]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/timer.c
[PATCH] streamline preempt_count type across archs
[net-next-2.6.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
36
37#include <asm/uaccess.h>
38#include <asm/unistd.h>
39#include <asm/div64.h>
40#include <asm/timex.h>
41#include <asm/io.h>
42
43#ifdef CONFIG_TIME_INTERPOLATION
44static void time_interpolator_update(long delta_nsec);
45#else
46#define time_interpolator_update(x)
47#endif
48
49/*
50 * per-CPU timer vector definitions:
51 */
52
53#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55#define TVN_SIZE (1 << TVN_BITS)
56#define TVR_SIZE (1 << TVR_BITS)
57#define TVN_MASK (TVN_SIZE - 1)
58#define TVR_MASK (TVR_SIZE - 1)
59
55c888d6
ON
60struct timer_base_s {
61 spinlock_t lock;
62 struct timer_list *running_timer;
63};
64
1da177e4
LT
65typedef struct tvec_s {
66 struct list_head vec[TVN_SIZE];
67} tvec_t;
68
69typedef struct tvec_root_s {
70 struct list_head vec[TVR_SIZE];
71} tvec_root_t;
72
73struct tvec_t_base_s {
55c888d6 74 struct timer_base_s t_base;
1da177e4 75 unsigned long timer_jiffies;
1da177e4
LT
76 tvec_root_t tv1;
77 tvec_t tv2;
78 tvec_t tv3;
79 tvec_t tv4;
80 tvec_t tv5;
81} ____cacheline_aligned_in_smp;
82
83typedef struct tvec_t_base_s tvec_base_t;
55c888d6 84static DEFINE_PER_CPU(tvec_base_t, tvec_bases);
1da177e4
LT
85
86static inline void set_running_timer(tvec_base_t *base,
87 struct timer_list *timer)
88{
89#ifdef CONFIG_SMP
55c888d6 90 base->t_base.running_timer = timer;
1da177e4
LT
91#endif
92}
93
1da177e4
LT
94static void check_timer_failed(struct timer_list *timer)
95{
96 static int whine_count;
97 if (whine_count < 16) {
98 whine_count++;
99 printk("Uninitialised timer!\n");
100 printk("This is just a warning. Your computer is OK\n");
101 printk("function=0x%p, data=0x%lx\n",
102 timer->function, timer->data);
103 dump_stack();
104 }
105 /*
106 * Now fix it up
107 */
1da177e4
LT
108 timer->magic = TIMER_MAGIC;
109}
110
111static inline void check_timer(struct timer_list *timer)
112{
113 if (timer->magic != TIMER_MAGIC)
114 check_timer_failed(timer);
115}
116
117
118static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
119{
120 unsigned long expires = timer->expires;
121 unsigned long idx = expires - base->timer_jiffies;
122 struct list_head *vec;
123
124 if (idx < TVR_SIZE) {
125 int i = expires & TVR_MASK;
126 vec = base->tv1.vec + i;
127 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
128 int i = (expires >> TVR_BITS) & TVN_MASK;
129 vec = base->tv2.vec + i;
130 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
131 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
132 vec = base->tv3.vec + i;
133 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
134 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
135 vec = base->tv4.vec + i;
136 } else if ((signed long) idx < 0) {
137 /*
138 * Can happen if you add a timer with expires == jiffies,
139 * or you set a timer to go off in the past
140 */
141 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
142 } else {
143 int i;
144 /* If the timeout is larger than 0xffffffff on 64-bit
145 * architectures then we use the maximum timeout:
146 */
147 if (idx > 0xffffffffUL) {
148 idx = 0xffffffffUL;
149 expires = idx + base->timer_jiffies;
150 }
151 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
152 vec = base->tv5.vec + i;
153 }
154 /*
155 * Timers are FIFO:
156 */
157 list_add_tail(&timer->entry, vec);
158}
159
55c888d6
ON
160typedef struct timer_base_s timer_base_t;
161/*
162 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
163 * at compile time, and we need timer->base to lock the timer.
164 */
165timer_base_t __init_timer_base
166 ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
167EXPORT_SYMBOL(__init_timer_base);
168
169/***
170 * init_timer - initialize a timer.
171 * @timer: the timer to be initialized
172 *
173 * init_timer() must be done to a timer prior calling *any* of the
174 * other timer functions.
175 */
176void fastcall init_timer(struct timer_list *timer)
177{
178 timer->entry.next = NULL;
179 timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
180 timer->magic = TIMER_MAGIC;
181}
182EXPORT_SYMBOL(init_timer);
183
184static inline void detach_timer(struct timer_list *timer,
185 int clear_pending)
186{
187 struct list_head *entry = &timer->entry;
188
189 __list_del(entry->prev, entry->next);
190 if (clear_pending)
191 entry->next = NULL;
192 entry->prev = LIST_POISON2;
193}
194
195/*
196 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
197 * means that all timers which are tied to this base via timer->base are
198 * locked, and the base itself is locked too.
199 *
200 * So __run_timers/migrate_timers can safely modify all timers which could
201 * be found on ->tvX lists.
202 *
203 * When the timer's base is locked, and the timer removed from list, it is
204 * possible to set timer->base = NULL and drop the lock: the timer remains
205 * locked.
206 */
207static timer_base_t *lock_timer_base(struct timer_list *timer,
208 unsigned long *flags)
209{
210 timer_base_t *base;
211
212 for (;;) {
213 base = timer->base;
214 if (likely(base != NULL)) {
215 spin_lock_irqsave(&base->lock, *flags);
216 if (likely(base == timer->base))
217 return base;
218 /* The timer has migrated to another CPU */
219 spin_unlock_irqrestore(&base->lock, *flags);
220 }
221 cpu_relax();
222 }
223}
224
1da177e4
LT
225int __mod_timer(struct timer_list *timer, unsigned long expires)
226{
55c888d6
ON
227 timer_base_t *base;
228 tvec_base_t *new_base;
1da177e4
LT
229 unsigned long flags;
230 int ret = 0;
231
232 BUG_ON(!timer->function);
1da177e4
LT
233 check_timer(timer);
234
55c888d6
ON
235 base = lock_timer_base(timer, &flags);
236
237 if (timer_pending(timer)) {
238 detach_timer(timer, 0);
239 ret = 1;
240 }
241
1da177e4 242 new_base = &__get_cpu_var(tvec_bases);
1da177e4 243
55c888d6 244 if (base != &new_base->t_base) {
1da177e4 245 /*
55c888d6
ON
246 * We are trying to schedule the timer on the local CPU.
