]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/time.c
[PATCH] v9fs: fix corner cases when flushing request
[net-next-2.6.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4
LT
33#include <linux/errno.h>
34#include <linux/smp_lock.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/module.h>
39
40#include <asm/uaccess.h>
41#include <asm/unistd.h>
42
43/*
44 * The timezone where the local system is located. Used as a default by some
45 * programs who obtain this value by using gettimeofday.
46 */
47struct timezone sys_tz;
48
49EXPORT_SYMBOL(sys_tz);
50
51#ifdef __ARCH_WANT_SYS_TIME
52
53/*
54 * sys_time() can be implemented in user-level using
55 * sys_gettimeofday(). Is this for backwards compatibility? If so,
56 * why not move it into the appropriate arch directory (for those
57 * architectures that need it).
58 */
59asmlinkage long sys_time(time_t __user * tloc)
60{
61 time_t i;
62 struct timeval tv;
63
64 do_gettimeofday(&tv);
65 i = tv.tv_sec;
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 i = -EFAULT;
70 }
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81asmlinkage long sys_stime(time_t __user *tptr)
82{
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
101asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
102{
103 if (likely(tv != NULL)) {
104 struct timeval ktv;
105 do_gettimeofday(&ktv);
106 if (copy_to_user(tv, &ktv, sizeof(ktv)))
107 return -EFAULT;
108 }
109 if (unlikely(tz != NULL)) {
110 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
111 return -EFAULT;
112 }
113 return 0;
114}
115
116/*
117 * Adjust the time obtained from the CMOS to be UTC time instead of
118 * local time.
119 *
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
122 * confusion if the program gets run more than once; it would also be
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
125 *
126 * - TYT, 1992-01-01
127 *
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
131 */
77933d72 132static inline void warp_clock(void)
1da177e4
LT
133{
134 write_seqlock_irq(&xtime_lock);
135 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
136 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
137 time_interpolator_reset();
138 write_sequnlock_irq(&xtime_lock);
139 clock_was_set();
140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
154{
155 static int firsttime = 1;
156 int error = 0;
157
951069e3 158 if (tv && !timespec_valid(tv))
718bcceb
TG
159 return -EINVAL;
160
1da177e4
LT
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
166 /* SMP safe, global irq locking makes it work. */
167 sys_tz = *tz;
168 if (firsttime) {
169 firsttime = 0;
170 if (!tv)
171 warp_clock();
172 }
173 }
174 if (tv)
175 {
176 /* SMP safe, again the code in arch/foo/time.c should
177 * globally block out interrupts when it runs.
178 */
179 return do_settimeofday(tv);
180 }
181 return 0;
182}
183
184asmlinkage long sys_settimeofday(struct timeval __user *tv,
185 struct timezone __user *tz)
186{
187 struct timeval user_tv;
188 struct timespec new_ts;
189 struct timezone new_tz;
190
191 if (tv) {
192 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
193 return -EFAULT;
194 new_ts.tv_sec = user_tv.tv_sec;
195 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
196 }
197 if (tz) {
198 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
199 return -EFAULT;
200 }
201
202 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
203}
204
205long pps_offset; /* pps time offset (us) */
206long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
207
208long pps_freq; /* frequency offset (scaled ppm) */
209long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
210
211long pps_valid = PPS_VALID; /* pps signal watchdog counter */
212
213int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
214
215long pps_jitcnt; /* jitter limit exceeded */
216long pps_calcnt; /* calibration intervals */
217long pps_errcnt; /* calibration errors */
218long pps_stbcnt; /* stability limit exceeded */
219
220/* hook for a loadable hardpps kernel module */
221void (*hardpps_ptr)(struct timeval *);
222
223/* we call this to notify the arch when the clock is being
224 * controlled. If no such arch routine, do nothing.
225 */
226void __attribute__ ((weak)) notify_arch_cmos_timer(void)
227{
228 return;
229}
230
231/* adjtimex mainly allows reading (and writing, if superuser) of
232 * kernel time-keeping variables. used by xntpd.
