]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/signal.c
Revert task flag re-ordering, add comments
[net-next-2.6.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->lock = NULL;
281 q->user = get_uid(t->user);
282 }
283 return(q);
284}
285
286static inline void __sigqueue_free(struct sigqueue *q)
287{
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
293}
294
295static void flush_sigqueue(struct sigpending *queue)
296{
297 struct sigqueue *q;
298
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
304 }
305}
306
307/*
308 * Flush all pending signals for a task.
309 */
310
311void
312flush_signals(struct task_struct *t)
313{
314 unsigned long flags;
315
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
321}
322
323/*
324 * This function expects the tasklist_lock write-locked.
325 */
326void __exit_sighand(struct task_struct *tsk)
327{
328 struct sighand_struct * sighand = tsk->sighand;
329
330 /* Ok, we're done with the signal handlers */
331 tsk->sighand = NULL;
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
334}
335
336void exit_sighand(struct task_struct *tsk)
337{
338 write_lock_irq(&tasklist_lock);
339 __exit_sighand(tsk);
340 write_unlock_irq(&tasklist_lock);
341}
342
343/*
344 * This function expects the tasklist_lock write-locked.
345 */
346void __exit_signal(struct task_struct *tsk)
347{
348 struct signal_struct * sig = tsk->signal;
349 struct sighand_struct * sighand = tsk->sighand;
350
351 if (!sig)
352 BUG();
353 if (!atomic_read(&sig->count))
354 BUG();
355 spin_lock(&sighand->siglock);
356 posix_cpu_timers_exit(tsk);
357 if (atomic_dec_and_test(&sig->count)) {
358 posix_cpu_timers_exit_group(tsk);
359 if (tsk == sig->curr_target)
360 sig->curr_target = next_thread(tsk);
361 tsk->signal = NULL;
362 spin_unlock(&sighand->siglock);
363 flush_sigqueue(&sig->shared_pending);
364 } else {
365 /*
366 * If there is any task waiting for the group exit
367 * then notify it:
368 */
369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 wake_up_process(sig->group_exit_task);
371 sig->group_exit_task = NULL;
372 }
373 if (tsk == sig->curr_target)
374 sig->curr_target = next_thread(tsk);
375 tsk->signal = NULL;
376 /*
377 * Accumulate here the counters for all threads but the
378 * group leader as they die, so they can be added into
379 * the process-wide totals when those are taken.
380 * The group leader stays around as a zombie as long
381 * as there are other threads. When it gets reaped,
382 * the exit.c code will add its counts into these totals.
383 * We won't ever get here for the group leader, since it
384 * will have been the last reference on the signal_struct.
385 */
386 sig->utime = cputime_add(sig->utime, tsk->utime);
387 sig->stime = cputime_add(sig->stime, tsk->stime);
388 sig->min_flt += tsk->min_flt;
389 sig->maj_flt += tsk->maj_flt;
390 sig->nvcsw += tsk->nvcsw;
391 sig->nivcsw += tsk->nivcsw;
392 sig->sched_time += tsk->sched_time;
393 spin_unlock(&sighand->siglock);
394 sig = NULL; /* Marker for below. */
395 }
396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 flush_sigqueue(&tsk->pending);
398 if (sig) {
399 /*
400 * We are cleaning up the signal_struct here. We delayed
401 * calling exit_itimers until after flush_sigqueue, just in
402 * case our thread-local pending queue contained a queued
403 * timer signal that would have been cleared in
404 * exit_itimers. When that called sigqueue_free, it would
405 * attempt to re-take the tasklist_lock and deadlock. This
406 * can never happen if we ensure that all queues the
407 * timer's signal might be queued on have been flushed
408 * first. The shared_pending queue, and our own pending
409 * queue are the only queues the timer could be on, since
410 * there are no other threads left in the group and timer
411 * signals are constrained to threads inside the group.
412 */
413 exit_itimers(sig);
414 exit_thread_group_keys(sig);
415 kmem_cache_free(signal_cachep, sig);
416 }
417}
418
419void exit_signal(struct task_struct *tsk)
420{
421 write_lock_irq(&tasklist_lock);
422 __exit_signal(tsk);
423 write_unlock_irq(&tasklist_lock);
424}
425
426/*
427 * Flush all handlers for a task.
428 */
429
430void
431flush_signal_handlers(struct task_struct *t, int force_default)
432{
433 int i;
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
438 ka->sa.sa_flags = 0;
439 sigemptyset(&ka->sa.sa_mask);
440 ka++;
441 }
442}
443
444
445/* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
452
453void
454block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
455{
456 unsigned long flags;
457
458 spin_lock_irqsave(&current->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(&current->sighand->siglock, flags);
463}
464
465/* Notify the system that blocking has ended. */
466
467void
468unblock_all_signals(void)
469{
470 unsigned long flags;
471
472 spin_lock_irqsave(&current->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
475 recalc_sigpending();
476 spin_unlock_irqrestore(&current->sighand->siglock, flags);
477}
478
479static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
480{
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
483
484 if (unlikely(!sigismember(&list->signal, sig)))
485 return 0;
486
487 /*
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
490 */
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
493 if (first) {
494 still_pending = 1;
495 break;
496 }
497 first = q;
498 }
499 }
500 if (first) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
504 if (!still_pending)
505 sigdelset(&list->signal, sig);
506 } else {
507
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
511 */
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
514 info->si_errno = 0;
515 info->si_code = 0;
516 info->si_pid = 0;
517 info->si_uid = 0;
518 }
519 return 1;
520}
521
522static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
523 siginfo_t *info)
524{
525 int sig = 0;
526
c33880aa
KK
527 /* SIGKILL must have priority, otherwise it is quite easy
528 * to create an unkillable process, sending sig < SIGKILL
529 * to self */
530 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
531 if (!sigismember(mask, SIGKILL))
532 sig = SIGKILL;
533 }
534
535 if (likely(!sig))
536 sig = next_signal(pending, mask);
1da177e4
LT
537 if (sig) {
538 if (current->notifier) {
539 if (sigismember(current->notifier_mask, sig)) {
540 if (!(current->notifier)(current->notifier_data)) {
541 clear_thread_flag(TIF_SIGPENDING);
542 return 0;
543 }
544 }
545 }
546
547 if (!collect_signal(sig, pending, info))
548 sig = 0;
549
550 }
551 recalc_sigpending();
552
553 return sig;
554}
555
556/*
557 * Dequeue a signal and return the element to the caller, which is
558 * expected to free it.
559 *
560 * All callers have to hold the siglock.
561 */
562int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
563{
564 int signr = __dequeue_signal(&tsk->pending, mask, info);
565 if (!signr)
566 signr = __dequeue_signal(&tsk->signal->shared_pending,
567 mask, info);
568 if (signr && unlikely(sig_kernel_stop(signr))) {
569 /*
570 * Set a marker that we have dequeued a stop signal. Our
571 * caller might release the siglock and then the pending
572 * stop signal it is about to process is no longer in the
573 * pending bitmasks, but must still be cleared by a SIGCONT
574 * (and overruled by a SIGKILL). So those cases clear this
575 * shared flag after we've set it. Note that this flag may
576 * remain set after the signal we return is ignored or
577 * handled. That doesn't matter because its only purpose
578 * is to alert stop-signal processing code when another
579 * processor has come along and cleared the flag.
580 */
581 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
582 }
583 if ( signr &&
584 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
585 info->si_sys_private){
586 /*
587 * Release the siglock to ensure proper locking order
588 * of timer locks outside of siglocks. Note, we leave
589 * irqs disabled here, since the posix-timers code is
590 * about to disable them again anyway.
591 */
592 spin_unlock(&tsk->sighand->siglock);
593 do_schedule_next_timer(info);
594 spin_lock(&tsk->sighand->siglock);
595 }
596 return signr;
597}
598
599/*
600 * Tell a process that it has a new active signal..
601 *
602 * NOTE! we rely on the previous spin_lock to
603 * lock interrupts for us! We can only be called with
604 * "siglock" held, and the local interrupt must
605 * have been disabled when that got acquired!
606 *
607 * No need to set need_resched since signal event passing
608 * goes through ->blocked
609 */
610void signal_wake_up(struct task_struct *t, int resume)
611{
612 unsigned int mask;
613
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
615
616 /*
617 * For SIGKILL, we want to wake it up in the stopped/traced case.
618 * We don't check t->state here because there is a race with it
619 * executing another processor and just now entering stopped state.
620 * By using wake_up_state, we ensure the process will wake up and
621 * handle its death signal.
622 */
623 mask = TASK_INTERRUPTIBLE;
624 if (resume)
625 mask |= TASK_STOPPED | TASK_TRACED;
626 if (!wake_up_state(t, mask))
627 kick_process(t);
628}
629
630/*
631 * Remove signals in mask from the pending set and queue.
632 * Returns 1 if any signals were found.
633 *
634 * All callers must be holding the siglock.