247 * However we can't change timer's base while it is running,
248 * otherwise del_timer_sync() can't detect that the timer's
249 * handler yet has not finished. This also guarantees that
250 * the timer is serialized wrt itself.
1da177e4 251 */
55c888d6
ON
252 if (unlikely(base->running_timer == timer)) {
253 /* The timer remains on a former base */
254 new_base = container_of(base, tvec_base_t, t_base);
255 } else {
256 /* See the comment in lock_timer_base() */
257 timer->base = NULL;
258 spin_unlock(&base->lock);
259 spin_lock(&new_base->t_base.lock);
260 timer->base = &new_base->t_base;
1da177e4
LT
261 }
262 }
263
1da177e4
LT
264 timer->expires = expires;
265 internal_add_timer(new_base, timer);
55c888d6 266 spin_unlock_irqrestore(&new_base->t_base.lock, flags);
1da177e4
LT
267
268 return ret;
269}
270
271EXPORT_SYMBOL(__mod_timer);
272
273/***
274 * add_timer_on - start a timer on a particular CPU
275 * @timer: the timer to be added
276 * @cpu: the CPU to start it on
277 *
278 * This is not very scalable on SMP. Double adds are not possible.
279 */
280void add_timer_on(struct timer_list *timer, int cpu)
281{
282 tvec_base_t *base = &per_cpu(tvec_bases, cpu);
283 unsigned long flags;
55c888d6 284
1da177e4
LT
285 BUG_ON(timer_pending(timer) || !timer->function);
286
287 check_timer(timer);
288
55c888d6
ON
289 spin_lock_irqsave(&base->t_base.lock, flags);
290 timer->base = &base->t_base;
1da177e4 291 internal_add_timer(base, timer);
55c888d6 292 spin_unlock_irqrestore(&base->t_base.lock, flags);
1da177e4
LT
293}
294
295
296/***
297 * mod_timer - modify a timer's timeout
298 * @timer: the timer to be modified
299 *
300 * mod_timer is a more efficient way to update the expire field of an
301 * active timer (if the timer is inactive it will be activated)
302 *
303 * mod_timer(timer, expires) is equivalent to:
304 *
305 * del_timer(timer); timer->expires = expires; add_timer(timer);
306 *
307 * Note that if there are multiple unserialized concurrent users of the
308 * same timer, then mod_timer() is the only safe way to modify the timeout,
309 * since add_timer() cannot modify an already running timer.
310 *
311 * The function returns whether it has modified a pending timer or not.
312 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
313 * active timer returns 1.)
314 */
315int mod_timer(struct timer_list *timer, unsigned long expires)
316{
317 BUG_ON(!timer->function);
318
319 check_timer(timer);
320
321 /*
322 * This is a common optimization triggered by the
323 * networking code - if the timer is re-modified
324 * to be the same thing then just return:
325 */
326 if (timer->expires == expires && timer_pending(timer))
327 return 1;
328
329 return __mod_timer(timer, expires);
330}
331
332EXPORT_SYMBOL(mod_timer);
333
334/***
335 * del_timer - deactive a timer.
336 * @timer: the timer to be deactivated
337 *
338 * del_timer() deactivates a timer - this works on both active and inactive
339 * timers.
340 *
341 * The function returns whether it has deactivated a pending timer or not.
342 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
343 * active timer returns 1.)
344 */
345int del_timer(struct timer_list *timer)
346{
55c888d6 347 timer_base_t *base;
1da177e4 348 unsigned long flags;
55c888d6 349 int ret = 0;
1da177e4
LT
350
351 check_timer(timer);
352
55c888d6
ON
353 if (timer_pending(timer)) {
354 base = lock_timer_base(timer, &flags);
355 if (timer_pending(timer)) {
356 detach_timer(timer, 1);
357 ret = 1;
358 }
1da177e4 359 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 360 }
1da177e4 361
55c888d6 362 return ret;
1da177e4
LT
363}
364
365EXPORT_SYMBOL(del_timer);
366
367#ifdef CONFIG_SMP
fd450b73
ON
368/*
369 * This function tries to deactivate a timer. Upon successful (ret >= 0)
370 * exit the timer is not queued and the handler is not running on any CPU.
371 *
372 * It must not be called from interrupt contexts.
373 */
374int try_to_del_timer_sync(struct timer_list *timer)
375{
376 timer_base_t *base;
377 unsigned long flags;
378 int ret = -1;
379
380 base = lock_timer_base(timer, &flags);
381
382 if (base->running_timer == timer)
383 goto out;
384
385 ret = 0;
386 if (timer_pending(timer)) {
387 detach_timer(timer, 1);
388 ret = 1;
389 }
390out:
391 spin_unlock_irqrestore(&base->lock, flags);
392
393 return ret;
394}
395
1da177e4
LT
396/***
397 * del_timer_sync - deactivate a timer and wait for the handler to finish.
398 * @timer: the timer to be deactivated
399 *
400 * This function only differs from del_timer() on SMP: besides deactivating
401 * the timer it also makes sure the handler has finished executing on other
402 * CPUs.
403 *
404 * Synchronization rules: callers must prevent restarting of the timer,
405 * otherwise this function is meaningless. It must not be called from
406 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
407 * completion of the timer's handler. The timer's handler must not call
408 * add_timer_on(). Upon exit the timer is not queued and the handler is
409 * not running on any CPU.
1da177e4
LT
410 *
411 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
412 */
413int del_timer_sync(struct timer_list *timer)
414{
1da177e4
LT
415 check_timer(timer);
416
fd450b73
ON
417 for (;;) {
418 int ret = try_to_del_timer_sync(timer);
419 if (ret >= 0)
420 return ret;
421 }
1da177e4 422}
1da177e4 423
55c888d6 424EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
425#endif
426
427static int cascade(tvec_base_t *base, tvec_t *tv, int index)
428{
429 /* cascade all the timers from tv up one level */
430 struct list_head *head, *curr;
431
432 head = tv->vec + index;
433 curr = head->next;
434 /*
435 * We are removing _all_ timers from the list, so we don't have to
436 * detach them individually, just clear the list afterwards.
