]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/time.c
[NET] fib_rules: goto rule action
[net-next-2.6.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
1da177e4
LT
33#include <linux/errno.h>
34#include <linux/smp_lock.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/module.h>
39
40#include <asm/uaccess.h>
41#include <asm/unistd.h>
42
43/*
44 * The timezone where the local system is located. Used as a default by some
45 * programs who obtain this value by using gettimeofday.
46 */
47struct timezone sys_tz;
48
49EXPORT_SYMBOL(sys_tz);
50
51#ifdef __ARCH_WANT_SYS_TIME
52
53/*
54 * sys_time() can be implemented in user-level using
55 * sys_gettimeofday(). Is this for backwards compatibility? If so,
56 * why not move it into the appropriate arch directory (for those
57 * architectures that need it).
58 */
59asmlinkage long sys_time(time_t __user * tloc)
60{
61 time_t i;
62 struct timeval tv;
63
64 do_gettimeofday(&tv);
65 i = tv.tv_sec;
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 i = -EFAULT;
70 }
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81asmlinkage long sys_stime(time_t __user *tptr)
82{
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
101asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
102{
103 if (likely(tv != NULL)) {
104 struct timeval ktv;
105 do_gettimeofday(&ktv);
106 if (copy_to_user(tv, &ktv, sizeof(ktv)))
107 return -EFAULT;
108 }
109 if (unlikely(tz != NULL)) {
110 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
111 return -EFAULT;
112 }
113 return 0;
114}
115
116/*
117 * Adjust the time obtained from the CMOS to be UTC time instead of
118 * local time.
119 *
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
122 * confusion if the program gets run more than once; it would also be
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
125 *
126 * - TYT, 1992-01-01
127 *
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
131 */
77933d72 132static inline void warp_clock(void)
1da177e4
LT
133{
134 write_seqlock_irq(&xtime_lock);
135 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
136 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
137 time_interpolator_reset();
138 write_sequnlock_irq(&xtime_lock);
139 clock_was_set();
140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
154{
155 static int firsttime = 1;
156 int error = 0;
157
951069e3 158 if (tv && !timespec_valid(tv))
718bcceb
TG
159 return -EINVAL;
160
1da177e4
LT
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
166 /* SMP safe, global irq locking makes it work. */
167 sys_tz = *tz;
168 if (firsttime) {
169 firsttime = 0;
170 if (!tv)
171 warp_clock();
172 }
173 }
174 if (tv)
175 {
176 /* SMP safe, again the code in arch/foo/time.c should
177 * globally block out interrupts when it runs.
178 */
179 return do_settimeofday(tv);
180 }
181 return 0;
182}
183
184asmlinkage long sys_settimeofday(struct timeval __user *tv,
185 struct timezone __user *tz)
186{
187 struct timeval user_tv;
188 struct timespec new_ts;
189 struct timezone new_tz;
190
191 if (tv) {
192 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
193 return -EFAULT;
194 new_ts.tv_sec = user_tv.tv_sec;
195 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
196 }
197 if (tz) {
198 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
199 return -EFAULT;
200 }
201
202 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
203}
204
1da177e4
LT
205asmlinkage long sys_adjtimex(struct timex __user *txc_p)
206{
207 struct timex txc; /* Local copy of parameter */
208 int ret;
209
210 /* Copy the user data space into the kernel copy
211 * structure. But bear in mind that the structures
212 * may change
213 */
214 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
215 return -EFAULT;
216 ret = do_adjtimex(&txc);
217 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
218}
219
220inline struct timespec current_kernel_time(void)
221{
222 struct timespec now;
223 unsigned long seq;
224
225 do {
226 seq = read_seqbegin(&xtime_lock);
227
228 now = xtime;
229 } while (read_seqretry(&xtime_lock, seq));
230
231 return now;
232}
233
234EXPORT_SYMBOL(current_kernel_time);
235
236/**
237 * current_fs_time - Return FS time
238 * @sb: Superblock.
239 *
8ba8e95e 240 * Return the current time truncated to the time granularity supported by
1da177e4
LT
241 * the fs.
242 */
243struct timespec current_fs_time(struct super_block *sb)
244{
245 struct timespec now = current_kernel_time();
246 return timespec_trunc(now, sb->s_time_gran);
247}
248EXPORT_SYMBOL(current_fs_time);
249
250/**
8ba8e95e 251 * timespec_trunc - Truncate timespec to a granularity
1da177e4 252 * @t: Timespec
8ba8e95e 253 * @gran: Granularity in ns.
1da177e4 254 *
8ba8e95e 255 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
256 * Always rounds down.
257 *
258 * This function should be only used for timestamps returned by
259 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
260 * it doesn't handle the better resolution of the later.
261 */
262struct timespec timespec_trunc(struct timespec t, unsigned gran)
263{
264 /*
265 * Division is pretty slow so avoid it for common cases.