635 */
636static int rm_from_queue(unsigned long mask, struct sigpending *s)
637{
638 struct sigqueue *q, *n;
639
640 if (!sigtestsetmask(&s->signal, mask))
641 return 0;
642
643 sigdelsetmask(&s->signal, mask);
644 list_for_each_entry_safe(q, n, &s->list, list) {
645 if (q->info.si_signo < SIGRTMIN &&
646 (mask & sigmask(q->info.si_signo))) {
647 list_del_init(&q->list);
648 __sigqueue_free(q);
649 }
650 }
651 return 1;
652}
653
654/*
655 * Bad permissions for sending the signal
656 */
657static int check_kill_permission(int sig, struct siginfo *info,
658 struct task_struct *t)
659{
660 int error = -EINVAL;
7ed20e1a 661 if (!valid_signal(sig))
1da177e4
LT
662 return error;
663 error = -EPERM;
664 if ((!info || ((unsigned long)info != 1 &&
665 (unsigned long)info != 2 && SI_FROMUSER(info)))
666 && ((sig != SIGCONT) ||
667 (current->signal->session != t->signal->session))
668 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
669 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
670 && !capable(CAP_KILL))
671 return error;
c2f0c7c3
SG
672
673 error = security_task_kill(t, info, sig);
674 if (!error)
675 audit_signal_info(sig, t); /* Let audit system see the signal */
676 return error;
1da177e4
LT
677}
678
679/* forward decl */
680static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 681 int to_self,
1da177e4
LT
682 int why);
683
684/*
685 * Handle magic process-wide effects of stop/continue signals.
686 * Unlike the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
690 */
691static void handle_stop_signal(int sig, struct task_struct *p)
692{
693 struct task_struct *t;
694
dd12f48d 695 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
696 /*
697 * The process is in the middle of dying already.
698 */
699 return;
700
701 if (sig_kernel_stop(sig)) {
702 /*
703 * This is a stop signal. Remove SIGCONT from all queues.
704 */
705 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
706 t = p;
707 do {
708 rm_from_queue(sigmask(SIGCONT), &t->pending);
709 t = next_thread(t);
710 } while (t != p);
711 } else if (sig == SIGCONT) {
712 /*
713 * Remove all stop signals from all queues,
714 * and wake all threads.
715 */
716 if (unlikely(p->signal->group_stop_count > 0)) {
717 /*
718 * There was a group stop in progress. We'll
719 * pretend it finished before we got here. We are
720 * obliged to report it to the parent: if the
721 * SIGSTOP happened "after" this SIGCONT, then it
722 * would have cleared this pending SIGCONT. If it
723 * happened "before" this SIGCONT, then the parent
724 * got the SIGCHLD about the stop finishing before
725 * the continue happened. We do the notification
726 * now, and it's as if the stop had finished and
727 * the SIGCHLD was pending on entry to this kill.
728 */
729 p->signal->group_stop_count = 0;
730 p->signal->flags = SIGNAL_STOP_CONTINUED;
731 spin_unlock(&p->sighand->siglock);
bc505a47 732 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
733 spin_lock(&p->sighand->siglock);
734 }
735 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
736 t = p;
737 do {
738 unsigned int state;
739 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
740
741 /*
742 * If there is a handler for SIGCONT, we must make
743 * sure that no thread returns to user mode before
744 * we post the signal, in case it was the only
745 * thread eligible to run the signal handler--then
746 * it must not do anything between resuming and
747 * running the handler. With the TIF_SIGPENDING
748 * flag set, the thread will pause and acquire the
749 * siglock that we hold now and until we've queued
750 * the pending signal.
751 *
752 * Wake up the stopped thread _after_ setting
753 * TIF_SIGPENDING
754 */
755 state = TASK_STOPPED;
756 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
757 set_tsk_thread_flag(t, TIF_SIGPENDING);
758 state |= TASK_INTERRUPTIBLE;
759 }
760 wake_up_state(t, state);
761
762 t = next_thread(t);
763 } while (t != p);
764
765 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
766 /*
767 * We were in fact stopped, and are now continued.
768 * Notify the parent with CLD_CONTINUED.
769 */
770 p->signal->flags = SIGNAL_STOP_CONTINUED;
771 p->signal->group_exit_code = 0;
772 spin_unlock(&p->sighand->siglock);
bc505a47 773 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
774 spin_lock(&p->sighand->siglock);
775 } else {
776 /*
777 * We are not stopped, but there could be a stop
778 * signal in the middle of being processed after
779 * being removed from the queue. Clear that too.
780 */
781 p->signal->flags = 0;
782 }
783 } else if (sig == SIGKILL) {
784 /*
785 * Make sure that any pending stop signal already dequeued
786 * is undone by the wakeup for SIGKILL.
787 */
788 p->signal->flags = 0;
789 }
790}
791
792static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
793 struct sigpending *signals)
794{
795 struct sigqueue * q = NULL;
796 int ret = 0;
797
798 /*
799 * fast-pathed signals for kernel-internal things like SIGSTOP
800 * or SIGKILL.
801 */
802 if ((unsigned long)info == 2)
803 goto out_set;
804
805 /* Real-time signals must be queued if sent by sigqueue, or
806 some other real-time mechanism. It is implementation
807 defined whether kill() does so. We attempt to do so, on
808 the principle of least surprise, but since kill is not
809 allowed to fail with EAGAIN when low on memory we just
810 make sure at least one signal gets delivered and don't
811 pass on the info struct. */
812
813 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
814 ((unsigned long) info < 2 ||
815 info->si_code >= 0)));
816 if (q) {
817 list_add_tail(&q->list, &signals->list);
818 switch ((unsigned long) info) {
819 case 0:
820 q->info.si_signo = sig;
821 q->info.si_errno = 0;
822 q->info.si_code = SI_USER;
823 q->info.si_pid = current->pid;
824 q->info.si_uid = current->uid;
825 break;
826 case 1:
827 q->info.si_signo = sig;
828 q->info.si_errno = 0;
829 q->info.si_code = SI_KERNEL;
830 q->info.si_pid = 0;
831 q->info.si_uid = 0;
832 break;
833 default:
834 copy_siginfo(&q->info, info);
835 break;
836 }
837 } else {
838 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
839 && info->si_code != SI_USER)
840 /*
841 * Queue overflow, abort. We may abort if the signal was rt
842 * and sent by user using something other than kill().
843 */
844 return -EAGAIN;
845 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
846 /*
847 * Set up a return to indicate that we dropped
848 * the signal.
849 */
850 ret = info->si_sys_private;
851 }
852
853out_set:
854 sigaddset(&signals->signal, sig);
855 return ret;
856}
857
858#define LEGACY_QUEUE(sigptr, sig) \
859 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
860
861
862static int
863specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
864{
865 int ret = 0;
866
867 if (!irqs_disabled())
868 BUG();
869 assert_spin_locked(&t->sighand->siglock);
870
871 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
872 /*
873 * Set up a return to indicate that we dropped the signal.
874 */
875 ret = info->si_sys_private;
876
877 /* Short-circuit ignored signals. */
878 if (sig_ignored(t, sig))
879 goto out;
880
881 /* Support queueing exactly one non-rt signal, so that we
882 can get more detailed information about the cause of
883 the signal. */
884 if (LEGACY_QUEUE(&t->pending, sig))
885 goto out;
886
887 ret = send_signal(sig, info, t, &t->pending);
888 if (!ret && !sigismember(&t->blocked, sig))
889 signal_wake_up(t, sig == SIGKILL);
890out:
891 return ret;
892}
893
894/*
895 * Force a signal that the process can't ignore: if necessary
896 * we unblock the signal and change any SIG_IGN to SIG_DFL.
897 */
898
899int
900force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
901{
902 unsigned long int flags;
903 int ret;
904
905 spin_lock_irqsave(&t->sighand->siglock, flags);
906 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
907 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
908 sigdelset(&t->blocked, sig);
909 recalc_sigpending_tsk(t);
910 }
911 ret = specific_send_sig_info(sig, info, t);
912 spin_unlock_irqrestore(&t->sighand->siglock, flags);
913
914 return ret;
915}
916
917void
918force_sig_specific(int sig, struct task_struct *t)
919{
920 unsigned long int flags;
921
922 spin_lock_irqsave(&t->sighand->siglock, flags);
923 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
924 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
925 sigdelset(&t->blocked, sig);
926 recalc_sigpending_tsk(t);
927 specific_send_sig_info(sig, (void *)2, t);
928 spin_unlock_irqrestore(&t->sighand->siglock, flags);
929}
930
931/*
932 * Test if P wants to take SIG. After we've checked all threads with this,
933 * it's equivalent to finding no threads not blocking SIG. Any threads not
934 * blocking SIG were ruled out because they are not running and already
935 * have pending signals. Such threads will dequeue from the shared queue
936 * as soon as they're available, so putting the signal on the shared queue
937 * will be equivalent to sending it to one such thread.