437 */
438 while (curr != head) {
439 struct timer_list *tmp;
440
441 tmp = list_entry(curr, struct timer_list, entry);
55c888d6 442 BUG_ON(tmp->base != &base->t_base);
1da177e4
LT
443 curr = curr->next;
444 internal_add_timer(base, tmp);
445 }
446 INIT_LIST_HEAD(head);
447
448 return index;
449}
450
451/***
452 * __run_timers - run all expired timers (if any) on this CPU.
453 * @base: the timer vector to be processed.
454 *
455 * This function cascades all vectors and executes all expired timer
456 * vectors.
457 */
458#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
459
460static inline void __run_timers(tvec_base_t *base)
461{
462 struct timer_list *timer;
463
55c888d6 464 spin_lock_irq(&base->t_base.lock);
1da177e4
LT
465 while (time_after_eq(jiffies, base->timer_jiffies)) {
466 struct list_head work_list = LIST_HEAD_INIT(work_list);
467 struct list_head *head = &work_list;
468 int index = base->timer_jiffies & TVR_MASK;
469
470 /*
471 * Cascade timers:
472 */
473 if (!index &&
474 (!cascade(base, &base->tv2, INDEX(0))) &&
475 (!cascade(base, &base->tv3, INDEX(1))) &&
476 !cascade(base, &base->tv4, INDEX(2)))
477 cascade(base, &base->tv5, INDEX(3));
478 ++base->timer_jiffies;
479 list_splice_init(base->tv1.vec + index, &work_list);
55c888d6 480 while (!list_empty(head)) {
1da177e4
LT
481 void (*fn)(unsigned long);
482 unsigned long data;
483
484 timer = list_entry(head->next,struct timer_list,entry);
485 fn = timer->function;
486 data = timer->data;
487
1da177e4 488 set_running_timer(base, timer);
55c888d6
ON
489 detach_timer(timer, 1);
490 spin_unlock_irq(&base->t_base.lock);
1da177e4
LT
491 {
492 u32 preempt_count = preempt_count();
493 fn(data);
494 if (preempt_count != preempt_count()) {
495 printk("huh, entered %p with %08x, exited with %08x?\n", fn, preempt_count, preempt_count());
496 BUG();
497 }
498 }
55c888d6 499 spin_lock_irq(&base->t_base.lock);
1da177e4
LT
500 }
501 }
502 set_running_timer(base, NULL);
55c888d6 503 spin_unlock_irq(&base->t_base.lock);
1da177e4
LT
504}
505
506#ifdef CONFIG_NO_IDLE_HZ
507/*
508 * Find out when the next timer event is due to happen. This
509 * is used on S/390 to stop all activity when a cpus is idle.
510 * This functions needs to be called disabled.
511 */
512unsigned long next_timer_interrupt(void)
513{
514 tvec_base_t *base;
515 struct list_head *list;
516 struct timer_list *nte;
517 unsigned long expires;
518 tvec_t *varray[4];
519 int i, j;
520
521 base = &__get_cpu_var(tvec_bases);
55c888d6 522 spin_lock(&base->t_base.lock);
1da177e4
LT
523 expires = base->timer_jiffies + (LONG_MAX >> 1);
524 list = 0;
525
526 /* Look for timer events in tv1. */
527 j = base->timer_jiffies & TVR_MASK;
528 do {
529 list_for_each_entry(nte, base->tv1.vec + j, entry) {
530 expires = nte->expires;
531 if (j < (base->timer_jiffies & TVR_MASK))
532 list = base->tv2.vec + (INDEX(0));
533 goto found;
534 }
535 j = (j + 1) & TVR_MASK;
536 } while (j != (base->timer_jiffies & TVR_MASK));
537
538 /* Check tv2-tv5. */
539 varray[0] = &base->tv2;
540 varray[1] = &base->tv3;
541 varray[2] = &base->tv4;
542 varray[3] = &base->tv5;
543 for (i = 0; i < 4; i++) {
544 j = INDEX(i);
545 do {
546 if (list_empty(varray[i]->vec + j)) {
547 j = (j + 1) & TVN_MASK;
548 continue;
549 }
550 list_for_each_entry(nte, varray[i]->vec + j, entry)
551 if (time_before(nte->expires, expires))
552 expires = nte->expires;
553 if (j < (INDEX(i)) && i < 3)
554 list = varray[i + 1]->vec + (INDEX(i + 1));
555 goto found;
556 } while (j != (INDEX(i)));
557 }
558found:
559 if (list) {
560 /*
561 * The search wrapped. We need to look at the next list
562 * from next tv element that would cascade into tv element
563 * where we found the timer element.
564 */
565 list_for_each_entry(nte, list, entry) {
566 if (time_before(nte->expires, expires))
567 expires = nte->expires;
568 }
569 }
55c888d6 570 spin_unlock(&base->t_base.lock);
1da177e4
LT
571 return expires;
572}
573#endif
574
575/******************************************************************/
576
577/*
578 * Timekeeping variables
579 */
580unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
581unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
582
583/*
584 * The current time
585 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
586 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
587 * at zero at system boot time, so wall_to_monotonic will be negative,
588 * however, we will ALWAYS keep the tv_nsec part positive so we can use
589 * the usual normalization.
590 */
591struct timespec xtime __attribute__ ((aligned (16)));
592struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
593
594EXPORT_SYMBOL(xtime);
595
596/* Don't completely fail for HZ > 500. */
597int tickadj = 500/HZ ? : 1; /* microsecs */
598
599
600/*
601 * phase-lock loop variables
602 */
603/* TIME_ERROR prevents overwriting the CMOS clock */
604int time_state = TIME_OK; /* clock synchronization status */
605int time_status = STA_UNSYNC; /* clock status bits */
606long time_offset; /* time adjustment (us) */
607long time_constant = 2; /* pll time constant */
608long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
609long time_precision = 1; /* clock precision (us) */
610long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
611long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
612static long time_phase; /* phase offset (scaled us) */
613long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
614 /* frequency offset (scaled ppm)*/
615static long time_adj; /* tick adjust (scaled 1 / HZ) */
616long time_reftime; /* time at last adjustment (s) */
617long time_adjust;
618long time_next_adjust;
619
620/*
621 * this routine handles the overflow of the microsecond field
622 *
623 * The tricky bits of code to handle the accurate clock support
624 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
625 * They were originally developed for SUN and DEC kernels.