266 * Currently current_kernel_time() never returns better than
267 * jiffies resolution. Exploit that.
268 */
269 if (gran <= jiffies_to_usecs(1) * 1000) {
270 /* nothing */
271 } else if (gran == 1000000000) {
272 t.tv_nsec = 0;
273 } else {
274 t.tv_nsec -= t.tv_nsec % gran;
275 }
276 return t;
277}
278EXPORT_SYMBOL(timespec_trunc);
279
280#ifdef CONFIG_TIME_INTERPOLATION
281void getnstimeofday (struct timespec *tv)
282{
283 unsigned long seq,sec,nsec;
284
285 do {
286 seq = read_seqbegin(&xtime_lock);
287 sec = xtime.tv_sec;
288 nsec = xtime.tv_nsec+time_interpolator_get_offset();
289 } while (unlikely(read_seqretry(&xtime_lock, seq)));
290
291 while (unlikely(nsec >= NSEC_PER_SEC)) {
292 nsec -= NSEC_PER_SEC;
293 ++sec;
294 }
295 tv->tv_sec = sec;
296 tv->tv_nsec = nsec;
297}
298EXPORT_SYMBOL_GPL(getnstimeofday);
299
300int do_settimeofday (struct timespec *tv)
301{
302 time_t wtm_sec, sec = tv->tv_sec;
303 long wtm_nsec, nsec = tv->tv_nsec;
304
305 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
306 return -EINVAL;
307
308 write_seqlock_irq(&xtime_lock);
309 {
1da177e4
LT
310 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
311 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
312
313 set_normalized_timespec(&xtime, sec, nsec);
314 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
315
316 time_adjust = 0; /* stop active adjtime() */
317 time_status |= STA_UNSYNC;
318 time_maxerror = NTP_PHASE_LIMIT;
319 time_esterror = NTP_PHASE_LIMIT;
320 time_interpolator_reset();
321 }
322 write_sequnlock_irq(&xtime_lock);
323 clock_was_set();
324 return 0;
325}
943eae03 326EXPORT_SYMBOL(do_settimeofday);
1da177e4
LT
327
328void do_gettimeofday (struct timeval *tv)
329{
330 unsigned long seq, nsec, usec, sec, offset;
331 do {
332 seq = read_seqbegin(&xtime_lock);
333 offset = time_interpolator_get_offset();
334 sec = xtime.tv_sec;
335 nsec = xtime.tv_nsec;
336 } while (unlikely(read_seqretry(&xtime_lock, seq)));
337
338 usec = (nsec + offset) / 1000;
339
340 while (unlikely(usec >= USEC_PER_SEC)) {
341 usec -= USEC_PER_SEC;
342 ++sec;
343 }
344
345 tv->tv_sec = sec;
346 tv->tv_usec = usec;
347}
348
349EXPORT_SYMBOL(do_gettimeofday);
350
351
352#else
cf3c769b 353#ifndef CONFIG_GENERIC_TIME
1da177e4
LT
354/*
355 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
356 * and therefore only yields usec accuracy
357 */
358void getnstimeofday(struct timespec *tv)
359{
360 struct timeval x;
361
362 do_gettimeofday(&x);
363 tv->tv_sec = x.tv_sec;
364 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
365}
c6ecf7ed 366EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4 367#endif
cf3c769b 368#endif
1da177e4 369
753be622
TG
370/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
371 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
372 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
373 *
374 * [For the Julian calendar (which was used in Russia before 1917,
375 * Britain & colonies before 1752, anywhere else before 1582,
376 * and is still in use by some communities) leave out the
377 * -year/100+year/400 terms, and add 10.]
378 *
379 * This algorithm was first published by Gauss (I think).
380 *
381 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
382 * machines were long is 32-bit! (However, as time_t is signed, we
383 * will already get problems at other places on 2038-01-19 03:14:08)
384 */
385unsigned long
f4818900
IM
386mktime(const unsigned int year0, const unsigned int mon0,
387 const unsigned int day, const unsigned int hour,
388 const unsigned int min, const unsigned int sec)
753be622 389{
f4818900
IM
390 unsigned int mon = mon0, year = year0;
391
392 /* 1..12 -> 11,12,1..10 */
393 if (0 >= (int) (mon -= 2)) {
394 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
395 year -= 1;
396 }
397
398 return ((((unsigned long)
399 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
400 year*365 - 719499
401 )*24 + hour /* now have hours */
402 )*60 + min /* now have minutes */
403 )*60 + sec; /* finally seconds */
404}
405
199e7056
AM
406EXPORT_SYMBOL(mktime);
407
753be622
TG
408/**
409 * set_normalized_timespec - set timespec sec and nsec parts and normalize
410 *
411 * @ts: pointer to timespec variable to be set
412 * @sec: seconds to set
413 * @nsec: nanoseconds to set
414 *
415 * Set seconds and nanoseconds field of a timespec variable and
416 * normalize to the timespec storage format
417 *
418 * Note: The tv_nsec part is always in the range of
419 * 0 <= tv_nsec < NSEC_PER_SEC
420 * For negative values only the tv_sec field is negative !