233 */
234int do_adjtimex(struct timex *txc)
235{
236 long ltemp, mtemp, save_adjust;
237 int result;
238
239 /* In order to modify anything, you gotta be super-user! */
240 if (txc->modes && !capable(CAP_SYS_TIME))
241 return -EPERM;
242
243 /* Now we validate the data before disabling interrupts */
244
245 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
246 /* singleshot must not be used with any other mode bits */
247 if (txc->modes != ADJ_OFFSET_SINGLESHOT)
248 return -EINVAL;
249
250 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
251 /* adjustment Offset limited to +- .512 seconds */
252 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
253 return -EINVAL;
254
255 /* if the quartz is off by more than 10% something is VERY wrong ! */
256 if (txc->modes & ADJ_TICK)
257 if (txc->tick < 900000/USER_HZ ||
258 txc->tick > 1100000/USER_HZ)
259 return -EINVAL;
260
261 write_seqlock_irq(&xtime_lock);
262 result = time_state; /* mostly `TIME_OK' */
263
264 /* Save for later - semantics of adjtime is to return old value */
265 save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
266
267#if 0 /* STA_CLOCKERR is never set yet */
268 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
269#endif
270 /* If there are input parameters, then process them */
271 if (txc->modes)
272 {
273 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
274 time_status = (txc->status & ~STA_RONLY) |
275 (time_status & STA_RONLY);
276
277 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
278 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
279 result = -EINVAL;
280 goto leave;
281 }
282 time_freq = txc->freq - pps_freq;
283 }
284
285 if (txc->modes & ADJ_MAXERROR) {
286 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
287 result = -EINVAL;
288 goto leave;
289 }
290 time_maxerror = txc->maxerror;
291 }
292
293 if (txc->modes & ADJ_ESTERROR) {
294 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
295 result = -EINVAL;
296 goto leave;
297 }
298 time_esterror = txc->esterror;
299 }
300
301 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
302 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
303 result = -EINVAL;
304 goto leave;
305 }
306 time_constant = txc->constant;
307 }
308
309 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
310 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
311 /* adjtime() is independent from ntp_adjtime() */
312 if ((time_next_adjust = txc->offset) == 0)
313 time_adjust = 0;
314 }
315 else if ( time_status & (STA_PLL | STA_PPSTIME) ) {
316 ltemp = (time_status & (STA_PPSTIME | STA_PPSSIGNAL)) ==
317 (STA_PPSTIME | STA_PPSSIGNAL) ?
318 pps_offset : txc->offset;
319
320 /*
321 * Scale the phase adjustment and
322 * clamp to the operating range.
323 */
324 if (ltemp > MAXPHASE)
325 time_offset = MAXPHASE << SHIFT_UPDATE;
326 else if (ltemp < -MAXPHASE)
327 time_offset = -(MAXPHASE << SHIFT_UPDATE);
328 else
329 time_offset = ltemp << SHIFT_UPDATE;
330
331 /*
332 * Select whether the frequency is to be controlled
333 * and in which mode (PLL or FLL). Clamp to the operating
334 * range. Ugly multiply/divide should be replaced someday.
335 */
336
337 if (time_status & STA_FREQHOLD || time_reftime == 0)
338 time_reftime = xtime.tv_sec;
339 mtemp = xtime.tv_sec - time_reftime;
340 time_reftime = xtime.tv_sec;
341 if (time_status & STA_FLL) {
342 if (mtemp >= MINSEC) {
343 ltemp = (time_offset / mtemp) << (SHIFT_USEC -
344 SHIFT_UPDATE);
1bb34a41 345 time_freq += shift_right(ltemp, SHIFT_KH);
1da177e4
LT
346 } else /* calibration interval too short (p. 12) */
347 result = TIME_ERROR;
348 } else { /* PLL mode */
349 if (mtemp < MAXSEC) {
350 ltemp *= mtemp;
1bb34a41 351 time_freq += shift_right(ltemp,(time_constant +
1da177e4 352 time_constant +
1bb34a41 353 SHIFT_KF - SHIFT_USEC));
1da177e4
LT
354 } else /* calibration interval too long (p. 12) */
355 result = TIME_ERROR;
356 }
1bb34a41
JS
357 time_freq = min(time_freq, time_tolerance);
358 time_freq = max(time_freq, -time_tolerance);
1da177e4
LT
359 } /* STA_PLL || STA_PPSTIME */
360 } /* txc->modes & ADJ_OFFSET */
361 if (txc->modes & ADJ_TICK) {
362 tick_usec = txc->tick;
363 tick_nsec = TICK_USEC_TO_NSEC(tick_usec);
364 }
365 } /* txc->modes */
366leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0
367 || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) != 0
368 && (time_status & STA_PPSSIGNAL) == 0)
369 /* p. 24, (b) */
370 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
371 == (STA_PPSTIME|STA_PPSJITTER))
372 /* p. 24, (c) */
373 || ((time_status & STA_PPSFREQ) != 0
374 && (time_status & (STA_PPSWANDER|STA_PPSERROR)) != 0))
375 /* p. 24, (d) */
376 result = TIME_ERROR;
377
378 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
379 txc->offset = save_adjust;
380 else {
1bb34a41 381 txc->offset = shift_right(time_offset, SHIFT_UPDATE);
1da177e4
LT
382 }
383 txc->freq = time_freq + pps_freq;
384 txc->maxerror = time_maxerror;
385 txc->esterror = time_esterror;
386 txc->status = time_status;
387 txc->constant = time_constant;
388 txc->precision = time_precision;
389 txc->tolerance = time_tolerance;