626 * All the kudos should go to Dave for this stuff.
627 *
628 */
629static void second_overflow(void)
630{
631 long ltemp;
632
633 /* Bump the maxerror field */
634 time_maxerror += time_tolerance >> SHIFT_USEC;
635 if ( time_maxerror > NTP_PHASE_LIMIT ) {
636 time_maxerror = NTP_PHASE_LIMIT;
637 time_status |= STA_UNSYNC;
638 }
639
640 /*
641 * Leap second processing. If in leap-insert state at
642 * the end of the day, the system clock is set back one
643 * second; if in leap-delete state, the system clock is
644 * set ahead one second. The microtime() routine or
645 * external clock driver will insure that reported time
646 * is always monotonic. The ugly divides should be
647 * replaced.
648 */
649 switch (time_state) {
650
651 case TIME_OK:
652 if (time_status & STA_INS)
653 time_state = TIME_INS;
654 else if (time_status & STA_DEL)
655 time_state = TIME_DEL;
656 break;
657
658 case TIME_INS:
659 if (xtime.tv_sec % 86400 == 0) {
660 xtime.tv_sec--;
661 wall_to_monotonic.tv_sec++;
662 /* The timer interpolator will make time change gradually instead
663 * of an immediate jump by one second.
664 */
665 time_interpolator_update(-NSEC_PER_SEC);
666 time_state = TIME_OOP;
667 clock_was_set();
668 printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
669 }
670 break;
671
672 case TIME_DEL:
673 if ((xtime.tv_sec + 1) % 86400 == 0) {
674 xtime.tv_sec++;
675 wall_to_monotonic.tv_sec--;
676 /* Use of time interpolator for a gradual change of time */
677 time_interpolator_update(NSEC_PER_SEC);
678 time_state = TIME_WAIT;
679 clock_was_set();
680 printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
681 }
682 break;
683
684 case TIME_OOP:
685 time_state = TIME_WAIT;
686 break;
687
688 case TIME_WAIT:
689 if (!(time_status & (STA_INS | STA_DEL)))
690 time_state = TIME_OK;
691 }
692
693 /*
694 * Compute the phase adjustment for the next second. In
695 * PLL mode, the offset is reduced by a fixed factor
696 * times the time constant. In FLL mode the offset is
697 * used directly. In either mode, the maximum phase
698 * adjustment for each second is clamped so as to spread
699 * the adjustment over not more than the number of
700 * seconds between updates.
701 */
702 if (time_offset < 0) {
703 ltemp = -time_offset;
704 if (!(time_status & STA_FLL))
705 ltemp >>= SHIFT_KG + time_constant;
706 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
707 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
708 time_offset += ltemp;
709 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
710 } else {
711 ltemp = time_offset;
712 if (!(time_status & STA_FLL))
713 ltemp >>= SHIFT_KG + time_constant;
714 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
715 ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE;
716 time_offset -= ltemp;
717 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
718 }
719
720 /*
721 * Compute the frequency estimate and additional phase
722 * adjustment due to frequency error for the next
723 * second. When the PPS signal is engaged, gnaw on the
724 * watchdog counter and update the frequency computed by
725 * the pll and the PPS signal.
726 */
727 pps_valid++;
728 if (pps_valid == PPS_VALID) { /* PPS signal lost */
729 pps_jitter = MAXTIME;
730 pps_stabil = MAXFREQ;
731 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
732 STA_PPSWANDER | STA_PPSERROR);
733 }
734 ltemp = time_freq + pps_freq;
735 if (ltemp < 0)
736 time_adj -= -ltemp >>
737 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
738 else
739 time_adj += ltemp >>
740 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
741
742#if HZ == 100
743 /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
744 * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
745 */
746 if (time_adj < 0)
747 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
748 else
749 time_adj += (time_adj >> 2) + (time_adj >> 5);
750#endif
751#if HZ == 1000
752 /* Compensate for (HZ==1000) != (1 << SHIFT_HZ).
753 * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
754 */
755 if (time_adj < 0)
756 time_adj -= (-time_adj >> 6) + (-time_adj >> 7);
757 else
758 time_adj += (time_adj >> 6) + (time_adj >> 7);
759#endif
760}
761
762/* in the NTP reference this is called "hardclock()" */
763static void update_wall_time_one_tick(void)
764{
765 long time_adjust_step, delta_nsec;
766
767 if ( (time_adjust_step = time_adjust) != 0 ) {
768 /* We are doing an adjtime thing.
769 *
770 * Prepare time_adjust_step to be within bounds.
771 * Note that a positive time_adjust means we want the clock
772 * to run faster.
773 *
774 * Limit the amount of the step to be in the range
775 * -tickadj .. +tickadj
776 */
777 if (time_adjust > tickadj)
778 time_adjust_step = tickadj;
779 else if (time_adjust < -tickadj)
780 time_adjust_step = -tickadj;
781
782 /* Reduce by this step the amount of time left */
783 time_adjust -= time_adjust_step;
784 }
785 delta_nsec = tick_nsec + time_adjust_step * 1000;
786 /*
787 * Advance the phase, once it gets to one microsecond, then
788 * advance the tick more.