938 */
188a1eaf
LT
939static inline int wants_signal(int sig, struct task_struct *p)
940{
941 if (sigismember(&p->blocked, sig))
942 return 0;
943 if (p->flags & PF_EXITING)
944 return 0;
945 if (sig == SIGKILL)
946 return 1;
947 if (p->state & (TASK_STOPPED | TASK_TRACED))
948 return 0;
949 return task_curr(p) || !signal_pending(p);
950}
1da177e4
LT
951
952static void
953__group_complete_signal(int sig, struct task_struct *p)
954{
1da177e4
LT
955 struct task_struct *t;
956
1da177e4
LT
957 /*
958 * Now find a thread we can wake up to take the signal off the queue.
959 *
960 * If the main thread wants the signal, it gets first crack.
961 * Probably the least surprising to the average bear.
962 */
188a1eaf 963 if (wants_signal(sig, p))
1da177e4
LT
964 t = p;
965 else if (thread_group_empty(p))
966 /*
967 * There is just one thread and it does not need to be woken.
968 * It will dequeue unblocked signals before it runs again.
969 */
970 return;
971 else {
972 /*
973 * Otherwise try to find a suitable thread.
974 */
975 t = p->signal->curr_target;
976 if (t == NULL)
977 /* restart balancing at this thread */
978 t = p->signal->curr_target = p;
979 BUG_ON(t->tgid != p->tgid);
980
188a1eaf 981 while (!wants_signal(sig, t)) {
1da177e4
LT
982 t = next_thread(t);
983 if (t == p->signal->curr_target)
984 /*
985 * No thread needs to be woken.
986 * Any eligible threads will see
987 * the signal in the queue soon.
988 */
989 return;
990 }
991 p->signal->curr_target = t;
992 }
993
994 /*
995 * Found a killable thread. If the signal will be fatal,
996 * then start taking the whole group down immediately.
997 */
998 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
999 !sigismember(&t->real_blocked, sig) &&
1000 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1001 /*
1002 * This signal will be fatal to the whole group.
1003 */
1004 if (!sig_kernel_coredump(sig)) {
1005 /*
1006 * Start a group exit and wake everybody up.
1007 * This way we don't have other threads
1008 * running and doing things after a slower
1009 * thread has the fatal signal pending.
1010 */
1011 p->signal->flags = SIGNAL_GROUP_EXIT;
1012 p->signal->group_exit_code = sig;
1013 p->signal->group_stop_count = 0;
1014 t = p;
1015 do {
1016 sigaddset(&t->pending.signal, SIGKILL);
1017 signal_wake_up(t, 1);
1018 t = next_thread(t);
1019 } while (t != p);
1020 return;
1021 }
1022
1023 /*
1024 * There will be a core dump. We make all threads other
1025 * than the chosen one go into a group stop so that nothing
1026 * happens until it gets scheduled, takes the signal off
1027 * the shared queue, and does the core dump. This is a
1028 * little more complicated than strictly necessary, but it
1029 * keeps the signal state that winds up in the core dump
1030 * unchanged from the death state, e.g. which thread had
1031 * the core-dump signal unblocked.
1032 */
1033 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1034 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1035 p->signal->group_stop_count = 0;
1036 p->signal->group_exit_task = t;
1037 t = p;
1038 do {
1039 p->signal->group_stop_count++;
1040 signal_wake_up(t, 0);
1041 t = next_thread(t);
1042 } while (t != p);
1043 wake_up_process(p->signal->group_exit_task);
1044 return;
1045 }
1046
1047 /*
1048 * The signal is already in the shared-pending queue.
1049 * Tell the chosen thread to wake up and dequeue it.
1050 */
1051 signal_wake_up(t, sig == SIGKILL);
1052 return;
1053}
1054
1055int
1056__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1057{
1058 int ret = 0;
1059
1060 assert_spin_locked(&p->sighand->siglock);
1061 handle_stop_signal(sig, p);
1062
1063 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1064 /*
1065 * Set up a return to indicate that we dropped the signal.
1066 */
1067 ret = info->si_sys_private;
1068
1069 /* Short-circuit ignored signals. */
1070 if (sig_ignored(p, sig))
1071 return ret;
1072
1073 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1074 /* This is a non-RT signal and we already have one queued. */
1075 return ret;
1076
1077 /*
1078 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1079 * We always use the shared queue for process-wide signals,
1080 * to avoid several races.
1081 */
1082 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1083 if (unlikely(ret))
1084 return ret;
1085
1086 __group_complete_signal(sig, p);
1087 return 0;
1088}
1089
1090/*
1091 * Nuke all other threads in the group.
1092 */
1093void zap_other_threads(struct task_struct *p)
1094{
1095 struct task_struct *t;
1096
1097 p->signal->flags = SIGNAL_GROUP_EXIT;
1098 p->signal->group_stop_count = 0;
1099
1100 if (thread_group_empty(p))
1101 return;
1102
1103 for (t = next_thread(p); t != p; t = next_thread(t)) {
1104 /*
1105 * Don't bother with already dead threads
1106 */
1107 if (t->exit_state)
1108 continue;
1109
1110 /*
1111 * We don't want to notify the parent, since we are
1112 * killed as part of a thread group due to another
1113 * thread doing an execve() or similar. So set the
1114 * exit signal to -1 to allow immediate reaping of
1115 * the process. But don't detach the thread group
1116 * leader.
1117 */
1118 if (t != p->group_leader)
1119 t->exit_signal = -1;
1120
1121 sigaddset(&t->pending.signal, SIGKILL);
1122 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1123 signal_wake_up(t, 1);
1124 }
1125}
1126
1127/*
1128 * Must be called with the tasklist_lock held for reading!
1129 */
1130int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1131{
1132 unsigned long flags;
1133 int ret;
1134
1135 ret = check_kill_permission(sig, info, p);
1136 if (!ret && sig && p->sighand) {
1137 spin_lock_irqsave(&p->sighand->siglock, flags);
1138 ret = __group_send_sig_info(sig, info, p);
1139 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1140 }
1141
1142 return ret;
1143}
1144
1145/*
1146 * kill_pg_info() sends a signal to a process group: this is what the tty
1147 * control characters do (^C, ^Z etc)
1148 */
1149
1150int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1151{
1152 struct task_struct *p = NULL;
1153 int retval, success;
1154
1155 if (pgrp <= 0)
1156 return -EINVAL;
1157
1158 success = 0;
1159 retval = -ESRCH;
1160 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1161 int err = group_send_sig_info(sig, info, p);
1162 success |= !err;
1163 retval = err;
1164 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1165 return success ? 0 : retval;
1166}
1167
1168int
1169kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1170{
1171 int retval;
1172
1173 read_lock(&tasklist_lock);
1174 retval = __kill_pg_info(sig, info, pgrp);
1175 read_unlock(&tasklist_lock);
1176
1177 return retval;
1178}
1179
1180int
1181kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1182{
1183 int error;
1184 struct task_struct *p;
1185
1186 read_lock(&tasklist_lock);
1187 p = find_task_by_pid(pid);
1188 error = -ESRCH;
1189 if (p)
1190 error = group_send_sig_info(sig, info, p);
1191 read_unlock(&tasklist_lock);
1192 return error;
1193}
1194
1195
1196/*
1197 * kill_something_info() interprets pid in interesting ways just like kill(2).
1198 *
1199 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1200 * is probably wrong. Should make it like BSD or SYSV.
1201 */
1202
1203static int kill_something_info(int sig, struct siginfo *info, int pid)
1204{
1205 if (!pid) {
1206 return kill_pg_info(sig, info, process_group(current));
1207 } else if (pid == -1) {
1208 int retval = 0, count = 0;
1209 struct task_struct * p;
1210
1211 read_lock(&tasklist_lock);
1212 for_each_process(p) {
1213 if (p->pid > 1 && p->tgid != current->tgid) {
1214 int err = group_send_sig_info(sig, info, p);
1215 ++count;
1216 if (err != -EPERM)
1217 retval = err;
1218 }
1219 }
1220 read_unlock(&tasklist_lock);
1221 return count ? retval : -ESRCH;
1222 } else if (pid < 0) {
1223 return kill_pg_info(sig, info, -pid);
1224 } else {
1225 return kill_proc_info(sig, info, pid);
1226 }
1227}
1228
1229/*
1230 * These are for backward compatibility with the rest of the kernel source.
1231 */
1232
1233/*
1234 * These two are the most common entry points. They send a signal
1235 * just to the specific thread.
1236 */
1237int
1238send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1239{
1240 int ret;
1241 unsigned long flags;
1242
1243 /*
1244 * Make sure legacy kernel users don't send in bad values
1245 * (normal paths check this in check_kill_permission).
1246 */
7ed20e1a 1247 if (!valid_signal(sig))
1da177e4
LT
1248 return -EINVAL;
1249
1250 /*
1251 * We need the tasklist lock even for the specific
1252 * thread case (when we don't need to follow the group
1253 * lists) in order to avoid races with "p->sighand"
1254 * going away or changing from under us.