390 txc->tick = tick_usec;
391 txc->ppsfreq = pps_freq;
392 txc->jitter = pps_jitter >> PPS_AVG;
393 txc->shift = pps_shift;
394 txc->stabil = pps_stabil;
395 txc->jitcnt = pps_jitcnt;
396 txc->calcnt = pps_calcnt;
397 txc->errcnt = pps_errcnt;
398 txc->stbcnt = pps_stbcnt;
399 write_sequnlock_irq(&xtime_lock);
400 do_gettimeofday(&txc->time);
401 notify_arch_cmos_timer();
402 return(result);
403}
404
405asmlinkage long sys_adjtimex(struct timex __user *txc_p)
406{
407 struct timex txc; /* Local copy of parameter */
408 int ret;
409
410 /* Copy the user data space into the kernel copy
411 * structure. But bear in mind that the structures
412 * may change
413 */
414 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
415 return -EFAULT;
416 ret = do_adjtimex(&txc);
417 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
418}
419
420inline struct timespec current_kernel_time(void)
421{
422 struct timespec now;
423 unsigned long seq;
424
425 do {
426 seq = read_seqbegin(&xtime_lock);
427
428 now = xtime;
429 } while (read_seqretry(&xtime_lock, seq));
430
431 return now;
432}
433
434EXPORT_SYMBOL(current_kernel_time);
435
436/**
437 * current_fs_time - Return FS time
438 * @sb: Superblock.
439 *
440 * Return the current time truncated to the time granuality supported by
441 * the fs.
442 */
443struct timespec current_fs_time(struct super_block *sb)
444{
445 struct timespec now = current_kernel_time();
446 return timespec_trunc(now, sb->s_time_gran);
447}
448EXPORT_SYMBOL(current_fs_time);
449
450/**
451 * timespec_trunc - Truncate timespec to a granuality
452 * @t: Timespec
453 * @gran: Granuality in ns.
454 *
455 * Truncate a timespec to a granuality. gran must be smaller than a second.
456 * Always rounds down.
457 *
458 * This function should be only used for timestamps returned by
459 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
460 * it doesn't handle the better resolution of the later.
461 */
462struct timespec timespec_trunc(struct timespec t, unsigned gran)
463{
464 /*
465 * Division is pretty slow so avoid it for common cases.
466 * Currently current_kernel_time() never returns better than
467 * jiffies resolution. Exploit that.
468 */
469 if (gran <= jiffies_to_usecs(1) * 1000) {
470 /* nothing */
471 } else if (gran == 1000000000) {
472 t.tv_nsec = 0;
473 } else {
474 t.tv_nsec -= t.tv_nsec % gran;
475 }
476 return t;
477}
478EXPORT_SYMBOL(timespec_trunc);
479
480#ifdef CONFIG_TIME_INTERPOLATION
481void getnstimeofday (struct timespec *tv)
482{
483 unsigned long seq,sec,nsec;
484
485 do {
486 seq = read_seqbegin(&xtime_lock);
487 sec = xtime.tv_sec;
488 nsec = xtime.tv_nsec+time_interpolator_get_offset();
489 } while (unlikely(read_seqretry(&xtime_lock, seq)));
490
491 while (unlikely(nsec >= NSEC_PER_SEC)) {
492 nsec -= NSEC_PER_SEC;
493 ++sec;
494 }
495 tv->tv_sec = sec;
496 tv->tv_nsec = nsec;
497}
498EXPORT_SYMBOL_GPL(getnstimeofday);
499
500int do_settimeofday (struct timespec *tv)
501{
502 time_t wtm_sec, sec = tv->tv_sec;
503 long wtm_nsec, nsec = tv->tv_nsec;
504
505 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
506 return -EINVAL;
507
508 write_seqlock_irq(&xtime_lock);
509 {
1da177e4
LT
510 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
511 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
512
513 set_normalized_timespec(&xtime, sec, nsec);
514 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
515
516 time_adjust = 0; /* stop active adjtime() */
517 time_status |= STA_UNSYNC;
518 time_maxerror = NTP_PHASE_LIMIT;
519 time_esterror = NTP_PHASE_LIMIT;
520 time_interpolator_reset();
521 }
522 write_sequnlock_irq(&xtime_lock);
523 clock_was_set();
524 return 0;
525}
943eae03 526EXPORT_SYMBOL(do_settimeofday);
1da177e4
LT
527
528void do_gettimeofday (struct timeval *tv)
529{
530 unsigned long seq, nsec, usec, sec, offset;
531 do {
532 seq = read_seqbegin(&xtime_lock);
533 offset = time_interpolator_get_offset();
534 sec = xtime.tv_sec;
535 nsec = xtime.tv_nsec;
536 } while (unlikely(read_seqretry(&xtime_lock, seq)));
537
538 usec = (nsec + offset) / 1000;
539
540 while (unlikely(usec >= USEC_PER_SEC)) {
541 usec -= USEC_PER_SEC;
542 ++sec;
543 }
544
545 tv->tv_sec = sec;
546 tv->tv_usec = usec;
547}
548
549EXPORT_SYMBOL(do_gettimeofday);
550
551
552#else
553/*
554 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
555 * and therefore only yields usec accuracy
556 */
557void getnstimeofday(struct timespec *tv)
558{
559 struct timeval x;
560
561 do_gettimeofday(&x);
562 tv->tv_sec = x.tv_sec;
563 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
564}
c6ecf7ed 565EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4
LT
566#endif
567
753be622
TG
568/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
569 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
570 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
571 *
572 * [For the Julian calendar (which was used in Russia before 1917,
573 * Britain & colonies before 1752, anywhere else before 1582,
574 * and is still in use by some communities) leave out the
575 * -year/100+year/400 terms, and add 10.]