789 */
790 time_phase += time_adj;
791 if (time_phase <= -FINENSEC) {
792 long ltemp = -time_phase >> (SHIFT_SCALE - 10);
793 time_phase += ltemp << (SHIFT_SCALE - 10);
794 delta_nsec -= ltemp;
795 }
796 else if (time_phase >= FINENSEC) {
797 long ltemp = time_phase >> (SHIFT_SCALE - 10);
798 time_phase -= ltemp << (SHIFT_SCALE - 10);
799 delta_nsec += ltemp;
800 }
801 xtime.tv_nsec += delta_nsec;
802 time_interpolator_update(delta_nsec);
803
804 /* Changes by adjtime() do not take effect till next tick. */
805 if (time_next_adjust != 0) {
806 time_adjust = time_next_adjust;
807 time_next_adjust = 0;
808 }
809}
810
811/*
812 * Using a loop looks inefficient, but "ticks" is
813 * usually just one (we shouldn't be losing ticks,
814 * we're doing this this way mainly for interrupt
815 * latency reasons, not because we think we'll
816 * have lots of lost timer ticks
817 */
818static void update_wall_time(unsigned long ticks)
819{
820 do {
821 ticks--;
822 update_wall_time_one_tick();
823 if (xtime.tv_nsec >= 1000000000) {
824 xtime.tv_nsec -= 1000000000;
825 xtime.tv_sec++;
826 second_overflow();
827 }
828 } while (ticks);
829}
830
831/*
832 * Called from the timer interrupt handler to charge one tick to the current
833 * process. user_tick is 1 if the tick is user time, 0 for system.
834 */
835void update_process_times(int user_tick)
836{
837 struct task_struct *p = current;
838 int cpu = smp_processor_id();
839
840 /* Note: this timer irq context must be accounted for as well. */
841 if (user_tick)
842 account_user_time(p, jiffies_to_cputime(1));
843 else
844 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
845 run_local_timers();
846 if (rcu_pending(cpu))
847 rcu_check_callbacks(cpu, user_tick);
848 scheduler_tick();
849 run_posix_cpu_timers(p);
850}
851
852/*
853 * Nr of active tasks - counted in fixed-point numbers
854 */
855static unsigned long count_active_tasks(void)
856{
857 return (nr_running() + nr_uninterruptible()) * FIXED_1;
858}
859
860/*
861 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
862 * imply that avenrun[] is the standard name for this kind of thing.
863 * Nothing else seems to be standardized: the fractional size etc
864 * all seem to differ on different machines.
865 *
866 * Requires xtime_lock to access.
867 */
868unsigned long avenrun[3];
869
870EXPORT_SYMBOL(avenrun);
871
872/*
873 * calc_load - given tick count, update the avenrun load estimates.
874 * This is called while holding a write_lock on xtime_lock.
875 */
876static inline void calc_load(unsigned long ticks)
877{
878 unsigned long active_tasks; /* fixed-point */
879 static int count = LOAD_FREQ;
880
881 count -= ticks;
882 if (count < 0) {
883 count += LOAD_FREQ;
884 active_tasks = count_active_tasks();
885 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
886 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
887 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
888 }
889}
890
891/* jiffies at the most recent update of wall time */
892unsigned long wall_jiffies = INITIAL_JIFFIES;
893
894/*
895 * This read-write spinlock protects us from races in SMP while
896 * playing with xtime and avenrun.
897 */
898#ifndef ARCH_HAVE_XTIME_LOCK
899seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
900
901EXPORT_SYMBOL(xtime_lock);
902#endif
903
904/*
905 * This function runs timers and the timer-tq in bottom half context.
906 */
907static void run_timer_softirq(struct softirq_action *h)
908{
909 tvec_base_t *base = &__get_cpu_var(tvec_bases);
910
911 if (time_after_eq(jiffies, base->timer_jiffies))
912 __run_timers(base);
913}
914
915/*
916 * Called by the local, per-CPU timer interrupt on SMP.
917 */
918void run_local_timers(void)
919{
920 raise_softirq(TIMER_SOFTIRQ);
921}
922
923/*
924 * Called by the timer interrupt. xtime_lock must already be taken
925 * by the timer IRQ!
926 */
927static inline void update_times(void)
928{
929 unsigned long ticks;
930
931 ticks = jiffies - wall_jiffies;
932 if (ticks) {
933 wall_jiffies += ticks;
934 update_wall_time(ticks);
935 }
936 calc_load(ticks);
937}
938
939/*
940 * The 64-bit jiffies value is not atomic - you MUST NOT read it
941 * without sampling the sequence number in xtime_lock.
942 * jiffies is defined in the linker script...
943 */
944
945void do_timer(struct pt_regs *regs)
946{
947 jiffies_64++;
948 update_times();
949}
950
951#ifdef __ARCH_WANT_SYS_ALARM
952
953/*
954 * For backwards compatibility? This can be done in libc so Alpha
955 * and all newer ports shouldn't need it.
956 */
957asmlinkage unsigned long sys_alarm(unsigned int seconds)
958{
959 struct itimerval it_new, it_old;
960 unsigned int oldalarm;
961
962 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
963 it_new.it_value.tv_sec = seconds;
964 it_new.it_value.tv_usec = 0;
965 do_setitimer(ITIMER_REAL, &it_new, &it_old);
966 oldalarm = it_old.it_value.tv_sec;
967 /* ehhh.. We can't return 0 if we have an alarm pending.. */
968 /* And we'd better return too much than too little anyway */
969 if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
970 oldalarm++;
971 return oldalarm;
972}
973
974#endif
975
976#ifndef __alpha__
977
978/*
979 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
980 * should be moved into arch/i386 instead?
981 */
982
983/**
984 * sys_getpid - return the thread group id of the current process
985 *
986 * Note, despite the name, this returns the tgid not the pid. The tgid and
987 * the pid are identical unless CLONE_THREAD was specified on clone() in
988 * which case the tgid is the same in all threads of the same group.
989 *
990 * This is SMP safe as current->tgid does not change.
991 */
992asmlinkage long sys_getpid(void)
993{
994 return current->tgid;
995}
996
997/*
998 * Accessing ->group_leader->real_parent is not SMP-safe, it could
999 * change from under us. However, rather than getting any lock
1000 * we can use an optimistic algorithm: get the parent
1001 * pid, and go back and check that the parent is still
1002 * the same. If it has changed (which is extremely unlikely
1003 * indeed), we just try again..
1004 *
1005 * NOTE! This depends on the fact that even if we _do_
1006 * get an old value of "parent", we can happily dereference
1007 * the pointer (it was and remains a dereferencable kernel pointer
1008 * no matter what): we just can't necessarily trust the result
1009 * until we know that the parent pointer is valid.
1010 *
1011 * NOTE2: ->group_leader never changes from under us.