1255 */
1256 read_lock(&tasklist_lock);
1257 spin_lock_irqsave(&p->sighand->siglock, flags);
1258 ret = specific_send_sig_info(sig, info, p);
1259 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1260 read_unlock(&tasklist_lock);
1261 return ret;
1262}
1263
1264int
1265send_sig(int sig, struct task_struct *p, int priv)
1266{
1267 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1268}
1269
1270/*
1271 * This is the entry point for "process-wide" signals.
1272 * They will go to an appropriate thread in the thread group.
1273 */
1274int
1275send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1276{
1277 int ret;
1278 read_lock(&tasklist_lock);
1279 ret = group_send_sig_info(sig, info, p);
1280 read_unlock(&tasklist_lock);
1281 return ret;
1282}
1283
1284void
1285force_sig(int sig, struct task_struct *p)
1286{
1287 force_sig_info(sig, (void*)1L, p);
1288}
1289
1290/*
1291 * When things go south during signal handling, we
1292 * will force a SIGSEGV. And if the signal that caused
1293 * the problem was already a SIGSEGV, we'll want to
1294 * make sure we don't even try to deliver the signal..
1295 */
1296int
1297force_sigsegv(int sig, struct task_struct *p)
1298{
1299 if (sig == SIGSEGV) {
1300 unsigned long flags;
1301 spin_lock_irqsave(&p->sighand->siglock, flags);
1302 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1303 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1304 }
1305 force_sig(SIGSEGV, p);
1306 return 0;
1307}
1308
1309int
1310kill_pg(pid_t pgrp, int sig, int priv)
1311{
1312 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1313}
1314
1315int
1316kill_proc(pid_t pid, int sig, int priv)
1317{
1318 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1319}
1320
1321/*
1322 * These functions support sending signals using preallocated sigqueue
1323 * structures. This is needed "because realtime applications cannot
1324 * afford to lose notifications of asynchronous events, like timer
1325 * expirations or I/O completions". In the case of Posix Timers
1326 * we allocate the sigqueue structure from the timer_create. If this
1327 * allocation fails we are able to report the failure to the application
1328 * with an EAGAIN error.
1329 */
1330
1331struct sigqueue *sigqueue_alloc(void)
1332{
1333 struct sigqueue *q;
1334
1335 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1336 q->flags |= SIGQUEUE_PREALLOC;
1337 return(q);
1338}
1339
1340void sigqueue_free(struct sigqueue *q)
1341{
1342 unsigned long flags;
1343 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1344 /*
1345 * If the signal is still pending remove it from the
1346 * pending queue.
1347 */
1348 if (unlikely(!list_empty(&q->list))) {
1349 read_lock(&tasklist_lock);
1350 spin_lock_irqsave(q->lock, flags);
1351 if (!list_empty(&q->list))
1352 list_del_init(&q->list);
1353 spin_unlock_irqrestore(q->lock, flags);
1354 read_unlock(&tasklist_lock);
1355 }
1356 q->flags &= ~SIGQUEUE_PREALLOC;
1357 __sigqueue_free(q);
1358}
1359
1360int
1361send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1362{
1363 unsigned long flags;
1364 int ret = 0;
1365
1da177e4 1366 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e752dd6c
ON
1367 read_lock(&tasklist_lock);
1368
1369 if (unlikely(p->flags & PF_EXITING)) {
1370 ret = -1;
1371 goto out_err;
1372 }
1373
1da177e4 1374 spin_lock_irqsave(&p->sighand->siglock, flags);
e752dd6c 1375
1da177e4
LT
1376 if (unlikely(!list_empty(&q->list))) {
1377 /*
1378 * If an SI_TIMER entry is already queue just increment
1379 * the overrun count.
1380 */
1381 if (q->info.si_code != SI_TIMER)
1382 BUG();
1383 q->info.si_overrun++;
1384 goto out;
e752dd6c 1385 }
1da177e4
LT
1386 /* Short-circuit ignored signals. */
1387 if (sig_ignored(p, sig)) {
1388 ret = 1;
1389 goto out;
1390 }
1391
1392 q->lock = &p->sighand->siglock;
1393 list_add_tail(&q->list, &p->pending.list);
1394 sigaddset(&p->pending.signal, sig);
1395 if (!sigismember(&p->blocked, sig))
1396 signal_wake_up(p, sig == SIGKILL);
1397
1398out:
1399 spin_unlock_irqrestore(&p->sighand->siglock, flags);
e752dd6c 1400out_err:
1da177e4 1401 read_unlock(&tasklist_lock);
e752dd6c
ON
1402
1403 return ret;
1da177e4
LT
1404}
1405
1406int
1407send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1408{
1409 unsigned long flags;
1410 int ret = 0;
1411
1412 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1413 read_lock(&tasklist_lock);
1414 spin_lock_irqsave(&p->sighand->siglock, flags);
1415 handle_stop_signal(sig, p);
1416
1417 /* Short-circuit ignored signals. */
1418 if (sig_ignored(p, sig)) {
1419 ret = 1;
1420 goto out;
1421 }
1422
1423 if (unlikely(!list_empty(&q->list))) {
1424 /*
1425 * If an SI_TIMER entry is already queue just increment
1426 * the overrun count. Other uses should not try to
1427 * send the signal multiple times.
1428 */
1429 if (q->info.si_code != SI_TIMER)
1430 BUG();
1431 q->info.si_overrun++;
1432 goto out;
1433 }
1434
1435 /*
1436 * Put this signal on the shared-pending queue.
1437 * We always use the shared queue for process-wide signals,
1438 * to avoid several races.
1439 */
1440 q->lock = &p->sighand->siglock;
1441 list_add_tail(&q->list, &p->signal->shared_pending.list);
1442 sigaddset(&p->signal->shared_pending.signal, sig);
1443
1444 __group_complete_signal(sig, p);
1445out:
1446 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1447 read_unlock(&tasklist_lock);
1448 return(ret);
1449}
1450
1451/*
1452 * Wake up any threads in the parent blocked in wait* syscalls.
1453 */
1454static inline void __wake_up_parent(struct task_struct *p,
1455 struct task_struct *parent)
1456{
1457 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1458}
1459
1460/*
1461 * Let a parent know about the death of a child.
1462 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1463 */
1464
1465void do_notify_parent(struct task_struct *tsk, int sig)
1466{
1467 struct siginfo info;
1468 unsigned long flags;
1469 struct sighand_struct *psig;
1470
1471 BUG_ON(sig == -1);
1472
1473 /* do_notify_parent_cldstop should have been called instead. */
1474 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1475
1476 BUG_ON(!tsk->ptrace &&
1477 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1478
1479 info.si_signo = sig;
1480 info.si_errno = 0;
1481 info.si_pid = tsk->pid;
1482 info.si_uid = tsk->uid;
1483
1484 /* FIXME: find out whether or not this is supposed to be c*time. */
1485 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1486 tsk->signal->utime));
1487 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1488 tsk->signal->stime));
1489
1490 info.si_status = tsk->exit_code & 0x7f;
1491 if (tsk->exit_code & 0x80)
1492 info.si_code = CLD_DUMPED;
1493 else if (tsk->exit_code & 0x7f)
1494 info.si_code = CLD_KILLED;
1495 else {
1496 info.si_code = CLD_EXITED;
1497 info.si_status = tsk->exit_code >> 8;
1498 }
1499
1500 psig = tsk->parent->sighand;
1501 spin_lock_irqsave(&psig->siglock, flags);
1502 if (sig == SIGCHLD &&
1503 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1504 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1505 /*
1506 * We are exiting and our parent doesn't care. POSIX.1
1507 * defines special semantics for setting SIGCHLD to SIG_IGN
1508 * or setting the SA_NOCLDWAIT flag: we should be reaped
1509 * automatically and not left for our parent's wait4 call.
1510 * Rather than having the parent do it as a magic kind of
1511 * signal handler, we just set this to tell do_exit that we
1512 * can be cleaned up without becoming a zombie. Note that
1513 * we still call __wake_up_parent in this case, because a
1514 * blocked sys_wait4 might now return -ECHILD.
1515 *
1516 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1517 * is implementation-defined: we do (if you don't want
1518 * it, just use SIG_IGN instead).
