e39841c 3942 unsigned long *p = filp->private_data;
a3583244 3943 char buf[64];
5e39841c 3944 unsigned long val;
a3583244
SR
3945 int ret;
3946
3947 if (cnt >= sizeof(buf))
3948 return -EINVAL;
3949
3950 if (copy_from_user(&buf, ubuf, cnt))
3951 return -EFAULT;
3952
3953 buf[cnt] = 0;
3954
3955 ret = strict_strtoul(buf, 10, &val);
3956 if (ret < 0)
3957 return ret;
3958
033601a3
SR
3959 if (val)
3960 set_bit(RB_BUFFERS_ON_BIT, p);
3961 else
3962 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3963
3964 (*ppos)++;
3965
3966 return cnt;
3967}
3968
5e2336a0 3969static const struct file_operations rb_simple_fops = {
a3583244
SR
3970 .open = tracing_open_generic,
3971 .read = rb_simple_read,
3972 .write = rb_simple_write,
3973};
3974
3975
3976static __init int rb_init_debugfs(void)
3977{
3978 struct dentry *d_tracer;
a3583244
SR
3979
3980 d_tracer = tracing_init_dentry();
3981
5452af66
FW
3982 trace_create_file("tracing_on", 0644, d_tracer,
3983 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3984
3985 return 0;
3986}
3987
3988fs_initcall(rb_init_debugfs);
1155de47 3989#endif
554f786e 3990
59222efe 3991#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3992static int rb_cpu_notify(struct notifier_block *self,
3993 unsigned long action, void *hcpu)
554f786e
SR
3994{
3995 struct ring_buffer *buffer =
3996 container_of(self, struct ring_buffer, cpu_notify);
3997 long cpu = (long)hcpu;
3998
3999 switch (action) {
4000 case CPU_UP_PREPARE:
4001 case CPU_UP_PREPARE_FROZEN:
3f237a79 4002 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4003 return NOTIFY_OK;
4004
4005 buffer->buffers[cpu] =
4006 rb_allocate_cpu_buffer(buffer, cpu);
4007 if (!buffer->buffers[cpu]) {
4008 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4009 cpu);
4010 return NOTIFY_OK;
4011 }
4012 smp_wmb();
3f237a79 4013 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4014 break;
4015 case CPU_DOWN_PREPARE:
4016 case CPU_DOWN_PREPARE_FROZEN:
4017 /*
4018 * Do nothing.
4019 * If we were to free the buffer, then the user would
4020 * lose any trace that was in the buffer.
4021 */
4022 break;
4023 default:
4024 break;
4025 }
4026 return NOTIFY_OK;
4027}
4028#endif