1012 */
1013asmlinkage long sys_getppid(void)
1014{
1015 int pid;
1016 struct task_struct *me = current;
1017 struct task_struct *parent;
1018
1019 parent = me->group_leader->real_parent;
1020 for (;;) {
1021 pid = parent->tgid;
1022#ifdef CONFIG_SMP
1023{
1024 struct task_struct *old = parent;
1025
1026 /*
1027 * Make sure we read the pid before re-reading the
1028 * parent pointer:
1029 */
d59dd462 1030 smp_rmb();
1da177e4
LT
1031 parent = me->group_leader->real_parent;
1032 if (old != parent)
1033 continue;
1034}
1035#endif
1036 break;
1037 }
1038 return pid;
1039}
1040
1041asmlinkage long sys_getuid(void)
1042{
1043 /* Only we change this so SMP safe */
1044 return current->uid;
1045}
1046
1047asmlinkage long sys_geteuid(void)
1048{
1049 /* Only we change this so SMP safe */
1050 return current->euid;
1051}
1052
1053asmlinkage long sys_getgid(void)
1054{
1055 /* Only we change this so SMP safe */
1056 return current->gid;
1057}
1058
1059asmlinkage long sys_getegid(void)
1060{
1061 /* Only we change this so SMP safe */
1062 return current->egid;
1063}
1064
1065#endif
1066
1067static void process_timeout(unsigned long __data)
1068{
1069 wake_up_process((task_t *)__data);
1070}
1071
1072/**
1073 * schedule_timeout - sleep until timeout
1074 * @timeout: timeout value in jiffies
1075 *
1076 * Make the current task sleep until @timeout jiffies have
1077 * elapsed. The routine will return immediately unless
1078 * the current task state has been set (see set_current_state()).
1079 *
1080 * You can set the task state as follows -
1081 *
1082 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1083 * pass before the routine returns. The routine will return 0
1084 *
1085 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1086 * delivered to the current task. In this case the remaining time
1087 * in jiffies will be returned, or 0 if the timer expired in time
1088 *
1089 * The current task state is guaranteed to be TASK_RUNNING when this
1090 * routine returns.
1091 *
1092 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1093 * the CPU away without a bound on the timeout. In this case the return
1094 * value will be %MAX_SCHEDULE_TIMEOUT.
1095 *
1096 * In all cases the return value is guaranteed to be non-negative.
1097 */
1098fastcall signed long __sched schedule_timeout(signed long timeout)
1099{
1100 struct timer_list timer;
1101 unsigned long expire;
1102
1103 switch (timeout)
1104 {
1105 case MAX_SCHEDULE_TIMEOUT:
1106 /*
1107 * These two special cases are useful to be comfortable
1108 * in the caller. Nothing more. We could take
1109 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1110 * but I' d like to return a valid offset (>=0) to allow
1111 * the caller to do everything it want with the retval.
1112 */
1113 schedule();
1114 goto out;
1115 default:
1116 /*
1117 * Another bit of PARANOID. Note that the retval will be
1118 * 0 since no piece of kernel is supposed to do a check
1119 * for a negative retval of schedule_timeout() (since it
1120 * should never happens anyway). You just have the printk()
1121 * that will tell you if something is gone wrong and where.
1122 */
1123 if (timeout < 0)
1124 {
1125 printk(KERN_ERR "schedule_timeout: wrong timeout "
1126 "value %lx from %p\n", timeout,
1127 __builtin_return_address(0));
1128 current->state = TASK_RUNNING;
1129 goto out;
1130 }
1131 }
1132
1133 expire = timeout + jiffies;
1134
1135 init_timer(&timer);
1136 timer.expires = expire;
1137 timer.data = (unsigned long) current;
1138 timer.function = process_timeout;
1139
1140 add_timer(&timer);
1141 schedule();
1142 del_singleshot_timer_sync(&timer);
1143
1144 timeout = expire - jiffies;
1145
1146 out:
1147 return timeout < 0 ? 0 : timeout;
1148}
1149
1150EXPORT_SYMBOL(schedule_timeout);
1151
1152/* Thread ID - the internal kernel "pid" */
1153asmlinkage long sys_gettid(void)
1154{
1155 return current->pid;
1156}
1157
1158static long __sched nanosleep_restart(struct restart_block *restart)
1159{
1160 unsigned long expire = restart->arg0, now = jiffies;
1161 struct timespec __user *rmtp = (struct timespec __user *) restart->arg1;
1162 long ret;
1163
1164 /* Did it expire while we handled signals? */
1165 if (!time_after(expire, now))
1166 return 0;
1167
1168 current->state = TASK_INTERRUPTIBLE;
1169 expire = schedule_timeout(expire - now);
1170
1171 ret = 0;
1172 if (expire) {
1173 struct timespec t;
1174 jiffies_to_timespec(expire, &t);
1175
1176 ret = -ERESTART_RESTARTBLOCK;
1177 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1178 ret = -EFAULT;
1179 /* The 'restart' block is already filled in */
1180 }
1181 return ret;
1182}
1183
1184asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1185{
1186 struct timespec t;
1187 unsigned long expire;
1188 long ret;
1189
1190 if (copy_from_user(&t, rqtp, sizeof(t)))
1191 return -EFAULT;
1192
1193 if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0))
1194 return -EINVAL;
1195
1196 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
1197 current->state = TASK_INTERRUPTIBLE;
1198 expire = schedule_timeout(expire);
1199
1200 ret = 0;
1201 if (expire) {
1202 struct restart_block *restart;
1203 jiffies_to_timespec(expire, &t);
1204 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1205 return -EFAULT;
1206
1207 restart = &current_thread_info()->restart_block;
1208 restart->fn = nanosleep_restart;
1209 restart->arg0 = jiffies + expire;
1210 restart->arg1 = (unsigned long) rmtp;
1211 ret = -ERESTART_RESTARTBLOCK;
1212 }
1213 return ret;
1214}
1215
1216/*
1217 * sys_sysinfo - fill in sysinfo struct
1218 */
1219asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1220{
1221 struct sysinfo val;
1222 unsigned long mem_total, sav_total;
1223 unsigned int mem_unit, bitcount;
1224 unsigned long seq;
1225
1226 memset((char *)&val, 0, sizeof(struct sysinfo));
1227
1228 do {
1229 struct timespec tp;
1230 seq = read_seqbegin(&xtime_lock);
1231
1232 /*
1233 * This is annoying. The below is the same thing
1234 * posix_get_clock_monotonic() does, but it wants to
1235 * take the lock which we want to cover the loads stuff
1236 * too.