1519 */
1520 tsk->exit_signal = -1;
1521 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1522 sig = 0;
1523 }
7ed20e1a 1524 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1525 __group_send_sig_info(sig, &info, tsk->parent);
1526 __wake_up_parent(tsk, tsk->parent);
1527 spin_unlock_irqrestore(&psig->siglock, flags);
1528}
1529
bc505a47 1530static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1531{
1532 struct siginfo info;
1533 unsigned long flags;
bc505a47 1534 struct task_struct *parent;
1da177e4
LT
1535 struct sighand_struct *sighand;
1536
bc505a47
ON
1537 if (to_self)
1538 parent = tsk->parent;
1539 else {
1540 tsk = tsk->group_leader;
1541 parent = tsk->real_parent;
1542 }
1543
1da177e4
LT
1544 info.si_signo = SIGCHLD;
1545 info.si_errno = 0;
1546 info.si_pid = tsk->pid;
1547 info.si_uid = tsk->uid;
1548
1549 /* FIXME: find out whether or not this is supposed to be c*time. */
1550 info.si_utime = cputime_to_jiffies(tsk->utime);
1551 info.si_stime = cputime_to_jiffies(tsk->stime);
1552
1553 info.si_code = why;
1554 switch (why) {
1555 case CLD_CONTINUED:
1556 info.si_status = SIGCONT;
1557 break;
1558 case CLD_STOPPED:
1559 info.si_status = tsk->signal->group_exit_code & 0x7f;
1560 break;
1561 case CLD_TRAPPED:
1562 info.si_status = tsk->exit_code & 0x7f;
1563 break;
1564 default:
1565 BUG();
1566 }
1567
1568 sighand = parent->sighand;
1569 spin_lock_irqsave(&sighand->siglock, flags);
1570 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1571 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1572 __group_send_sig_info(SIGCHLD, &info, parent);
1573 /*
1574 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1575 */
1576 __wake_up_parent(tsk, parent);
1577 spin_unlock_irqrestore(&sighand->siglock, flags);
1578}
1579
1580/*
1581 * This must be called with current->sighand->siglock held.
1582 *
1583 * This should be the path for all ptrace stops.
1584 * We always set current->last_siginfo while stopped here.
1585 * That makes it a way to test a stopped process for
1586 * being ptrace-stopped vs being job-control-stopped.
1587 *
1588 * If we actually decide not to stop at all because the tracer is gone,
1589 * we leave nostop_code in current->exit_code.
1590 */
1591static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1592{
1593 /*
1594 * If there is a group stop in progress,
1595 * we must participate in the bookkeeping.
1596 */
1597 if (current->signal->group_stop_count > 0)
1598 --current->signal->group_stop_count;
1599
1600 current->last_siginfo = info;
1601 current->exit_code = exit_code;
1602
1603 /* Let the debugger run. */
1604 set_current_state(TASK_TRACED);
1605 spin_unlock_irq(&current->sighand->siglock);
1606 read_lock(&tasklist_lock);
1607 if (likely(current->ptrace & PT_PTRACED) &&
1608 likely(current->parent != current->real_parent ||
1609 !(current->ptrace & PT_ATTACHED)) &&
1610 (likely(current->parent->signal != current->signal) ||
1611 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1612 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1613 read_unlock(&tasklist_lock);
1614 schedule();
1615 } else {
1616 /*
1617 * By the time we got the lock, our tracer went away.
1618 * Don't stop here.
1619 */
1620 read_unlock(&tasklist_lock);
1621 set_current_state(TASK_RUNNING);
1622 current->exit_code = nostop_code;
1623 }
1624
1625 /*
1626 * We are back. Now reacquire the siglock before touching
1627 * last_siginfo, so that we are sure to have synchronized with
1628 * any signal-sending on another CPU that wants to examine it.
1629 */
1630 spin_lock_irq(&current->sighand->siglock);
1631 current->last_siginfo = NULL;
1632
1633 /*
1634 * Queued signals ignored us while we were stopped for tracing.
1635 * So check for any that we should take before resuming user mode.
1636 */
1637 recalc_sigpending();
1638}
1639
1640void ptrace_notify(int exit_code)
1641{
1642 siginfo_t info;
1643
1644 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1645
1646 memset(&info, 0, sizeof info);
1647 info.si_signo = SIGTRAP;
1648 info.si_code = exit_code;
1649 info.si_pid = current->pid;
1650 info.si_uid = current->uid;
1651
1652 /* Let the debugger run. */
1653 spin_lock_irq(&current->sighand->siglock);
1654 ptrace_stop(exit_code, 0, &info);
1655 spin_unlock_irq(&current->sighand->siglock);
1656}
1657
1da177e4
LT
1658static void
1659finish_stop(int stop_count)
1660{
bc505a47
ON
1661 int to_self;
1662
1da177e4
LT
1663 /*
1664 * If there are no other threads in the group, or if there is
1665 * a group stop in progress and we are the last to stop,
1666 * report to the parent. When ptraced, every thread reports itself.
1667 */
bc505a47
ON
1668 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1669 to_self = 1;
1670 else if (stop_count == 0)
1671 to_self = 0;
1672 else
1673 goto out;
1da177e4 1674
bc505a47
ON
1675 read_lock(&tasklist_lock);
1676 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1677 read_unlock(&tasklist_lock);
1678
1679out:
1da177e4
LT
1680 schedule();
1681 /*
1682 * Now we don't run again until continued.
1683 */
1684 current->exit_code = 0;
1685}
1686
1687/*
1688 * This performs the stopping for SIGSTOP and other stop signals.
1689 * We have to stop all threads in the thread group.
1690 * Returns nonzero if we've actually stopped and released the siglock.
1691 * Returns zero if we didn't stop and still hold the siglock.
1692 */
1693static int
1694do_signal_stop(int signr)
1695{
1696 struct signal_struct *sig = current->signal;
1697 struct sighand_struct *sighand = current->sighand;
1698 int stop_count = -1;
1699
1700 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1701 return 0;
1702
1703 if (sig->group_stop_count > 0) {
1704 /*
1705 * There is a group stop in progress. We don't need to
1706 * start another one.
1707 */
1708 signr = sig->group_exit_code;
1709 stop_count = --sig->group_stop_count;
1710 current->exit_code = signr;
1711 set_current_state(TASK_STOPPED);
1712 if (stop_count == 0)
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 spin_unlock_irq(&sighand->siglock);
1715 }
1716 else if (thread_group_empty(current)) {
1717 /*
1718 * Lock must be held through transition to stopped state.
1719 */
1720 current->exit_code = current->signal->group_exit_code = signr;
1721 set_current_state(TASK_STOPPED);
1722 sig->flags = SIGNAL_STOP_STOPPED;
1723 spin_unlock_irq(&sighand->siglock);
1724 }
1725 else {
1726 /*
1727 * There is no group stop already in progress.
1728 * We must initiate one now, but that requires
1729 * dropping siglock to get both the tasklist lock
1730 * and siglock again in the proper order. Note that
1731 * this allows an intervening SIGCONT to be posted.
1732 * We need to check for that and bail out if necessary.
1733 */
1734 struct task_struct *t;
1735
1736 spin_unlock_irq(&sighand->siglock);
1737
1738 /* signals can be posted during this window */
1739
1740 read_lock(&tasklist_lock);
1741 spin_lock_irq(&sighand->siglock);
1742
1743 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1744 /*
1745 * Another stop or continue happened while we
1746 * didn't have the lock. We can just swallow this
1747 * signal now. If we raced with a SIGCONT, that
1748 * should have just cleared it now. If we raced
1749 * with another processor delivering a stop signal,
1750 * then the SIGCONT that wakes us up should clear it.
1751 */
1752 read_unlock(&tasklist_lock);
1753 return 0;
1754 }
1755
1756 if (sig->group_stop_count == 0) {
1757 sig->group_exit_code = signr;
1758 stop_count = 0;
1759 for (t = next_thread(current); t != current;
1760 t = next_thread(t))
1761 /*
1762 * Setting state to TASK_STOPPED for a group
1763 * stop is always done with the siglock held,
1764 * so this check has no races.
1765 */
1766 if (t->state < TASK_STOPPED) {
1767 stop_count++;
1768 signal_wake_up(t, 0);
1769 }
1770 sig->group_stop_count = stop_count;
1771 }
1772 else {
1773 /* A race with another thread while unlocked. */
1774 signr = sig->group_exit_code;
1775 stop_count = --sig->group_stop_count;
1776 }
1777
1778 current->exit_code = signr;
1779 set_current_state(TASK_STOPPED);
1780 if (stop_count == 0)
1781 sig->flags = SIGNAL_STOP_STOPPED;
1782
1783 spin_unlock_irq(&sighand->siglock);
1784 read_unlock(&tasklist_lock);
1785 }
1786
1787 finish_stop(stop_count);
1788 return 1;
1789}
1790
1791/*
1792 * Do appropriate magic when group_stop_count > 0.
1793 * We return nonzero if we stopped, after releasing the siglock.
1794 * We return zero if we still hold the siglock and should look
1795 * for another signal without checking group_stop_count again.
1796 */
1797static inline int handle_group_stop(void)
1798{
1799 int stop_count;
1800
1801 if (current->signal->group_exit_task == current) {
1802 /*
1803 * Group stop is so we can do a core dump,
1804 * We are the initiating thread, so get on with it.