421 */
f4818900 422void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
753be622
TG
423{
424 while (nsec >= NSEC_PER_SEC) {
425 nsec -= NSEC_PER_SEC;
426 ++sec;
427 }
428 while (nsec < 0) {
429 nsec += NSEC_PER_SEC;
430 --sec;
431 }
432 ts->tv_sec = sec;
433 ts->tv_nsec = nsec;
434}
435
f8f46da3
TG
436/**
437 * ns_to_timespec - Convert nanoseconds to timespec
438 * @nsec: the nanoseconds value to be converted
439 *
440 * Returns the timespec representation of the nsec parameter.
441 */
df869b63 442struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
443{
444 struct timespec ts;
445
88fc3897
GA
446 if (!nsec)
447 return (struct timespec) {0, 0};
448
449 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
450 if (unlikely(nsec < 0))
451 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
f8f46da3
TG
452
453 return ts;
454}
85795d64 455EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
456
457/**
458 * ns_to_timeval - Convert nanoseconds to timeval
459 * @nsec: the nanoseconds value to be converted
460 *
461 * Returns the timeval representation of the nsec parameter.
462 */
df869b63 463struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
464{
465 struct timespec ts = ns_to_timespec(nsec);
466 struct timeval tv;
467
468 tv.tv_sec = ts.tv_sec;
469 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
470
471 return tv;
472}
b7aa0bf7 473EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 474
8b9365d7
IM
475/*
476 * Convert jiffies to milliseconds and back.
477 *
478 * Avoid unnecessary multiplications/divisions in the
479 * two most common HZ cases:
480 */
481unsigned int jiffies_to_msecs(const unsigned long j)
482{
483#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
484 return (MSEC_PER_SEC / HZ) * j;
485#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
486 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
487#else
488 return (j * MSEC_PER_SEC) / HZ;
489#endif
490}
491EXPORT_SYMBOL(jiffies_to_msecs);
492
493unsigned int jiffies_to_usecs(const unsigned long j)
494{
495#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
496 return (USEC_PER_SEC / HZ) * j;
497#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
498 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
499#else
500 return (j * USEC_PER_SEC) / HZ;
501#endif
502}
503EXPORT_SYMBOL(jiffies_to_usecs);
504
41cf5445
IM
505/*
506 * When we convert to jiffies then we interpret incoming values
507 * the following way:
508 *
509 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
510 *
511 * - 'too large' values [that would result in larger than
512 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
513 *
514 * - all other values are converted to jiffies by either multiplying
515 * the input value by a factor or dividing it with a factor
516 *
517 * We must also be careful about 32-bit overflows.
518 */
8b9365d7
IM
519unsigned long msecs_to_jiffies(const unsigned int m)
520{
41cf5445
IM
521 /*
522 * Negative value, means infinite timeout:
523 */
524 if ((int)m < 0)
8b9365d7 525 return MAX_JIFFY_OFFSET;
41cf5445 526
8b9365d7 527#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
528 /*
529 * HZ is equal to or smaller than 1000, and 1000 is a nice
530 * round multiple of HZ, divide with the factor between them,
531 * but round upwards:
532 */
8b9365d7
IM
533 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
534#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
535 /*
536 * HZ is larger than 1000, and HZ is a nice round multiple of
537 * 1000 - simply multiply with the factor between them.
538 *
539 * But first make sure the multiplication result cannot
540 * overflow:
541 */
542 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
543 return MAX_JIFFY_OFFSET;
544
8b9365d7
IM
545 return m * (HZ / MSEC_PER_SEC);
546#else
41cf5445
IM
547 /*
548 * Generic case - multiply, round and divide. But first
549 * check that if we are doing a net multiplication, that
550 * we wouldnt overflow:
551 */
552 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
553 return MAX_JIFFY_OFFSET;
554
8b9365d7
IM
555 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
556#endif
557}
558EXPORT_SYMBOL(msecs_to_jiffies);
559
560unsigned long usecs_to_jiffies(const unsigned int u)
561{
562 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
563 return MAX_JIFFY_OFFSET;
564#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
565 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
566#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
567 return u * (HZ / USEC_PER_SEC);
568#else
569 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
570#endif
571}
572EXPORT_SYMBOL(usecs_to_jiffies);
573
574/*
575 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
576 * that a remainder subtract here would not do the right thing as the
577 * resolution values don't fall on second boundries. I.e. the line:
578 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
579 *
580 * Rather, we just shift the bits off the right.