1237 */
1238
1239 getnstimeofday(&tp);
1240 tp.tv_sec += wall_to_monotonic.tv_sec;
1241 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1242 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1243 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1244 tp.tv_sec++;
1245 }
1246 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1247
1248 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1249 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1250 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1251
1252 val.procs = nr_threads;
1253 } while (read_seqretry(&xtime_lock, seq));
1254
1255 si_meminfo(&val);
1256 si_swapinfo(&val);
1257
1258 /*
1259 * If the sum of all the available memory (i.e. ram + swap)
1260 * is less than can be stored in a 32 bit unsigned long then
1261 * we can be binary compatible with 2.2.x kernels. If not,
1262 * well, in that case 2.2.x was broken anyways...
1263 *
1264 * -Erik Andersen <andersee@debian.org>
1265 */
1266
1267 mem_total = val.totalram + val.totalswap;
1268 if (mem_total < val.totalram || mem_total < val.totalswap)
1269 goto out;
1270 bitcount = 0;
1271 mem_unit = val.mem_unit;
1272 while (mem_unit > 1) {
1273 bitcount++;
1274 mem_unit >>= 1;
1275 sav_total = mem_total;
1276 mem_total <<= 1;
1277 if (mem_total < sav_total)
1278 goto out;
1279 }
1280
1281 /*
1282 * If mem_total did not overflow, multiply all memory values by
1283 * val.mem_unit and set it to 1. This leaves things compatible
1284 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1285 * kernels...
1286 */
1287
1288 val.mem_unit = 1;
1289 val.totalram <<= bitcount;
1290 val.freeram <<= bitcount;
1291 val.sharedram <<= bitcount;
1292 val.bufferram <<= bitcount;
1293 val.totalswap <<= bitcount;
1294 val.freeswap <<= bitcount;
1295 val.totalhigh <<= bitcount;
1296 val.freehigh <<= bitcount;
1297
1298 out:
1299 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1300 return -EFAULT;
1301
1302 return 0;
1303}
1304
1305static void __devinit init_timers_cpu(int cpu)
1306{
1307 int j;
1308 tvec_base_t *base;
55c888d6 1309
1da177e4 1310 base = &per_cpu(tvec_bases, cpu);
55c888d6 1311 spin_lock_init(&base->t_base.lock);
1da177e4
LT
1312 for (j = 0; j < TVN_SIZE; j++) {
1313 INIT_LIST_HEAD(base->tv5.vec + j);
1314 INIT_LIST_HEAD(base->tv4.vec + j);
1315 INIT_LIST_HEAD(base->tv3.vec + j);
1316 INIT_LIST_HEAD(base->tv2.vec + j);
1317 }
1318 for (j = 0; j < TVR_SIZE; j++)
1319 INIT_LIST_HEAD(base->tv1.vec + j);
1320
1321 base->timer_jiffies = jiffies;
1322}
1323
1324#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1325static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1326{
1327 struct timer_list *timer;
1328
1329 while (!list_empty(head)) {
1330 timer = list_entry(head->next, struct timer_list, entry);
55c888d6
ON
1331 detach_timer(timer, 0);
1332 timer->base = &new_base->t_base;
1da177e4 1333 internal_add_timer(new_base, timer);
1da177e4 1334 }
1da177e4
LT
1335}
1336
1337static void __devinit migrate_timers(int cpu)
1338{
1339 tvec_base_t *old_base;
1340 tvec_base_t *new_base;
1341 int i;
1342
1343 BUG_ON(cpu_online(cpu));
1344 old_base = &per_cpu(tvec_bases, cpu);
1345 new_base = &get_cpu_var(tvec_bases);
1346
1347 local_irq_disable();
55c888d6
ON
1348 spin_lock(&new_base->t_base.lock);
1349 spin_lock(&old_base->t_base.lock);
1da177e4 1350
55c888d6 1351 if (old_base->t_base.running_timer)
1da177e4
LT
1352 BUG();
1353 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1354 migrate_timer_list(new_base, old_base->tv1.vec + i);
1355 for (i = 0; i < TVN_SIZE; i++) {
1356 migrate_timer_list(new_base, old_base->tv2.vec + i);
1357 migrate_timer_list(new_base, old_base->tv3.vec + i);
1358 migrate_timer_list(new_base, old_base->tv4.vec + i);
1359 migrate_timer_list(new_base, old_base->tv5.vec + i);
1360 }
1361
1362 spin_unlock(&old_base->t_base.lock);
1363 spin_unlock(&new_base->t_base.lock);
1da177e4
LT
1364 local_irq_enable();
1365 put_cpu_var(tvec_bases);
1da177e4
LT
1366}
1367#endif /* CONFIG_HOTPLUG_CPU */
1368
1369static int __devinit timer_cpu_notify(struct notifier_block *self,
1370 unsigned long action, void *hcpu)
1371{
1372 long cpu = (long)hcpu;
1373 switch(action) {
1374 case CPU_UP_PREPARE:
1375 init_timers_cpu(cpu);
1376 break;
1377#ifdef CONFIG_HOTPLUG_CPU
1378 case CPU_DEAD:
1379 migrate_timers(cpu);
1380 break;
1381#endif
1382 default:
1383 break;
1384 }
1385 return NOTIFY_OK;
1386}
1387
1388static struct notifier_block __devinitdata timers_nb = {
1389 .notifier_call = timer_cpu_notify,
1390};
1391
1392
1393void __init init_timers(void)
1394{
1395 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1396 (void *)(long)smp_processor_id());
1397 register_cpu_notifier(&timers_nb);
1398 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1399}
1400
1401#ifdef CONFIG_TIME_INTERPOLATION
1402
1403struct time_interpolator *time_interpolator;
1404static struct time_interpolator *time_interpolator_list;
1405static DEFINE_SPINLOCK(time_interpolator_lock);
1406
1407static inline u64 time_interpolator_get_cycles(unsigned int src)
1408{
1409 unsigned long (*x)(void);
1410
1411 switch (src)
1412 {
1413 case TIME_SOURCE_FUNCTION:
1414 x = time_interpolator->addr;
1415 return x();
1416
1417 case TIME_SOURCE_MMIO64 :
1418 return readq((void __iomem *) time_interpolator->addr);
1419
1420 case TIME_SOURCE_MMIO32 :
1421 return readl((void __iomem *) time_interpolator->addr);
1422
1423 default: return get_cycles();
1424 }
1425}
1426
1427static inline u64 time_interpolator_get_counter(void)
1428{
1429 unsigned int src = time_interpolator->source;
1430
1431 if (time_interpolator->jitter)
1432 {
1433 u64 lcycle;
1434 u64 now;
1435
1436 do {
1437 lcycle = time_interpolator->last_cycle;
1438 now = time_interpolator_get_cycles(src);
1439 if (lcycle && time_after(lcycle, now))
1440 return lcycle;
1441 /* Keep track of the last timer value returned. The use of cmpxchg here
1442 * will cause contention in an SMP environment.