1805 */
1806 current->signal->group_exit_task = NULL;
1807 return 0;
1808 }
1809
1810 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1811 /*
1812 * Group stop is so another thread can do a core dump,
1813 * or else we are racing against a death signal.
1814 * Just punt the stop so we can get the next signal.
1815 */
1816 return 0;
1817
1818 /*
1819 * There is a group stop in progress. We stop
1820 * without any associated signal being in our queue.
1821 */
1822 stop_count = --current->signal->group_stop_count;
1823 if (stop_count == 0)
1824 current->signal->flags = SIGNAL_STOP_STOPPED;
1825 current->exit_code = current->signal->group_exit_code;
1826 set_current_state(TASK_STOPPED);
1827 spin_unlock_irq(&current->sighand->siglock);
1828 finish_stop(stop_count);
1829 return 1;
1830}
1831
1832int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1833 struct pt_regs *regs, void *cookie)
1834{
1835 sigset_t *mask = &current->blocked;
1836 int signr = 0;
1837
1838relock:
1839 spin_lock_irq(&current->sighand->siglock);
1840 for (;;) {
1841 struct k_sigaction *ka;
1842
1843 if (unlikely(current->signal->group_stop_count > 0) &&
1844 handle_group_stop())
1845 goto relock;
1846
1847 signr = dequeue_signal(current, mask, info);
1848
1849 if (!signr)
1850 break; /* will return 0 */
1851
1852 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1853 ptrace_signal_deliver(regs, cookie);
1854
1855 /* Let the debugger run. */
1856 ptrace_stop(signr, signr, info);
1857
1858 /* We're back. Did the debugger cancel the sig? */
1859 signr = current->exit_code;
1860 if (signr == 0)
1861 continue;
1862
1863 current->exit_code = 0;
1864
1865 /* Update the siginfo structure if the signal has
1866 changed. If the debugger wanted something
1867 specific in the siginfo structure then it should
1868 have updated *info via PTRACE_SETSIGINFO. */
1869 if (signr != info->si_signo) {
1870 info->si_signo = signr;
1871 info->si_errno = 0;
1872 info->si_code = SI_USER;
1873 info->si_pid = current->parent->pid;
1874 info->si_uid = current->parent->uid;
1875 }
1876
1877 /* If the (new) signal is now blocked, requeue it. */
1878 if (sigismember(&current->blocked, signr)) {
1879 specific_send_sig_info(signr, info, current);
1880 continue;
1881 }
1882 }
1883
1884 ka = &current->sighand->action[signr-1];
1885 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1886 continue;
1887 if (ka->sa.sa_handler != SIG_DFL) {
1888 /* Run the handler. */
1889 *return_ka = *ka;
1890
1891 if (ka->sa.sa_flags & SA_ONESHOT)
1892 ka->sa.sa_handler = SIG_DFL;
1893
1894 break; /* will return non-zero "signr" value */
1895 }
1896
1897 /*
1898 * Now we are doing the default action for this signal.
1899 */
1900 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1901 continue;
1902
1903 /* Init gets no signals it doesn't want. */
1904 if (current->pid == 1)
1905 continue;
1906
1907 if (sig_kernel_stop(signr)) {
1908 /*
1909 * The default action is to stop all threads in
1910 * the thread group. The job control signals
1911 * do nothing in an orphaned pgrp, but SIGSTOP
1912 * always works. Note that siglock needs to be
1913 * dropped during the call to is_orphaned_pgrp()
1914 * because of lock ordering with tasklist_lock.
1915 * This allows an intervening SIGCONT to be posted.
1916 * We need to check for that and bail out if necessary.
1917 */
1918 if (signr != SIGSTOP) {
1919 spin_unlock_irq(&current->sighand->siglock);
1920
1921 /* signals can be posted during this window */
1922
1923 if (is_orphaned_pgrp(process_group(current)))
1924 goto relock;
1925
1926 spin_lock_irq(&current->sighand->siglock);
1927 }
1928
1929 if (likely(do_signal_stop(signr))) {
1930 /* It released the siglock. */
1931 goto relock;
1932 }
1933
1934 /*
1935 * We didn't actually stop, due to a race
1936 * with SIGCONT or something like that.
1937 */
1938 continue;
1939 }
1940
1941 spin_unlock_irq(&current->sighand->siglock);
1942
1943 /*
1944 * Anything else is fatal, maybe with a core dump.
1945 */
1946 current->flags |= PF_SIGNALED;
1947 if (sig_kernel_coredump(signr)) {
1948 /*
1949 * If it was able to dump core, this kills all
1950 * other threads in the group and synchronizes with
1951 * their demise. If we lost the race with another
1952 * thread getting here, it set group_exit_code
1953 * first and our do_group_exit call below will use
1954 * that value and ignore the one we pass it.
1955 */
1956 do_coredump((long)signr, signr, regs);
1957 }
1958
1959 /*
1960 * Death signals, no core dump.
1961 */
1962 do_group_exit(signr);
1963 /* NOTREACHED */
1964 }
1965 spin_unlock_irq(&current->sighand->siglock);
1966 return signr;
1967}
1968
1da177e4
LT
1969EXPORT_SYMBOL(recalc_sigpending);
1970EXPORT_SYMBOL_GPL(dequeue_signal);
1971EXPORT_SYMBOL(flush_signals);
1972EXPORT_SYMBOL(force_sig);
1973EXPORT_SYMBOL(kill_pg);
1974EXPORT_SYMBOL(kill_proc);
1975EXPORT_SYMBOL(ptrace_notify);
1976EXPORT_SYMBOL(send_sig);
1977EXPORT_SYMBOL(send_sig_info);
1978EXPORT_SYMBOL(sigprocmask);
1979EXPORT_SYMBOL(block_all_signals);
1980EXPORT_SYMBOL(unblock_all_signals);
1981
1982
1983/*
1984 * System call entry points.
1985 */
1986
1987asmlinkage long sys_restart_syscall(void)
1988{
1989 struct restart_block *restart = &current_thread_info()->restart_block;
1990 return restart->fn(restart);
1991}
1992
1993long do_no_restart_syscall(struct restart_block *param)
1994{
1995 return -EINTR;
1996}
1997
1998/*
1999 * We don't need to get the kernel lock - this is all local to this
2000 * particular thread.. (and that's good, because this is _heavily_
2001 * used by various programs)
2002 */
2003
2004/*
2005 * This is also useful for kernel threads that want to temporarily
2006 * (or permanently) block certain signals.
2007 *
2008 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2009 * interface happily blocks "unblockable" signals like SIGKILL
2010 * and friends.
2011 */
2012int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2013{
2014 int error;
2015 sigset_t old_block;
2016
2017 spin_lock_irq(&current->sighand->siglock);
2018 old_block = current->blocked;
2019 error = 0;
2020 switch (how) {
2021 case SIG_BLOCK:
2022 sigorsets(&current->blocked, &current->blocked, set);
2023 break;
2024 case SIG_UNBLOCK:
2025 signandsets(&current->blocked, &current->blocked, set);
2026 break;
2027 case SIG_SETMASK:
2028 current->blocked = *set;
2029 break;
2030 default:
2031 error = -EINVAL;
2032 }
2033 recalc_sigpending();
2034 spin_unlock_irq(&current->sighand->siglock);
2035 if (oldset)
2036 *oldset = old_block;
2037 return error;
2038}
2039
2040asmlinkage long
2041sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2042{
2043 int error = -EINVAL;
2044 sigset_t old_set, new_set;
2045
2046 /* XXX: Don't preclude handling different sized sigset_t's. */
2047 if (sigsetsize != sizeof(sigset_t))
2048 goto out;
2049
2050 if (set) {
2051 error = -EFAULT;
2052 if (copy_from_user(&new_set, set, sizeof(*set)))
2053 goto out;
2054 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2055
2056 error = sigprocmask(how, &new_set, &old_set);
2057 if (error)
2058 goto out;
2059 if (oset)
2060 goto set_old;
2061 } else if (oset) {
2062 spin_lock_irq(&current->sighand->siglock);
2063 old_set = current->blocked;
2064 spin_unlock_irq(&current->sighand->siglock);
2065
2066 set_old:
2067 error = -EFAULT;
2068 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2069 goto out;
2070 }
2071 error = 0;
2072out:
2073 return error;
2074}
2075
2076long do_sigpending(void __user *set, unsigned long sigsetsize)
2077{
2078 long error = -EINVAL;
2079 sigset_t pending;
2080
2081 if (sigsetsize > sizeof(sigset_t))
2082 goto out;
2083
2084 spin_lock_irq(&current->sighand->siglock);
2085 sigorsets(&pending, &current->pending.signal,
2086 &current->signal->shared_pending.signal);
2087 spin_unlock_irq(&current->sighand->siglock);
2088
2089 /* Outside the lock because only this thread touches it. */
2090 sigandsets(&pending, &current->blocked, &pending);
2091
2092 error = -EFAULT;
2093 if (!copy_to_user(set, &pending, sigsetsize))
2094 error = 0;
2095
2096out:
2097 return error;
2098}
2099
2100asmlinkage long
2101sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2102{
2103 return do_sigpending(set, sigsetsize);
2104}
2105
2106#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2107
2108int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2109{
2110 int err;
2111
2112 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2113 return -EFAULT;
2114 if (from->si_code < 0)
2115 return __copy_to_user(to, from, sizeof(siginfo_t))
2116 ? -EFAULT : 0;
2117 /*
2118 * If you change siginfo_t structure, please be sure
2119 * this code is fixed accordingly.