576 *
577 * This algorithm was first published by Gauss (I think).
578 *
579 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
580 * machines were long is 32-bit! (However, as time_t is signed, we
581 * will already get problems at other places on 2038-01-19 03:14:08)
582 */
583unsigned long
f4818900
IM
584mktime(const unsigned int year0, const unsigned int mon0,
585 const unsigned int day, const unsigned int hour,
586 const unsigned int min, const unsigned int sec)
753be622 587{
f4818900
IM
588 unsigned int mon = mon0, year = year0;
589
590 /* 1..12 -> 11,12,1..10 */
591 if (0 >= (int) (mon -= 2)) {
592 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
593 year -= 1;
594 }
595
596 return ((((unsigned long)
597 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
598 year*365 - 719499
599 )*24 + hour /* now have hours */
600 )*60 + min /* now have minutes */
601 )*60 + sec; /* finally seconds */
602}
603
199e7056
AM
604EXPORT_SYMBOL(mktime);
605
753be622
TG
606/**
607 * set_normalized_timespec - set timespec sec and nsec parts and normalize
608 *
609 * @ts: pointer to timespec variable to be set
610 * @sec: seconds to set
611 * @nsec: nanoseconds to set
612 *
613 * Set seconds and nanoseconds field of a timespec variable and
614 * normalize to the timespec storage format
615 *
616 * Note: The tv_nsec part is always in the range of
617 * 0 <= tv_nsec < NSEC_PER_SEC
618 * For negative values only the tv_sec field is negative !
619 */
f4818900 620void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
753be622
TG
621{
622 while (nsec >= NSEC_PER_SEC) {
623 nsec -= NSEC_PER_SEC;
624 ++sec;
625 }
626 while (nsec < 0) {
627 nsec += NSEC_PER_SEC;
628 --sec;
629 }
630 ts->tv_sec = sec;
631 ts->tv_nsec = nsec;
632}
633
f8f46da3
TG
634/**
635 * ns_to_timespec - Convert nanoseconds to timespec
636 * @nsec: the nanoseconds value to be converted
637 *
638 * Returns the timespec representation of the nsec parameter.
639 */
640inline struct timespec ns_to_timespec(const nsec_t nsec)
641{
642 struct timespec ts;
643
644 if (nsec)
645 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC,
646 &ts.tv_nsec);
647 else
648 ts.tv_sec = ts.tv_nsec = 0;
649
650 return ts;
651}
652
653/**
654 * ns_to_timeval - Convert nanoseconds to timeval
655 * @nsec: the nanoseconds value to be converted
656 *
657 * Returns the timeval representation of the nsec parameter.
658 */
659struct timeval ns_to_timeval(const nsec_t nsec)
660{
661 struct timespec ts = ns_to_timespec(nsec);
662 struct timeval tv;
663
664 tv.tv_sec = ts.tv_sec;
665 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
666
667 return tv;
668}
669
1da177e4
LT
670#if (BITS_PER_LONG < 64)
671u64 get_jiffies_64(void)
672{
673 unsigned long seq;
674 u64 ret;
675
676 do {
677 seq = read_seqbegin(&xtime_lock);
678 ret = jiffies_64;
679 } while (read_seqretry(&xtime_lock, seq));
680 return ret;
681}
682
683EXPORT_SYMBOL(get_jiffies_64);
684#endif
685
686EXPORT_SYMBOL(jiffies);