1443 */
1444 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1445 return now;
1446 }
1447 else
1448 return time_interpolator_get_cycles(src);
1449}
1450
1451void time_interpolator_reset(void)
1452{
1453 time_interpolator->offset = 0;
1454 time_interpolator->last_counter = time_interpolator_get_counter();
1455}
1456
1457#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1458
1459unsigned long time_interpolator_get_offset(void)
1460{
1461 /* If we do not have a time interpolator set up then just return zero */
1462 if (!time_interpolator)
1463 return 0;
1464
1465 return time_interpolator->offset +
1466 GET_TI_NSECS(time_interpolator_get_counter(), time_interpolator);
1467}
1468
1469#define INTERPOLATOR_ADJUST 65536
1470#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1471
1472static void time_interpolator_update(long delta_nsec)
1473{
1474 u64 counter;
1475 unsigned long offset;
1476
1477 /* If there is no time interpolator set up then do nothing */
1478 if (!time_interpolator)
1479 return;
1480
1481 /* The interpolator compensates for late ticks by accumulating
1482 * the late time in time_interpolator->offset. A tick earlier than
1483 * expected will lead to a reset of the offset and a corresponding
1484 * jump of the clock forward. Again this only works if the
1485 * interpolator clock is running slightly slower than the regular clock
1486 * and the tuning logic insures that.
1487 */
1488
1489 counter = time_interpolator_get_counter();
1490 offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator);
1491
1492 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1493 time_interpolator->offset = offset - delta_nsec;
1494 else {
1495 time_interpolator->skips++;
1496 time_interpolator->ns_skipped += delta_nsec - offset;
1497 time_interpolator->offset = 0;
1498 }
1499 time_interpolator->last_counter = counter;
1500
1501 /* Tuning logic for time interpolator invoked every minute or so.
1502 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1503 * Increase interpolator clock speed if we skip too much time.
1504 */
1505 if (jiffies % INTERPOLATOR_ADJUST == 0)
1506 {
1507 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
1508 time_interpolator->nsec_per_cyc--;
1509 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1510 time_interpolator->nsec_per_cyc++;
1511 time_interpolator->skips = 0;
1512 time_interpolator->ns_skipped = 0;
1513 }
1514}
1515
1516static inline int
1517is_better_time_interpolator(struct time_interpolator *new)
1518{
1519 if (!time_interpolator)
1520 return 1;
1521 return new->frequency > 2*time_interpolator->frequency ||
1522 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1523}
1524
1525void
1526register_time_interpolator(struct time_interpolator *ti)
1527{
1528 unsigned long flags;
1529
1530 /* Sanity check */
1531 if (ti->frequency == 0 || ti->mask == 0)
1532 BUG();
1533
1534 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1535 spin_lock(&time_interpolator_lock);
1536 write_seqlock_irqsave(&xtime_lock, flags);
1537 if (is_better_time_interpolator(ti)) {
1538 time_interpolator = ti;
1539 time_interpolator_reset();
1540 }
1541 write_sequnlock_irqrestore(&xtime_lock, flags);
1542
1543 ti->next = time_interpolator_list;
1544 time_interpolator_list = ti;
1545 spin_unlock(&time_interpolator_lock);
1546}
1547
1548void
1549unregister_time_interpolator(struct time_interpolator *ti)
1550{
1551 struct time_interpolator *curr, **prev;
1552 unsigned long flags;
1553
1554 spin_lock(&time_interpolator_lock);
1555 prev = &time_interpolator_list;
1556 for (curr = *prev; curr; curr = curr->next) {
1557 if (curr == ti) {
1558 *prev = curr->next;
1559 break;
1560 }
1561 prev = &curr->next;
1562 }
1563
1564 write_seqlock_irqsave(&xtime_lock, flags);
1565 if (ti == time_interpolator) {
1566 /* we lost the best time-interpolator: */
1567 time_interpolator = NULL;
1568 /* find the next-best interpolator */
1569 for (curr = time_interpolator_list; curr; curr = curr->next)
1570 if (is_better_time_interpolator(curr))
1571 time_interpolator = curr;
1572 time_interpolator_reset();
1573 }
1574 write_sequnlock_irqrestore(&xtime_lock, flags);
1575 spin_unlock(&time_interpolator_lock);
1576}
1577#endif /* CONFIG_TIME_INTERPOLATION */
1578
1579/**
1580 * msleep - sleep safely even with waitqueue interruptions
1581 * @msecs: Time in milliseconds to sleep for
1582 */
1583void msleep(unsigned int msecs)
1584{
1585 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1586
1587 while (timeout) {
1588 set_current_state(TASK_UNINTERRUPTIBLE);
1589 timeout = schedule_timeout(timeout);
1590 }
1591}
1592
1593EXPORT_SYMBOL(msleep);
1594
1595/**
1596 * msleep_interruptible - sleep waiting for waitqueue interruptions
1597 * @msecs: Time in milliseconds to sleep for
1598 */
1599unsigned long msleep_interruptible(unsigned int msecs)
1600{
1601 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1602
1603 while (timeout && !signal_pending(current)) {
1604 set_current_state(TASK_INTERRUPTIBLE);
1605 timeout = schedule_timeout(timeout);
1606 }
1607 return jiffies_to_msecs(timeout);
1608}
1609
1610EXPORT_SYMBOL(msleep_interruptible);