2120 * It should never copy any pad contained in the structure
2121 * to avoid security leaks, but must copy the generic
2122 * 3 ints plus the relevant union member.
2123 */
2124 err = __put_user(from->si_signo, &to->si_signo);
2125 err |= __put_user(from->si_errno, &to->si_errno);
2126 err |= __put_user((short)from->si_code, &to->si_code);
2127 switch (from->si_code & __SI_MASK) {
2128 case __SI_KILL:
2129 err |= __put_user(from->si_pid, &to->si_pid);
2130 err |= __put_user(from->si_uid, &to->si_uid);
2131 break;
2132 case __SI_TIMER:
2133 err |= __put_user(from->si_tid, &to->si_tid);
2134 err |= __put_user(from->si_overrun, &to->si_overrun);
2135 err |= __put_user(from->si_ptr, &to->si_ptr);
2136 break;
2137 case __SI_POLL:
2138 err |= __put_user(from->si_band, &to->si_band);
2139 err |= __put_user(from->si_fd, &to->si_fd);
2140 break;
2141 case __SI_FAULT:
2142 err |= __put_user(from->si_addr, &to->si_addr);
2143#ifdef __ARCH_SI_TRAPNO
2144 err |= __put_user(from->si_trapno, &to->si_trapno);
2145#endif
2146 break;
2147 case __SI_CHLD:
2148 err |= __put_user(from->si_pid, &to->si_pid);
2149 err |= __put_user(from->si_uid, &to->si_uid);
2150 err |= __put_user(from->si_status, &to->si_status);
2151 err |= __put_user(from->si_utime, &to->si_utime);
2152 err |= __put_user(from->si_stime, &to->si_stime);
2153 break;
2154 case __SI_RT: /* This is not generated by the kernel as of now. */
2155 case __SI_MESGQ: /* But this is */
2156 err |= __put_user(from->si_pid, &to->si_pid);
2157 err |= __put_user(from->si_uid, &to->si_uid);
2158 err |= __put_user(from->si_ptr, &to->si_ptr);
2159 break;
2160 default: /* this is just in case for now ... */
2161 err |= __put_user(from->si_pid, &to->si_pid);
2162 err |= __put_user(from->si_uid, &to->si_uid);
2163 break;
2164 }
2165 return err;
2166}
2167
2168#endif
2169
2170asmlinkage long
2171sys_rt_sigtimedwait(const sigset_t __user *uthese,
2172 siginfo_t __user *uinfo,
2173 const struct timespec __user *uts,
2174 size_t sigsetsize)
2175{
2176 int ret, sig;
2177 sigset_t these;
2178 struct timespec ts;
2179 siginfo_t info;
2180 long timeout = 0;
2181
2182 /* XXX: Don't preclude handling different sized sigset_t's. */
2183 if (sigsetsize != sizeof(sigset_t))
2184 return -EINVAL;
2185
2186 if (copy_from_user(&these, uthese, sizeof(these)))
2187 return -EFAULT;
2188
2189 /*
2190 * Invert the set of allowed signals to get those we
2191 * want to block.
2192 */
2193 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2194 signotset(&these);
2195
2196 if (uts) {
2197 if (copy_from_user(&ts, uts, sizeof(ts)))
2198 return -EFAULT;
2199 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2200 || ts.tv_sec < 0)
2201 return -EINVAL;
2202 }
2203
2204 spin_lock_irq(&current->sighand->siglock);
2205 sig = dequeue_signal(current, &these, &info);
2206 if (!sig) {
2207 timeout = MAX_SCHEDULE_TIMEOUT;
2208 if (uts)
2209 timeout = (timespec_to_jiffies(&ts)
2210 + (ts.tv_sec || ts.tv_nsec));
2211
2212 if (timeout) {
2213 /* None ready -- temporarily unblock those we're
2214 * interested while we are sleeping in so that we'll
2215 * be awakened when they arrive. */
2216 current->real_blocked = current->blocked;
2217 sigandsets(&current->blocked, &current->blocked, &these);
2218 recalc_sigpending();
2219 spin_unlock_irq(&current->sighand->siglock);
2220
75bcc8c5 2221 timeout = schedule_timeout_interruptible(timeout);
1da177e4 2222
3e1d1d28 2223 try_to_freeze();
1da177e4
LT
2224 spin_lock_irq(&current->sighand->siglock);
2225 sig = dequeue_signal(current, &these, &info);
2226 current->blocked = current->real_blocked;
2227 siginitset(&current->real_blocked, 0);
2228 recalc_sigpending();
2229 }
2230 }
2231 spin_unlock_irq(&current->sighand->siglock);
2232
2233 if (sig) {
2234 ret = sig;
2235 if (uinfo) {
2236 if (copy_siginfo_to_user(uinfo, &info))
2237 ret = -EFAULT;
2238 }
2239 } else {
2240 ret = -EAGAIN;
2241 if (timeout)
2242 ret = -EINTR;
2243 }
2244
2245 return ret;
2246}
2247
2248asmlinkage long
2249sys_kill(int pid, int sig)
2250{
2251 struct siginfo info;
2252
2253 info.si_signo = sig;
2254 info.si_errno = 0;
2255 info.si_code = SI_USER;
2256 info.si_pid = current->tgid;
2257 info.si_uid = current->uid;
2258
2259 return kill_something_info(sig, &info, pid);
2260}
2261
2262/**
2263 * sys_tgkill - send signal to one specific thread
2264 * @tgid: the thread group ID of the thread
2265 * @pid: the PID of the thread
2266 * @sig: signal to be sent
2267 *
2268 * This syscall also checks the tgid and returns -ESRCH even if the PID
2269 * exists but it's not belonging to the target process anymore. This
2270 * method solves the problem of threads exiting and PIDs getting reused.
2271 */
2272asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2273{
2274 struct siginfo info;
2275 int error;
2276 struct task_struct *p;
2277
2278 /* This is only valid for single tasks */
2279 if (pid <= 0 || tgid <= 0)
2280 return -EINVAL;
2281
2282 info.si_signo = sig;
2283 info.si_errno = 0;
2284 info.si_code = SI_TKILL;
2285 info.si_pid = current->tgid;
2286 info.si_uid = current->uid;
2287
2288 read_lock(&tasklist_lock);
2289 p = find_task_by_pid(pid);
2290 error = -ESRCH;
2291 if (p && (p->tgid == tgid)) {
2292 error = check_kill_permission(sig, &info, p);
2293 /*
2294 * The null signal is a permissions and process existence
2295 * probe. No signal is actually delivered.
2296 */
2297 if (!error && sig && p->sighand) {
2298 spin_lock_irq(&p->sighand->siglock);
2299 handle_stop_signal(sig, p);
2300 error = specific_send_sig_info(sig, &info, p);
2301 spin_unlock_irq(&p->sighand->siglock);
2302 }
2303 }
2304 read_unlock(&tasklist_lock);
2305 return error;
2306}
2307
2308/*
2309 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2310 */
2311asmlinkage long
2312sys_tkill(int pid, int sig)
2313{
2314 struct siginfo info;
2315 int error;
2316 struct task_struct *p;
2317
2318 /* This is only valid for single tasks */
2319 if (pid <= 0)
2320 return -EINVAL;
2321
2322 info.si_signo = sig;
2323 info.si_errno = 0;
2324 info.si_code = SI_TKILL;
2325 info.si_pid = current->tgid;
2326 info.si_uid = current->uid;
2327
2328 read_lock(&tasklist_lock);
2329 p = find_task_by_pid(pid);
2330 error = -ESRCH;
2331 if (p) {
2332 error = check_kill_permission(sig, &info, p);
2333 /*
2334 * The null signal is a permissions and process existence
2335 * probe. No signal is actually delivered.
2336 */
2337 if (!error && sig && p->sighand) {
2338 spin_lock_irq(&p->sighand->siglock);
2339 handle_stop_signal(sig, p);
2340 error = specific_send_sig_info(sig, &info, p);
2341 spin_unlock_irq(&p->sighand->siglock);
2342 }
2343 }
2344 read_unlock(&tasklist_lock);
2345 return error;
2346}
2347
2348asmlinkage long
2349sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2350{
2351 siginfo_t info;
2352
2353 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2354 return -EFAULT;
2355
2356 /* Not even root can pretend to send signals from the kernel.