581 *
582 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
583 * value to a scaled second value.
584 */
585unsigned long
586timespec_to_jiffies(const struct timespec *value)
587{
588 unsigned long sec = value->tv_sec;
589 long nsec = value->tv_nsec + TICK_NSEC - 1;
590
591 if (sec >= MAX_SEC_IN_JIFFIES){
592 sec = MAX_SEC_IN_JIFFIES;
593 nsec = 0;
594 }
595 return (((u64)sec * SEC_CONVERSION) +
596 (((u64)nsec * NSEC_CONVERSION) >>
597 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
598
599}
600EXPORT_SYMBOL(timespec_to_jiffies);
601
602void
603jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
604{
605 /*
606 * Convert jiffies to nanoseconds and separate with
607 * one divide.
608 */
609 u64 nsec = (u64)jiffies * TICK_NSEC;
610 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
611}
612EXPORT_SYMBOL(jiffies_to_timespec);
613
614/* Same for "timeval"
615 *
616 * Well, almost. The problem here is that the real system resolution is
617 * in nanoseconds and the value being converted is in micro seconds.
618 * Also for some machines (those that use HZ = 1024, in-particular),
619 * there is a LARGE error in the tick size in microseconds.
620
621 * The solution we use is to do the rounding AFTER we convert the
622 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
623 * Instruction wise, this should cost only an additional add with carry
624 * instruction above the way it was done above.
625 */
626unsigned long
627timeval_to_jiffies(const struct timeval *value)
628{
629 unsigned long sec = value->tv_sec;
630 long usec = value->tv_usec;
631
632 if (sec >= MAX_SEC_IN_JIFFIES){
633 sec = MAX_SEC_IN_JIFFIES;
634 usec = 0;
635 }
636 return (((u64)sec * SEC_CONVERSION) +
637 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
638 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
639}
456a09dc 640EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
641
642void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
643{
644 /*
645 * Convert jiffies to nanoseconds and separate with
646 * one divide.
647 */
648 u64 nsec = (u64)jiffies * TICK_NSEC;
649 long tv_usec;
650
651 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
652 tv_usec /= NSEC_PER_USEC;
653 value->tv_usec = tv_usec;
654}
456a09dc 655EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
656
657/*
658 * Convert jiffies/jiffies_64 to clock_t and back.
659 */
660clock_t jiffies_to_clock_t(long x)
661{
662#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
663 return x / (HZ / USER_HZ);
664#else
665 u64 tmp = (u64)x * TICK_NSEC;
666 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
667 return (long)tmp;
668#endif
669}
670EXPORT_SYMBOL(jiffies_to_clock_t);
671
672unsigned long clock_t_to_jiffies(unsigned long x)
673{
674#if (HZ % USER_HZ)==0
675 if (x >= ~0UL / (HZ / USER_HZ))
676 return ~0UL;
677 return x * (HZ / USER_HZ);
678#else
679 u64 jif;
680
681 /* Don't worry about loss of precision here .. */
682 if (x >= ~0UL / HZ * USER_HZ)
683 return ~0UL;
684
685 /* .. but do try to contain it here */
686 jif = x * (u64) HZ;
687 do_div(jif, USER_HZ);
688 return jif;
689#endif
690}
691EXPORT_SYMBOL(clock_t_to_jiffies);
692
693u64 jiffies_64_to_clock_t(u64 x)
694{
695#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
696 do_div(x, HZ / USER_HZ);
697#else
698 /*
699 * There are better ways that don't overflow early,
700 * but even this doesn't overflow in hundreds of years
701 * in 64 bits, so..
702 */
703 x *= TICK_NSEC;
704 do_div(x, (NSEC_PER_SEC / USER_HZ));
705#endif
706 return x;
707}
708
709EXPORT_SYMBOL(jiffies_64_to_clock_t);
710
711u64 nsec_to_clock_t(u64 x)
712{
713#if (NSEC_PER_SEC % USER_HZ) == 0
714 do_div(x, (NSEC_PER_SEC / USER_HZ));
715#elif (USER_HZ % 512) == 0
716 x *= USER_HZ/512;
717 do_div(x, (NSEC_PER_SEC / 512));
718#else
719 /*
720 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
721 * overflow after 64.99 years.
722 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
723 */
724 x *= 9;
725 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
726 USER_HZ));
727#endif
728 return x;
729}
730
1da177e4
LT
731#if (BITS_PER_LONG < 64)
732u64 get_jiffies_64(void)
733{
734 unsigned long seq;
735 u64 ret;
736
737 do {
738 seq = read_seqbegin(&xtime_lock);
739 ret = jiffies_64;
740 } while (read_seqretry(&xtime_lock, seq));
741 return ret;
742}
743
744EXPORT_SYMBOL(get_jiffies_64);
745#endif
746
747EXPORT_SYMBOL(jiffies);