2357 Nor can they impersonate a kill(), which adds source info. */
2358 if (info.si_code >= 0)
2359 return -EPERM;
2360 info.si_signo = sig;
2361
2362 /* POSIX.1b doesn't mention process groups. */
2363 return kill_proc_info(sig, &info, pid);
2364}
2365
2366int
2367do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2368{
2369 struct k_sigaction *k;
2370
7ed20e1a 2371 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2372 return -EINVAL;
2373
2374 k = &current->sighand->action[sig-1];
2375
2376 spin_lock_irq(&current->sighand->siglock);
2377 if (signal_pending(current)) {
2378 /*
2379 * If there might be a fatal signal pending on multiple
2380 * threads, make sure we take it before changing the action.
2381 */
2382 spin_unlock_irq(&current->sighand->siglock);
2383 return -ERESTARTNOINTR;
2384 }
2385
2386 if (oact)
2387 *oact = *k;
2388
2389 if (act) {
2390 /*
2391 * POSIX 3.3.1.3:
2392 * "Setting a signal action to SIG_IGN for a signal that is
2393 * pending shall cause the pending signal to be discarded,
2394 * whether or not it is blocked."
2395 *
2396 * "Setting a signal action to SIG_DFL for a signal that is
2397 * pending and whose default action is to ignore the signal
2398 * (for example, SIGCHLD), shall cause the pending signal to
2399 * be discarded, whether or not it is blocked"
2400 */
2401 if (act->sa.sa_handler == SIG_IGN ||
2402 (act->sa.sa_handler == SIG_DFL &&
2403 sig_kernel_ignore(sig))) {
2404 /*
2405 * This is a fairly rare case, so we only take the
2406 * tasklist_lock once we're sure we'll need it.
2407 * Now we must do this little unlock and relock
2408 * dance to maintain the lock hierarchy.
2409 */
2410 struct task_struct *t = current;
2411 spin_unlock_irq(&t->sighand->siglock);
2412 read_lock(&tasklist_lock);
2413 spin_lock_irq(&t->sighand->siglock);
2414 *k = *act;
2415 sigdelsetmask(&k->sa.sa_mask,
2416 sigmask(SIGKILL) | sigmask(SIGSTOP));
2417 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2418 do {
2419 rm_from_queue(sigmask(sig), &t->pending);
2420 recalc_sigpending_tsk(t);
2421 t = next_thread(t);
2422 } while (t != current);
2423 spin_unlock_irq(&current->sighand->siglock);
2424 read_unlock(&tasklist_lock);
2425 return 0;
2426 }
2427
2428 *k = *act;
2429 sigdelsetmask(&k->sa.sa_mask,
2430 sigmask(SIGKILL) | sigmask(SIGSTOP));
2431 }
2432
2433 spin_unlock_irq(&current->sighand->siglock);
2434 return 0;
2435}
2436
2437int
2438do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2439{
2440 stack_t oss;
2441 int error;
2442
2443 if (uoss) {
2444 oss.ss_sp = (void __user *) current->sas_ss_sp;
2445 oss.ss_size = current->sas_ss_size;
2446 oss.ss_flags = sas_ss_flags(sp);
2447 }
2448
2449 if (uss) {
2450 void __user *ss_sp;
2451 size_t ss_size;
2452 int ss_flags;
2453
2454 error = -EFAULT;
2455 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2456 || __get_user(ss_sp, &uss->ss_sp)
2457 || __get_user(ss_flags, &uss->ss_flags)
2458 || __get_user(ss_size, &uss->ss_size))
2459 goto out;
2460
2461 error = -EPERM;
2462 if (on_sig_stack(sp))
2463 goto out;
2464
2465 error = -EINVAL;
2466 /*
2467 *
2468 * Note - this code used to test ss_flags incorrectly
2469 * old code may have been written using ss_flags==0
2470 * to mean ss_flags==SS_ONSTACK (as this was the only
2471 * way that worked) - this fix preserves that older
2472 * mechanism
2473 */
2474 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2475 goto out;
2476
2477 if (ss_flags == SS_DISABLE) {
2478 ss_size = 0;
2479 ss_sp = NULL;
2480 } else {
2481 error = -ENOMEM;
2482 if (ss_size < MINSIGSTKSZ)
2483 goto out;
2484 }
2485
2486 current->sas_ss_sp = (unsigned long) ss_sp;
2487 current->sas_ss_size = ss_size;
2488 }
2489
2490 if (uoss) {
2491 error = -EFAULT;
2492 if (copy_to_user(uoss, &oss, sizeof(oss)))
2493 goto out;
2494 }
2495
2496 error = 0;
2497out:
2498 return error;
2499}
2500
2501#ifdef __ARCH_WANT_SYS_SIGPENDING
2502
2503asmlinkage long
2504sys_sigpending(old_sigset_t __user *set)
2505{
2506 return do_sigpending(set, sizeof(*set));
2507}
2508
2509#endif
2510
2511#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2512/* Some platforms have their own version with special arguments others
2513 support only sys_rt_sigprocmask. */
2514
2515asmlinkage long
2516sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2517{
2518 int error;
2519 old_sigset_t old_set, new_set;
2520
2521 if (set) {
2522 error = -EFAULT;
2523 if (copy_from_user(&new_set, set, sizeof(*set)))
2524 goto out;
2525 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2526
2527 spin_lock_irq(&current->sighand->siglock);
2528 old_set = current->blocked.sig[0];
2529
2530 error = 0;
2531 switch (how) {
2532 default:
2533 error = -EINVAL;
2534 break;
2535 case SIG_BLOCK:
2536 sigaddsetmask(&current->blocked, new_set);
2537 break;
2538 case SIG_UNBLOCK:
2539 sigdelsetmask(&current->blocked, new_set);
2540 break;
2541 case SIG_SETMASK:
2542 current->blocked.sig[0] = new_set;
2543 break;
2544 }
2545
2546 recalc_sigpending();
2547 spin_unlock_irq(&current->sighand->siglock);
2548 if (error)
2549 goto out;
2550 if (oset)
2551 goto set_old;
2552 } else if (oset) {
2553 old_set = current->blocked.sig[0];
2554 set_old:
2555 error = -EFAULT;
2556 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2557 goto out;
2558 }
2559 error = 0;
2560out:
2561 return error;
2562}
2563#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2564
2565#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2566asmlinkage long
2567sys_rt_sigaction(int sig,
2568 const struct sigaction __user *act,
2569 struct sigaction __user *oact,
2570 size_t sigsetsize)
2571{
2572 struct k_sigaction new_sa, old_sa;
2573 int ret = -EINVAL;
2574
2575 /* XXX: Don't preclude handling different sized sigset_t's. */
2576 if (sigsetsize != sizeof(sigset_t))
2577 goto out;
2578
2579 if (act) {
2580 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2581 return -EFAULT;
2582 }
2583
2584 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2585
2586 if (!ret && oact) {
2587 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2588 return -EFAULT;
2589 }
2590out:
2591 return ret;
2592}
2593#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2594
2595#ifdef __ARCH_WANT_SYS_SGETMASK
2596
2597/*
2598 * For backwards compatibility. Functionality superseded by sigprocmask.
2599 */
2600asmlinkage long
2601sys_sgetmask(void)
2602{
2603 /* SMP safe */
2604 return current->blocked.sig[0];
2605}
2606
2607asmlinkage long
2608sys_ssetmask(int newmask)
2609{
2610 int old;
2611
2612 spin_lock_irq(&current->sighand->siglock);
2613 old = current->blocked.sig[0];
2614
2615 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2616 sigmask(SIGSTOP)));
2617 recalc_sigpending();
2618 spin_unlock_irq(&current->sighand->siglock);
2619
2620 return old;
2621}
2622#endif /* __ARCH_WANT_SGETMASK */
2623
2624#ifdef __ARCH_WANT_SYS_SIGNAL
2625/*
2626 * For backwards compatibility. Functionality superseded by sigaction.
2627 */
2628asmlinkage unsigned long
2629sys_signal(int sig, __sighandler_t handler)
2630{
2631 struct k_sigaction new_sa, old_sa;
2632 int ret;
2633
2634 new_sa.sa.sa_handler = handler;
2635 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2636
2637 ret = do_sigaction(sig, &new_sa, &old_sa);
2638
2639 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2640}
2641#endif /* __ARCH_WANT_SYS_SIGNAL */
2642
2643#ifdef __ARCH_WANT_SYS_PAUSE
2644
2645asmlinkage long
2646sys_pause(void)
2647{
2648 current->state = TASK_INTERRUPTIBLE;
2649 schedule();
2650 return -ERESTARTNOHAND;
2651}
2652
2653#endif
2654
2655void __init signals_init(void)
2656{
2657 sigqueue_cachep =
2658 kmem_cache_create("sigqueue",
2659 sizeof(struct sigqueue),
2660 __alignof__(struct sigqueue),
2661 SLAB_PANIC, NULL, NULL);
2662}